

XSLT Essentials

2 XSLT Essentials
Copyright © 2008 PSC

XSLT Essentials 3
Copyright © 2008 PSC

Overview

Introduction

In order to use the XML Transformation Service of the ESB or any other XSLT processor
in your application, you first need to learn the language used for transforming XML
documents, called the eXtensible Stylesheet Language(XSL). XSLT is the transformation
processing that is done using this language.

This lesson will teach you the basic syntax of XSL. You will learn how to create an XSL
file called an XSLT stylesheet which describes the XML transformations from one XML
document to another. You will use Stylus Studio to create and test your XSLT stylesheets.
You also will learn how to use the XML-to-XML mapping capability of Stylus Studio
which enables you to generate an XSLT stylesheet.

This lesson is not intended to be a complete XSLT course, but rather one that gets you
started with the basics of XSLT. If you want to learn more about XSLT, you should read
any of the many books that address XSLT development.

continued on next page

4 XSLT Essentials
Copyright © 2008 PSC

XSLT Essentials 5
Copyright © 2008 PSC

Overview, continued

Learning objectives

When you complete this lesson, you should be able to:

● Describe why transformation is necessary,
● Describe what XSL is,
● Create and test a simple XSLT stylesheet using Stylus Studio,
● Describe what XSLT processing is,
● Define some useful XSL elements in your XSLT stylesheet,
● Test an XSLT stylesheet that you have developed and
● Create and test XML to XML mapping with Stylus Studio.

Prerequisites

Before you begin this lesson, you should be able to:

● Understand XML document structure and
● Create XPath expressions.

6 XSLT Essentials
Copyright © 2008 PSC

XSLT Essentials 7
Copyright © 2008 PSC

Understanding the need for XML transformation

Introduction

Your application may need to exchange information with a single application or partner.
Your application also may need to participate in a business process where there may be
multiple exchanges of information. For both of these scenarios, the format used for
exchanging data will most likely be XML. For example, Web services require that the
messages be exchanged using the SOAP messaging protocol, defined by XML Schema.

Why transform?

The information exchanged needs to be transformable. This is necessary because:

● The information your application requires may be in a different format than the
format of the partner with whom you are exchanging information.

● You may want to switch partners; the ability to “plug in” a different partner or
service provider will most likely require a change in the format of the information
you are exchanging.

Example of the need for transformation

Let us assume that you have an application that utilizes a Web service which returns an
Invoice XML document. The format used to describe this XML document is Invoice-
NewCo.43.2.xsd. This is an XML Schema file the Web service provider has published
that fully describes the format for the Invoice XML document that will be returned by the
NewcCo Web service.

Your application has its own format that it requires for an Invoice XML document once it
has been received by your MyCo application. This format is described by the MyCo.xsd
file. If the XML Schema for NewCo and MyCo for an Invoice XML document are not
identical, then your application needs to turn the Invoice XML document received from
NewCo into an Invoice XML document that your enterprise (MyCo) application will
understand. This transformation is done using an XSLT processor.

XSLT processing in Sonic ESB

XSLT processing is available to services that run in a Sonic ESB container. In this lesson,
you will learn some of the basics of creating the XSLT stylesheet used by an XSLT
processor to transform an XML document into a different format.

8 XSLT Essentials
Copyright © 2008 PSC

XSLT Essentials 9
Copyright © 2008 PSC

What is XSL?

Introduction

The eXtensible XSLT Stylesheet Language (XSL) was developed and standardized by a
number of participants in the W3C (www.w3c.org). It is written in XML and adheres to
the XML Schema for XSL, which has been defined by the W3C.

The XML elements defined in an XSLT stylesheet are used to tell the XSLT processor
how to take a source XML document and turn it into another output format (typically
XML). When an XSLT stylesheet is applied to a particular source XML document, the
XSL elements are used to control the XSLT processing. The Sonic ESB container and
Stylus Studio have built-in XSLT processors.

Elements of XSL

The XML elements in an XSL document are defined by the XML Schema for XSL. The
XML Schema for XSL defines a namespace called “xsl”. Every element you create that is
an XSL element will be preceded by the “xsl:” namespace identifier.

The types of tasks you can perform on a source XML document include:

● Search for element and attribute names and values within the source XML
document and copy them from the source XML document to the destination.

● Identify values of elements and attributes that are in the source XML document for
modification and write the modified elements to the destination.

● Identify elements and attributes in the source XML document that need to be
rearranged and write them in the new order to the destination.

● Add new data to the destination.

In this lesson, we will learn how to perform some of the above tasks by developing and
testing an XSLT stylesheet using Stylus Studio.

10 XSLT Essentials
Copyright © 2008 PSC

XSLT Essentials 11
Copyright © 2008 PSC

Structure of an XSL document

Root element

Every valid XSL document must have a root element that is used to tell the XSLT
processor that it is an XSLT stylesheet. Since it is the root element, it will have only one
xsl:stylesheet element.

Template elements

The child elements of the root element of an XSL document are called template elements
and have the name xsl:template. It is within the template that other XSL elements or
literals are placed. The XSLT processor uses the information in the template to create a
destination document from the source document. An XSL document can have any number
of templates, depending on the transformation processing required.

