
TCP/IP Network Administration

By Craig Hunt; ISBN 1-56592-322-7, 630 pages.
Second Edition, December 1997.
(See the catalog page for this book.)

Search the text of TCP/IP Network Administration.

Index

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Table of Contents

Preface
Chapter 1: Overview of TCP/IP
Chapter 2: Delivering the Data
Chapter 3: Network Services
Chapter 4: Getting Started 
Chapter 5: Basic Configuration 
Chapter 6: Configuring the Interface 
Chapter 7: Configuring Routing 
Chapter 8: Configuring DNS Name Service 
Chapter 9: Configuring Network Servers 
Chapter 10: sendmail 
Chapter 11: Troubleshooting TCP/IP 
Chapter 12: Network Security 
Chapter 13: Internet Information Resources 

Appendix A: PPP Tools
Appendix B: A gated Reference
Appendix C: A named Reference
Appendix D: A dhcpd Reference
Appendix E: A sendmail Reference
Appendix F: Selected TCP/IP Headers

file:///C|/mynapster/Downloads/warez/tcpip/index.htm (1 of 2) [2001-10-15 09:17:12]

http://www.oreilly.com/catalog/tcp2/
file:///C|/mynapster/Downloads/warez/search/tsrch.htm


TCP/IP Network Administration

The Networking CD 
Bookshelf Navigation

Copyright © 1999 O'Reilly & Associates. All Rights Reserved.

file:///C|/mynapster/Downloads/warez/tcpip/index.htm (2 of 2) [2001-10-15 09:17:12]

file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/copyrght.htm
http://www.oreilly.com/


Index

 

Search | Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z 

Index: Symbols and Numbers
6-bit serial lines, running over : 5.2. Linux Kernel Configuration 
7bit encoding type : 3.4.3. Multipurpose Internet Mail Extensions 
8bit encoding type : 3.4.3. Multipurpose Internet Mail Extensions 
'' (apostrophes) (expect nothing) : 6.3.3. chat 
apostrophes ('') (expect nothing) : A.3. chat 
* (asterisk) 

meaning interface not enabled : 6.1.1. Determining the Interface Name 
in name field, indicating wildcard character : C.3.1. Standard Resource Records 

@ (at sign) 
for current origin : C.3.1. Standard Resource Records 
excluding an individual parameter : 9.4. A BOOTP Server 
referencing current domain : 8.3.5. The Reverse Domain File 

\ (backslash) escaping newline characters 
9.2.1. The printcap File 
A.3. chat 
C.3.1. Standard Resource Records 

: (colon) 
beginning and ending fields 

9.2.1. The printcap File 
9.2.2. Solaris Line Printer Service 

separating parameters : 9.4. A BOOTP Server 
{} (curly braces) 

configuration statements 
7.7.1.1. A host configuration 
B.2. The gated Configuration Language 
D.3. The dhcpd.conf Configuration File 

long variable names : 10.5. sendmail Configuration 
macro names : 10.5.2. The Define Macro Command 

.. (dots) for domain name : C.3.1. Standard Resource Records 
- (minus) (non-equivalent host) : 12.2.5. Secure the r Commands 
-> (arrow), for copying files : 9.6.1. rdist 
() (parentheses), for continuation characters : C.3.1. Standard Resource Records 
; (semicolon) 

file:///C|/mynapster/Downloads/warez/tcpip/index/idx_0.htm (1 of 2) [2001-10-15 09:17:14]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


Index

comment character : C.3.1. Standard Resource Records 
ending gated configuration statements 

7.7.1.1. A host configuration 
B.2. The gated Configuration Language 

# (sharp sign) for comments 
3.2. The Host Table 
5.4. The Internet Daemon 
7.7.1.1. A host configuration 
9.1.4. NFS Automounter 
9.2.1. The printcap File 
9.4. A BOOTP Server 
A.1.1. The dip Script File 
D.3. The dhcpd.conf Configuration File 

Search | Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z 

Copyright © 1999 O'Reilly & Associates, Inc. All Rights Reserved. 

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/index/idx_0.htm (2 of 2) [2001-10-15 09:17:14]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm
file:///C|/mynapster/Downloads/warez/copyrght.htm
http://www.oreilly.com/
file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


Index

 

Search | Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z 

Index: A
ABORT keyword : A.3. chat 
Abstract Syntax Notation One (ASN.1) : 11.9. Simple Network Management Protocol 
access control : 12.5. Access Control 

levels of : 9.1.2.1. The share command 
services to place under, listed : 12.5.1. wrapper 
software for : 12.5. Access Control 

ACKD command, in POP : 3.4.2. Post Office Protocol 
Acknowledgment (ACK) bit set : 1.6.2. Transmission Control Protocol 
Acknowledgment Number field : 1.6.2. Transmission Control Protocol 
adaptive protocol value : 6.4.1. slattach 
Address Resolution Protocol : (see ARP) 
addresses 

1.1.1. TCP/IP Features 
1.7. Application Layer 
2.1. Addressing, Routing, and Multiplexing 
(see also IP addresses) 
(see also leases on addresses) 
allocating 

dynamically : 3.6.1. Dynamic Host Configuration Protocol 
manually : 3.6.1. Dynamic Host Configuration Protocol 

assigning 
in blocks : 4.2.1.1. Assigning host addresses 
in contiguous blocks 

2.2.2. Classless IP Addresses 
B.11. The Aggregate Statements 

in DHCP : 3.6.1. Dynamic Host Configuration Protocol 
broadcast 

2.2.2.1. Final notes on IP addresses 
2.6. Address Resolution 
4. Getting Started 
6.1. The ifconfig Command 
6.1.2. Checking the Interface with ifconfig 
limited : 3.6. Bootstrap Protocol 

file:///C|/mynapster/Downloads/warez/tcpip/index/idx_a.htm (1 of 6) [2001-10-15 09:17:15]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


Index

setting : 6.1.4. Setting the Broadcast Address 
specifying : 4.2.2. Defining the Subnet Mask 

classes of 
1.7. Application Layer 
2.2.1. Address Classes 
4.2.1. Obtaining an IP Address 
class rules : 7.4.1.1. Running RIP with routed 

converting : 10.6.3. The Set Ruleset Command 
email 

processing : 10.6.3. The Set Ruleset Command 
simplified : 10.5.3. The Define Class Command 

gateway : (see gateway) 
getting in pppd : 6.3.2. Dial-Up PPP 
host : 2.2.1. Address Classes 

assigning : 4.2.1.1. Assigning host addresses 
Internet-style : 10.7.1. Modifying Local Information 
mask, written in hexadecimal : 6.1.2. Checking the Interface with ifconfig 
mixtures of in DHCP : 3.6.1. Dynamic Host Configuration Protocol 
multiple : 8.2.1. The Resolver Configuration File 
numeric : 3.1. Names and Addresses 
processing 

by several rewrite rules : 10.6.2. Transforming the Address 
verifying : 10.8. Testing sendmail.cf 

recipient : 10.6.3. The Set Ruleset Command 
records of : C.3.1.3. Address record 
reserved 

2.2.1. Address Classes 
2.2.2.1. Final notes on IP addresses 

resolution of : 2.6. Address Resolution 
sender 

10.6.3. The Set Ruleset Command 
10.8.1. Testing Rewrite Rules 

spoofing 
4.2.1. Obtaining an IP Address 
5.2. Linux Kernel Configuration 

timing out : 3.6.1. Dynamic Host Configuration Protocol 
translating : 5.2. Linux Kernel Configuration 

admin alias : 10.3. sendmail Aliases 
administration : (see network, administration) 
admintool 

9.2.2. Solaris Line Printer Service 
12.2.1. The Shadow Password File 

file:///C|/mynapster/Downloads/warez/tcpip/index/idx_a.htm (2 of 6) [2001-10-15 09:17:15]



Index

adventurous users, supporting : 9.7.2. IMAP Server 
aggregate statements (in gated) : B.11. The Aggregate Statements 
alarms provided by monitors : 11.9. Simple Network Management Protocol 
algorithms 

back-off : 9.4. A BOOTP Server 
Dijkstra Shortest Path First (SPF) : 7.4.3. Open Shortest Path First 
distance-vector : 7.4. Interior Routing Protocols 

aliases : 2.7.2. Port Numbers 
file : 10.3. sendmail Aliases 

processing addresses against : 10.6.3. The Set Ruleset Command 
for hostnames : 8.3.6. The named.hosts File 
in sendmail : 10.1. sendmail's Function 

aliases file 
3.4.1. Simple Mail Transfer Protocol 
9.3. Network Information Service 

AliasFile option : 10.5.4. The Set Option Command 
allmulti parameter : 6.1.5.5. Point-to-point 
alternative multipart subtype : 3.4.3. Multipurpose Internet Mail Extensions 
America Online (AOL) : 4.1. Connected and Non-Connected Networks 
Andrew File System : 3.7.1. File Sharing 
anonymous FTP : 13.2. Anonymous FTP 
ANY query : 11.6. Checking Name Service 
apostrophes ('') (expect nothing) 

6.3.3. chat 
A.3. chat 

Application Layer : 1.2. A Data Communications Model 
in TCP/IP : 1.7. Application Layer 

applications 
content type : 3.4.3. Multipurpose Internet Mail Extensions 
protocols for : 2.7.2. Port Numbers 

widely implemented : 1.7. Application Layer 
security issues concerning : 12.3. Application Security 

archie : 13.3.1. archie 
client software : 13.3.1.1. archie client software 
servers : 13.3.1. archie 

archie.internic.net : 13.3.1. archie 
ARCnet interface : 5.2. Linux Kernel Configuration 
area border routers : 7.4.3. Open Shortest Path First 
ARP (Address Resolution Protocol) 

2.6. Address Resolution 
2.8. Summary 
3.5.1. Reverse Address Resolution Protocol 

file:///C|/mynapster/Downloads/warez/tcpip/index/idx_a.htm (3 of 6) [2001-10-15 09:17:15]



Index

command 
2.6. Address Resolution 
5.3.1.1. Options 
in troubleshooting : 11.4.2. Troubleshooting with the arp Command 
in troubleshooting : 11.2. Diagnostic Tools 

enabling : 6.1.5.2. ARP and trailers 
proxy server for : 5.3.1.1. Options 
support in BSD : 5.3.1.2. Pseudo-device 
table : A.1.1. The dip Script File 

viewing contents of : 11.4.2. Troubleshooting with the arp Command 
ARPA Internet Text Messages : 3.4.3. Multipurpose Internet Mail Extensions 
ARPANET 

1.1. TCP/IP and the Internet 
1.5.1.1. The datagram 
2.4. Internet Routing Architecture 
6.2. TCP/IP Over a Serial Line 

arrow (->), for copying files : 9.6.1. rdist 
AS path 

operators, listed : B.10. Control Statements 
vector : B.10. Control Statements 

ASCII data (US) : 3.4.3. Multipurpose Internet Mail Extensions 
aspppd.cf file : 6.3.6. Solaris PPP 
Assigned Numbers RFC 

2.7. Protocols, Ports, and Sockets 
C.3.1.7. Host Information record 

assumptions, making 
11.1.1. Troubleshooting Hints 
11.8. Protocol Case Study 

asterisk (*) 
meaning interface not enabled : 6.1.1. Determining the Interface Name 
in name field, indicating wildcard character : C.3.1. Standard Resource Records 

asynchronous modems : (see modems) 
Asynchronous PPP Daemon (aspppd) : 6.3.6. Solaris PPP 
at sign (@) 

for current origin : C.3.1. Standard Resource Records 
excluding an individual parameter : 9.4. A BOOTP Server 
referencing current domain : 8.3.5. The Reverse Domain File 

at, files run by, in security checks : 12.4.2. Looking for Trouble 
audio data content : 3.4.3. Multipurpose Internet Mail Extensions 
authentication 

1.7. Application Layer 
4.2.1. Obtaining an IP Address 

file:///C|/mynapster/Downloads/warez/tcpip/index/idx_a.htm (4 of 6) [2001-10-15 09:17:15]



Index

9.3.2. NIS+ 
12.2. User Authentication 
(see also packet) 
(see also user authentication) 
DES-encrypted : 9.3.2. NIS+ 
in pppd 

6.3.4. PPP Daemon Security 
A.2. The PPP Daemon 

server : 9.1.5. NFS Authentication Server 
authoritative servers 

1.7. Application Layer 
3.3. Domain Name Service 
3.3.4. BIND, resolver, and named 
(see also non-authoritative servers) 

auto_direct file : 9.1.4. NFS Automounter 
auto_home file : 9.1.4. NFS Automounter 
auto_master file : 9.1.4. NFS Automounter 
auto-revarp parameter : 6.1.5.5. Point-to-point 
autofs script : 9.1.4. NFS Automounter 
Automatic Call Unit (ACU) : 6.3.6. Solaris PPP 
automount : 9.1.4. NFS Automounter 

command : 9.1.4. NFS Automounter 
configuration files (maps) for : 9.1.4. NFS Automounter 
filesystem (autofs), defining : 9.1.4. NFS Automounter 

automounter daemon (automountd) : 9.1.4. NFS Automounter 
autonomous systems (AS) 

2.4. Internet Routing Architecture 
7.4. Interior Routing Protocols 
defined : 7.5. Exterior Routing Protocols 
external (ASE) routes 

7.7.1.3. Exterior gateway configuration 
B.8.1. The ospf Statement 
B.10.1. The import Statement 
types of : B.10.2. The export Statement 

listing of : B.10. Control Statements 
number (ASN) 

4.3.1. Obtaining an autonomous system number 
B.7. Definition Statements 
B.8.5. The bgp Statement 

subdividing : 7.4.3. Open Shortest Path First 

file:///C|/mynapster/Downloads/warez/tcpip/index/idx_a.htm (5 of 6) [2001-10-15 09:17:15]



Index

Search | Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z 

Copyright © 1999 O'Reilly & Associates, Inc. All Rights Reserved. 

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/index/idx_a.htm (6 of 6) [2001-10-15 09:17:15]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm
file:///C|/mynapster/Downloads/warez/copyrght.htm
http://www.oreilly.com/
file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


Index

 

Search | Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z 

Index: B
back-off algorithms : 9.4. A BOOTP Server 
backbones 

7.4.3. Open Shortest Path First 
7.7.1.2. Interior gateway configurations 

backslash (\) escaping newline characters 
9.2.1. The printcap File 
A.3. chat 
C.3.1. Standard Resource Records 

bandwidth 
increasing : 5.2. Linux Kernel Configuration 
using efficiently 

7.4.1.1. Running RIP with routed 
8.3.1.1. Configuring a caching-only nameserver 

base64 encoding type : 3.4.3. Multipurpose Internet Mail Extensions 
basic audio subtype : 3.4.3. Multipurpose Internet Mail Extensions 
Basic Encoding Rules (BER) : 11.9. Simple Network Management Protocol 
basic terminology : (see terminology, importance of using standard) 
bastion host : 12.7. Firewalls 
Berkeley Internet Name Domain : (see BIND) 
BGP (Border Gateway Protocol) 

Preface 
2.4. Internet Routing Architecture 
4.3.1. Obtaining an autonomous system number 
7.5. Exterior Routing Protocols 
7.5.2. Border Gateway Protocol 
enabling (in gated) 

7.7.1.3. Exterior gateway configuration 
B.10. Control Statements 

inside autonomous systems : 7.7.1.3. Exterior gateway configuration 
statement (in gated) : B.8.5. The bgp Statement 

bi-lateral agreements : 2.4. Internet Routing Architecture 
binary 

data : 3.4.3. Multipurpose Internet Mail Extensions 

file:///C|/mynapster/Downloads/warez/tcpip/index/idx_b.htm (1 of 3) [2001-10-15 09:17:16]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


Index

encoding type : 3.4.3. Multipurpose Internet Mail Extensions 
BIND (Berkeley Internet Name Domain) 

Preface 
UNIX Versions 
3.3.4. BIND, resolver, and named 
8.1. BIND: UNIX Name Service 
11.2. Diagnostic Tools 
configuration types : 8.1.1. BIND Configurations 
debugging : 8.4. Using nslookup 

bit masks : 2.2.2. Classless IP Addresses 
bit sets : 1.6.2. Transmission Control Protocol 
blackhole 

interface : B.6. Interface Statements 
route : B.9. static Statements 

bogusns command 
11.6.3. Cache corruption 
C.2. named.boot Configuration Commands 

bookptab file 
9.4. A BOOTP Server 
9.6.1. rdist 
configuration parameters : 9.4.2. BOOTP extensions 
updating : 9.4.2. BOOTP extensions 

Boolean values 
in dhcpd parameters : 9.5.1. dhcpd.conf 
in printcap parameters : 9.2.1. The printcap File 

boot 
directory (hd) defined : 9.4. A BOOTP Server 
file (bf) parameter : 9.4. A BOOTP Server 
scripts, starting daemons from : 9.1.1. NFS Daemons 

BOOTP (Bootstrap Protocol) 
Preface 
3.6. Bootstrap Protocol 
A.1.1. The dip Script File 
clients : D.3.2. Configuration Parameters 
expanded by DHCP : 3.6.1. Dynamic Host Configuration Protocol 

bootp-2.4.3.tar file : 9.4.2. BOOTP extensions 
bootp-DDS2.4.3.tar file : 9.4. A BOOTP Server 
bootpd (BOOTP daemon) : 9.4. A BOOTP Server 
bootpd file : 9.6.1. rdist 
bootpgw (BOOTP gateway) : 9.4.1. BOOTP gateway 
BOOTREPLY packet : 3.6. Bootstrap Protocol 
BOOTREQUEST packet 

file:///C|/mynapster/Downloads/warez/tcpip/index/idx_b.htm (2 of 3) [2001-10-15 09:17:16]



Index

3.6. Bootstrap Protocol 
9.4. A BOOTP Server 
9.4.1. BOOTP gateway 
9.5.1. dhcpd.conf 

Bootstrap Protocol : (see BOOTP) 
Border Gateway Protocol : (see BGP) 
border routers : 7.7.1.3. Exterior gateway configuration 
braces ({}) 

configuration statements 
7.7.1.1. A host configuration 
B.2. The gated Configuration Language 
D.3. The dhcpd.conf Configuration File 

long variable names : 10.5. sendmail Configuration 
macro names : 10.5.2. The Define Macro Command 

breakdowns : (see disaster recovery plans) 
broadcast addresses : (see addresses) 
browsers : 13.1. The World Wide Web 
BSD systems 

kernel configuration file : 5.3. The BSD Kernel Configuration File 
remounting filesystems on : 9.1.3.2. The vfstab and fstab files 

BSD-Compress scheme : A.2. The PPP Daemon 
buffer overruns : 6.1.5.4. Maximum transmission unit 
byte-oriented masks : 2.3. Subnets 

Search | Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z 

Copyright © 1999 O'Reilly & Associates, Inc. All Rights Reserved. 