Syntax for the xsl:stylesheet element

Here is the syntax for the xsl:stylesheet element:

Syntax

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<!—The rest of the XSLT stylesheet goes here -->
</xsl:stylesheet>

XSLT version compatibility

You should always use the above syntax for your xsl:stylesheet element. The namespace
and version for XSLT has not been changed by the W3C since 1999. If it changes in the
future, then you must ensure that whatever XSLT processor you are using conforms to the
namespace and version that you have specified in your xsl:stylesheet element.

12 XSLT Essentials
Copyright © 2008 PSC

XSLT Essentials 13
Copyright © 2008 PSC

Understanding XSLT stylesheet elements

XSLT template

An XSLT template element is used to select part of a source XML document for
transformation. The template typically has two parts: the match attribute, which is used to
select the elements or attributes of the XML document, and the processing directive,
which tells the XSLT processor what to do with the selected elements or attributes. It is
the XSLT templates that comprise your XSLT stylesheet.

continued on next page

14 XSLT Essentials
Copyright © 2008 PSC

XSLT Essentials 15
Copyright © 2008 PSC

Understanding XSLT stylesheet elements, continued

Syntax for the xsl:template element

An XSLT stylesheet may contain one or more templates for controlling the XSLT
processing. It is within the template that you define what processing you want the XSLT
processor to perform when it encounters a match in the source XML document. Here is
the syntax for the xsl:template element:

Syntax

<xsl:template match=”XPathExpression”>
<!—The XSLT processing directives for this template goes here -->
</xsl:template>

where:
XPathExpression is an expression that the XSLT processor will use to match against the

source XML document to see if processing for matched portion of the
document needs to be performed.

The processing directives are xsl elements. You use these xsl elements to tell the XSLT
processor what processing to perform with the matched content. You will learn more
about the xsl elements available to you later in this lesson.

Example of an xsl:template element

Here is an example of a template that matches the root element of the source XML
document denoted by the match string of “/”. In XPath, “/” always means the root
element of the XML document. In the following example, the XSLT processor finds the
root element in the source XML document then executes the directives in the body of the
template:

<xsl:template match=”/”>
<!—The XSLT processing directives for this template goes here -->
</xsl:template>

Example XSLT stylesheet

The example on the facing page is a very simple XSLT stylesheet that directs the XSLT
processor to write the complete Hello element to the destination. Anything in the template
which is not an XSL element is considered a literal. No specific elements from the source
XML document are selected so none of the source XML elements are written to the
destination. We will next learn how to create an XSLT stylesheet in Stylus Studio.

16 XSLT Essentials
Copyright © 2008 PSC

XSLT Essentials 17
Copyright © 2008 PSC

Demonstration 1: Creating your first XSLT
stylesheet

Introduction

In this demonstration, you will use Stylus Studio to create a very simple XSLT stylesheet
that creates an XML document. It will look for the root of the bookstore.xml document
and then commence XSLT processing. You also will create the XSLT stylesheet that
writes the Hello element to the destination XML document.

Here are the steps to create and test the XSLT stylesheet:

Step Description
1. Start Stylus Studio.
2. Create a new XSLT stylesheet.
3. Create a scenario which is an environment for doing the transformation.
4. Edit the XSLT stylesheet.
5. Save your XSLT stylesheet.
6. Test your XSLT stylesheet.
7. View the resulting destination document.

Starting Stylus Studio

Start Stylus Studio by selecting Start Programs Stylus Studio 6 XML Home
Edition Stylus Studio.

Creating an XSL file (XSLT stylesheet)

Create a new XSLT stylesheet by selecting File New XSLT:Text Editor.

When you create a new XSLT stylesheet, you will eventually receive the edit pane as
shown later in this demonstration. It is within this pane that you can create the XSLT
processing directives (XSLT template content) that define your XSLT stylesheet.

continued on next page

18 XSLT Essentials
Copyright © 2008 PSC

Demonstration 1: Creating your first XSLT
stylesheet, continued

Creating an XSL file (XSLT stylesheet), continued

The dialog box you should now see looks as follows:

continued on next page

XSLT Essentials 19
Copyright © 2008 PSC

Demonstration 1: Creating your first XSLT
stylesheet, continued

What is a scenario?

A scenario is a name that is associated with a group of documents:

● XML source document,
● XSL document (XSLT stylesheet) and
● Output document (optional).

In order to test any XSLT processing in Stylus Studio, you must create a scenario.

Creating a scenario

You should enter the following information in the Scenario Properties window:

1. The scenario name is something that helps to identify the XSLT stylesheet. Name
it Hello.

2. For your Source XML URL, select to browse to the
c:\progress_education\SOAEssentials\XSLTEssentials\Examples\bookstore.x
ml file. You can leave the Output URL information blank. Your new scenario
should look like the following:

3. Select OK.

continued on next page

20 XSLT Essentials
Copyright © 2008 PSC

Demonstration 1: Creating your first XSLT
stylesheet, continued

Creating a scenario, continued

You will then be in the XSLT Editor and see something like the following:

Notice how Stylus Studio uses color to help you identify the XML constructs in the XSL
file. Notice, too, that it has created a template with no content.

continued on next page

XSLT Essentials 21
Copyright © 2008 PSC

Demonstration 1: Creating your first XSLT
stylesheet, continued

Editing the XSLT stylesheet

With the XSLT stylesheet in view, you now have XSLT stylesheet editing capabilities.
Within this template that matches “/”, add the following element:

<Hello>This is a test</Hello>

Make sure that this element is within the xsl:template element.