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/index/idx_b.htm (3 of 3) [2001-10-15 09:17:16]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm
file:///C|/mynapster/Downloads/warez/copyrght.htm
http://www.oreilly.com/
file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


Index

 

Search | Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z 

Index: C
cable tester 

11.2. Diagnostic Tools 
11.3.1. The ping Command 
11.4.3. Checking the Interface with netstat 

cables 
Category 5 : 11.4.4. Subdividing an Ethernet 
checking 

6.4.4. Troubleshooting Serial Connections 
11.4.3. Checking the Interface with netstat 
11.4.4.1. Network hardware problems 

Unshielded Twisted Pair (UTP) : 11.4.4. Subdividing an Ethernet 
cache : 3.3. Domain Name Service 

corruption : 11.6.3. Cache corruption 
initialization file : 8.3.3. The Cache Initialization File 
single answers : 3.3.4. BIND, resolver, and named 
statement 

8.3.1.1. Configuring a caching-only nameserver 
C.2. named.boot Configuration Commands 

caching-only servers 
3.3.4. BIND, resolver, and named 
8.1.1. BIND Configurations 
8.3.1.1. Configuring a caching-only nameserver 

cannot connect error : 3.4.1. Simple Mail Transfer Protocol 
Canonical Name (CNAME) resource records 

8.3.6. The named.hosts File 
10.7.1. Modifying Local Information 
C.3.1.5. Canonical Name record 

carrier-detect (DCD) indicator, monitoring : 6.3.3. chat 
central administrator : (see network, administration) 
cf/cf directory : 10.4.1. Locating a Sample sendmail.cf File 
cf/feature directory : E.3.2. FEATURE 
cf/ostype directory : 10.4.1.1. Building a sendmail.cf with m4 macros 
cgm image subtype : 3.4.3. Multipurpose Internet Mail Extensions 

file:///C|/mynapster/Downloads/warez/tcpip/index/idx_c.htm (1 of 4) [2001-10-15 09:17:17]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


Index

Challenge Handshake Authentication Protocol : (see CHAP) 
challenge string : 6.3.4. PPP Daemon Security 
CHAP (Challenge Handshake Authentication Protocol) 

6.3.4. PPP Daemon Security 
A.2. The PPP Daemon 

chap-secrets file : 6.3.4. PPP Daemon Security 
Chapman, Brent : 12.1.1. Assessing the Threat 
chat script : 6.3.3. chat 
chat scripting language 

A.2. The PPP Daemon 
A.3. chat 
escape sequences, listed : A.3. chat 

chatkey : A.1.1. The dip Script File 
checksums 

1.6.2. Transmission Control Protocol 
11.8. Protocol Case Study 
recalculating 

4.2.1. Obtaining an IP Address 
5.3.1.1. Options 

CIDR (Classless Inter-Domain Routing) : 2.2.2. Classless IP Addresses 
address mask 

2.2. The IP Address 
2.2.2. Classless IP Addresses 

blocks : B.11. The Aggregate Statements 
cipher : 12.6. Encryption 
Cisco routers : 12.5. Access Control 
class w, defining : 10.7.1. Modifying Local Information 
classes of addresses : (see addresses, classes of) 
Classless Inter-Domain Routing : (see CIDR) 
clear text : 12.6. Encryption 
client statement : B.8.10. The routerdiscovery Statement 
CNAME : (see Canonical Name (CNAME) resource records) 
Collis field : 11.4.3. Checking the Interface with netstat 
collision rate 

6.1.1. Determining the Interface Name 
11.4.3. Checking the Interface with netstat 
reducing : 11.4.4. Subdividing an Ethernet 

colon (:) 
beginning and ending fields 

9.2.1. The printcap File 
9.2.2. Solaris Line Printer Service 

separating parameters : 9.4. A BOOTP Server 

file:///C|/mynapster/Downloads/warez/tcpip/index/idx_c.htm (2 of 4) [2001-10-15 09:17:17]



Index

com domain : 3.3.1. The Domain Hierarchy 
Commercial Information Exchange (CIX) : 1.1. TCP/IP and the Internet 
communications, interpersonal : (see email (electronic mail)) 
comp.security newsgroups : 12.1.2.2. Use mailing lists to distribute information 
Computer Emergency Response Team (CERT) advisories : 12.1.2.2. Use mailing lists to distribute 
information 
Computer Security Resource Clearinghouse : 13.1. The World Wide Web 
computer-to-computer services 

servers providing : 9. Configuring Network Servers 
conditionals in macro definitions : 10.5.2.1. Conditionals 
conf directory : 5.3. The BSD Kernel Configuration File 
conf/master directory : 8.3.4. The named.local File 
confidence factor : 11.1.1. Troubleshooting Hints 
configuration 

parameters (in dhcpd) : D.3.2. Configuration Parameters 
problems : 11.4.1. Troubleshooting with the ifconfig Command 
servers : 3.5. Configuration Servers 
system, prerequisites for : 4. Getting Started 

connection command-line option, in pppd : 6.3.3. chat 
connectivity 

1.7. Application Layer 
(see also firewalls) 
troubleshooting : 11.3. Testing Basic Connectivity 

content types : 3.4.3. Multipurpose Internet Mail Extensions 
Content-Transfer-Encoding headers : 3.4.3. Multipurpose Internet Mail Extensions 
Content-Type headers : 3.4.3. Multipurpose Internet Mail Extensions 
contiguous blocks : (see addresses, assigning) 
control 

information : 1.3. TCP/IP Protocol Architecture 
statements (in gated) : B.10. Control Statements 

convergence of routing, delays in : 7.4.1.1. Running RIP with routed 
COPS (Computer Oracle Password and Security) programs : 12.4.3.1. COPS 
copy (cp) command, in NFS : 9.1. The Network File System 
core gateways 

2.4. Internet Routing Architecture 
7.5.1. Exterior Gateway Protocol 

count field : 11.3.1. The ping Command 
count-to-infinity problem : 7.4.1.1. Running RIP with routed 
crash 

resetting locks after : 9.1.1. NFS Daemons 
restarting after : 9.2.2. Solaris Line Printer Service 

crises : (see disaster recovery plans) 

file:///C|/mynapster/Downloads/warez/tcpip/index/idx_c.htm (3 of 4) [2001-10-15 09:17:17]



Index

cron, files run by, in security checks : 12.4.2. Looking for Trouble 
crtscts option : 6.3.1. The PPP Daemon 
crypto-checksum : 7.4.3. Open Shortest Path First 
CSLIP : (see Van Jacobson header compression) 
-Ctest.cf argument : 10.8. Testing sendmail.cf 
cua devices : 6.4.4. Troubleshooting Serial Connections 
curly braces ({}) 

configuration statements 
7.7.1.1. A host configuration 
B.2. The gated Configuration Language 
D.3. The dhcpd.conf Configuration File 

long variable names : 10.5. sendmail Configuration 
macro names : 10.5.2. The Define Macro Command 

cyrus and cyrusbb mailers : E.3.5. MAILER 

Search | Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z 

Copyright © 1999 O'Reilly & Associates, Inc. All Rights Reserved. 

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/index/idx_c.htm (4 of 4) [2001-10-15 09:17:17]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm
file:///C|/mynapster/Downloads/warez/copyrght.htm
http://www.oreilly.com/
file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


file:///C|/mynapster/Downloads/warez/tcpip/index/idx_d.htm

 

Search | Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z 

Index: D
daemons 

3.2. The Host Table 
5.4. The Internet Daemon 
uid : 5.4. The Internet Daemon 

DATA command, in SMTP : 3.4.1. Simple Mail Transfer Protocol 
data communications model : 1.2. A Data Communications Model 
data compression, not provided in SLIP : 6.2.1. The Serial Protocols 
Data Link Layer 

1.2. A Data Communications Model 
5.3.1.2. Pseudo-device 
6.1.1. Determining the Interface Name 
in PPP : 6.2.1. The Serial Protocols 

Data Terminal Ready (DTR) modem control line : A.2. The PPP Daemon 
data terminology : 1.3. TCP/IP Protocol Architecture 
databases in sendmail 

arguments passed : 10.6.2.1. Transforming with a database 
defining (K command) : 10.6.2.1. Transforming with a database 

datagrams 
1.3. TCP/IP Protocol Architecture 
1.5.1.1. The datagram 
1.7. Application Layer 
(see also IP datagrams) 
(see also User Datagram Protocol) 
connectionless delivery of : 1.6. Transport Layer 
converting source address of : 4.2.1. Obtaining an IP Address 
forwarding : 5.3.1.1. Options 
fragmented 

1.5.1.3. Fragmenting datagrams 
5.2. Linux Kernel Configuration 

headers 
2.7.1. Protocol Numbers 
2.7.2. Port Numbers 

marking end of : 6.2.1. The Serial Protocols 

file:///C|/mynapster/Downloads/warez/tcpip/index/idx_d.htm (1 of 6) [2001-10-15 09:17:18]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


file:///C|/mynapster/Downloads/warez/tcpip/index/idx_d.htm

routing : 1.5.1.2. Routing datagrams 
silently discarding : 11.8. Protocol Case Study 

DCD (Data Carrier Detect) modem control line : A.2. The PPP Daemon 
DDN Protocol Handbook : 1.3. TCP/IP Protocol Architecture 
DDN security bulletins : 12.1.2.2. Use mailing lists to distribute information 
debugging 

8.2.1. The Resolver Configuration File 
C.1.1. Signal Processing 

decentralizing management : 2.3. Subnets 
decryption : 12.6. Encryption 
dedicated connections 

6.3.1. The PPP Daemon 
6.4. Installing SLIP 

default 
domain 

3.3.3. Domain Names 
8.2.1. The Resolver Configuration File 
how used : 3.3.3. Domain Names 

gateway 
2.5. The Routing Table 
4.3. Planning Routing 
address : 4. Getting Started 

mask : 2.2.2. Classless IP Addresses 
passwords : 12.2. User Authentication 
route 

2.2.2.1. Final notes on IP addresses 
2.5. The Routing Table 
7.3. Building a Static Routing Table 
defining : 7.4.1.1. Running RIP with routed 

values : 3.6.1. Dynamic Host Configuration Protocol 
defaultdomain file : 9.3. Network Information Service 
defaultroute option : 6.3.1. The PPP Daemon 
Defense Communications Agency (DCA) : 1.1. TCP/IP and the Internet 
define macro (in sendmail) 

E.3. m4 sendmail Macros 
E.3.1. define 

definition statements (in gated) : B.7. Definition Statements 
delays, inserting 

6.3.2. Dial-Up PPP 
6.4.4. Troubleshooting Serial Connections 

demultiplexing : 2.7. Protocols, Ports, and Sockets 
denial of service, threat of : 12.1.1. Assessing the Threat 

file:///C|/mynapster/Downloads/warez/tcpip/index/idx_d.htm (2 of 6) [2001-10-15 09:17:18]



file:///C|/mynapster/Downloads/warez/tcpip/index/idx_d.htm

dequote database : 10.7.1. Modifying Local Information 
DES-encrypted authentication : (see authentication) 
designated router : 7.4.3. Open Shortest Path First 
destination 

1.7. Application Layer 
(see also unreachable destinations, detecting) 
fields : 2.5. The Routing Table 
host : 2.5. The Routing Table 

Destination Address 
1.5.1.1. The datagram 
2.2. The IP Address 

Destination Port number 
1.6.1. User Datagram Protocol 
1.6.2. Transmission Control Protocol 

Destination Unreachable Message : 1.5.2. Internet Control Message Protocol 
/dev directory : 6.4.4. Troubleshooting Serial Connections 
device statement : 5.3.1.3. Devices 
dfstab file 

9.1.2.1. The share command 
9.1.5.1. NFS print services 

dgram sockets : 5.4. The Internet Daemon 
DHCP (Dynamic Host Configuration Protocol) 

Preface 
3.6.1. Dynamic Host Configuration Protocol 
backwards-compatible : 9.5. DHCP 
based on Bootstrap Protocol (BOOTP) : 9.4.2. BOOTP extensions 
benefits of : 9.5. DHCP 
daemon (dhcpd) : 9.5.1. dhcpd.conf 

command : D.2. The dhcpd Command 
compiling : D.1. Compiling dhcpd 
configuring : D.3. The dhcpd.conf Configuration File 
tools reference : D. A dhcpd Reference 
using latest versions of : D. A dhcpd Reference 

interoperability and : 3.6.1. Dynamic Host Configuration Protocol 
options available with : D.3.3. DHCP Options 

commonly used : D.3.3.1. Commonly used options 
others : D.3.3.2. Other options 

dhcpd.conf file : 9.5.1. dhcpd.conf 
dhcpd.pid file : D.2. The dhcpd Command 
diagnostic tools : 11.2. Diagnostic Tools 
dial-up connections : 6.3.1. The PPP Daemon 
dial-up IP (dip) 

file:///C|/mynapster/Downloads/warez/tcpip/index/idx_d.htm (3 of 6) [2001-10-15 09:17:18]



file:///C|/mynapster/Downloads/warez/tcpip/index/idx_d.htm

6.3.2. Dial-Up PPP 
6.4.2. Dial-Up IP 
script file : A.1.1. The dip Script File 

sample : A.1.1.1. A sample dip script 
for SLIP : 6.4.2. Dial-Up IP 
special variables, listed : A.1.1. The dip Script File 

tools reference : A.1. Dial-Up IP 
dial-up PPP : 6.3.2. Dial-Up PPP 
dictionary guessing : 12.2. User Authentication 
dig 

11.2. Diagnostic Tools 
11.3. Testing Basic Connectivity 
11.6.4. dig: An Alternative to nslookup 
query types : 11.6.4. dig: An Alternative to nslookup 

digest multipart subtype : 3.4.3. Multipurpose Internet Mail Extensions 
digital signature system : 12.6. Encryption 
Dijkstra Shortest Path First (SPF) algorithm : 7.4.3. Open Shortest Path First 
dip (dial-up IP) 

6.3.2. Dial-Up PPP 
6.4.2. Dial-Up IP 
script file : A.1.1. The dip Script File 

sample : A.1.1.1. A sample dip script 
for SLIP : 6.4.2. Dial-Up IP 

tools reference : A.1. Dial-Up IP 
diphosts file : 6.4.3. SLIP Server Configuration 
diplogin command : 6.4.3. SLIP Server Configuration 
direct delivery : 3.4.1. Simple Mail Transfer Protocol 
directive statements (in gated) : B.3. Directive Statements 
directory 

requirement for mounting : 9.1.3. Mounting Remote Filesystems 
statement : 8.3.1.2. Primary and secondary server configurations 

disaster recovery plans 
11.10. Summary 
12.1.1. Assessing the Threat 
12.1.3. Writing a Security Policy 
12.8. Words to the Wise 

disclosure of information, threat of : 12.1.1. Assessing the Threat 
dismounting directories, by booting : 9.1.3.1. The mount command 
Distfile : 9.6.1. rdist 
distributed 

architecture : 7.5.1. Exterior Gateway Protocol 
control : 12.1.2. Distributed Control 

file:///C|/mynapster/Downloads/warez/tcpip/index/idx_d.htm (4 of 6) [2001-10-15 09:17:18]



file:///C|/mynapster/Downloads/warez/tcpip/index/idx_d.htm

servers, managing : 9.6. Managing Distributed Servers 
Distributed File System (DFS) : 3.7.1. File Sharing 
distributing public keys : 12.6. Encryption 
dividing problem into manageable pieces : 11.1.1. Troubleshooting Hints 
DMBDEF variable : E.4.4. The sendmail K Command 
dmesg command : 6.1.1. Determining the Interface Name 
DNS (Domain Name Service) 

1.7. Application Layer 
3.1. Names and Addresses 
3.3. Domain Name Service 
(see also name service) 
benefits of 

3.3. Domain Name Service 
3.3.4. BIND, resolver, and named 

querying : 10.7.1. Modifying Local Information 
starting : 5.4. The Internet Daemon 

docs/warnings file : 12.4.3.1. COPS 
documentation 

historical, of problems : 11.1.1. Troubleshooting Hints 
using : 4.6. Informing the Users 

domain 
1.7. Application Layer 
(see also domain) 
administration 

3.3.4. BIND, resolver, and named 
8.1. BIND: UNIX Name Service 
contacting : 13.6. The White Pages 

allocating : (see Network Information Center) 
creating : 3.3.2. Creating Domains and Subdomains 
downloading an entire : 8.4. Using nslookup 
entry, in resolv.conf : 8.2.1. The Resolver Configuration File 
hierarchy 

3.3.1. The Domain Hierarchy 
8.1. BIND: UNIX Name Service 

name (dn) 
3.3.3. Domain Names 
4. Getting Started 
application form : 4.4.1. Obtaining a Domain Name 
fully qualified : 3.3.3. Domain Names 
in NIS : 9.3. Network Information Service 
obtaining : 4.4.1. Obtaining a Domain Name 
parameter : 9.4. A BOOTP Server 

file:///C|/mynapster/Downloads/warez/tcpip/index/idx_d.htm (5 of 6) [2001-10-15 09:17:18]



file:///C|/mynapster/Downloads/warez/tcpip/index/idx_d.htm

name servers : 4.2.1.1. Assigning host addresses 
parameter : 9.4. A BOOTP Server 

organizational : 3.3.1. The Domain Hierarchy 
DOMAIN macro (in sendmail) : E.3. m4 sendmail Macros 
Domain Name Pointer records : (see PTR resource records) 
Domain Name Service : (see DNS) 
DOMAIN source file (in sendmail) 

E.3.2. FEATURE 
E.3.4. DOMAIN 
mail relay defines, listed : E.3.4. DOMAIN 

domain/named.root : 11.6.3. Cache corruption 
domainname command : 9.3. Network Information Service 
domaintable database : 10.7.1. Modifying Local Information 
dots (..) for domain name : C.3.1. Standard Resource Records 
dotted decimal notation : 2.3. Subnets 
ds.internic.net : 13.4. Retrieving RFCs 
dummy interface : 5.2. Linux Kernel Configuration 
dump : 7.7.2. Testing the Configuration 
dynamic 

assignment of addresses 
3.6.1. Dynamic Host Configuration Protocol 
4.2.1.1. Assigning host addresses 
automatic under DHCP : 9.5. DHCP 
circumstances favoring : 4.3. Planning Routing 

routing : 7.1. Common Routing Configurations 
routing table : 4.3. Planning Routing 

Dynamic DNS : 3.6.1. Dynamic Host Configuration Protocol 
Dynamic Host Configuration Protocol : (see DHCP) 
dynamic-bootp flag : D.3.2. Configuration Parameters 
dynamic-bootp-lease-cutoff parameter : 9.5.1. dhcpd.conf 
dynamic-bootp-lease-length parameter : 9.5.1. dhcpd.conf 
dynamically allocated ports : 2.7.3. Sockets 

Search | Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z 

Copyright © 1999 O'Reilly & Associates, Inc. All Rights Reserved. 

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/index/idx_d.htm (6 of 6) [2001-10-15 09:17:18]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm
file:///C|/mynapster/Downloads/warez/copyrght.htm
http://www.oreilly.com/
file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


file:///C|/mynapster/Downloads/warez/tcpip/index/idx_e.htm

 

Search | Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z 

Index: E
Echo Message 

1.5.2. Internet Control Message Protocol 
7.2. The Minimal Routing Table 

edit FYIs (For Your Information) : 13.7. Summary 
edu domain : 3.3.1. The Domain Hierarchy 
EGP (Exterior Gateway Protocol) 

2.4. Internet Routing Architecture 
7.5.1. Exterior Gateway Protocol 
11.9. Simple Network Management Protocol 
neighbors : 7.5.1. Exterior Gateway Protocol 
statement (in gated) : B.8.6. The egp Statement 

EHLO command, in ESMTP 
3.4.3. Multipurpose Internet Mail Extensions 
10.8. Testing sendmail.cf 

email (electronic mail) 
1.7. Application Layer 
(see also mail, servers; addresses) 
delivering : 1.7. Application Layer 
for file transfers : 3.4.3. Multipurpose Internet Mail Extensions 
growing importance of : 9.7.2. IMAP Server 
for RFCs : 13.4.1. Retrieving RFCs by mail 

emergencies : (see disaster recovery plans) 
encapsulation : 1.3. TCP/IP Protocol Architecture 

of datagrams : 1.4. Network Access Layer 
of mail messages : 3.4.3. Multipurpose Internet Mail Extensions 

encoding 
data : 3.4.3. Multipurpose Internet Mail Extensions 
text 

3.4.3. Multipurpose Internet Mail Extensions 
12.6. Encryption 

encryption 
4.2.1. Obtaining an IP Address 
6.3.4. PPP Daemon Security 

file:///C|/mynapster/Downloads/warez/tcpip/index/idx_e.htm (1 of 6) [2001-10-15 09:17:19]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


file:///C|/mynapster/Downloads/warez/tcpip/index/idx_e.htm

12.6. Encryption 
multipart subtype : 3.4.3. Multipurpose Internet Mail Extensions 
uses for : 12.6. Encryption 

end systems : (see hosts) 
end-to-end 

data encryption : 12.6. Encryption 
routes 

2.5. The Routing Table 
3.4.1. Simple Mail Transfer Protocol 
7.4.3. Open Shortest Path First 
7.5.2. Border Gateway Protocol 
B.10. Control Statements 

enriched text subtype : 3.4.3. Multipurpose Internet Mail Extensions 
enterprise 

networks : 4.1. Connected and Non-Connected Networks 
subnets : 5.2. Linux Kernel Configuration 

enterpriseSpecific trap : 11.9. Simple Network Management Protocol 
equal-cost multi-path routing : 7.4.3. Open Shortest Path First 
equivalent hosts : 12.2.5. Secure the r Commands 
error 

correction, not provided in SLIP : 6.2.1. The Serial Protocols 
detection 

1.5.1. Internet Protocol 
11.8. Protocol Case Study 
end-to-end : 1.6. Transport Layer 

human : 11.1.1. Troubleshooting Hints 
messages 

passing to user : 10.6.2. Transforming the Address 
in troubleshooting 

11.1.1. Troubleshooting Hints 
11.3. Testing Basic Connectivity 

recovery : 1.5.1. Internet Protocol 
ESMTP (Extended SMTP) 

3.4.3. Multipurpose Internet Mail Extensions 
10.8. Testing sendmail.cf 
private extensions to : 3.4.3. Multipurpose Internet Mail Extensions 

ESTABLISHED state : B.8.5. The bgp Statement 
/etc directory 

/etc/aliases file 
3.4.1. Simple Mail Transfer Protocol 
9.3. Network Information Service 

/etc/aspppd.cf file : 6.3.6. Solaris PPP 

file:///C|/mynapster/Downloads/warez/tcpip/index/idx_e.htm (2 of 6) [2001-10-15 09:17:19]



file:///C|/mynapster/Downloads/warez/tcpip/index/idx_e.htm

/etc/auto_direct file : 9.1.4. NFS Automounter 
/etc/auto_home file : 9.1.4. NFS Automounter 
/etc/auto_master file : 9.1.4. NFS Automounter 
/etc/bootptab file 

9.4. A BOOTP Server 
9.6.1. rdist 
configuration parameters : 9.4.2. BOOTP extensions 
updating : 9.4.2. BOOTP extensions 

/etc/default/passwd file : 12.2.1. The Shadow Password File 
/etc/defaultdomain file : 9.3. Network Information Service 
/etc/dfs/dfstab file 

9.1.2.1. The share command 
9.1.5.1. NFS print services 

/etc/dhcpd.conf file : 9.5.1. dhcpd.conf 
/etc/diphosts file : 6.4.3. SLIP Server Configuration 
/etc/ethers file 