Your XSLT stylesheet should look like the following:

Notice that the right-hand pane displays the XML Schema of the source XML document
in tree format. This can help you when creating content for the XSLT stylesheet.

Saving your XSLT stylesheet

You need to save your XSLT stylesheet before you can test it.

1. Select the icon or select File Save.

2. Name your XSLT stylesheet hello.xsl.

continued on next page

22 XSLT Essentials
Copyright © 2008 PSC

Demonstration 1: Creating your first XSLT
stylesheet, continued

Testing your XSLT stylesheet

Testing your XSLT stylesheet involves invocating the XSLT processor that is built into
Stylus Studio. You test your XSLT stylesheet by applying the stylesheet to the source

XML document. You do so by selecting the preview button (the green arrow to the
left of the scenario name pane).

When the XSLT processing completes, you should see the following:

The preview pane at the bottom of your window should show the result
of the XSL transformation.

continued on next page

XSLT Essentials 23
Copyright © 2008 PSC

Demonstration 1: Creating your first XSLT
stylesheet, continued

Viewing the destination XML document

When you have applied an XSLT stylesheet to your source XML document as specified in
your scenario, a third pane is displayed (called the Preview pane) that you saw on the
previous page.

This is the result of performing the XSLT processing on your source bookstore.xml
document using the hello.xsl XSLT stylesheet that you just created.

Notice that in the Preview pane, there are icons on the left to select which presentation
style you would like to see:

Stylus Studio icon Description

Tree view

IE view

XML text view

Try each of these views for viewing your output.

24 XSLT Essentials
Copyright © 2008 PSC

XSLT Essentials 25
Copyright © 2008 PSC

Understanding XSLT processing

Introduction

Thus far you have seen a simple template that is processed when the XSLT processor
encounters the root “/”of the document. Recall that a XSLT template contains a match
element and the elements that direct the XSLT processor. You will learn more about how
XSLT processing works and how templates are used during XSLT processing.

Matching templates

Earlier in this lesson, you saw what a simple xsl:template element looks like in an XSLT
stylesheet. This element will always have a match attribute. The match attribute is an
XPath expression that identifies a node (elements or attributes) or set of nodes that are to
be processed with this template. If there are nodes in the current context which match the
template, then the processing defined in the template is performed.

The template we saw earlier had the match attribute value of “/”. Here is an example of a
template with a match attribute for the book element:

<xsl:template match=”book”>
<!--The XSLT processing directives for a book element -->
</xsl:template>

Template instantiation

A template in the XSLT stylesheet is instantiated in XSLT processing when a particular
node (element or attribute) has been encountered in the parse of the source XML
document that matches the match attribute of an existing template in the XSLT stylesheet.
Once found, the XSLT processing directives in the matched template are executed.

continued on next page

26 XSLT Essentials
Copyright © 2008 PSC

XSLT Essentials 27
Copyright © 2008 PSC

Understanding XSLT processing, continued

Default templates

Every XSLT processor has default behavior defined by the two templates shown on the
facing page. What this means is if you have not defined a template for a particular element
or attribute match, then the default processing will occur.

Although we have not learned about some of the XSL element syntax for these default
templates (namely xsl:apply-templates and xsl:value-of), you should understand the
default behavior for the XSLT processor.

The first template shown on the facing page matches any element (*) or the root (/) of the
source XML document. It then continues applying these default templates (using
xsl:apply-templates) for the child elements.

The second template matches any text nodes encountered in the source XML document. It
then writes the values of the text nodes to the destination document. What is important to
understand with this default template is that the element and attribute names are not
written to the destination document; only the values are written.

Default behavior of the XSLT processor

The result of applying an XSLT stylesheet to a source XML document using only the
default behavior will be to take all of the values of elements and attributes from the source
XML document and write them to the destination document. If you have not defined any
templates to override the default templates, this is the behavior of the XSLT processor you
will see.

Next you will try applying an XSLT stylesheet in Stylus Studio using the default
templates and see the result.

28 XSLT Essentials
Copyright © 2008 PSC

XSLT Essentials 29
Copyright © 2008 PSC

Demonstration 2: Using the default templates

Introduction

The purpose of this demonstration is for you to see the result of using default templates. In
the previous demonstration, you created an XSLT stylesheet defining the template that
matched “/”. In this demonstration, you will create an XSLT stylesheet that utilizes the
default templates of the XSLT processor. Then you will add templates to override the
default templates.

Create an XSLT stylesheet without a template defined

Follow these steps for creating the template:

1. Open Stylus Studio.

2. Create a new XSLT stylesheet by selecting File New XSLT: Text Editor.

3. Define a new scenario with the name of Default. For your Source XML URL,
select the bookstore.xml file.

4. You can leave the Output URL information blank.

5. Select OK.

continued on next page

30 XSLT Essentials
Copyright © 2008 PSC

Demonstration 2: Using the default templates,
continued

Remove the template defined

In the XSLT stylesheet editing pane, select and delete the template that Stylus Studio
automatically defines for you which matches “/”. Your XSLT stylesheet should now look
like the following with no templates explicitly defined:

Save your XSLT stylesheet

Save your XSLT stylesheet as default.xsl.

continued on next page

XSLT Essentials 31
Copyright © 2008 PSC

Demonstration 2: Using the default templates,
continued

Try the XSLT processor

Select the Preview icon to perform the XSLT processing on your source XML
document. You can view the results of the XSLT processing by opening the Preview
window.