3.5.1. Reverse Address Resolution Protocol 
9.3. Network Information Service 
11.4.2.1. ARP problem case study 

/etc/exports file : 9.1.5.1. NFS print services 
/etc/fstab file : 9.1.3.2. The vfstab and fstab files 
/etc/gated.conf file : 7.6. Gateway Routing Daemon 

creating : 7.7.2.1. Running gated at startup 
/etc/gateways file : 7.3.1.1. Installing static routes at startup 

reading at startup : 7.4.1.1. Running RIP with routed 
/etc/group file 

9.3. Network Information Service 
13.2.1. Creating an FTP Server 

/etc/hosts file 
3.2. The Host Table 
6.1. The ifconfig Command 
7.3. Building a Static Routing Table 
9.1.4. NFS Automounter 
9.3. Network Information Service 
creating : 3.2. The Host Table 
as maps : 3.3.5. Network Information Service 
modifying : 3.3.4. BIND, resolver, and named 

/etc/hosts.allow file : 12.5.1.1. tcpd access control files 
/etc/hosts.deny file : 12.5.1.1. tcpd access control files 
/etc/hosts.equiv file : 12.2.5. Secure the r Commands 

in security checks : 12.4.2. Looking for Trouble 
/etc/hosts.lpd file : 9.2.1.1. LPD security 

file:///C|/mynapster/Downloads/warez/tcpip/index/idx_e.htm (3 of 6) [2001-10-15 09:17:19]



file:///C|/mynapster/Downloads/warez/tcpip/index/idx_e.htm

in security checks : 12.4.2. Looking for Trouble 
/etc/inetd.conf file : 9.4. A BOOTP Server 

editing in tcpd : 12.5.1. wrapper 
removing daemons from : 12.3.1. Remove Unnecessary Software 
in security checks : 12.4.2. Looking for Trouble 

/etc/init.d directory : 9.1.1. NFS Daemons 
autofs script : 9.1.4. NFS Automounter 
inetinit script : 7.3.1.1. Installing static routes at startup 
sendmail script : 10.2. Running sendmail as a Daemon 

/etc/lp directory : 9.2.2. Solaris Line Printer Service 
/etc/lp/Systems file : 9.2.2. Solaris Line Printer Service 
/etc/named.boot file 

11.6.3. Cache corruption 
C.1. The named Command 

/etc/named.ca file : 11.6.3. Cache corruption 
/etc/named.pid file : 11.6.3. Cache corruption 
/etc/networks file 

3.2. The Host Table 
6.1.3. Assigning a Subnet Mask 
7.3. Building a Static Routing Table 
9.3. Network Information Service 
as maps : 3.3.5. Network Information Service 

/etc/passwd file 
6.3.5. PPP Server Configuration 
6.4.3. SLIP Server Configuration 
9.1.5. NFS Authentication Server 
9.3. Network Information Service 
10.4.1.1. Building a sendmail.cf with m4 macros 
13.2.1. Creating an FTP Server 
protecting : 12.2. User Authentication 
in security checks : 12.4.2. Looking for Trouble 

/etc/pcnfsd.conf file : 9.1.5.1. NFS print services 
/etc/ppp directory, protecting : A.2. The PPP Daemon 
/etc/ppp/options file 

6.3.1. The PPP Daemon 
6.3.2. Dial-Up PPP 
A.2. The PPP Daemon 

/etc/ppp/options.device file : A.2. The PPP Daemon 
/etc/printcap file : 9.2.1. The printcap File 
/etc/protocols file 

2.7.1. Protocol Numbers 
5.4. The Internet Daemon 

file:///C|/mynapster/Downloads/warez/tcpip/index/idx_e.htm (4 of 6) [2001-10-15 09:17:19]



file:///C|/mynapster/Downloads/warez/tcpip/index/idx_e.htm

9.3. Network Information Service 
/etc/rc.d/rc.inet1 script : 7.3.1.1. Installing static routes at startup 
/etc/rc.d/rc.M startup script : 10.2. Running sendmail as a Daemon 
/etc/resolv.conf file 

8.1.1. BIND Configurations 
8.2. Configuring the Resolver 
11.6.4. dig: An Alternative to nslookup 

/etc/services file 
5.4. The Internet Daemon 
9.3. Network Information Service 
9.4. A BOOTP Server 
9.7.1. POP Server 
9.7.2. IMAP Server 

/etc/shadow file : 12.2.1. The Shadow Password File 
/etc/ssh_known_hosts file : 12.2.6. Secure Shell 
/etc/system file : 5.1. Kernel Configuration 
/etc/yp.conf file : 9.3. Network Information Service 

Ethernet 
1.5.1.3. Fragmenting datagrams 
4.2.2. Defining the Subnet Mask 
addresses : 1.4. Network Access Layer 

identifying DHCP client by : 9.5.1. dhcpd.conf 
keeping records of : 11.4.2. Troubleshooting with the arp Command 

cards, configuring 
5.2. Linux Kernel Configuration 
6.1.1. Determining the Interface Name 

fast ports (100 Mbps) : 11.4.4. Subdividing an Ethernet 
FreeBSD device drivers, listed : 5.3.1.3. Devices 
interfaces 

5.3.1.3. Devices 
6.1. The ifconfig Command 
6.1.5.2. ARP and trailers 
6.1.5.6. Putting ifconfig in the startup files 

LAN : 5.2. Linux Kernel Configuration 
networks : 1.4. Network Access Layer 
subdividing : 11.4.4. Subdividing an Ethernet 
support in BSD : 5.3.1.2. Pseudo-device 
switch : 11.4.4. Subdividing an Ethernet 

ethers file 
3.5.1. Reverse Address Resolution Protocol 
9.3. Network Information Service 
11.4.2.1. ARP problem case study 

file:///C|/mynapster/Downloads/warez/tcpip/index/idx_e.htm (5 of 6) [2001-10-15 09:17:19]



file:///C|/mynapster/Downloads/warez/tcpip/index/idx_e.htm

executable files, in security checks : 12.4.2. Looking for Trouble 
expect nothing ('') 

6.3.3. chat 
A.3. chat 

expect scripting language : A.1.1.1. A sample dip script 
expire fields : 12.2.1. The Shadow Password File 
EXPN command 

in ESMTP : 3.4.3. Multipurpose Internet Mail Extensions 
in SMTP : 3.4.1. Simple Mail Transfer Protocol 

export statement (in gated) : B.10.2. The export Statement 
exports file : 9.1.5.1. NFS print services 
Extended SMTP (ESMTP) 

3.4.3. Multipurpose Internet Mail Extensions 
10.8. Testing sendmail.cf 
private extensions to : 3.4.3. Multipurpose Internet Mail Extensions 

extensibility 
in monitors : 11.9. Simple Network Management Protocol 
of SMTP : 3.4.3. Multipurpose Internet Mail Extensions 

Exterior Gateway Protocol : (see EGP) 
exterior routing protocols : 7.5. Exterior Routing Protocols 
External-body message subtype : 3.4.3. Multipurpose Internet Mail Extensions 

Search | Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z 

Copyright © 1999 O'Reilly & Associates, Inc. All Rights Reserved. 

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/index/idx_e.htm (6 of 6) [2001-10-15 09:17:19]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm
file:///C|/mynapster/Downloads/warez/copyrght.htm
http://www.oreilly.com/
file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


file:///C|/mynapster/Downloads/warez/tcpip/index/idx_f.htm

 

Search | Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z 

Index: F
fallbackhost : E.4.2. sendmail Options 
fast ports : (see Ethernet) 
fax-support, built-in : E.3.5. MAILER 
FDDI network : 6.1.5.4. Maximum transmission unit 

backbone : 11.8. Protocol Case Study 
FEATURE macro : 10.4.1.1. Building a sendmail.cf with m4 macros 

in sendmail 
E.3. m4 sendmail Macros 
E.3.2. FEATURE 
features, listed : E.3.2. FEATURE 

Federal Information Exchanges (FIXs) : 1.1. TCP/IP and the Internet 
Fiber Digital Data Interface (FDDI) 

1.7. Application Layer 
5.3.1.2. Pseudo-device 
(see also FDDI network) 

file 
checking : 12.4.2.1. Checking files 
finding : 13.3. Finding Files 
lock requests, handling : 9.1.1. NFS Daemons 
servers, names of : 4.5.1. File servers 
sharing 

1.7. Application Layer 
3.7.1. File Sharing 
different from file transfer : 3.7.1. File Sharing 

transfer, interactive : 1.7. Application Layer 
File Transfter Protocol : (see FTP) 
filters 

1.7. Application Layer 
(see also packet, filters) 

filters, provided by monitors : 11.9. Simple Network Management Protocol 
FIN bit : 1.6.2. Transmission Control Protocol 
find command, in security checks : 12.4.2.1. Checking files 
finger 

file:///C|/mynapster/Downloads/warez/tcpip/index/idx_f.htm (1 of 3) [2001-10-15 09:17:20]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


file:///C|/mynapster/Downloads/warez/tcpip/index/idx_f.htm

monitoring access to daemon : 12.5.1. wrapper 
service : 5.4. The Internet Daemon 
target for intruders : C.3.1.8. Well-Known Services record 

finite state machine (FSM) 
diagrams or tables : B.4. Trace Statements 
transitions, tracing : B.8.10. The routerdiscovery Statement 

fires : 12.1.1. Assessing the Threat 
firewalls 

9.3.2. NIS+ 
12.7. Firewalls 
blocking troubleshooting measures : 11.1.1. Troubleshooting Hints 
defined : 12.7. Firewalls 
disadvantage of : 12.7.1. Functions of the firewall 
functions of : 12.7.1. Functions of the firewall 
limiting connectivity : 10.7.1. Modifying Local Information 
need for professional installation : 12.7.1. Functions of the firewall 
routing control within 

12.7.2. Routing control 
E.4.2. sendmail Options 

using BSD system as : 5.3.1.1. Options 
using Linux system as : 5.2. Linux Kernel Configuration 

FIRST mailing list : 12.1.2.2. Use mailing lists to distribute information 
flags 

2.5. The Routing Table 
7.2. The Minimal Routing Table 
defining interface characteristics : 6.1.2. Checking the Interface with ifconfig 

Flags field : 1.5.1.3. Fragmenting datagrams 
flooding 

7.4.3. Open Shortest Path First 
B.8.1. The ospf Statement 

flow control 
1.5.2. Internet Control Message Protocol 
1.6.2. Transmission Control Protocol 

foo.org database : 12.4.3.2. SATAN 
Forum of Incident Response and Security Teams (FIRST) : 12.1.2.2. Use mailing lists to distribute 
information 
.forward file : 10.3.1. Personal mail forwarding 
forwarders command 

8.3.1.1. Configuring a caching-only nameserver 
C.2. named.boot Configuration Commands 

forwarding : 1.5.1.4. Passing datagrams to the transport layer 
fragmentation : 1.5.1.3. Fragmenting datagrams 

file:///C|/mynapster/Downloads/warez/tcpip/index/idx_f.htm (2 of 3) [2001-10-15 09:17:20]



file:///C|/mynapster/Downloads/warez/tcpip/index/idx_f.htm

avoiding : 6.1.5.4. Maximum transmission unit 
Fragmentation Offset field : 1.5.1.3. Fragmenting datagrams 
fragmented datagrams : (see datagrams) 
frames : 1.3. TCP/IP Protocol Architecture 
FreeBSD systems 

5.3. The BSD Kernel Configuration File 
5.3.1.1. Options 

fstab file : 9.1.3.2. The vfstab and fstab files 
FTP (File Transfer Protocol) 

1.7. Application Layer 
9.6. Managing Distributed Servers 
anonymous : 13.2. Anonymous FTP 
problem for firewalls : 12.7.1. Functions of the firewall 
server, creating : 13.2.1. Creating an FTP Server 

ftp.bunyip.com : 13.3.1.1. archie client software 
ftp.isc.org : 8.3.4. The named.local File 
ftp://rs.internic.net/netinfo/networks.txt : 3.2. The Host Table 
full duplex : 6.3.5. PPP Server Configuration 
full zone transfers : 3.3.4. BIND, resolver, and named 

Search | Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z 

Copyright © 1999 O'Reilly & Associates, Inc. All Rights Reserved. 

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/index/idx_f.htm (3 of 3) [2001-10-15 09:17:20]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm
file:///C|/mynapster/Downloads/warez/copyrght.htm
http://www.oreilly.com/
file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


Index

 

Search | Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z 

Index: G
g3fax image subtype : 3.4.3. Multipurpose Internet Mail Extensions 
gated (Gateway Routing Daemon) : 7.6. Gateway Routing Daemon 

command : B.1. The gated Command 
commands, listed : 7.7. Configuring gated 
configuring : 7.7. Configuring gated 

exterior gateway : 7.7.1.3. Exterior gateway configuration 
host routing : 7.7.1.1. A host configuration 
interior gateway : 7.7.1.2. Interior gateway configurations 
language for : B.1.1. Signal Processing 

documentation for : 13.1. The World Wide Web 
ripquery and : 11.2. Diagnostic Tools 
running at startup : 7.7.2.1. Running gated at startup 
testing the configuration : 7.7.2. Testing the Configuration 
tools reference : B. A gated Reference 
when to use : 7.7.1.3. Exterior gateway configuration 

Gated Consortium : 7.7. Configuring gated 
gated.conf configuration statements : 7.7.1.1. A host configuration 
gated.conf file : 7.6. Gateway Routing Daemon 

creating : 7.7.2.1. Running gated at startup 
gated_dump file : B.1.1. Signal Processing 
gateway 

1.5.1.1. The datagram 
2.5. The Routing Table 
4.3. Planning Routing 
active : 7.4.1.1. Running RIP with routed 
addresses : 7.3. Building a Static Routing Table 
in BSD kernel : 5.3.1.1. Options 
intermediate : 11.5.2. Tracing Routes 
intermediate systems (IS) : B.8.4. The isis Statement 
local : 2.5. The Routing Table 

Gateway Routing Daemon : (see gated) 
Gateway to Gateway Protocol (GGP) : 2.4. Internet Routing Architecture 

file:///C|/mynapster/Downloads/warez/tcpip/index/idx_g.htm (1 of 2) [2001-10-15 09:17:21]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


Index

gateways file : 7.3.1.1. Installing static routes at startup 
reading at startup : 7.4.1.1. Running RIP with routed 

gathering information : (see information) 
gdc command : 7.7.2. Testing the Configuration 
GENERIC kernel 

5.3. The BSD Kernel Configuration File 
5.3.1.3. Devices 

geographic domains : 3.3.1. The Domain Hierarchy 
get command 

6.3.2. Dial-Up PPP 
6.4.2. Dial-Up IP 

GGP (Gateway to Gateway Protocol) : 2.4. Internet Routing Architecture 
gif image subtype : 3.4.3. Multipurpose Internet Mail Extensions 
global 

options : 9.5.1. dhcpd.conf 
template : 9.4. A BOOTP Server 

glue records 
C.2. named.boot Configuration Commands 
C.3.1.3. Address record 

gov domain : 3.3.1. The Domain Hierarchy 
graph, directed : 7.4.3. Open Shortest Path First 
graphic images 

moving : 3.4.3. Multipurpose Internet Mail Extensions 
still : 3.4.3. Multipurpose Internet Mail Extensions 

grep 
6.1.5.6. Putting ifconfig in the startup files 
11.5. Checking Routing 

group file 
9.3. Network Information Service 
13.2.1. Creating an FTP Server 

group statements 
9.5.1. dhcpd.conf 
B.8.5. The bgp Statement 
B.8.6. The egp Statement 

Search | Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z 

Copyright © 1999 O'Reilly & Associates, Inc. All Rights Reserved. 

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/index/idx_g.htm (2 of 2) [2001-10-15 09:17:21]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm
file:///C|/mynapster/Downloads/warez/copyrght.htm
http://www.oreilly.com/
file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


file:///C|/mynapster/Downloads/warez/tcpip/index/idx_h.htm

 

Search | Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z 

Index: H
handshaking 

1.5.1. Internet Protocol 
1.6.2. Transmission Control Protocol 
TCP : 2.7.3. Sockets 
three-way : 7.5.2. Border Gateway Protocol 

hash mark (#) for comments 
3.2. The Host Table 
5.4. The Internet Daemon 
7.7.1.1. A host configuration 
9.1.4. NFS Automounter 
9.2.1. The printcap File 
9.4. A BOOTP Server 
A.1.1. The dip Script File 
D.3. The dhcpd.conf Configuration File 

Hayes modems : 6.3.2. Dial-Up PPP 
compatibility problems : 6.4.4. Troubleshooting Serial Connections 

headers 
1.3. TCP/IP Protocol Architecture 
1.5.1.1. The datagram 
3.4.3. Multipurpose Internet Mail Extensions 
.h files : 5.3.1.2. Pseudo-device 
compressing : 5.2. Linux Kernel Configuration 

hello 
command 

3.4.3. Multipurpose Internet Mail Extensions 
7.4. Interior Routing Protocols 

messages : 7.5.1. Exterior Gateway Protocol 
packets : 7.4.3. Open Shortest Path First 
statement (in gated) : B.8.3. The hello Statement 

HELO command, in POP : 3.4.2. Post Office Protocol 
HELP command 

in ESMTP : 3.4.3. Multipurpose Internet Mail Extensions 
in nslookup : 8.4. Using nslookup 

file:///C|/mynapster/Downloads/warez/tcpip/index/idx_h.htm (1 of 3) [2001-10-15 09:17:22]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


file:///C|/mynapster/Downloads/warez/tcpip/index/idx_h.htm

in SMTP : 3.4.1. Simple Mail Transfer Protocol 
hierarchy, system : 3.3.1. The Domain Hierarchy 

database system : 9.3.2. NIS+ 
of responsibility : 12.1.2.1. Use subnets to distribute control 

High-level Data Link Control (HDLC) : 6.2.1. The Serial Protocols 
high-speed dial-up modems : (see modems) 
HINFO resource records 

11.6.2. The data is here and the server can't find it! 
C.3.1.7. Host Information record 

hints file : 8.3.3. The Cache Initialization File 
hoaxes about viruses : 12.1.2.2. Use mailing lists to distribute information 
hop 

1.7. Application Layer 
(see also next-hop route) 
count : 7.4.1.1. Running RIP with routed 
next : 2.5. The Routing Table 

Host Information records : (see HINFO resource records) 
Host-to-Host Transport Layer : (see Transport Layer) 
hosts 

1.7. Application Layer 
(see also remote, hosts, checking) 
addresses : (see addresses) 
file, caution regarding : 6.1.3. Assigning a Subnet Mask 
list : 12.5.1.1. tcpd access control files 
multi-homed : 1.5.1.2. Routing datagrams 
names (hn) : 3.1. Names and Addresses 

choosing : 4.4.2. Choosing a Hostname 
easing transition from old to new : C.3.1.5. Canonical Name record 
parameter : 9.4. A BOOTP Server 

table 
3.1. Names and Addresses 
3.2. The Host Table 
system, problems with : 3.2. The Host Table 

hosts file 
3.2. The Host Table 
6.1. The ifconfig Command 
7.3. Building a Static Routing Table 
9.1.4. NFS Automounter 
9.3. Network Information Service 
creating : 3.2. The Host Table 
as maps : 3.3.5. Network Information Service 
modifying : 3.3.4. BIND, resolver, and named 

file:///C|/mynapster/Downloads/warez/tcpip/index/idx_h.htm (2 of 3) [2001-10-15 09:17:22]



file:///C|/mynapster/Downloads/warez/tcpip/index/idx_h.htm

hosts.allow file : 12.5.1.1. tcpd access control files 
hosts.deny file : 12.5.1.1. tcpd access control files 
hosts.equiv file 

12.2.5. Secure the r Commands 
12.4.2. Looking for Trouble 

hosts.lpd file 
9.2.1.1. LPD security 
12.4.2. Looking for Trouble 

htable 
command : 3.2. The Host Table 
networks.txt : 3.2. The Host Table 

html text subtype : 3.4.3. Multipurpose Internet Mail Extensions 
HTTP (Hypertext Transfer Protocol) 

1.7. Application Layer 
13.1. The World Wide Web 
message subtype : 3.4.3. Multipurpose Internet Mail Extensions 

human error : 11.1.1. Troubleshooting Hints 
hunches, verifying : 10.8.1. Testing Rewrite Rules 
Hypertext Transfer Protocol : (see HTTP) 
hyphen (-) (non-equivalent host) : 12.2.5. Secure the r Commands 

Search | Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z 

Copyright © 1999 O'Reilly & Associates, Inc. All Rights Reserved. 

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/index/idx_h.htm (3 of 3) [2001-10-15 09:17:22]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm
file:///C|/mynapster/Downloads/warez/copyrght.htm
http://www.oreilly.com/
file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


file:///C|/mynapster/Downloads/warez/tcpip/index/idx_i.htm

 

Search | Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z 

Index: I
I-Heard-You (I-H-U) messages : 7.5.1. Exterior Gateway Protocol 
ICMP (Internet Control Message Protocol) : 1.5.2. Internet Control Message Protocol 

parameter problem message header : F.3. ICMP Parameter Problem Message Header 
statement (in gated) : B.8.9. The icmp Statement 
tracing messages in : B.8.9. The icmp Statement 

IDA sendmail : 10. sendmail 
Identification field : 1.5.1.3. Fragmenting datagrams 
IDRP (InterDomain Routing Protocol) : 7.5.2. Border Gateway Protocol 
IEEE 802.3 : 1.2. A Data Communications Model 
Ierrs (input errors) : 11.4.3. Checking the Interface with netstat 
IETF (Internet Engineering Task Force) : 2.2.2. Classless IP Addresses 

RFC page : 13.4. Retrieving RFCs 
ifconfig 

3.5.1. Reverse Address Resolution Protocol 
6.1. The ifconfig Command 
6.4.1. slattach 
7.2. The Minimal Routing Table 
Linux implementation of : 7.3.1.1. Installing static routes at startup 
putting in startup files : 6.1.5.6. Putting ifconfig in the startup files 
setting values indirectly : 6.1.3. Assigning a Subnet Mask 
in troubleshooting 

11.2. Diagnostic Tools 
11.3. Testing Basic Connectivity 
11.4.1. Troubleshooting with the ifconfig Command 

IHL (Internet Header Length) : 1.5.1.1. The datagram 
image content type : 3.4.3. Multipurpose Internet Mail Extensions 
IMAP (Internet Message Access Protocol) 

4.5.3. Planning Your Mail System 
9.7.2. IMAP Server 

imapd file : 9.7.2. IMAP Server 
import statement (in gated) : B.10.1. The import Statement 
imposter on Ethernet : 11.4.2.1. ARP problem case study 
in-addr.arpa 

file:///C|/mynapster/Downloads/warez/tcpip/index/idx_i.htm (1 of 5) [2001-10-15 09:17:23]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


file:///C|/mynapster/Downloads/warez/tcpip/index/idx_i.htm

domain files 
4.4.1.1. Obtaining an IN-ADDR.ARPA domain 
8.3.5. The Reverse Domain File 
11.6.4. dig: An Alternative to nslookup 
13.6. The White Pages 

reverse domain files : C.3.1.6. Domain Name Pointer record 
incompatibility problems, handling : 5.2. Linux Kernel Configuration 
indefinite tokens : 10.6.1. Pattern Matching 

substituting : 10.6.2. Transforming the Address 
individual host assignment of addresses : 4.2.1.1. Assigning host addresses 
inetd : 5.4. The Internet Daemon 

starting bootpd from : 9.4. A BOOTP Server 
starting bootpgw from : 9.4.1. BOOTP gateway 
starting POP3 from : 9.7.1. POP Server 

inetd.conf file 
5.4. The Internet Daemon 
9.4. A BOOTP Server 
12.3.1. Remove Unnecessary Software 
12.4.2. Looking for Trouble 
editing in tcpd : 12.5.1. wrapper 

inetinit script : 7.3.1.1. Installing static routes at startup 
infinite loops, detecting possible : 10.6.2. Transforming the Address 
information 

ensuring integrity of : 12.1.1. Assessing the Threat 
gathering, first phase in problem-solving : 11.1. Approaching a Problem 
passing to users : 4.6. Informing the Users 

disseminating mask information : 4.2.2. Defining the Subnet Mask 
resources, finding : 13. Internet Information Resources 

init.d directory : 9.1.1. NFS Daemons 
Initial Sequence Number (ISN) : 1.6.2. Transmission Control Protocol 
input errors (Ierrs) : 11.4.3. Checking the Interface with netstat 
installation planning sheets : 4.6.1. Sample Planning Sheets 
int domain : 3.3.1. The Domain Hierarchy 
integrity of information : (see information) 
interactive 

logins : 4.5.3. Planning Your Mail System 
mode : 8.4. Using nslookup 
protocols : 9.6. Managing Distributed Servers 

InterDomain Routing Protocol (IDRP) : 7.5.2. Border Gateway Protocol 
interfaces 

checking with ifconfig : 6.1.2. Checking the Interface with ifconfig 
connectors : 1.2. A Data Communications Model 

file:///C|/mynapster/Downloads/warez/tcpip/index/idx_i.htm (2 of 5) [2001-10-15 09:17:23]



file:///C|/mynapster/Downloads/warez/tcpip/index/idx_i.htm

determining name of : 6.1.1. Determining the Interface Name 
multiple : 6.1.1. Determining the Interface Name 
not enabled (*) : 6.1.1. Determining the Interface Name 
statements (in gated) : B.6. Interface Statements 

intermediate gateway : (see gateway) 
Intermediate System to Intermediate System (IS-IS) protocol : 7.4. Interior Routing Protocols 
intermediate systems : (see gateway) 
intermittent problems : 11.4.2. Troubleshooting with the arp Command 
internal keyword : 5.4. The Internet Daemon 
internal threats : 12.1.1. Assessing the Threat 
International Standards Organization (ISO) 

1.2. A Data Communications Model 
11.9. Simple Network Management Protocol 

Internet 
connected or non-connected to : 4.1. Connected and Non-Connected Networks 
daemon (inetd) : 5.4. The Internet Daemon 
global 

3.2. The Host Table 
4.1. Connected and Non-Connected Networks 
12.6. Encryption 

military origins of : 1.1. TCP/IP and the Internet 
rapid growth of 

Foreword from the First Edition 
1.1. TCP/IP and the Internet 
2.2.1. Address Classes 
7.5.1. Exterior Gateway Protocol 

routing architecture : 2.4. Internet Routing Architecture 
Internet Control Message Protocol : (see ICMP) 
Internet Control Protocol (IPCP) : 6.2.1. The Serial Protocols 
Internet Engineering Task Force (IETF) : 2.2.2. Classless IP Addresses 

RFC page : 13.4. Retrieving RFCs 
Internet Header Length (IHL) : 1.5.1.1. The datagram 
Internet Layer : 1.5. Internet Layer 
Internet Message Access Protocol (IMAP) 

4.5.3. Planning Your Mail System 
9.7.2. IMAP Server 

Internet Protocol (IP) : 1.5.1. Internet Protocol 
Internet Registries 

4.2.1. Obtaining an IP Address 
4.3.1. Obtaining an autonomous system number 

Internet Resource Registries (IRR) : 4.2.1. Obtaining an IP Address 
Internet Routing Registry (IRR) : 2.4. Internet Routing Architecture 

file:///C|/mynapster/Downloads/warez/tcpip/index/idx_i.htm (3 of 5) [2001-10-15 09:17:23]



file:///C|/mynapster/Downloads/warez/tcpip/index/idx_i.htm

Internet Service Providers : (see ISPs) 
Internet Software Consortium (ISC) : 9.5. DHCP 
Internet Talk Radio 

5.2. Linux Kernel Configuration 
5.3.1.1. Options 

InterNIC 
4.2.1. Obtaining an IP Address 
4.4.1. Obtaining a Domain Name 
8.3.3. The Cache Initialization File 
11.6.3. Cache corruption 
13.6. The White Pages 

interoperability : (see DHCP; POP routers) 
intranets : 4.1. Connected and Non-Connected Networks 
intruders 

1.7. Application Layer 
5.2. Linux Kernel Configuration 
(see also finger) 
(see also firewalls) 
(see also TFTP protocol) 

IP (Internet Protocol) : 1.5.1. Internet Protocol 
IP addresses 

2.2. The IP Address 
6.1. The ifconfig Command 
classless : 2.2.2. Classless IP Addresses 
depletion of : 2.2.2. Classless IP Addresses 
incorrect : 11.4.1. Troubleshooting with the ifconfig Command 
unique : 4.2.1. Obtaining an IP Address 

IP datagrams 
forwarding : 5.2. Linux Kernel Configuration 
headers for : F.1. IP Datagram Header 

IP router : (see gateway) 
IPCP (Internet Control Protocol) : 6.2.1. The Serial Protocols 
IPv6 : 2.2.2. Classless IP Addresses 
IPX networks, pure : A.2. The PPP Daemon 
irq parameter : 6.1.5.5. Point-to-point 
IRR (Internet Resource Registries) : 4.2.1. Obtaining an IP Address 
IRR (Internet Routing Registry) : 2.4. Internet Routing Architecture 
IS (intermediate system) 

1.7. Application Layer 
B.8.4. The isis Statement 

IS-IS protocol : B.8.4. The isis Statement 
trace options : B.8.4. The isis Statement 

file:///C|/mynapster/Downloads/warez/tcpip/index/idx_i.htm (4 of 5) [2001-10-15 09:17:23]



file:///C|/mynapster/Downloads/warez/tcpip/index/idx_i.htm

ISC (Internet Software Consortium) 
9.5. DHCP 
D.1. Compiling dhcpd 

ISDN interface : 5.2. Linux Kernel Configuration 
experimental : 5.3.1.3. Devices 

isis statement (in gated) : B.8.4. The isis Statement 
ISN (Initial Sequence Number) : 1.6.2. Transmission Control Protocol 
ISPs (Internet Service Providers) 

1.1. TCP/IP and the Internet 
4.1. Connected and Non-Connected Networks 
6.3.2. Dial-Up PPP 
choosing : 4.1.1. Network Contacts 
interconnections among : 7.5.2. Border Gateway Protocol 
services of : 4.4.1. Obtaining a Domain Name 

Search | Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z 

Copyright © 1999 O'Reilly & Associates, Inc. All Rights Reserved. 

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/index/idx_i.htm (5 of 5) [2001-10-15 09:17:23]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm
file:///C|/mynapster/Downloads/warez/copyrght.htm
http://www.oreilly.com/
file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


Index

 

Search | Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z 

Index: J
jargon : (see terminology, importance of using standard) 
joe accounts : 12.2. User Authentication 
jpeg image subtype : 3.4.3. Multipurpose Internet Mail Extensions 

Search | Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z 

Copyright © 1999 O'Reilly & Associates, Inc. All Rights Reserved. 

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/index/idx_j.htm [2001-10-15 09:17:23]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm
file:///C|/mynapster/Downloads/warez/search/tsrch.htm
file:///C|/mynapster/Downloads/warez/copyrght.htm
http://www.oreilly.com/
file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


Index

 

Search | Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z 

Index: K
K commands 

10.8.2. Using Key Files in sendmail 
E.4.4. The sendmail K Command 

keepalives 
5.2. Linux Kernel Configuration 
7.5.2. Border Gateway Protocol 
B.8.5. The bgp Statement 

kernel 
configuration file : 5.1. Kernel Configuration 

when to change : 5.1. Kernel Configuration 
statement (in gated) : B.8.10.1. The routerdiscovery client statement 

keyboard interrupts : 9.1.3.2. The vfstab and fstab files 

Search | Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z 

Copyright © 1999 O'Reilly & Associates, Inc. All Rights Reserved. 

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/index/idx_k.htm [2001-10-15 09:17:23]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm
file:///C|/mynapster/Downloads/warez/search/tsrch.htm
file:///C|/mynapster/Downloads/warez/copyrght.htm
http://www.oreilly.com/
file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


Index

 

Search | Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z 

Index: L
LAN 

1.7. Application Layer 
(see also Ethernet) 
applications : 3.7.1. File Sharing 
proprietary : 3.7.1. File Sharing 
servers : 3. Network Services 

Lance Ethernet Interface : 6.1.1. Determining the Interface Name 
laptop computer as test equipment : 11.2. Diagnostic Tools 
large transmission window size : 5.2. Linux Kernel Configuration 
last command, in security checks : 12.4.2.2. Checking login activity 
layers 

1.2. A Data Communications Model 
1.3. TCP/IP Protocol Architecture 

LCP (Link Control Protocol) 
6.2.1. The Serial Protocols 
A.2. The PPP Daemon 

leases on addresses : 3.6.1. Dynamic Host Configuration Protocol 
default-lease-time : 9.5.1. dhcpd.conf 
renewing : 9.4.2. BOOTP extensions 

limiting DHCP servers : 3.6.1. Dynamic Host Configuration Protocol 
line length restriction : 3.4.3. Multipurpose Internet Mail Extensions 
Line Printer (LP) print service, in Solaris : 9.2.2. Solaris Line Printer Service 
Link Control Protocol (LCP) 

6.2.1. The Serial Protocols 
A.2. The PPP Daemon 

link-state 
database : 7.4.3. Open Shortest Path First 
routing protocols 

7.4. Interior Routing Protocols 
7.4.2. RIP Version 2 

Link-State Advertisements (LSAs) 
7.4.3. Open Shortest Path First 
B.8.1. The ospf Statement 

file:///C|/mynapster/Downloads/warez/tcpip/index/idx_l.htm (1 of 3) [2001-10-15 09:17:24]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


Index

linux source directory : 5.2. Linux Kernel Configuration 
Linux systems 

UNIX Versions 
4.7. netconfig 
10.2. Running sendmail as a Daemon 
ifconfig command on 

6.1.2. Checking the Interface with ifconfig 
6.1.5.3. Metric 

kernel configuration : 5.2. Linux Kernel Configuration 
of PPP : 6.3. Installing PPP 

remounting filesystems on : 9.1.3.2. The vfstab and fstab files 
sharing directories on : 9.1.2.2. The /etc/exports file 

linux.mc macro control file : 10.4.1.1. Building a sendmail.cf with m4 macros 
linux.smtp.cf file 

10.4.2. General sendmail.cf Structure 
10.7. Modifying a sendmail.cf File 

list-of-lists : 13.5. Mailing Lists 
LISTSERV : 13.5. Mailing Lists 
literals : 10.6.2. Transforming the Address 
*LK* keyword : 12.2.1. The Shadow Password File 
load balancing 

5.2. Linux Kernel Configuration 
7.4.3. Open Shortest Path First 
11.4.4. Subdividing an Ethernet 

local gateway : (see gateway) 
LOCALDOMAIN variable : 8.2.1. The Resolver Configuration File 
localhost 

3.2. The Host Table 
7.2. The Minimal Routing Table 
8.3.4. The named.local File 

LOCALRES environmental variable : 11.6.4. dig: An Alternative to nslookup 
lock daemon (lockd) : 9.1.1. NFS Daemons 
lock requests : (see file) 
loghost : 3.2. The Host Table 
login activity, checking : 12.4.2.2. Checking login activity 
login, remote : 1.7. Application Layer 
loopback 

address 
2.2.2.1. Final notes on IP addresses 
3.2. The Host Table 
8.3.4. The named.local File 

devices : 5.3.1.2. Pseudo-device 

file:///C|/mynapster/Downloads/warez/tcpip/index/idx_l.htm (2 of 3) [2001-10-15 09:17:24]



Index

domain : 8.3.1.1. Configuring a caching-only nameserver 
files : 8.1.1. BIND Configurations 
interface 

4.7. netconfig 
6.1.1. Determining the Interface Name 
6.1.5.6. Putting ifconfig in the startup files 

route 
2.5. The Routing Table 
7.2. The Minimal Routing Table 
12.7.2. Routing control 

lowest-cost path : 7.4.3. Open Shortest Path First 
lp directory : 9.2.2. Solaris Line Printer Service 
lpd (Line Printer Daemon) : 9.2. Line Printer Daemon 

commands, listed : 9.2.1.2. Using LPD 
lpr command, in UNIX : 3.7.2. Print Services 
lpr program : 9.2.1.2. Using LPD 
lpr server, IP address of : 9.4. A BOOTP Server 
lpsystem command : 9.2.2. Solaris Line Printer Service 
ls command 

8.4. Using nslookup 
11.6. Checking Name Service 

Search | Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z 

Copyright © 1999 O'Reilly & Associates, Inc. All Rights Reserved. 

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/index/idx_l.htm (3 of 3) [2001-10-15 09:17:24]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm
file:///C|/mynapster/Downloads/warez/copyrght.htm
http://www.oreilly.com/
file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


Index

 

Search | Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z 

Index: M
m4 macros 

10.4.1.1. Building a sendmail.cf with m4 macros 
E.3. m4 sendmail Macros 

macros, expanding : 10.6.2. Transforming the Address 
MAEs (Metropolitan Area Exchanges) : 1.1. TCP/IP and the Internet 
magic number negotiation : A.2. The PPP Daemon 
mail 

addresses : 13.3.1. archie 
aliases : 10.3. sendmail Aliases 
gateway : 4.5.3. Planning Your Mail System 
messages, encapsulated : 3.4.3. Multipurpose Internet Mail Extensions 
relay : 4.5.3. Planning Your Mail System 
servers 

3.4. Mail Services 
4.5.3. Planning Your Mail System 
interoperability and : 3.4.3. Multipurpose Internet Mail Extensions 

mail exchanger (MX) records 
8.3.2. Standard Resource Records 
8.3.6. The named.hosts File 
8.4. Using nslookup 
10.7.1. Modifying Local Information 
C.3.1.4. Mail exchanger record 

/mail/imap.tar.Z file : 9.7.2. IMAP Server 
mailbox servers : 9.7. Mail Servers 

synchronizing : 9.7.2. IMAP Server 
mailer 

definition fields : 10.5.8. Defining Mailers 
common : 10.5.8.1. Some common mailer definitions 

local : 10.5.8. Defining Mailers 
MAILER source file (in sendmail) 

E.3. m4 sendmail Macros 
E.3.5. MAILER 
values available, listed : E.3.5. MAILER 

file:///C|/mynapster/Downloads/warez/tcpip/index/idx_m.htm (1 of 5) [2001-10-15 09:17:25]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


Index

mailertable database : 10.7.1. Modifying Local Information 
mailing lists 

for distributing security information : 12.1.2.2. Use mailing lists to distribute information 
for exchanging information and ideas : 13.5. Mailing Lists 
joining : 13.5. Mailing Lists 
sendmail and : 10.1. sendmail's Function 

maintenance toolkits, ready-made : 11.2. Diagnostic Tools 
majordomo : 13.5. Mailing Lists 
make command : 5.2. Linux Kernel Configuration 

in NIS : 9.3. Network Information Service 
make config command : 5.2. Linux Kernel Configuration 
make install.man : 9.4. A BOOTP Server 
make zImage command : 5.2. Linux Kernel Configuration 
makemap command 

10.4.1.1. Building a sendmail.cf with m4 macros 
E.1. Compiling sendmail 
E.4.4. The sendmail K Command 

Management Information Base (MIB) : 11.9. Simple Network Management Protocol 
map 

1.7. Application Layer 
(see also /etc/hosts file) 
(see also /etc/networks file) 
(see also automounter daemon) 
(see also IMAP) 
(see also Network Information Service) 
(see also portmapper) 
building : 7.4.3. Open Shortest Path First 
name assigned a database : 10.6.2.1. Transforming with a database 

martians 
4.2.1. Obtaining an IP Address 
B.7. Definition Statements 

mask information : (see information) 
masking 

2.2.2. Classless IP Addresses 
2.3. Subnets 

masquerading 
E.3.2. FEATURE 
E.3.4. DOMAIN 

maximum receive unit (MRU) : A.2. The PPP Daemon 
maximum transmission unit : (see MTU) 
maxpacketsize : B.8.6. The egp Statement 
MBONE 

file:///C|/mynapster/Downloads/warez/tcpip/index/idx_m.htm (2 of 5) [2001-10-15 09:17:25]



Index

5.2. Linux Kernel Configuration 
5.3.1.1. Options 

memory-to-memory copies : 6.1.5.2. ARP and trailers 
Message Digest 5 (MD5) cryptographic checksum 

7.4.3. Open Shortest Path First 
7.7.1.1. A host configuration 
B.8.2. The rip Statement 

messages 
1.3. TCP/IP Protocol Architecture 
1.5.2. Internet Control Message Protocol 
assigning priority to : 10.5.6. Defining Mail Precedence 
content type : 3.4.3. Multipurpose Internet Mail Extensions 
multipart subtype : 3.4.3. Multipurpose Internet Mail Extensions 
multiple objects in single : 3.4.3. Multipurpose Internet Mail Extensions 

messages file : 12.4.2.2. Checking login activity 
metasymbols : 10.6.1. Pattern Matching 

for transforming the address : 10.6.2. Transforming the Address 
metrics : 6.1.5.3. Metric 

arbitrariness of : 7.4.1.1. Running RIP with routed 
incompatibility of : 7.6.1. gated's Preference Value 

Metropolitan Area Exchanges (MAEs) : 1.1. TCP/IP and the Internet 
MIB (Management Information Base) : 11.9. Simple Network Management Protocol 
MIBI and MIBII : 11.9. Simple Network Management Protocol 
mil domain : 3.3.1. The Domain Hierarchy 
MIME (Multipurpose Internet Mail Extensions) 

1.2. A Data Communications Model 
3.4.3. Multipurpose Internet Mail Extensions 
sendmail and : 10.5.8. Defining Mailers 
standardizing on : 4.5.3. Planning Your Mail System 
types : 3.4.3. Multipurpose Internet Mail Extensions 

minicom : 6.4.4. Troubleshooting Serial Connections 
minus sign (-) (non-equivalent host) : 12.2.5. Secure the r Commands 
mixed multipart subtype : 3.4.3. Multipurpose Internet Mail Extensions 
mknod command : 6.4.4. Troubleshooting Serial Connections 
mobile systems, requirements of : 3.6.1. Dynamic Host Configuration Protocol 
mode command : 6.3.2. Dial-Up PPP 
modems 

1.7. Application Layer 
(see also Automatic Call Unit) 
asynchronous : 5.3.1.2. Pseudo-device 
carrier-detect (DCD) indicator, monitoring : 6.3.3. chat 
checking configuration of : 6.4.4. Troubleshooting Serial Connections 

file:///C|/mynapster/Downloads/warez/tcpip/index/idx_m.htm (3 of 5) [2001-10-15 09:17:25]



Index

documentation : 6.4.4. Troubleshooting Serial Connections 
high-speed dial-up : 6.2. TCP/IP Over a Serial Line 
synchronous : 5.3.1.2. Pseudo-device 

modules, loadable : 5.2. Linux Kernel Configuration 
monitoring software : 11.9. Simple Network Management Protocol 

automated : 12.4.3. Automated Monitoring 
monitoring system usage : 5.2. Linux Kernel Configuration 
more command : 8.4. Using nslookup 
Mosaic browser : 13.1. The World Wide Web 
mount 

command : 9.1.3.1. The mount command 
daemon (mountd) : 9.1.1. NFS Daemons 
point : 9.1.3.1. The mount command 

mounting 
directory : 9.1. The Network File System 
remote filesystems : 9.1.3. Mounting Remote Filesystems 

common reasons for : 9.1.3. Mounting Remote Filesystems 
mpeg video subtype : 3.4.3. Multipurpose Internet Mail Extensions 
mqueue temporary files : 10.5.4. The Set Option Command 
MRU (maximum receive unit) : A.2. The PPP Daemon 
MTU (maximum transmission unit) 

1.5.1.3. Fragmenting datagrams 
6.1.1. Determining the Interface Name 
6.1.2. Checking the Interface with ifconfig 
6.1.5.4. Maximum transmission unit 
A.1. Dial-Up IP 
determining smallest : 5.2. Linux Kernel Configuration 

multi-homed 
host 

5.3.1.1. Options 
8.2.1. The Resolver Configuration File 
architecture of : 12.7. Firewalls 

site : 4.3.1. Obtaining an autonomous system number 
multicasting 

6.1.2. Checking the Interface with ifconfig 
6.1.5.5. Point-to-point 
addresses 

2.2.1. Address Classes 
2.2.2.1. Final notes on IP addresses 
2.6. Address Resolution 
7.4.2. RIP Version 2 

routing, support for 

file:///C|/mynapster/Downloads/warez/tcpip/index/idx_m.htm (4 of 5) [2001-10-15 09:17:25]



Index

5.2. Linux Kernel Configuration 
5.3.1.1. Options 

Multichannel Memorandum Distribution Facility (MMDF) : 10. sendmail 
multihomed hosts : (see hosts) 
multipart content type : 3.4.3. Multipurpose Internet Mail Extensions 
multipart encryption : (see encryption) 
multipart messages : (see messages) 
multiplexing 

2.1. Addressing, Routing, and Multiplexing 
2.7. Protocols, Ports, and Sockets 

Multipurpose Internet Mail Extensions : (see MIME) 
MX records 

8.3.2. Standard Resource Records 
8.3.6. The named.hosts File 
8.4. Using nslookup 
10.7.1. Modifying Local Information 
C.3.1.4. Mail exchanger record 

Search | Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z 

Copyright © 1999 O'Reilly & Associates, Inc. All Rights Reserved. 