Notice that the output simply has the content of all text nodes and attributes in the source
XML document, bookstore.xml and that the output is not XML. Using the default
templates, you have applied the default XSLT processing directives to the source XML
document. No XML tags have been output because the default template only specifies the
values of the nodes, not their tags. If you want tags to be output, you must add the output
of literal element start and end tags in the template being processed.

continued on next page

32 XSLT Essentials
Copyright © 2008 PSC

Demonstration 2: Using the default templates,
continued

Add some templates to your XSLT stylesheet

Add the following templates to your XSLT stylesheet in order to override the default
templates the XSLT processor uses:

The first template will output the value of the title element text nodes with the title XML
tags around them. The second template matches the root element of the source XML
document and places the root element tags in the output. Notice that we have specified the
xsl:apply-templates element because we require that all child nodes of this root element be
processed. If we leave this XSLT processing directive out, the child elements will not be
processed.

When the XSLT Processor executes using the above stylesheet, it parses the elements in
the source XML document and checks every element and attribute in the XSLT stylesheet
for a template match. The processing sequence is based upon the order of the elements in
the source XML document and not the order of the templates in the XSLT stylesheet.

continued on next page

XSLT Essentials 33
Copyright © 2008 PSC

Demonstration 2: Using the default templates,
continued

Save and preview your XSLT stylesheet

Save your stylesheet as First.xsl.

Preview the result. You should now see the following for output:

Notice that only the bookstore and title elements are properly formatted as XML and all of
the other text and attribute nodes are simply written to the output “as is.” On the left of
the Preview pane, you can select whether you want to preview the output using tree view,
IE view or text view. Try each of these views.

34 XSLT Essentials
Copyright © 2008 PSC

XSLT Essentials 35
Copyright © 2008 PSC

Using basic xsl elements

Introduction

Up to this point, you have created and tested some simple XSLT templates in Stylus
Studio. In doing so, you have already used the xsl elements:

● xsl:stylesheet
● xsl:template

Within a template, you have used the XSLT processing directives of:

● xsl:apply-templates
● xsl:value-of

You will now learn more about these xsl elements.

36 XSLT Essentials
Copyright © 2008 PSC

XSLT Essentials 37
Copyright © 2008 PSC

Using xsl:apply-templates

xsl:apply-templates

The xsl:apply-templates element tells the XSLT processor to perform more processing by
continuing the parse of the source XML document and matching the appropriate templates
to apply to the source XML document. You must have this element within the body of at
least one template so that if desired, the source XML document can continue to be parsed.

Syntax for xsl:apply-templates

Here is the syntax for this element:

Syntax

<xsl:apply-templates [select = “expression”]

where:
expression is an XPath expression that identifies a node or nodeset that should be

processed that is relative to the current context of the parse.

If the select attribute is not specified, then all child elements of the current context in the
parse will be processed. In our previous demonstration, we specified xsl:apply-templates
with no select attribute which meant that all descendants of the bookstore element would
be processed.

Example of using apply-templates

On the facing page is an example of using xsl:apply-templates.

The XSLT processor will parse the bookstore XML document. The first element it
encounters is the bookstore element. The template match occurs and the processing is
done for the matching template. The processing for this template writes the bookstore start
tag and continues processing for all book child elements. For each book child element, a
match is found for the award element and the award tag and its value are written. Finally,
the end tag for bookstore is written.

On the next page, you will see the output generated from this XSLT stylesheet.

continued on next page

38 XSLT Essentials
Copyright © 2008 PSC

Using xsl:apply-templates, continued

Output generated by XSLT processor

The XSLT processing output for the XSLT stylesheet on the previous page yields the
following:

You will notice that in addition to the award element, all of the values of elements and
attributes for the book element are output. This is because the XSLT processor is using the
default behavior for everything else which is to output the values of the nodes.

continued on next page

XSLT Essentials 39
Copyright © 2008 PSC

Notes

40 XSLT Essentials
Copyright © 2008 PSC

XSLT Essentials 41
Copyright © 2008 PSC

Using xsl:apply-templates, continued

Narrowing the selection for processing

In the xsl:apply-templates element, you can specify a selection that limits the scope of the
processing. In the previous example, we specified the book XPath expression to tell the
XSLT processor that from the bookstore element, apply the template for all book elements
from this (bookstore) context.

If you specify XSLT processing for the author elements underneath the bookstore
element, then the XSLT stylesheet would look as follows:

While processing the bookstore element, you are telling the XSLT processor you are
going to narrow the processing to the book/author elements and their children in the
source XML document. The output on the facing page represents the result of the XSLT
processing. The template for bookstore is instantiated and executed which in turn
instantiates the templates for all book/author nodes below bookstore. All child elements of
author are processed because the default template is used which specifies that all child
elements of the current context will be processed.

42 XSLT Essentials
Copyright © 2008 PSC

XSLT Essentials 43
Copyright © 2008 PSC

Understanding difference between match and select

Match versus select

Thus far we have seen the XSLT processing directives for determining which template to
instantiate and how to process the source XML document. It is important to understand
the difference between the match and select attributes in an XSLT template:

● Match tells the XSLT processor which template to instantiate (execute) for the
nodeset defined by the match.