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/index/idx_m.htm (5 of 5) [2001-10-15 09:17:25]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm
file:///C|/mynapster/Downloads/warez/copyrght.htm
http://www.oreilly.com/
file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


Index

 

Search | Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z 

Index: N
name : 3.1. Names and Addresses 
name service 

1.7. Application Layer 
8. Configuring DNS Name Service 
(see also DNS) 
(see also Domain Name Service) 
addresses : (see addresses) 
process : 3.3.4. BIND, resolver, and named 
troubleshooting 

11.3. Testing Basic Connectivity 
11.6. Checking Name Service 

Name Service Switch file (nsswitch.conf) : 9.3.1. The nsswitch.conf file 
named server daemon 

5.4. The Internet Daemon 
8.1. BIND: UNIX Name Service 
booting : 8.3.3. The Cache Initialization File 
command : C.1. The named Command 
configuring : 8.3. Configuring named 
process : 3.3.4. BIND, resolver, and named 
starting at startup : 8.3.6.1. Starting named 
tools reference : C. A named Reference 

named.boot file 
8.3.1. The named.boot File 
11.6.3. Cache corruption 
C.1. The named Command 
configuration commands : C.2. named.boot Configuration Commands 

listed : 8.3.1. The named.boot File 
named.ca file : 11.6.3. Cache corruption 
named.hosts file : 8.3.6. The named.hosts File 
named.local file : 8.3.4. The named.local File 
named.pid file : 11.6.3. Cache corruption 
named.rev file : 8.3.5. The Reverse Domain File 
nameserver entry, in resolv.conf : 8.2.1. The Resolver Configuration File 

file:///C|/mynapster/Downloads/warez/tcpip/index/idx_n.htm (1 of 6) [2001-10-15 09:17:27]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


Index

National Center for Supercomputer Applications (NCSA) : 13.1. The World Wide Web 
National Institute of Standards and Technology (NIST) 

12.1.2.2. Use mailing lists to distribute information 
13.1. The World Wide Web 

National Science Foundation (NSF) : 1.1. TCP/IP and the Internet 
natural mask : 2.2.2. Classless IP Addresses 
NBMA interfaces 

B.6. Interface Statements 
B.8.1. The ospf Statement 

NCSA (National Center for Supercomputer Applications) : 13.1. The World Wide Web 
neighbors 

acquiring : 7.5.1. Exterior Gateway Protocol 
allowing 

7.7.1.3. Exterior gateway configuration 
B.8.6. The egp Statement 

net domain : 3.3.1. The Domain Hierarchy 
Net/Dest : (see Net/Dest value) 
Net/Dest value 

6.1.1. Determining the Interface Name 
6.1.5.5. Point-to-point 

netconfig : 4.7. netconfig 
Netscape browser : 13.1. The World Wide Web 
netstat 

-in command : 6.1.1. Determining the Interface Name 
-ni command : 6.4.4. Troubleshooting Serial Connections 
-nr command 

2.5. The Routing Table 
7.3.1. Adding Static Routes 
11.5. Checking Routing 

to display routing table : 12.7.2. Routing control 
troubleshooting with 

11.2. Diagnostic Tools 
11.3. Testing Basic Connectivity 
11.4.3. Checking the Interface with netstat 

network : (see enterprise) 
access 

balancing against computer security : 12. Network Security 
troubleshooting : 11.4. Troubleshooting Network Access 

address translation (NAT) : 4.2.1. Obtaining an IP Address 
advantages of : 4.2.1. Obtaining an IP Address 
disadvantages of : 4.2.1. Obtaining an IP Address 

administration 

file:///C|/mynapster/Downloads/warez/tcpip/index/idx_n.htm (2 of 6) [2001-10-15 09:17:27]



Index

1.7. Application Layer 
3.1. Names and Addresses 
avoiding problems 

11.4.2.1. ARP problem case study 
11.9. Simple Network Management Protocol 

decentralized : 2.3. Subnets 
defined 

1. Overview of TCP/IP 
11. Troubleshooting TCP/IP 

developing feel for : 12.4.1. Know Your System 
need for information about : Preface 
security responsibilites of : 12.1.3. Writing a Security Policy 
simplifying : 4.2.2. Defining the Subnet Mask 

break-ins, increasing : 12. Network Security 
building : Foreword from the First Edition 
connected or not connected to Internet : 4.1. Connected and Non-Connected Networks 
diameter : 1.7. Application Layer 

limited : 7.4.1.1. Running RIP with routed 
hardware 

1.7. Application Layer 
(see also physical, network) 
with built-in diagnostic software : 11.3.1. The ping Command 
problems with 

11.3.1. The ping Command 
11.4.3. Checking the Interface with netstat 
11.4.4.1. Network hardware problems 

heterogeneous : 1.1.2. Protocol Standards 
interfaces : 3.1. Names and Addresses 

enabling or disabling : 6.1.5.1. Enabling and disabling the interface 
information need for : 6.1. The ifconfig Command 

maps drawn by monitors : 11.9. Simple Network Management Protocol 
mask : 2.5. The Routing Table 

in RIP-2 : 7.4.2. RIP Version 2 
monitoring traffic on : 11.7. Analyzing Protocol Problems 
news : 13.5.1. Newsgroups 
numbers 

2.2.1. Address Classes 
4.2.1.1. Assigning host addresses 

problems, how to approach : 11. Troubleshooting TCP/IP 
processes : 8.2. Configuring the Resolver 
resources, controlling : 12.1.3. Writing a Security Policy 
saturated : 11.4.3. Checking the Interface with netstat 

file:///C|/mynapster/Downloads/warez/tcpip/index/idx_n.htm (3 of 6) [2001-10-15 09:17:27]



Index

servers : 2.7.2. Port Numbers 
configuring : 9. Configuring Network Servers 

shared media : 11.4.4. Subdividing an Ethernet 
subdividing : 11.4.3. Checking the Interface with netstat 
subnetted : 4.2.1.1. Assigning host addresses 
topology of : 2.2.2. Classless IP Addresses 
underlying : 1.4. Network Access Layer 
unreliable : 11.3.1. The ping Command 
unusual activity on : 12.4.1. Know Your System 
usage, monitoring : 5.2. Linux Kernel Configuration 
X.25 : 1.5.1.3. Fragmenting datagrams 

Network Access Layer 
1.3. TCP/IP Protocol Architecture 
6.1.1. Determining the Interface Name 
protocols : 3.6. Bootstrap Protocol 

Network Access Points 
1.1. TCP/IP and the Internet 
2.4. Internet Routing Architecture 
7.5.2. Border Gateway Protocol 

Network Control protocols : 6.2.1. The Serial Protocols 
Network File System : (see NFS) 
Network Information Center : (see NIC) 
Network Information Service : (see NIS) 
Network Layer 

1.2. A Data Communications Model 
6.1.1. Determining the Interface Name 

Network Management Station (NMS) : 11.9. Simple Network Management Protocol 
Network News Transfer Protocol (NNTP) : 13.5.1. Newsgroups 
Network Terminal Protocol (TELNET) : 1.7. Application Layer 
network unreachable error message 

11.3. Testing Basic Connectivity 
11.5. Checking Routing 

Network/Destination value 
6.1.1. Determining the Interface Name 
6.1.5.5. Point-to-point 

networks file 
3.2. The Host Table 
6.1.3. Assigning a Subnet Mask 
7.3. Building a Static Routing Table 
9.3. Network Information Service 
as maps : 3.3.5. Network Information Service 

newly registered hosts : 3.2. The Host Table 

file:///C|/mynapster/Downloads/warez/tcpip/index/idx_n.htm (4 of 6) [2001-10-15 09:17:27]



Index

news message subtype : 3.4.3. Multipurpose Internet Mail Extensions 
newsgroups : 13.5.1. Newsgroups 

for security information : 12.1.2.2. Use mailing lists to distribute information 
using : 4.1.1. Network Contacts 

newsreader, using : 13.5.1. Newsgroups 
next-hop route : 7.4.3. Open Shortest Path First 

specifying : 7.3. Building a Static Routing Table 
in RIP-2 : 7.4.2. RIP Version 2 

NFS (Network File System) 
1.7. Application Layer 
3.7.1. File Sharing 
9.1. The Network File System 
9.6. Managing Distributed Servers 
benefits of : 9.1. The Network File System 

NFS daemon (nfsd) : 9.1.1. NFS Daemons 
NFS-based print services : 9.1.5.1. NFS print services 
nfs.client script : 9.1.1. NFS Daemons 
nfs.server script : 9.1.1. NFS Daemons 
NFSNET backbone : 1.1. TCP/IP and the Internet 
NIC (Network Information Center) : 3.3.2. Creating Domains and Subdomains 

handle : 4.4.1. Obtaining a Domain Name 
NIS (Network Information Service) 

3.3.5. Network Information Service 
9.3. Network Information Service 
maps of 

3.3.5. Network Information Service 
6.1.3. Assigning a Subnet Mask 
10.6.1. Pattern Matching 

NIS+ : 9.3.2. NIS+ 
NIST (National Institute of Standards and Technology) 

12.1.2.2. Use mailing lists to distribute information 
13.1. The World Wide Web 

NMS (Network Management Station) : 11.9. Simple Network Management Protocol 
NNTP (Network News Transfer Protocol) : 13.5.1. Newsgroups 
no answer error message : 11.3. Testing Basic Connectivity 
no more data from sender (FIN) bit : 1.6.2. Transmission Control Protocol 
nobody uid 

5.4. The Internet Daemon 
9.1.2.1. The share command 

non-authoritative servers : 3.3.4. BIND, resolver, and named 
non-broadcast multi-access (NBMA) interfaces 

B.6. Interface Statements 

file:///C|/mynapster/Downloads/warez/tcpip/index/idx_n.htm (5 of 6) [2001-10-15 09:17:27]



Index

B.8.1. The ospf Statement 
non-connected network : 4.1. Connected and Non-Connected Networks 
non-encoded binary data : 3.4.3. Multipurpose Internet Mail Extensions 
non-Internet sites, delivering mail to : C.3.1.4. Mail exchanger record 
non-recursive queries : 3.3.2. Creating Domains and Subdomains 
notation, dotted decimal : 2.3. Subnets 
NP keyword : 12.2.1. The Shadow Password File 
NS query : 11.6. Checking Name Service 
NS records 

8.3.5. The Reverse Domain File 
8.3.6. The named.hosts File 

NS resource records : C.3.1.2. Name server record 
nservers option : 9.1.1. NFS Daemons 
NSF (National Science Foundation) 

1.1. TCP/IP and the Internet 
7.5.2. Border Gateway Protocol 

NSFNET : 2.4. Internet Routing Architecture 
backbone : 7.4. Interior Routing Protocols 

nslookup 
4.4.1. Obtaining a Domain Name 
8.4. Using nslookup 
in troubleshooting 

11.2. Diagnostic Tools 
11.3. Testing Basic Connectivity 
11.6. Checking Name Service 

nsswitch.conf file 
9.3.1. The nsswitch.conf file 
E.4.2. sendmail Options 

numeric addresses : (see addresses) 
numeric values, in printcap parameters : 9.2.1. The printcap File 

Search | Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z 

Copyright © 1999 O'Reilly & Associates, Inc. All Rights Reserved. 

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/index/idx_n.htm (6 of 6) [2001-10-15 09:17:27]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm
file:///C|/mynapster/Downloads/warez/copyrght.htm
http://www.oreilly.com/
file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


Index

 

Search | Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z 

Index: O
object identifier : 11.9. Simple Network Management Protocol 
octet data : 3.4.3. Multipurpose Internet Mail Extensions 
octet-stream application subtype : 3.4.3. Multipurpose Internet Mail Extensions 
Oerrs (output errors) : 11.4.3. Checking the Interface with netstat 
One-time Passwords In Everything (OPIE) : 12.2.4. OPIE 
ONEX command, in ESMTP : 3.4.3. Multipurpose Internet Mail Extensions 
open protocol suite : 3.7.1. File Sharing 
Open Shortest Path First : (see OSPF protocol) 
Open Systems Interconnect : (see OSI Reference Model) 
opiekey software : 12.2.4. OPIE 
opiepassword : 12.2.4. OPIE 
option set, invoking dialup IP (dip) : A.1. Dial-Up IP 
options 

entry, in resolv.conf : 8.2.1. The Resolver Configuration File 
field, in DHCP : 3.6.1. Dynamic Host Configuration Protocol 
statement : 5.3.1.1. Options 

in gated : B.5. Options Statements 
INET : 5.3.1.1. Options 

options file 
6.3.1. The PPP Daemon 
6.3.2. Dial-Up PPP 
A.2. The PPP Daemon 

options.device file : A.2. The PPP Daemon 
org domain : 3.3.1. The Domain Hierarchy 
OSI Reference Model 

1.2. A Data Communications Model 
6.1.1. Determining the Interface Name 

OSPF protocol 
Preface 
1.7. Application Layer 
7.4.3. Open Shortest Path First 
authenticating packets : B.8.1. The ospf Statement 
enabling (in gated) 

file:///C|/mynapster/Downloads/warez/tcpip/index/idx_o.htm (1 of 2) [2001-10-15 09:17:27]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


Index

7.7.1.2. Interior gateway configurations 
7.7.1.3. Exterior gateway configuration 
B.8.1. The ospf Statement 

ospf statement (in gated) : B.8.1. The ospf Statement 
ospfase protocol : 7.7.1.3. Exterior gateway configuration 
OSTYPE macro : 10.4.1.1. Building a sendmail.cf with m4 macros 

defines, listed : E.3.3. OSTYPE 
in sendmail 

E.3. m4 sendmail Macros 
E.3.3. OSTYPE 

out-of-date files defined : 9.6.1. rdist 
outdated software : (see software) 
output errors (Oerrs) : 11.4.3. Checking the Interface with netstat 
overruns : (see buffer overruns) 
overwhelming the server : 9.4. A BOOTP Server 
owner-admin alias : 10.3. sendmail Aliases 

Search | Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z 

Copyright © 1999 O'Reilly & Associates, Inc. All Rights Reserved. 

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/index/idx_o.htm (2 of 2) [2001-10-15 09:17:27]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm
file:///C|/mynapster/Downloads/warez/copyrght.htm
http://www.oreilly.com/
file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


Index

 

Search | Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z 

Index: P
packet : 1.3. TCP/IP Protocol Architecture 

authentication : 7.4.2. RIP Version 2 
bogus, interjecting : 5.3.1.1. Options 
capturing : 5.3.1.2. Pseudo-device 
damaged : 6.1.1. Determining the Interface Name 
filters : 11.7.1. Packet Filters 

constructing : 11.7.1. Packet Filters 
in firewalls : 12.7. Firewalls 
primitives used, listed : 11.7.1. Packet Filters 

options in DHCP : 3.6.1. Dynamic Host Configuration Protocol 
queued : 6.1.1. Determining the Interface Name 
routing : 1.5.1.1. The datagram 
switching : 1.5.1.1. The datagram 
update : 7.4.1. Routing Information Protocol 

packetsize : 11.3.1. The ping Command 
PAP (Password Authentication Protocol) 

6.3.4. PPP Daemon Security 
A.2. The PPP Daemon 

pap-secrets file : 6.3.4. PPP Daemon Security 
Parallel Line IP (PLIP) : 5.2. Linux Kernel Configuration 
parallel multipart subtype : 3.4.3. Multipurpose Internet Mail Extensions 
parentheses (), for continuation characters : C.3.1. Standard Resource Records 
partial message subtype : 3.4.3. Multipurpose Internet Mail Extensions 
passing data : (see data communications model) 
passive option 

in pppd : 6.3.5. PPP Server Configuration 
in RIP 

7.4.1.1. Running RIP with routed 
7.7.1.2. Interior gateway configurations 

passwd command line : 12.2.1. The Shadow Password File 
passwd file 

6.3.5. PPP Server Configuration 
6.4.3. SLIP Server Configuration 

file:///C|/mynapster/Downloads/warez/tcpip/index/idx_p.htm (1 of 7) [2001-10-15 09:17:29]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


Index

9.1.5. NFS Authentication Server 
9.3. Network Information Service 
10.4.1.1. Building a sendmail.cf with m4 macros 
12.2.1. The Shadow Password File 
13.2.1. Creating an FTP Server 
protecting : 12.2. User Authentication 
in security checks : 12.4.2. Looking for Trouble 

password 
1.7. Application Layer 
(see also shadow password file) 
aging : 12.2.1. The Shadow Password File 
changing frequently : 12.2. User Authentication 

tricks used to avoid : 12.2.1. The Shadow Password File 
choosing : 12.2.2. Choosing a Password 

guidelines for : 12.2.2. Choosing a Password 
command : 6.3.2. Dial-Up PPP 
guessing or stealing : 12.2. User Authentication 
one-time 

Preface 
12.2.3. One-Time Passwords 
systems for : 12.2.3. One-Time Passwords 

seemingly random, constructing : 12.2.2. Choosing a Password 
writing down : 12.2.4. OPIE 

Password Authentication Protocol (PAP) : A.2. The PPP Daemon 
password-based authentication 

7.4.3. Open Shortest Path First 
7.7.1.2. Interior gateway configurations 
9.1.5. NFS Authentication Server 

path MTU discovery code : 5.2. Linux Kernel Configuration 
path vector protocols : 7.5.2. Border Gateway Protocol 
pattern matching : 10.6.1. Pattern Matching 

symbols for : 10.5.3. The Define Class Command 
PC NFS Authentication and Print Server (pcnfsd) : 9.1.5. NFS Authentication Server 
PCI bus : 5.3.1.3. Devices 
PCM audio subtype : 3.4.3. Multipurpose Internet Mail Extensions 
pcnfsd.conf file : 9.1.5.1. NFS print services 
PDUs (Protocol Data Units) : 11.9. Simple Network Management Protocol 
peer 

3. Network Services 
7.5.2. Border Gateway Protocol 
B.5. Options Statements 

file:///C|/mynapster/Downloads/warez/tcpip/index/idx_p.htm (2 of 7) [2001-10-15 09:17:29]



Index

clauses : 7.7.1.3. Exterior gateway configuration 
level communications : 1.2. A Data Communications Model 
subclauses : B.8.5. The bgp Statement 