● Select is used during the execution of the template to narrow down the nodeset
being processed.

Order of templates does not matter

When the XSLT processor processes a source XML document, it performs a sequential
parse of the XML looking for elements or attributes that match the templates in the XSLT
stylesheet. The order of the elements in the source XML document combined with the
processing instructions within the templates control execution of the XSLT processor. The
order of the templates in the XSLT stylesheet is insignificant.

Example using match and select

On the facing page is an XSLT stylesheet that includes templates for bookstore and
award. It uses a combination of select with apply-templates to narrow the processing to
the book/author nodesets. The XSLT processing for this XSLT stylesheet is as follows:

1. Parse the source XML document and match a bookstore element.

2. Within the bookstore element, look only at book/author nodes and, unless
otherwise directed, output element values.

3. When looking at the bookstore/book/author node, find an award element and
output the value of the award.

44 XSLT Essentials
Copyright © 2008 PSC

XSLT Essentials 45
Copyright © 2008 PSC

Using xsl:value-of

Introduction

You use the xsl:value-of element to move content from the source XML to the destination.
You can place literals in the template which will be written to the destination and you can
use xsl:value-of which takes a value determined at run-time to write to the destination.

Syntax for xsl:value-of

Here is the syntax for using xsl:value:of:

Syntax

xsl: value-of select=”expression”

where:
expression is an XPath expression that identifies a node or nodeset that should be

selected relative to the current context; “.” Means this text element.

Example of using xsl:value-of

In the this example of the author template, rather than selecting the value of the author
element for output (select =”.”), we select the last-name element value for output:

46 XSLT Essentials
Copyright © 2008 PSC

XSLT Essentials 47
Copyright © 2008 PSC

Lab 1: Transform the bookstore XML document

Instructions

Follow the instructions in the Lab Guide for Lab 1.

48 XSLT Essentials
Copyright © 2008 PSC

XSLT Essentials 49
Copyright © 2008 PSC

Demonstration 3: Using Stylus Studio for
development of templates

Introduction

Stylus Studio has some built-in features that make developing an XSLT stylesheet easier.
Stylus Studio provides you help with:

● Creating a new template,
● Specifying a match pattern for the new template and
● Editing your XSL document using the full view vs. template view.

In this demonstration, you will practice creating new templates in Stylus Studio.

Creating a new XSLT stylesheet

You create a new XSLT stylesheet as follows:

1. In Stylus Studio, select File New XSLT: Text Editor.

2. A new scenario dialog box will appear and in it enter:
Field Enter the following:

Scenario Name FirstScenario
Source XML Browse to: c:\progress_education\SOAEssentials\

XSLTEssentials\Examples\bookstore.xml

3. Select OK.

continued on next page

50 XSLT Essentials
Copyright © 2008 PSC

Demonstration 3: Using Stylus Studio for
development of templates, continued

Creating a new template

Create a new template by following these steps:

1. When you first create an XSLT stylesheet, you automatically start in the XSLT
editor at the template for the match to “/”. Notice that the source XML document’s
schema is displayed in tree form in the right-hand pane.

2. If you select the icon, the xsl:template element is added to the XSLT
stylesheet with a match attribute value of “NewTemplate”. Below is what you
should see when you select the template icon:

continued on next page

XSLT Essentials 51
Copyright © 2008 PSC

Demonstration 3: Using Stylus Studio for
development of templates, continued

Modifying a template

The new template is not very interesting, so you will modify it as follows:

In the left-hand pane, replace “NewTemplate” with “magazine”.

Notice that a check mark is now placed in the right-hand pane where the tree view is
displayed. This is because you have defined a template for the magazine element. You
should see something like the following:

continued on next page

52 XSLT Essentials
Copyright © 2008 PSC

Demonstration 3: Using Stylus Studio for
development of templates, continued

Creating a template from the XML schema tree view

If you want to create a template for a specific element, you can select the element from the
XML source tree view and drag it into the XSL editing pane instead of using the template
icon:

1. Select the book element from the right-hand pane where the tree view is displayed
for the source XML Schema.

2. Drag it into the left-hand pane which contains the XSL document, making sure
you drag it to a correct position within the source XSL document. Notice that this
automatically creates the xsl:template element in the XSL editing pane and places
a check mark to the left of the book element. This means that this element now has
a template defined for it. Your window should now look as follows:

continued on next page

XSLT Essentials 53
Copyright © 2008 PSC

Demonstration 3: Using Stylus Studio for
development of templates, continued

Full view vs. template view

You can toggle between full view and template view in the XSL editing pane. When
you are in template view, the title on the XSL editing pane displays the template match
you are viewing. You can select different templates to view by selecting the match in the
source XML Schema tree that you want to view. Below is the template view for the
magazine element:

Practice toggling template views

In Stylus Studio, you can toggle between viewing all templates to viewing a particular
template.

1. Select the icon. Notice that this enables you to view or not view the source
XML Schema tree in the right-hand pane.

2. Select the icon. Notice that you now have the view of a single template. You
can use the title bar to select which template you will be viewing.

3. Select the icon. Notice that you now have a view of the full XSL document.

54 XSLT Essentials
Copyright © 2008 PSC

XSLT Essentials 55
Copyright © 2008 PSC

Developing xsl template code

Introduction

Thus far within a template, you have learned how to write to the destination document by
placing a literal in the template or by using the xsl:value-of element. You also have
learned how to control which nodes to process next in the XSLT processing by using the
xsl:apply-templates with a select attribute.