Perimeter Network : 12.7. Firewalls 
periods (..) for domain name : C.3.1. Standard Resource Records 
personal mail forwarding : 10.3.1. Personal mail forwarding 
PGP (Pretty Good Privacy) : 12.6.1. When is symmetric encryption useful? 
physical 

network 
1.5.1.2. Routing datagrams 
2.3. Subnets 
2.6. Address Resolution 
3.5.1. Reverse Address Resolution Protocol 
address, embedded in response : 3.6. Bootstrap Protocol 
independence from 

1.1.1. TCP/IP Features 
6. Configuring the Interface 

security : 12.1.1. Assessing the Threat 
serial ports : 6.4.4. Troubleshooting Serial Connections 

Physical Layer 
1.2. A Data Communications Model 
6.1.1. Determining the Interface Name 

ping command 
6.4.4. Troubleshooting Serial Connections 
7.2. The Minimal Routing Table 
statistics displayed by 

11.3.1. The ping Command 
11.4.3. Checking the Interface with netstat 

in troubleshooting : 11.3. Testing Basic Connectivity 
pipe character (|) separating multiple printer names : 9.2.1. The printcap File 
plain text subtype : 3.4.3. Multipurpose Internet Mail Extensions 
planning sheets : 4.6.1. Sample Planning Sheets 
PLIP (Parallel Line IP) : 5.2. Linux Kernel Configuration 
plumb/unplumb parameters : 6.1.5.5. Point-to-point 
plus sign (+) indicating a trusted host : 12.2.5. Secure the r Commands 
point-to-point interfaces 

6.1.5.5. Point-to-point 
B.6. Interface Statements 
defined : 6.1.1. Determining the Interface Name 

Point-to-Point Protocol : (see PPP) 
pointers : 3.3.2. Creating Domains and Subdomains 
poison reverse feature : 7.4.1.1. Running RIP with routed 

file:///C|/mynapster/Downloads/warez/tcpip/index/idx_p.htm (3 of 7) [2001-10-15 09:17:29]



Index

policy-based routing : 7.5.2. Border Gateway Protocol 
database : 2.4. Internet Routing Architecture 

polling 
7.5.1. Exterior Gateway Protocol 
11.9. Simple Network Management Protocol 
trap-directed : 11.9. Simple Network Management Protocol 

POP (Post Office Protocol) 
3.4.2. Post Office Protocol 
4.5.3. Planning Your Mail System 
commands, listed : 3.4.2. Post Office Protocol 
mail server : 9.7.1. POP Server 

pop3d.tar : 9.7.1. POP Server 
popper17.tar : 9.7.1. POP Server 
port 

1.2. A Data Communications Model 
2.7.3. Sockets 
numbers 

1.6.2. Transmission Control Protocol 
2.7. Protocols, Ports, and Sockets 
2.7.2. Port Numbers 
passing : 2.7.3. Sockets 

randomly generated : 3.6. Bootstrap Protocol 
portmapper : 2.7.2. Port Numbers 
Positive Acknowledgment : 1.6.2. Transmission Control Protocol 

with Re-transmission (PAR) : 1.6.2. Transmission Control Protocol 
Post Office Protocol : (see POP) 
post office servers : (see mailbox servers) 
PostScript application subtype : 3.4.3. Multipurpose Internet Mail Extensions 
pound sign (#) for comments 

3.2. The Host Table 
5.4. The Internet Daemon 
7.7.1.1. A host configuration 
9.1.4. NFS Automounter 
9.2.1. The printcap File 
9.4. A BOOTP Server 
A.1.1. The dip Script File 
D.3. The dhcpd.conf Configuration File 

power outage, possible effects of 
9.4. A BOOTP Server 
9.5.1. dhcpd.conf 

PPP (Point-to-Point Protocol) 
5.2. Linux Kernel Configuration 

file:///C|/mynapster/Downloads/warez/tcpip/index/idx_p.htm (4 of 7) [2001-10-15 09:17:29]



Index

5.3.1.2. Pseudo-device 
6.2.1. The Serial Protocols 
daemon (pppd) : 6.3.1. The PPP Daemon 

command-line options : 6.3.1. The PPP Daemon 
overriding address exchanges : 6.3.1. The PPP Daemon 
security in : 6.3.4. PPP Daemon Security 
tools reference : A.2. The PPP Daemon 

as default : A.1.1. The dip Script File 
installing 

6.1.5.5. Point-to-point 
6.3. Installing PPP 

interoperability and : 6.2.2. Choosing a Serial Protocol 
server configuration : 6.3.5. PPP Server Configuration 

in Solaris : 6.3.6. Solaris PPP 
tools reference : A. PPP Tools 

ppp directory, protecting : A.2. The PPP Daemon 
ppplogin : 6.3.5. PPP Server Configuration 
.ppprc file : A.2. The PPP Daemon 
precedence : 10.5.6. Defining Mail Precedence 
Predictor-1 compression : A.2. The PPP Daemon 
preference values 

7.6.1. gated's Preference Value 
B.6. Interface Statements 
B.8.5. The bgp Statement 
B.9. static Statements 
B.10. Control Statements 
high-cost : 7.7.1.2. Interior gateway configurations 
negative : B.10.1. The import Statement 

prefix-length : 2.2.2. Classless IP Addresses 
Presentation Layer : 1.2. A Data Communications Model 
Pretty Good Privacy (PGP) : 12.6.1. When is symmetric encryption useful? 
primary nameservers 

3.3.4. BIND, resolver, and named 
4.4.1. Obtaining a Domain Name 
8.1.1. BIND Configurations 
C.2. named.boot Configuration Commands 
configuring : 8.3.1.2. Primary and secondary server configurations 

print servers : 3.7.2. Print Services 
configuring 

4.5.2. Print servers 
9.2.1. The printcap File 

print spool directory, making 

file:///C|/mynapster/Downloads/warez/tcpip/index/idx_p.htm (5 of 7) [2001-10-15 09:17:29]



Index

9.1.5.1. NFS print services 
9.2.1. The printcap File 

printcap file : 9.2.1. The printcap File 
printers 

multiple : 9.2.1. The printcap File 
queue display : 9.2.1.2. Using LPD 
security : 9.2.1.1. LPD security 

priority of messages, assigning 
10.5.6. Defining Mail Precedence 
B.8.4. The isis Statement 

private argument : 6.1.5.3. Metric 
procmail : E.3.5. MAILER 
prog pattern : 13.3.1. archie 
promiscuous mode 

6.1.5.5. Point-to-point 
11.7.1. Packet Filters 
interface : 5.3.1.2. Pseudo-device 

proto clauses 
7.7.1.3. Exterior gateway configuration 
A.1. Dial-Up IP 
B.10.2. The export Statement 

protocol 
analyzers 

5.3.1.2. Pseudo-device 
11.7. Analyzing Protocol Problems 
12.2.3. One-Time Passwords 

client server : 11.9. Simple Network Management Protocol 
manager/agent : 11.9. Simple Network Management Protocol 
minor : 2.7.1. Protocol Numbers 
name, alias for : 2.7.1. Protocol Numbers 
number 

1.5.1.4. Passing datagrams to the transport layer 
2.7.1. Protocol Numbers 

problems, troubleshooting : 11.7. Analyzing Protocol Problems 
stack 

1.2. A Data Communications Model 
11.1. Approaching a Problem 

standards 
1.1.2. Protocol Standards 
1.7. Application Layer 

statements (in gated) : B.8. Protocol Statements 
suite : 1.2. A Data Communications Model 

file:///C|/mynapster/Downloads/warez/tcpip/index/idx_p.htm (6 of 7) [2001-10-15 09:17:29]



Index

tracing : B.1. The gated Command 
Protocol Data Units (PDUs) : 11.9. Simple Network Management Protocol 
protocols file 

2.7.1. Protocol Numbers 
5.4. The Internet Daemon 
9.3. Network Information Service 

proxy servers 
4.2.1. Obtaining an IP Address 
5.3.1.1. Options 
12.7. Firewalls 
providing on a firewall : 12.7.1. Functions of the firewall 

proxyarp option : A.2. The PPP Daemon 
ps command : 12.4.1. Know Your System 
pseudo-device statement : 5.3.1.2. Pseudo-device 
pseudo-domains : 10.7.1. Modifying Local Information 
pseudo-terminals : 5.3.1.2. Pseudo-device 
PTR resource records 

8.3.5. The Reverse Domain File 
C.3.1.6. Domain Name Pointer record 

ptys : 5.3.1.2. Pseudo-device 
public-key encryption : 12.6. Encryption 
pulse code modulation (PCM) audio subtype : 3.4.3. Multipurpose Internet Mail Extensions 

Search | Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z 

Copyright © 1999 O'Reilly & Associates, Inc. All Rights Reserved. 

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/index/idx_p.htm (7 of 7) [2001-10-15 09:17:29]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm
file:///C|/mynapster/Downloads/warez/copyrght.htm
http://www.oreilly.com/
file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


Index

 

Search | Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z 

Index: Q
query-response model : 1.6.1. User Datagram Protocol 
queuing : 3.4.1. Simple Mail Transfer Protocol 
quicktime video subtype : 3.4.3. Multipurpose Internet Mail Extensions 
QUIT command 

in POP : 3.4.2. Post Office Protocol 
in SMTP : 3.4.1. Simple Mail Transfer Protocol 

quote pair ("") (expect nothing) 
6.3.3. chat 
A.3. chat 

quoted-printable encoding type : 3.4.3. Multipurpose Internet Mail Extensions 

Search | Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z 

Copyright © 1999 O'Reilly & Associates, Inc. All Rights Reserved. 

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/index/idx_q.htm [2001-10-15 09:17:29]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm
file:///C|/mynapster/Downloads/warez/search/tsrch.htm
file:///C|/mynapster/Downloads/warez/copyrght.htm
http://www.oreilly.com/
file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


Index

 

Search | Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z 

Index: R
RADB (Routing Arbiter Database) : 2.4. Internet Routing Architecture 
range parameter 

9.5.1. dhcpd.conf 
D.3.2. Configuration Parameters 

RARP (Reverse Address Resolution Protocol) 
3.5.1. Reverse Address Resolution Protocol 
5.2. Linux Kernel Configuration 
adding to Linux kernel : 6.1.5.5. Point-to-point 
/etc/ethers file in : 9.3. Network Information Service 

raw sockets : 5.4. The Internet Daemon 
rc.inet1 script : 7.3.1.1. Installing static routes at startup 
rc.M startup script : 10.2. Running sendmail as a Daemon 
RCS (Release Control System) format : 10.4.1.1. Building a sendmail.cf with m4 macros 
rdist command : 9.6.1. rdist 
reachability information 

2.4. Internet Routing Architecture 
7.5. Exterior Routing Protocols 
7.6. Gateway Routing Daemon 

READ command, in POP : 3.4.2. Post Office Protocol 
recipient addresses : (see addresses) 
records : (see documentation) 
recursive searches : 3.3.2. Creating Domains and Subdomains 
Redirect Message 

1.5.2. Internet Control Message Protocol 
2.5. The Routing Table 
7.3.1. Adding Static Routes 

redirect statement (in gated) : B.8.8. The redirect Statement 
redirecting routes : 1.5.2. Internet Control Message Protocol 
refresh values : C.3.1.1. Start of Authority record 
registered hosts : 3.2. The Host Table 
registration fee : 4.4.1. Obtaining a Domain Name 
reject route : B.9. static Statements 
reject routes : B.10.1. The import Statement 

file:///C|/mynapster/Downloads/warez/tcpip/index/idx_r.htm (1 of 6) [2001-10-15 09:17:31]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


Index

reliability : 1.6.2. Transmission Control Protocol 
remembering passwords : 12.2.2. Choosing a Password 
remote 

hosts, checking : 1.5.2. Internet Control Message Protocol 
servers : 6.3.2. Dial-Up PPP 

accessing files on : 9.1. The Network File System 
contacting administrators of 

11.1.1. Troubleshooting Hints 
11.3. Testing Basic Connectivity 

never extending trust to : 12.2.3. One-Time Passwords 
problem for firewalls : 12.7.1. Functions of the firewall 

remote copy (rcp) command : 9.6. Managing Distributed Servers 
Remote File System (RFS) : 3.7.1. File Sharing 
Remote Procedure Call (RPC) services : 2.7.2. Port Numbers 
remounting filesystems after system reboot : 9.1.3.2. The vfstab and fstab files 
REPORT keyword : A.3. chat 
reportfile : A.3. chat 
Requests for Comments : (see RFCs) 
reset command : 6.3.2. Dial-Up PPP 
resolv.conf file 

8.1.1. BIND Configurations 
8.2. Configuring the Resolver 
8.2.1. The Resolver Configuration File 
11.6.4. dig: An Alternative to nslookup 

resolver 
code : 3.3.4. BIND, resolver, and named 
configuring : 8.2. Configuring the Resolver 
defined : 8.1. BIND: UNIX Name Service 
options : E.4.2. sendmail Options 

resolver-only configurations 
3.3.4. BIND, resolver, and named 
8.1.1. BIND Configurations 
8.2.1.1. A resolver-only configuration 

responsibilities of administrators 
1.7. Application Layer 
4. Getting Started 
4.3. Planning Routing 
4.6. Informing the Users 
5.1. Kernel Configuration 

RETR command, in POP : 3.4.2. Post Office Protocol 
Reverse Address Resolution Protocol : (see RARP) 
reverse domain : 4.4.1.1. Obtaining an IN-ADDR.ARPA domain 

file:///C|/mynapster/Downloads/warez/tcpip/index/idx_r.htm (2 of 6) [2001-10-15 09:17:31]



Index

files 
8.3.5. The Reverse Domain File 
C.3.1.6. Domain Name Pointer record 

rewrite rules 
processing sequentially : 10.6.2. Transforming the Address 
recursion built-in : 10.6.2. Transforming the Address 
syntax of : 10.6.2. Transforming the Address 
using external databases in : 10.6.2.1. Transforming with a database 

rfc-index.txt : 13.4. Retrieving RFCs 
rfc822 message subtype : 3.4.3. Multipurpose Internet Mail Extensions 
RFCs (Requests for Comments) 

1.1.2. Protocol Standards 
1.4. Network Access Layer 
2.3. Subnets 
authorative source : 11.8. Protocol Case Study 
keeping up with latest : 3.4.3. Multipurpose Internet Mail Extensions 
retrieving : 13.4. Retrieving RFCs 

RFS (Remote File System) : 3.7.1. File Sharing 
.rhosts file : 12.2.5. Secure the r Commands 

in security checks : 12.4.2. Looking for Trouble 
richtext text subtype : 3.4.3. Multipurpose Internet Mail Extensions 
RIP (Routing Information Protocol) 

2.2.2. Classless IP Addresses 
6.1.5.3. Metric 
7.4.1. Routing Information Protocol 
checking updates : 11.5.1. Checking RIP Updates 
enabling (in gated) : 7.7.1.1. A host configuration 
running : 7.4.1.1. Running RIP with routed 
shortcomings of : 7.4.1.1. Running RIP with routed 
starting : 5.4. The Internet Daemon 
statement (in gated) : B.8.2. The rip Statement 

RIP REQUEST command : 11.5.1. Checking RIP Updates 
RIP Version 2 (RIP-2) : 7.4.2. RIP Version 2 

enabling (in gated) : 7.7.1.1. A host configuration 
RIPE Network Control Center : 2.4. Internet Routing Architecture 
RIPE-181 standard : 2.4. Internet Routing Architecture 
ripquery 

11.2. Diagnostic Tools 
11.5.1. Checking RIP Updates 

Riseaux IP Europeens (RIPE) Network Control Center (NCC) : 2.4. Internet Routing Architecture 
risks forum : 12.1.2.2. Use mailing lists to distribute information 
rlogin 

file:///C|/mynapster/Downloads/warez/tcpip/index/idx_r.htm (3 of 6) [2001-10-15 09:17:31]



Index

command 
4.1. Connected and Non-Connected Networks 
5.3.1.2. Pseudo-device 
12.2.3. One-Time Passwords 

service : 2.7.2. Port Numbers 
ro option (read-only access) 

for Linux systems : 9.1.2.2. The /etc/exports file 
for Solaris systems : 9.1.2.1. The share command 

root 
domain : 3.3.1. The Domain Hierarchy 
server : 3.3.1. The Domain Hierarchy 

configuring : 8.3.1. The named.boot File 
entries, corrupted : 11.6.3. Cache corruption 

uid : 5.4. The Internet Daemon 
root=host option (root access for specified host) : 9.1.2.1. The share command 
route 

command 
6.1.5.3. Metric 
6.4.1. slattach 
7.3. Building a Static Routing Table 
7.3.1.1. Installing static routes at startup 

dampening : B.8.5. The bgp Statement 
duplicate, silently ignored : B.8.5. The bgp Statement 
filters : 7.7.1.3. Exterior gateway configuration 
server entry, bogus : 8.3.3. The Cache Initialization File 

route add command : 11.5. Checking Routing 
routed daemon 

5.4. The Internet Daemon 
7.4.1. Routing Information Protocol 

routerdiscovery statement (in gated) : B.8.10. The routerdiscovery Statement 
routerid 

7.7.1.2. Interior gateway configurations 
B.7. Definition Statements 

routing 
1.7. Application Layer 
2.1. Addressing, Routing, and Multiplexing 
(see also dynamic, routing; static, routing) 
areas, hierarchy of : 7.4.3. Open Shortest Path First 
commonest configurations : 7.1. Common Routing Configurations 
consolidated : 2.2.2. Classless IP Addresses 
datagrams : (see datagrams) 
defined : 7. Configuring Routing 

file:///C|/mynapster/Downloads/warez/tcpip/index/idx_r.htm (4 of 6) [2001-10-15 09:17:31]



Index

domains : 2.4. Internet Routing Architecture 
end-to-end : (see end-to-end) 
information, exchanging : 1.7. Application Layer 
interior routers : 12.7. Firewalls 
interoperability with routers : B.8.5. The bgp Statement 
metric : 7.3. Building a Static Routing Table 
multi-path : 7.4.3. Open Shortest Path First 
planning : 4.3. Planning Routing 
policy 

7.6. Gateway Routing Daemon 
B.10. Control Statements 

protocols 
4. Getting Started 
4.2.2. Defining the Subnet Mask 
choosing : 7.5.3. Choosing a Routing Protocol 
defined : 7.1. Common Routing Configurations 
interior : 7.4. Interior Routing Protocols 
using gated for : 7.7.1.3. Exterior gateway configuration 

responsibilities of : 7.1. Common Routing Configurations 
tables 

2.5. The Routing Table 
7.1. Common Routing Configurations 
building manually : 7.1. Common Routing Configurations 
checking : 11.5. Checking Routing 
minimal : 7.2. The Minimal Routing Table 
unstable : B.8.5. The bgp Statement 
viewing contents of : 6.4.4. Troubleshooting Serial Connections 

troubleshooting : 11.5. Checking Routing 
Routing Arbiters 

2.4. Internet Routing Architecture 
7.5.2. Border Gateway Protocol 

Routing Information Protocol : (see RIP) 
routing metric : 6.1.5.3. Metric 
RPCs (Remote Procedure Calls) : 2.7.2. Port Numbers 
RRs (standard resource records) : 8.3.2. Standard Resource Records 

in named : C.3.1. Standard Resource Records 
rs.internic.net : 13.6. The White Pages 
RS232C : 1.2. A Data Communications Model 
rules : (see protocol, standards) 
rulesets : 10.6.3. The Set Ruleset Command 
rw option (read and write access) 

for Linux systems : 9.1.2.2. The /etc/exports file 

file:///C|/mynapster/Downloads/warez/tcpip/index/idx_r.htm (5 of 6) [2001-10-15 09:17:31]



Index

for Solaris systems : 9.1.2.1. The share command 

Search | Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z 

Copyright © 1999 O'Reilly & Associates, Inc. All Rights Reserved. 

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/index/idx_r.htm (6 of 6) [2001-10-15 09:17:31]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm
file:///C|/mynapster/Downloads/warez/copyrght.htm
http://www.oreilly.com/
file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


Index

 

Search | Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z 

Index: S
safe, storing security information in : 12.2.6. Secure Shell 
SATAN tool : 12.4.3.2. SATAN 
saturated networks : (see network) 
scaling well 

2.4. Internet Routing Architecture 
3.3. Domain Name Service 
4.2.1. Obtaining an IP Address 
7.5.1. Exterior Gateway Protocol 

scp (secure copy) : 12.2.6. Secure Shell 
script files 

1.7. Application Layer 
6.1.5.1. Enabling and disabling the interface 
(see also startup script) 
(see also UNIX, systems) 
debugging tips : 6.4.4. Troubleshooting Serial Connections 
invoking dialup IP (dip) : A.1. Dial-Up IP 

scriptfile : A.3. chat 
scripting language : 6.3.2. Dial-Up PPP 
search entry, in resolv.conf : 8.2.1. The Resolver Configuration File 
secondary nameservers 

3.3.4. BIND, resolver, and named 
4.4.1. Obtaining a Domain Name 
8.1.1. BIND Configurations 
C.2. named.boot Configuration Commands 
configuring : 8.3.1.2. Primary and secondary server configurations 

secrecy 
defined : 12.1.1. Assessing the Threat 
keys for : 6.3.4. PPP Daemon Security 

secure copy (scp) : 12.2.6. Secure Shell 
SECURE points : 12.4.3.1. COPS 
secure shell (ssh) : 12.2.6. Secure Shell 

daemon (sshd) : 12.2.6. Secure Shell 
SECURE_USERS variable : 12.4.3.1. COPS 

file:///C|/mynapster/Downloads/warez/tcpip/index/idx_s.htm (1 of 10) [2001-10-15 09:17:33]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


Index

security 
1.7. Application Layer 
(see also intruders) 
(see also printers) 
attacks 

1.7. Application Layer 
4.2.1. Obtaining an IP Address 
importance of notifying others 

12.4.2. Looking for Trouble 
12.4.2.2. Checking login activity 

mechanisms included within applications : 12.2.5. Secure the r Commands 
monitoring : 12.4. Security Monitoring 
planning : 12.1. Security Planning 
policy : 12.1. Security Planning 

writing : 12.1.3. Writing a Security Policy 
for printers : 4.5.2. Print servers 
publications, list of : 12.8. Words to the Wise 
risks 

4.1. Connected and Non-Connected Networks 
4.2.2. Defining the Subnet Mask 
5.3.1.1. Options 
5.3.1.2. Pseudo-device 
5.4. The Internet Daemon 
9.1.2.1. The share command 
13.2.1. Creating an FTP Server 

sources of information : 12.1.2.2. Use mailing lists to distribute information 
segments : 1.3. TCP/IP Protocol Architecture 

format : 1.6.2. Transmission Control Protocol 
header : 1.6.2. Transmission Control Protocol 

semicolon (;) 
comment character : C.3.1. Standard Resource Records 
ending gated configuration statements 

7.7.1.1. A host configuration 
B.2. The gated Configuration Language 

sender addresses : (see addresses) 
sendmail 

UNIX Versions 
4.5.3. Planning Your Mail System 
10. sendmail 
aliases in : 10.3. sendmail Aliases 
classes, listed : E.4.1. sendmail Classes 
command : E.2. The sendmail Command 

file:///C|/mynapster/Downloads/warez/tcpip/index/idx_s.htm (2 of 10) [2001-10-15 09:17:33]



Index

arguments, listed : E.2. The sendmail Command 
compiling : E.1. Compiling sendmail 
configuring : 10.5. sendmail Configuration 
internal macros, listed : 10.5.2. The Define Macro Command 
mailer flags, listed : E.4.3. sendmail Mailer Flags 
options : E.4.2. sendmail Options 
running as a daemon : 10.2. Running sendmail as a Daemon 
testing and debugging arguments : 10.8. Testing sendmail.cf 
tools reference : E. A sendmail Reference 
using key files in : 10.8.2. Using Key Files in sendmail 
using most recent release 

10.8.2. Using Key Files in sendmail 
E.1. Compiling sendmail 

Version 8 : Preface 
sendmail startup script : 10.2. Running sendmail as a Daemon 
sendmail.cf file : 10.4. The sendmail.cf File 

commands, listed : 10.5. sendmail Configuration 
define class command (C and F) : 10.5.3. The Define Class Command 
define macro command (D) : 10.5.2. The Define Macro Command 
define mail headers command (H) : 10.5.7. Defining Mail Headers 
define mail precedence command (P) : 10.5.6. Defining Mail Precedence 
define mailers command (M) : 10.5.8. Defining Mailers 
define trusted users command (T) : 10.5.5. Defining Trusted Users 
examining comments in : 10.4.2. General sendmail.cf Structure 
modifying : 10.7. Modifying a sendmail.cf File 

local information : 10.7.1. Modifying Local Information 
options : 10.7.2. Modifying Options 

options and flags : E.4. More sendmail.cf 
rewrite rules (R, S, and K commands) : 10.6. Rewriting the Mail Address 

pattern matching : 10.6.1. Pattern Matching 
transforming the address : 10.6.2. Transforming the Address 

sample of, locating : 10.4.1. Locating a Sample sendmail.cf File 
set option command (O) : 10.5.4. The Set Option Command 
structure of : 10.4.2. General sendmail.cf Structure 
testing : 10.8. Testing sendmail.cf 

commands, listed : 10.8.1. Testing Rewrite Rules 
rewrite rules : 10.8.1. Testing Rewrite Rules 

version level command (V) : 10.5.1. The Version Level Command 
sendmail.tar file : 10.4.1. Locating a Sample sendmail.cf File 
Sequence Number field : 1.6.2. Transmission Control Protocol 
serial 

file:///C|/mynapster/Downloads/warez/tcpip/index/idx_s.htm (3 of 10) [2001-10-15 09:17:33]



Index

communications packages : 6.4.4. Troubleshooting Serial Connections 
devices, adding manually : 6.4.4. Troubleshooting Serial Connections 
interfaces : 6.2. TCP/IP Over a Serial Line 
lines 

load balancing : 5.2. Linux Kernel Configuration 
multiple, using simultaneously : 5.2. Linux Kernel Configuration 

protocols 
choosing 

6.2.2. Choosing a Serial Protocol 
A.1.1. The dip Script File 

debugging : 6.4.4. Troubleshooting Serial Connections 
Serial Line IP : (see SLIP) 
Serial Line IP (SLIP) 

1.7. Application Layer 
(see also PLIP (Parallel Line IP)) 

server 
1.7. Application Layer 
(see also remote, servers) 
cache, dumping : 11.6.2. The data is here and the server can't find it! 
command : 8.4. Using nslookup 
configuration statement : B.8.10. The routerdiscovery Statement 
master : 8.1.1. BIND Configurations 
multiple : 9.1.4. NFS Automounter 
program, pathname of : 5.4. The Internet Daemon 

service-list : 12.5.1.1. tcpd access control files 
services file 

5.4. The Internet Daemon 
9.3. Network Information Service 
9.4. A BOOTP Server 
9.7.1. POP Server 
9.7.2. IMAP Server 

Session Layer : 1.2. A Data Communications Model 
set debug command : 8.4. Using nslookup 
set domain command : 8.4. Using nslookup 
set ruleset (S) command : 10.6.3. The Set Ruleset Command 
set type command : 11.6.4. dig: An Alternative to nslookup 
setgid permission, avoiding : 12.4.2.1. Checking files 
setuid : 9.1.3.2. The vfstab and fstab files 
shadow file : 12.2.1. The Shadow Password File 
shadow password file : 12.2.1. The Shadow Password File 
share command 

9.1.2.1. The share command 

file:///C|/mynapster/Downloads/warez/tcpip/index/idx_s.htm (4 of 10) [2001-10-15 09:17:33]



Index

9.1.5. NFS Authentication Server 
sharing 

directories : 9.1. The Network File System 
filesystems : 9.1.2. Sharing Filesystems 

common reasons for : 9.1.2. Sharing Filesystems 
sharp sign (#) for comments 

3.2. The Host Table 
5.4. The Internet Daemon 
7.7.1.1. A host configuration 
9.1.4. NFS Automounter 
9.2.1. The printcap File 
9.4. A BOOTP Server 
A.1.1. The dip Script File 
D.3. The dhcpd.conf Configuration File 

shell scripts : 12.4.2.1. Checking files 
showmount command 

4.5.1. File servers 
9.1.3. Mounting Remote Filesystems 

SIGHUP signal 
9.4. A BOOTP Server 
11.6.3. Cache corruption 
A.2. The PPP Daemon 
A.2.1. Signal processing 
B.1.1. Signal Processing 
C.1.1. Signal Processing 

SIGINT signal 
11.6.3. Cache corruption 
A.2.1. Signal processing 
B.1.1. Signal Processing 
C.1.1. Signal Processing 

signal processing 
in gated : B.1.1. Signal Processing 
in named : C.1.1. Signal Processing 
in pppd : A.2.1. Signal processing 

SIGTERM signal 
B.1.1. Signal Processing 
D.2. The dhcpd Command 

silently discarding datagrams : (see datagrams) 
SILO overflows : 6.1.5.4. Maximum transmission unit 
Simple Gateway Management Protocol (SGMP) : 11.9. Simple Network Management Protocol 
Simple Mail Transfer Protocol : (see SMTP) 
Simple Network Management ProtocolNMP : (see SNMP) 

file:///C|/mynapster/Downloads/warez/tcpip/index/idx_s.htm (5 of 10) [2001-10-15 09:17:33]



Index

single threaded mail deliver : E.3.1. define 
Slackware 96 : 4.7. netconfig 
slattach command : 6.4.1. slattach 
slave command : C.2. named.boot Configuration Commands 
SLIP (Serial Line IP) 

5.2. Linux Kernel Configuration 
5.3.1.2. Pseudo-device 
6.2.1. The Serial Protocols 
installing : 6.4. Installing SLIP 
server configuration : 6.4.3. SLIP Server Configuration 

SLIP END character : 6.2.1. The Serial Protocols 
SLIP ESC character : 6.2.1. The Serial Protocols 
slow convergence : 7.4.1.1. Running RIP with routed 
SMI (Structure of Management Information) : 11.9. Simple Network Management Protocol 
SMTP (Simple Mail Transfer Protocol) 

1.7. Application Layer 
3.4.1. Simple Mail Transfer Protocol 
commands, listed : 3.4.1. Simple Mail Transfer Protocol 
ESMTP (Extended SMTP) 

3.4.3. Multipurpose Internet Mail Extensions 
10.8. Testing sendmail.cf 
private extensions to : 3.4.3. Multipurpose Internet Mail Extensions 

sendmail and : 10.1. sendmail's Function 
service extensions to : 3.4.3. Multipurpose Internet Mail Extensions 
standardizing on : 4.5.3. Planning Your Mail System 

SNMP (Simple Network Management Protocol) : 11.9. Simple Network Management Protocol 
statement (in gated) : B.8.7. The snmp Statement 

snoop 
11.2. Diagnostic Tools 
11.7. Analyzing Protocol Problems 
detailed analysis with : 11.3. Testing Basic Connectivity 

SOA records 
8.3.2. Standard Resource Records 
8.3.4. The named.local File 
8.3.5. The Reverse Domain File 
8.3.6. The named.hosts File 
11.6.1. Some systems work, others don't 
C.3.1.1. Start of Authority record 

socket 
1.2. A Data Communications Model 
2.7.3. Sockets 
pairs : 2.7.3. Sockets 

file:///C|/mynapster/Downloads/warez/tcpip/index/idx_s.htm (6 of 10) [2001-10-15 09:17:33]



Index

types of : 5.4. The Internet Daemon 
SOCKS : 12.7.1. Functions of the firewall 
software 

keeping updated : 12.3.2. Keep Software Updated 
outdated, security problems with : 12.2. User Authentication 
removing unnecessary : 12.3.1. Remove Unnecessary Software 

Solaris systems 
UNIX Versions 
2.5. The Routing Table 
2.7.1. Protocol Numbers 
3.4.3. Multipurpose Internet Mail Extensions 
3.5.1. Reverse Address Resolution Protocol 
5.1. Kernel Configuration 
10.2. Running sendmail as a Daemon 
ifconfig command on 

6.1.2. Checking the Interface with ifconfig 
6.1.5.3. Metric 

Line Printer (LP) print service in : 9.2.2. Solaris Line Printer Service 
remounting filesystems on : 9.1.3.2. The vfstab and fstab files 
sharing directories on : 9.1.2.1. The share command 

obtaining information about : 9.1.3. Mounting Remote Filesystems 
sortlist command, in resolv.conf : 8.2.1. The Resolver Configuration File 
Source Code Control System (SCCS) format : 10.4.1.1. Building a sendmail.cf with m4 macros 
Source Port number 

1.6.1. User Datagram Protocol 
1.6.2. Transmission Control Protocol 

Source Quench Message : 1.5.2. Internet Control Message Protocol 
source routing : 5.2. Linux Kernel Configuration 
sourcegateways : B.8.2. The rip Statement 
SPF protocol 

7.4. Interior Routing Protocols 
7.4.3. Open Shortest Path First 
calculation : 7.4.3. Open Shortest Path First 

split horizon rule : 7.4.1.1. Running RIP with routed 
spoofing addresses : (see addresses) 
ssh (secure shell) : 12.2.6. Secure Shell 

command : 12.2.6. Secure Shell 
daemon (sshd) : 12.2.6. Secure Shell 

.ssh/identity.pub : 12.2.6. Secure Shell 

.ssh/known_hosts file : 12.2.6. Secure Shell 
ssh-keygen : 12.2.6. Secure Shell 
stack : (see protocol, stack) 

file:///C|/mynapster/Downloads/warez/tcpip/index/idx_s.htm (7 of 10) [2001-10-15 09:17:33]



Index

staff limitations : 4.2.2. Defining the Subnet Mask 
standard resource records (RRs) : 8.3.2. Standard Resource Records 

in named : C.3.1. Standard Resource Records 
start of authority : (see SOA records) 
startup script 

7.3.1.1. Installing static routes at startup 
8.3.6.1. Starting named 

static 
assignment of addresses : 4.2.1.1. Assigning host addresses 

circumstances favoring : 4.3. Planning Routing 
routing 

4.3. Planning Routing 
7.1. Common Routing Configurations 
12.7.2. Routing control 
adding routes : 7.3.1. Adding Static Routes 
building tale for : 7.3. Building a Static Routing Table 
installing routes at startup : 7.3.1.1. Installing static routes at startup 

statements (in gated) : B.9. static Statements 
status monitor daemon : 9.1.1. NFS Daemons 
store and forward protocols : 3.4.1. Simple Mail Transfer Protocol 
stream : 1.3. TCP/IP Protocol Architecture 

sockets : 5.4. The Internet Daemon 
string values, in printcap parameters : 9.2.1. The printcap File 
Structure of Management Information (SMI) : 11.9. Simple Network Management Protocol 
stub areas 

7.4.3. Open Shortest Path First 
B.8.1. The ospf Statement 

subdomains 
3.3.2. Creating Domains and Subdomains 
8.3.5. The Reverse Domain File 

subnets 
2.3. Subnets 
3.3.2. Creating Domains and Subdomains 
administration of : 12.1.2.1. Use subnets to distribute control 
enterprise : (see enterprise) 
for distributing control : 12.1.2.1. Use subnets to distribute control 
mask (sm) 

2.3. Subnets 
4. Getting Started 
6.1. The ifconfig Command 
assigning 

6.1.3. Assigning a Subnet Mask 

file:///C|/mynapster/Downloads/warez/tcpip/index/idx_s.htm (8 of 10) [2001-10-15 09:17:33]



Index

A.1.1. The dip Script File 
defining : 4.2.2. Defining the Subnet Mask 
misconfigured : 11.4.1. Troubleshooting with the ifconfig Command 
parameter : 9.4. A BOOTP Server 

movement among : 3.6.1. Dynamic Host Configuration Protocol 
reasons for : 4.2.2. Defining the Subnet Mask 
statements, in dhcpd : 9.5.1. dhcpd.conf 

subscribing : 13.5. Mailing Lists 
subtypes : 3.4.3. Multipurpose Internet Mail Extensions 
Sun Microsystems 

UNIX Versions 
3.3.5. Network Information Service 
3.7.1. File Sharing 
9.3. Network Information Service 
10.6.1. Pattern Matching 
NIS+ on : 9.3.2. NIS+ 

supernetting : 2.2.2. Classless IP Addresses 
superuser privileges 

8.3.3. The Cache Initialization File 
9.3. Network Information Service 
B.1. The gated Command 

switches 
1.7. Application Layer 
(see also packet) 
asymmetric : 11.4.4. Subdividing an Ethernet 

symmetric encryption : 12.6. Encryption 
SYN (synchronize sequence numbers) bit : 1.6.2. Transmission Control Protocol 
synchronization : 1.6.2. Transmission Control Protocol 
synchronize sequence numbers (SYN) bit : 1.6.2. Transmission Control Protocol 
synchronous modems : (see modems) 
synchronous PPP, support for : 5.3.1.2. Pseudo-device 
syslogd 

3.2. The Host Table 
A.2. The PPP Daemon 
A.3. chat 

system : (see network) 
system file : 5.1. Kernel Configuration 
Systems file : 9.2.2. Solaris Line Printer Service 

Search | Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z 

file:///C|/mynapster/Downloads/warez/tcpip/index/idx_s.htm (9 of 10) [2001-10-15 09:17:33]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


Index

Copyright © 1999 O'Reilly & Associates, Inc. All Rights Reserved. 

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/index/idx_s.htm (10 of 10) [2001-10-15 09:17:33]

file:///C|/mynapster/Downloads/warez/copyrght.htm
http://www.oreilly.com/
file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


Index

 

Search | Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z 

Index: T
tab characters for separating fields : 10.6. Rewriting the Mail Address 
tables, adjusting manually : 2.6. Address Resolution 
tabular data displays drawn by monitors : 11.9. Simple Network Management Protocol 
tc parameter : 9.4. A BOOTP Server 
TCP (Transport Control Protocol) 

1.6. Transport Layer 
1.6.2. Transmission Control Protocol 
1.7. Application Layer 
(see also tcpd) 
segment header : F.2. TCP Segment Header 

TCP/IP protocol 
architecture : 1.3. TCP/IP Protocol Architecture 
benefits of 

1. Overview of TCP/IP 
1.1.1. TCP/IP Features 
1.4. Network Access Layer 
2.2.1. Address Classes 

in corporate intranets : Preface 
defined 

1. Overview of TCP/IP 
1.2. A Data Communications Model 

history of : 1.1. TCP/IP and the Internet 
need for basic understanding of : 11.1. Approaching a Problem 
over a serial line : 6.2. TCP/IP Over a Serial Line 
selected headers : F. Selected TCP/IP Headers 
standardizing on : 4.5.3. Planning Your Mail System 

tcpd (wrapper daemon) : 12.5.1. wrapper 
access control files : 12.5.1.1. tcpd access control files 

tcpdump : 11.2. Diagnostic Tools 
telephone lines, leased : 11.4.4.1. Network hardware problems 
telnet 

2.7.3. Sockets 
5.3.1.2. Pseudo-device 

file:///C|/mynapster/Downloads/warez/tcpip/index/idx_t.htm (1 of 4) [2001-10-15 09:17:34]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


Index

13.3.1. archie 
test 

9.7.1. POP Server 
11.4.2. Troubleshooting with the arp Command 

telnet protocol : 1.7. Application Layer 
TempFileMode option : 10.5.4. The Set Option Command 
terminology, importance of using standard 

1.2. A Data Communications Model 
1.3. TCP/IP Protocol Architecture 

text (TXT) resource records : C.3.1.9. Text record 
text data content type : 3.4.3. Multipurpose Internet Mail Extensions 
TFTP protocol 

5.4. The Internet Daemon 
9.6. Managing Distributed Servers 
target for intruders : C.3.1.8. Well-Known Services record 

threat, assessing : 12.1.1. Assessing the Threat 
thresholds triggering alarms : 11.9. Simple Network Management Protocol 
tiff image subtype : 3.4.3. Multipurpose Internet Mail Extensions 
Time Exceeded message : 11.5.2. Tracing Routes 
time-to-live (ttl) values 

8.3.2. Standard Resource Records 
11.5.2. Tracing Routes 
B.8.5. The bgp Statement 
C.3.1. Standard Resource Records 

TIMEOUT keyword : A.3. chat 
types, listed : E.4.2. sendmail Options 

Timeout.queuereturn option : 10.5.4. The Set Option Command 
timestamping : B.4. Trace Statements 
timing-out 

1.6.2. Transmission Control Protocol 
5.2. Linux Kernel Configuration 
addresses : (see addresses) 
in Solaris : 6.3.6. Solaris PPP 
in wait command : 6.3.2. Dial-Up PPP 

token ring : 4.2.2. Defining the Subnet Mask 
interface : 5.2. Linux Kernel Configuration 
network : 1.5.1.2. Routing datagrams 

tokens : 10.6.1. Pattern Matching 
tools 

1.7. Application Layer 
(see also diagnostic tools) 
hand : 11.2. Diagnostic Tools 

file:///C|/mynapster/Downloads/warez/tcpip/index/idx_t.htm (2 of 4) [2001-10-15 09:17:34]



Index

top-level domains : 3.3.1. The Domain Hierarchy 
topology statements (in dhcpd) : D.3.1. Topology Statements 
trace 

file : 7.7.2. Testing the Configuration 
options : B.4. Trace Statements 
statements (in gated) 

B.4. Trace Statements 
B.8.6. The egp Statement 

traceroute 
11.2. Diagnostic Tools 
11.3. Testing Basic Connectivity 
11.5. Checking Routing 
11.5.2. Tracing Routes 

tracking number : 4.4.1. Obtaining a Domain Name 
traffic load, reducing : 11.4.3. Checking the Interface with netstat 
trailer encapsulation 

6.1.2. Checking the Interface with ifconfig 
6.1.5.2. ARP and trailers 

training 
for security : 12.2.2. Choosing a Password 
importance of : 11.1.1. Troubleshooting Hints 

transmission window size : 5.2. Linux Kernel Configuration 
Transport Control Protocol : (see TCP) 
Transport Layer 

1.2. A Data Communications Model 
1.6. Transport Layer 
passing datagrams : 1.5.1.4. Passing datagrams to the transport layer 

triggered updates : 7.4.1.1. Running RIP with routed 
Tripwire : 12.4.2.1. Checking files 
trouble, looking for : 12.4.2. Looking for Trouble 
troubleshooting 

basic connectivity : 11.3. Testing Basic Connectivity 
hints : 11.1.1. Troubleshooting Hints 

buying time : 11.4.2. Troubleshooting with the arp Command 
involve users : 11.4.2.1. ARP problem case study 

name service : 11.6. Checking Name Service 
network access 

1.7. Application Layer 
11.4. Troubleshooting Network Access 
(see also network) 

not overlooking the obvious : 11.1.1. Troubleshooting Hints 
preventing problems : 11.9. Simple Network Management Protocol 

file:///C|/mynapster/Downloads/warez/tcpip/index/idx_t.htm (3 of 4) [2001-10-15 09:17:34]



Index

protocol problems : 11.7. Analyzing Protocol Problems 
routing : 11.5. Checking Routing 
serial connections : 6.4.4. Troubleshooting Serial Connections 

trust : 12. Network Security 
trusted host : 12.2.5. Secure the r Commands 

security : 9.1.5. NFS Authentication Server 
/try command : 10.8.1. Testing Rewrite Rules 
/tryflags command : 10.8.1. Testing Rewrite Rules 
ttl : (see time-to-live (ttl) values) 
tty devices 

6.3.5. PPP Server Configuration 
6.4.4. Troubleshooting Serial Connections 

tunneling : 5.3.1.2. Pseudo-device 
TXT resource records : C.3.1.9. Text record 

Search | Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z 

Copyright © 1999 O'Reilly & Associates, Inc. All Rights Reserved. 