In some cases, you may want to have more programmatic control over what happens
during the XSLT processing. It is common to have the XSLT processing depend upon
element names or the values of the elements or attributes in the source XML document.
You will now learn how to control the XSLT processing using the following XSL
elements:

● xsl:for-each
● xsl:if
● xsl:choose
● xsl:copy
● xsl:copy-of

56 XSLT Essentials
Copyright © 2008 PSC

XSLT Essentials 57
Copyright © 2008 PSC

Using xsl:for-each

Introduction

If the source XML document that you are transforming has an element (or set of elements)
that all require the same processing, you can use the xsl:for-each element to tell the XSLT
processor to repeat the same processing for all nodes selected. This also can be achieved
by having a template for the selected nodes. As you gain more experience in XSLT
development, you will learn that there are many ways to do the same processing.

Syntax for using xsl:for-each

Here is the syntax you can use to repeat some XSLT processing on a set of nodes:

Syntax

<xsl:for-each select="nodeSet">
 XSLTCode
</xsl:for-each>

where:
nodeSet is an XPath expression that identifies a node or set of nodes relative to

the current node.
XSLTCode is whatever XSL elements or literal values you want to embed within

xsl:for-each element.

Example using xsl:for-each

On the facing page is an XSLT stylesheet that contains a single template. Within this
template, which is executed once, the XSLT processor looks for each book element and
then within each book element looks for each title element. Within this repetitive
processing, the appropriate element tags and values for the title element are generated.

58 XSLT Essentials
Copyright © 2008 PSC

XSLT Essentials 59
Copyright © 2008 PSC

Using xsl:if

Introduction

Using the bookstore XML document as input, suppose we want to create a Titles
document and each Title element will have an attribute named type. There are a couple of
ways this XSLT processing could be done. One way would be to have templates that
matches “book/title” and “magazine/title”. Within these templates, you generate the
desired output. You did this in the previous lab.

Another solution would be to match “title” and within the template test to see if the
current node is a child of a book or child of a magazine. If the current node is a child of a
book element or a magazine element, then generate the output. The construct that can be
used to do this test is the xsl:if processing directive.

Syntax for using xsl:if

Here is the syntax you can use to perform some conditional XSLT processing on a set of
nodes:

Syntax

<xsl:if test="testValue">
 XSLTCode
</xsl:if>

where:
testValue is an XPath expression that, when evaluated, will be either TRUE or

FALSE.
XSLTCode is whatever XSL elements or literal values you want to embed within

the xsl:if element.

Example using xsl:if

On the facing page is an example of using xsl:if. During the processing of a title element,
the XSLT processor generates the Title element. It has an attribute called type with a value
of book or magazine. This setting of the attribute will depend on whether the title element
has a book for a parent or a magazine for a parent.

60 XSLT Essentials
Copyright © 2008 PSC

XSLT Essentials 61
Copyright © 2008 PSC

Using xsl:choose

Introduction

xsl:choose is useful if you need to perform some processing in the template based upon
multiple values. In our previous example, we had a test for whether the parent node was a
book element or a magazine element. We could use an xsl:choose for this rather than two
xsl:if elements. It is more efficient to use xsl:choose than to have multiple xsl:if
statements.

Syntax for xsl:choose

Here is the syntax for the for using the xsl:choose element:

Syntax

<xsl:choose>
 <xsl:when test="testValue1">
 XSLTCode
 </xsl:when>
 [<xsl:when test="testValueN">
 XSLTCode
 </xsl:when>]
 [<xsl:otherwise>
 XSLTCode

</xsl:otherwise>]
</xsl:choose>

where:
testValue1 is an XPath expression that, when evaluated, will be either TRUE or

FALSE.
testValueN is a different XPath expression that, when evaluated, will be either

TRUE or FALSE.
XSLTCode is whatever XSL elements or literal values you want to embed within

the xsl:when element.

When the xsl:when element is encountered, each test is performed sequentially until a
TRUE is returned. There can by any number of xsl:when elements. If the xsl:otherwise is
defined, its XSLT processing directives are executed if all of the xsl:when tests evaluate to
FALSE.

Example using xsl:choose

The template shown on the facing page utilizes the xsl:choose element to test each
publisher element and create a Publisher element. If the tests enumerated do not cover all
of the possible values for publisher, then the xsl:otherwise element is processed.

62 XSLT Essentials
Copyright © 2008 PSC

XSLT Essentials 63
Copyright © 2008 PSC

Using xsl:copy-of

Introduction

Many times when you want to perform an XML-to-XML transformation, there are
sections of the source XML document that you want to duplicate “as is” without having to
process them. An example of this for the bookstore XML document is the excerpt
element. This element has children and grandchildren and we do not want to have to
perform a lot of processing to retrieve the excerpt element from the source XML for
writing to the destination. In order to perform this type of processing, you use the
xsl:copy-of element.

Syntax for xsl:copy-of

Here is the syntax for copying entire sections of an XML document:

Syntax

<xsl:copy-of select="nodeSet"/>

where:
nodeSet is the XPath expression which selects the node or nodeset specified

relative to the current node.

This element directs the XSLT processor to copy all nodes, attributes and descendants of
the node or nodeset to the destination.

continued on next page

64 XSLT Essentials
Copyright © 2008 PSC

XSLT Essentials 65
Copyright © 2008 PSC

Using xsl:copy-of, continued

Example: Using xsl:copy-of

The XSLT stylesheet on the facing page writes the book and title elements and copies the
excerpt elements from the source XML document. The resulting output is as follows:

<Books>
 <Book>
 <Title>Thirty Years in Cambridge</Title>
 <excerpt language="English">
 <p>How can one describe the smell of spring on the Charles.</p>
 <p>There are so many people who cannot appreciate seeing the early-morning
 rowers.</p>
 <index-list>
 <term>Charles</term>
 <definition>river</definition>
 </index-list>
 </excerpt>
 </Book>
 <Book>
 <Title>Boston Architecture</Title>
 </Book>
 <Book>
 <Title>Copley Square</Title>
 </Book>
 <Book>
 <Title>Living in Southie</Title>
 </Book>
 <Book>
 <Title>Scenes from Newbury Street</Title>
 <excerpt validated="no" language="English">
 <p>It was a dark and stormy night.</p>
 <p>But then all nights in Boston seem dark and stormy to someone who has gone
 through what<emph>I</emph>have.</p>
 <index-list>
 <term>Boston</term>
 <definition>city</definition>
 </index-list>
 </excerpt>
 </Book>
</Books>

66 XSLT Essentials
Copyright © 2008 PSC

XSLT Essentials 67
Copyright © 2008 PSC

Lab 2: Creating XSLT templates

Instructions

Follow the instructions in the Lab Guide for Lab 2.

68 XSLT Essentials
Copyright © 2008 PSC

XSLT Essentials 69
Copyright © 2008 PSC

Mapping XML to XML with Stylus Studio

Introduction

Thus far, you have learned some of the basic XSLT processing directives that can be
executed when a template is instantiated. You should know enough about XSLT to be able
to understand a basic XSLT stylesheet. Stylus Studio has a very useful feature that enables
you to automatically create an XSLT stylesheet if you know what your source XML
document looks like and what your destination XML document should look like.

In an SOA environment in which information is exchanged using XML documents from
various services or partners, it is very useful to be able to transform a document from one
format to another. You will now learn how to automatically create an XML to XML
mapping stylesheet using Stylus Studio.

When to automatically generate an XSLT stylesheet?

In the real world, not all XML documents can be well-defined. Sometimes elements or
attributes are optional or repeated making generating the XSLT stylesheet difficult. You
can first automatically generate an XSLT stylesheet and then use your knowledge of
XSLT to customize the XSLT stylesheet for your application needs.

Before you begin

In order to use the XML to XML mapping functionality of Stylus Studio, you must have a
representative XML document for the source and destination. These documents should
conform to some DTD or XML Schema that is agreed upon by the senders and receivers
of the documents. The example shown on the facing page shows two XML documents.
We want to create the XSLT stylesheet that will transform the source XML document to
the destination XML document.

continued on next page

70 XSLT Essentials
Copyright © 2008 PSC

Mapping XML to XML with Stylus Studio, continued

Creating an XML to XML mapping stylesheet

In Stylus Studio, you can create and test an XML to XML mapping stylesheet as follows:

Step Description
1. Create a new XML to XML mapping stylesheet.
2. Specify the source and destination XML documents.
3. Examine the source and destination schemas to determine mapping.
4. Map elements and attributes from the source to the destination.
5. Save the XSLT stylesheet.
6. Test the mapping by applying the XSLT stylesheet to the source XML

document.
7. Examine the generated XSLT stylesheet.

Next you will practice creating an XML to XML mapping stylesheet using Stylus Studio.

XSLT Essentials 71
Copyright © 2008 PSC

Notes

72 XSLT Essentials
Copyright © 2008 PSC

XSLT Essentials 73
Copyright © 2008 PSC

Demonstration 4: Creating an XML to XML mapping
stylesheet

Introduction

In this demonstration, you will use Stylus Studio to create a very simple XSLT stylesheet
that maps the bookstore XML document to the Books XML document.

Create a new XML to XML mapping stylesheet

In Stylus Studio, select File New XSLT: Mapper. You should see the following:

continued on next page

74 XSLT Essentials
Copyright © 2008 PSC

Demonstration 4: Creating an XML to XML mapping
stylesheet, continued

Select the source and destination XML documents for the mapping

In order to perform the mapping, you need to specify what your source and destination
XML documents look like.

1. Select the area of the window “Add Source Document” and select:
c:\progress_education\SOAEssentials\
XSLTEssentials\Examples\bookstore.xml

2. Select the area of the window “Set Target Document” and select:
c:\progress_education\SOAEssentials\XSLTEssentials\Examples\BooksWithE
xcerpts.xml

3. Select OK. Your window should now look as follows:

continued on next page

XSLT Essentials 75
Copyright © 2008 PSC

Demonstration 4: Creating an XML to XML mapping
stylesheet, continued

Examine the source and destination schemas

Once you have selected the source and destination XML documents, you will see the
Stylus Studio mapping environment. The left-hand pane contains the source schema in
tree view and the right-hand pane contains the destination schema in tree view. The center
pane is reserved for displaying the mapping you will select. You should see the following
in Stylus Studio:

You can open any of the elements in the source or destination schema views in order to
see child elements. You will map all elements or attributes in the source XML document
to elements or attributes in the destination document. Notice that the names of the
elements and attributes are slightly different. Also notice that elements may map to
attributes and visa versa.

continued on next page

76 XSLT Essentials
Copyright © 2008 PSC

Demonstration 4: Creating an XML to XML mapping
stylesheet, continued

Perform the mapping

In order to map elements and/or attributes from the source XML schema to the destination
XML schema, you simply select an element or attribute from one side and drag it over to
the other side. When you connect two elements or attributes, a line is shown connecting
them. You can connect an element to an element, an element to an attribute or an attribute
to an element. If an element has a text node, then its value is automatically mapped to the
destination XML document. Here is the mapping you will perform:

From To
book Book
title Title

Follow these steps in order to perform the mapping:

1. In the left-hand pane entitled “bookstore.xml”, select the book element and
drag it over to the Book element in the right-hand pane entitled
“BooksWithExcerpts.xml”.

2. Repeat the process again with the title element, mapping it to the Title element in
the right-hand pane.

continued on next page

XSLT Essentials 77
Copyright © 2008 PSC

Demonstration 4: Creating an XML to XML mapping
stylesheet, continued

Perform the mapping, continued

You should now have two connections between the source XML document and the
destination XML document. Your mapping should look as follows:

continued on next page

78 XSLT Essentials
Copyright © 2008 PSC

Demonstration 4: Creating an XML to XML mapping
stylesheet, continued

Save the XSLT stylesheet

Save your XSLT stylesheet as bookstoreToBooksWithExcerpts.xsl.

Test the mapping

Once you have connected all elements and/or attributes that you want to map from the
source XML document to the destination XML document, you are ready to test the
mapping.

Test the mapping by selecting the icon.

The resulting mapping occurs because the XSLT stylesheet is mapped to the source XML
document that you specified when you created the mapping XSLT stylesheet.

A Preview pane also should be created.

continued on next page

XSLT Essentials 79
Copyright © 2008 PSC

Demonstration 4: Creating an XML to XML mapping
stylesheet, continued

Test the mapping, continued

Review the results to see if you have generated a root element of Books that has sub-
elements of Book which have a sub-element of Title. The Title should have a text node
with a value. It should look something like the following:

You should make sure that the new target document looks like what you had as your
original target when you created the mapping.

80 XSLT Essentials
Copyright © 2008 PSC

XSLT Essentials 81
Copyright © 2008 PSC

Lab 3: Create an XML to XML mapping stylesheet

Instructions

Follow the instructions in the Lab Guide for Lab 3.

82 XSLT Essentials
Copyright © 2008 PSC

XSLT Essentials 83
Copyright © 2008 PSC

Summary

Lesson summary

You should now be able to:

● Describe why transformation is necessary,
● Describe what XSL is,
● Create and test a simple XSLT stylesheet using Stylus Studio,
● Describe what XSLT processing is,
● Define some useful XSL elements in your XSLT stylesheet,
● Test an XSLT stylesheet that you have developed and
● Create and test XML to XML mapping with Stylus Studio.

84 XSLT Essentials
Copyright © 2008 PSC

XSLT Essentials 85
Copyright © 2008 PSC

Review questions

Assess what you have learned in this lesson

Answer the following questions:

1. In what language is an XSLT stylesheet written?

2. What are the inputs and outputs to an XSLT stylesheet?

3. What is the main xsl element used to define the XSLT processing?

4. Does the XML document created by an XSLT stylesheet need to be a well-formed
XML document?

5. Which xsl element is used to retrieve information from the source XML document
using a selected set of nodes?

6. What must you create in Stylus Studio in order to test XSLT processing for an
XSLT stylesheet that you have created?

7. Which xsl element is used to retrieve text nodes or attribute values from the source
XML document?

8. Which xsl element is used to drive continued template processing?

86 XSLT Essentials
Copyright © 2008 PSC

Review answers

Assess what you have learned in this lesson

Here are the answers to the review questions:

1. In what language is an XSLT stylesheet written?
Answer: XML, which conforms to the XML Schema for XSLT defined by the

W3C. This dialect of XML is called XSL.

2. What are the inputs and outputs to an XSLT stylesheet?
Answer: The input is an XML document. The output can be an XML document,

text, html, and even PDFs when you use xslfo (formatting objects).

3. What is the main xsl element used to define the XSLT processing?
Answer: xsl:template.

4. Does the XML document created by an XSLT stylesheet need to be a well-formed
XML document?
Answer: It doesn’t need to be well-formed, but if the recipient of the XML

document is expecting it to be well-formed, then it should be well-
formed.

5. Which xsl element is used to retrieve information from the source XML document
using a selected set of nodes?
Answer: xsl:for-each.

continued on next page

XSLT Essentials 87
Copyright © 2008 PSC

Review answers, continued

Assess what you have learned in this lesson, continued

6. What must you create in Stylus Studio in order to test XSLT processing for an
XSLT stylesheet that you have created?
Answer: A scenario.

7. Which xsl element is used to retrieve text nodes or attribute values from the source
XML document?
Answer: xsl:value-of.

8. Which xsl element is used to drive continued template processing?
Answer: xsl:apply-templates.

88 XSLT Essentials
Copyright © 2008 PSC

Notes