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/index/idx_t.htm (4 of 4) [2001-10-15 09:17:34]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm
file:///C|/mynapster/Downloads/warez/copyrght.htm
http://www.oreilly.com/
file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


Index

 

Search | Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z 

Index: U
U.S. Naval Research Laboratory (NRL) : 12.2.4. OPIE 
uid (user id) : 5.4. The Internet Daemon 
umount command : 9.1.3.1. The mount command 
unauthenticated users : 9.1.5. NFS Authentication Server 
unexpected, dealing with the : 11. Troubleshooting TCP/IP 
unicast : 2.2.2.1. Final notes on IP addresses 
unicast addresses : (see addresses) 
universal resource locators (URLs) : 13.1. The World Wide Web 
UNIX : 1. Overview of TCP/IP 

computers : Audience 
kernels : 4.2.2. Defining the Subnet Mask 
services : 2.7.2. Port Numbers 
systems 

Foreword from the First Edition 
3.3.4. BIND, resolver, and named 
7.4.1. Routing Information Protocol 
7.5.3. Choosing a Routing Protocol 
installation scripts for : 6.1.1. Determining the Interface Name 

vendor, for security information : 12.1.2.2. Use mailing lists to distribute information 
versions of 

3.2. The Host Table 
6.1. The ifconfig Command 

UNIX commands 
ability to use : 9.1. The Network File System 
r-commands 

9.6. Managing Distributed Servers 
12.2.5. Secure the r Commands 
disabling : 12.2.6. Secure Shell 

tar : 9.7.1. POP Server 
untar : 9.7.2. IMAP Server 

unknown host error message 
11.3. Testing Basic Connectivity 
11.6. Checking Name Service 

file:///C|/mynapster/Downloads/warez/tcpip/index/idx_u.htm (1 of 3) [2001-10-15 09:17:34]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


Index

unreachable destinations, detecting : 1.5.2. Internet Control Message Protocol 
Unreachable Port message : 11.5.2. Tracing Routes 
unused accounts 

removing from system : 12.2.2. Choosing a Password 
security problems with : 12.2.1. The Shadow Password File 

UPDATE messages : 7.5.2. Border Gateway Protocol 
updating : 7.5.1. Exterior Gateway Protocol 
URLs (universal resource locators) : 13.1. The World Wide Web 
Usenet news : E.3.5. MAILER 
user authentication 

9.3.2. NIS+ 
12.2. User Authentication 

User Datagram Protocol (UDP) 
1.2. A Data Communications Model 
1.3. TCP/IP Protocol Architecture 
1.6. Transport Layer 
checksum errors in : 5.3.1.1. Options 

user security responsibilities : 12.1.3. Writing a Security Policy 
/usr directory 

/usr/adm/messages file, in security checks : 12.4.2.2. Checking login activity 
/usr/etc/bootpd file : 9.6.1. rdist 
/usr/sbin/imapd file : 9.7.2. IMAP Server 
/usr/src/linux source directory : 5.2. Linux Kernel Configuration 
/usr/src/sys/i386/conf directory : 5.3. The BSD Kernel Configuration File 
/usr/tmp/gated_dump file : B.1.1. Signal Processing 

USRX command, in ESMTP : 3.4.3. Multipurpose Internet Mail Extensions 
UUCP protocol 

3.4.1. Simple Mail Transfer Protocol 
10.5.8. Defining Mailers 
bang syntax : 10.7.1. Modifying Local Information 

uucp service : 5.4. The Internet Daemon 
system connected with : 10.5.3. The Define Class Command 

UUCP sites, serving 
E.3. m4 sendmail Macros 
E.3.5. MAILER 

UUCP-style lock files 
6.3.4. PPP Daemon Security 
A.2. The PPP Daemon 

Search | Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z 

file:///C|/mynapster/Downloads/warez/tcpip/index/idx_u.htm (2 of 3) [2001-10-15 09:17:34]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


Index

Copyright © 1999 O'Reilly & Associates, Inc. All Rights Reserved. 

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/index/idx_u.htm (3 of 3) [2001-10-15 09:17:34]

file:///C|/mynapster/Downloads/warez/copyrght.htm
http://www.oreilly.com/
file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


Index

 

Search | Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z 

Index: V
V.35 : 1.2. A Data Communications Model 
Van Jacobson header compression 

5.2. Linux Kernel Configuration 
6.4.1. slattach 
disabling : A.2. The PPP Daemon 

/var/run/dhcpd.pid file : D.2. The dhcpd Command 
/var/spool/mqueue temporary files : 10.5.4. The Set Option Command 
variable-length subnet masks (VLSMs) : 4.2.2. Defining the Subnet Mask 
Vendor Extensions field, in BOOTP : 3.6.1. Dynamic Host Configuration Protocol 
vendor-neutral language : 11.9. Simple Network Management Protocol 
vendor-specific syntax : 10.5.1. The Version Level Command 
VERB command, in ESMTP : 3.4.3. Multipurpose Internet Mail Extensions 
verbose mode 

6.4.4. Troubleshooting Serial Connections 
A.1. Dial-Up IP 
A.3. chat 

VERSIONID macro : 10.4.1.1. Building a sendmail.cf with m4 macros 
video content type : 3.4.3. Multipurpose Internet Mail Extensions 
view command 

8.4. Using nslookup 
11.6. Checking Name Service 

virtual 
links : B.8.1. The ospf Statement 
terminal devices : 5.3.1.2. Pseudo-device 

VIRUS-L list : 12.1.2.2. Use mailing lists to distribute information 
voice-message multipart subtype : 3.4.3. Multipurpose Internet Mail Extensions 
voltage levels : 1.2. A Data Communications Model 
VRFY command, in SMTP : 3.4.1. Simple Mail Transfer Protocol 

Search | Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z 

file:///C|/mynapster/Downloads/warez/tcpip/index/idx_v.htm (1 of 2) [2001-10-15 09:17:35]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm
file:///C|/mynapster/Downloads/warez/search/tsrch.htm


Index

Copyright © 1999 O'Reilly & Associates, Inc. All Rights Reserved. 

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/index/idx_v.htm (2 of 2) [2001-10-15 09:17:35]

file:///C|/mynapster/Downloads/warez/copyrght.htm
http://www.oreilly.com/
file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


Index

 

Search | Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z 

Index: W
wait ogin> command : 6.3.2. Dial-Up PPP 
wait-status : 5.4. The Internet Daemon 
Web pages, delivering : 1.7. Application Layer 
well-known ports 

2.7.3. Sockets 
3.6. Bootstrap Protocol 
auto-sensing : 11.4.4. Subdividing an Ethernet 
dedicated : 11.4.4. Subdividing an Ethernet 

Well-Known Services (WKS) resource records 
2.7. Protocols, Ports, and Sockets 
C.3.1.8. Well-Known Services record 

white pages : 13.6. The White Pages 
who command : 12.4.1. Know Your System 
whois command 

4.4.1. Obtaining a Domain Name 
13.6. The White Pages 

wide area networks (WANs) 
3.7.1. File Sharing 
6.2. TCP/IP Over a Serial Line 
11.3.1. The ping Command 
11.4.4.1. Network hardware problems 

window : 1.6.2. Transmission Control Protocol 
WKS resource records 

2.7. Protocols, Ports, and Sockets 
C.3.1.8. Well-Known Services record 

world permissions : 9.1.5. NFS Authentication Server 
World Wide Web : 13.1. The World Wide Web 
world-readable file : 12.2.1. The Shadow Password File 
wrapper : 12.5.1. wrapper 

tcpd : 5.4. The Internet Daemon 
wtmp file, in security checks : 12.4.2.2. Checking login activity 
www.fugue.com/dhcp : D.1. Compiling dhcpd 
www.internic.net : 13.4. Retrieving RFCs 

file:///C|/mynapster/Downloads/warez/tcpip/index/idx_w.htm (1 of 2) [2001-10-15 09:17:35]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


Index

Search | Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z 

Copyright © 1999 O'Reilly & Associates, Inc. All Rights Reserved. 

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/index/idx_w.htm (2 of 2) [2001-10-15 09:17:35]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm
file:///C|/mynapster/Downloads/warez/copyrght.htm
http://www.oreilly.com/
file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


Index

 

Search | Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z 

Index: X
x-token encoding type : 3.4.3. Multipurpose Internet Mail Extensions 
X.400 protocol : 3.4.1. Simple Mail Transfer Protocol 
XDR : 1.2. A Data Communications Model 
xinetd software : 12.5. Access Control 

Search | Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z 

Copyright © 1999 O'Reilly & Associates, Inc. All Rights Reserved. 

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/index/idx_x.htm [2001-10-15 09:17:36]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm
file:///C|/mynapster/Downloads/warez/search/tsrch.htm
file:///C|/mynapster/Downloads/warez/copyrght.htm
http://www.oreilly.com/
file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


Index

 

Search | Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z 

Index: Y
yp.conf file : 9.3. Network Information Service 
ypbind : 9.3. Network Information Service 
ypcat : 9.3. Network Information Service 

-x command : 9.3. Network Information Service 
ypmatch : 9.3. Network Information Service 
ypserv : 9.3. Network Information Service 
ypwhich : 9.3. Network Information Service 

Search | Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z 

Copyright © 1999 O'Reilly & Associates, Inc. All Rights Reserved. 

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/index/idx_y.htm [2001-10-15 09:17:36]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm
file:///C|/mynapster/Downloads/warez/search/tsrch.htm
file:///C|/mynapster/Downloads/warez/copyrght.htm
http://www.oreilly.com/
file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


Index

 

Search | Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z 

Index: Z
zone : 8.1. BIND: UNIX Name Service 

files : 8.1.1. BIND Configurations 
in named : C.3. Zone File Records 

transfer 
3.3.4. BIND, resolver, and named 
8.1.1. BIND Configurations 
8.3.1.2. Primary and secondary server configurations 
8.4. Using nslookup 

Search | Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z 

Copyright © 1999 O'Reilly & Associates, Inc. All Rights Reserved. 

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/index/idx_z.htm [2001-10-15 09:17:37]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm
file:///C|/mynapster/Downloads/warez/search/tsrch.htm
file:///C|/mynapster/Downloads/warez/copyrght.htm
http://www.oreilly.com/
file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Chapter 8] Configuring DNS Name Service 

Previous: 7.8 Summary Chapter 8 Next: 8.2 Configuring the 
Resolver 

 

8. Configuring DNS Name Service 
Contents:
BIND: UNIX Name Service 
Configuring the Resolver 
Configuring named 
Using nslookup 
Summary 

Congratulations! You have installed TCP/IP in the kernel, configured the network interface, and 
configured routing. At this point, you have completed all of the configuration tasks required to run 
TCP/IP on a UNIX system. While none of the remaining tasks are required for TCP/IP software to 
operate, they are necessary for making the network more friendly and useful. In the next two chapters, 
we look at how to configure basic TCP/IP network services. Perhaps the most important of these is 
name service.

Strictly speaking, name service is not necessary for computers to communicate. It is, as the name 
implies, a service - specifically, a service intended to make the network more user-friendly. 
Computers are perfectly happy with IP addresses, but people prefer names. The importance of name 
service is indicated by the amount of coverage it has in this book. Chapter 3, Network Services, 
discusses why name service is needed; this chapter covers how it is configured, and Appendix C, A 
named Reference, covers the details of the nameserver configuration commands. This chapter 
provides sufficient information to show you how to configure BIND 4 software to run on your system. 
[1] But if you want to know more about why something is done, don't hesitate to refer to Chapter 3 
and Appendix C.

[1] BIND 4 is the version of domain name software used on most UNIX systems. 
Another version of DNS software - BIND 8 - is also available. BIND 8 uses a different 
configuration file syntax. We use BIND 4 because it's the most widely used and comes 
with both Slackware 96 Linux and Solaris 2.5.1.

8.1 BIND: UNIX Name Service 

file:///C|/mynapster/Downloads/warez/tcpip/ch08_01.htm (1 of 3) [2001-10-15 09:17:39]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


[Chapter 8] Configuring DNS Name Service 

In UNIX, DNS is implemented by the Berkeley Internet Name Domain (BIND) software. BIND is a 
client/server software system. The client side of BIND is called the resolver. It generates the queries 
for domain name information that are sent to the server. The DNS server software answers the 
resolvers' queries. The server side of BIND is a daemon called named (pronounced "name" "d").

This chapter covers three basic BIND configuration tasks:

●     Configuring the BIND resolver
●     Configuring the BIND nameserver (named)
●     Constructing the nameserver database files, called the zone files

The term zone is often used interchangeably with the word domain, but here we make a distinction 
between these terms. We use zone to refer to the domain database file, while the term domain is used 
in more general contexts. In this book, a domain is part of the domain hierarchy identified by a 
domain name. A zone is a collection of domain information contained in a domain database file. The 
file that contains the domain information is called a zone file.

RFC 1033, the Domain Administrators Operations Guide, defines the basic set of standard records 
used to construct zone files. Many RFCs propose new DNS records that are not widely implemented. 
In this chapter and in Appendix C we stick to the basic resource records that you are most likely to 
use. We'll use these records to construct the zone files used in this chapter. But how, or even if, you 
need to construct zone files on your system is controlled by the type of BIND configuration you 
decide to use.

8.1.1 BIND Configurations 

BIND configurations are described by the type of service the software is configured to provide. The 
four levels of service that can be defined in a BIND configuration are resolver-only systems, caching-
only servers, primary servers, and secondary servers.

The resolver is the code that asks nameservers for domain information. On UNIX systems, it is 
implemented as a library, rather than a separate client program. Some systems, called resolver-only 
systems, use only the resolver; they don't run a nameserver. Resolver-only systems are very easy to 
configure: you just need to set up the /etc/resolv.conf file. 

The three other BIND configurations all require that the local system run the named server software. 
They are:

Primary

The primary nameserver is the authoritative source for all information about a specific domain. 
It loads the domain information from a locally maintained disk file that is built by the domain 
administrator. This file (the zone file) contains the most accurate information about a piece of 
the domain hierarchy over which this server has authority. The primary server is a master 

file:///C|/mynapster/Downloads/warez/tcpip/ch08_01.htm (2 of 3) [2001-10-15 09:17:39]



[Chapter 8] Configuring DNS Name Service 

server, because it can answer any query about its domain with full authority. [2]

[2] The terms master server and authoritative server are used interchangeably.

Configuring a primary server requires creating a complete set of configuration files: zone files for the 
regular domain and the reverse domain, the boot file, the cache file, and the loopback file. No other 
configuration requires creating this complete set of files.

Secondary

A secondary server transfers a complete set of domain information from the primary server. 
The zone file is transferred from the primary server and stored on the secondary server as a 
local disk file. This transfer is aptly called a zone file transfer. A secondary server keeps a 
complete copy of all domain information, and can answer queries about that domain with 
authority. Therefore, a secondary server is also considered a master server.

Configuring a secondary server does not require creating local zone files, because the zone 
files are downloaded from the primary server. However, the other files (a boot file, a cache file, 
and a loopback file) are required.

Caching-only

A caching-only server runs the nameserver software, but keeps no nameserver database files. It 
learns the answer to every nameserver query from some remote server. Once it learns an 
answer, the server caches the answer and uses it to answer future queries for the same 
information. All nameservers use cached information in this manner, but a caching-only server 
depends on this technique for all of its nameserver information. It is not considered an 
authoritative (or master) server, because all of the information it provides is secondhand. Only 
a boot file and a cache file are required for a caching-only configuration. But the most common 
configuration also includes a loopback file. This is probably the most common nameserver 
configuration, and apart from the resolver-only configuration, it is the easiest to configure.

A server may be any one of these configurations or, as is often the case, it may combine elements of 
more than one type of configuration. However, all systems run the resolver, so let's begin by 
examining the configuration of the client side of the DNS software.

Previous: 7.8 Summary TCP/IP Network 
Administration

Next: 8.2 Configuring the 
Resolver 

7.8 Summary Book Index 8.2 Configuring the Resolver 

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/ch08_01.htm (3 of 3) [2001-10-15 09:17:39]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Chapter 7] 7.8 Summary 

Previous: 7.7 Configuring 
gated 

Chapter 7
Configuring Routing 

Next: 8. Configuring DNS 
Name Service 

 

7.8 Summary 

Routing is the glue that binds networks together to build internets. Without it, networks cannot 
communicate with each other. Configuring routing is an important task for the network administrator.

Minimal routing is required to communicate through the network interface to the directly attached 
network. These routes can be seen in the routing table where they show up as entries that do not have 
the G (gateway) flag set. On most systems, minimal routes are created but the ifconfig command 
when an interface is installed. On Linux systems the route through the interface must be explicitly 
installed with a route command.

The route command is used to build a static routing table. Static routing is routing that is manually 
maintained by the network administrator. Routes are added to or removed from the routing table with 
the route command. The most common use for static routing is to install a default route.

Dynamic routing uses routing protocols to select the best routes and to update the routing table. Their 
are many different dynamic routing protocols. The one that is available on most UNIX systems is 
Routing Information Protocol (RIP). RIP is run by routed. routed builds the routing table from 
information received on the network and from information read from /etc/gateway.

gated is a software package that provides several more routing protocols for UNIX systems, including 
advanced protocols such as Open Shortest Path First (OSPF) and Border Gateway Protocol (BGP). 
gated is configured through the /etc/gated.conf file. The gated configuration commands are covered 
in Appendix B.

This is the last chapter on how to create the physical network connection. Once routing is installed, 
the system is capable of basic communication. In the next chapter, we begin the discussion of the 
various applications and services that are necessary to make the network truly useful.

Previous: 7.7 Configuring 
gated 

TCP/IP Network 
Administration

Next: 8. Configuring DNS 
Name Service 

7.7 Configuring gated Book Index 8. Configuring DNS Name 
Service 

file:///C|/mynapster/Downloads/warez/tcpip/ch07_08.htm (1 of 2) [2001-10-15 09:17:39]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


[Chapter 7] 7.8 Summary 

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/ch07_08.htm (2 of 2) [2001-10-15 09:17:39]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Chapter 7] 7.7 Configuring gated 

Previous: 7.6 Gateway 
Routing Daemon 

Chapter 7
Configuring Routing 

Next: 7.8 Summary 

 

7.7 Configuring gated 

gated is available from http://www.gated.org. Appendix B, A gated Reference, provides information 
about downloading and compiling the software. In this section, we use gated release 3.5.5, the version 
of gated that is currently available without restrictions. There are other, newer versions of gated 
available to members of the Gated Consortium. If you plan to build products based on gated or you 
plan to do research on routing protocols using gated, you should join the consortium. For the purposes 
of this book, release 3.5.5 is fine.

gated reads its configuration from the /etc/gated.conf file. The configuration commands in the file 
resemble C code. All statements end with a semicolon, and associated statements are grouped together 
by curly braces. This structure makes it simple to see what parts of the configuration are associated 
with each other, which is important when multiple protocols are configured in the same file. In 
addition to structure in the language, the /etc/gated.conf file also has a structure.

The different configuration statements, and the order in which these statements must appear, divide 
gated.conf into sections: option statements, interface statements, definition statements, protocol 
statements, static statements, control statements, and aggregate statements. Entering a statement out 
of order causes an error when parsing the file.

Two other types of statements do not fall into any of these categories. They are directive statements 
and trace statements. These can occur anywhere in the gated.conf file and do not directly relate to the 
configuration of any protocol. These statements provide instructions to the parser, and instructions to 
control tracing from within the configuration file.

The gated configuration commands are summarized in Table 7.2 The table lists each command by 
name, identifies the statement type, and provides a very short synopsis of each command's function. 
The entire command language is covered in detail in Appendix B.

Table 7.2: gated Configuration Statements

Statement Type Function

%directory directive Sets the directory for include files

%include directive Includes a file into gated.conf

file:///C|/mynapster/Downloads/warez/tcpip/ch07_07.htm (1 of 11) [2001-10-15 09:17:41]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm
http://www.gated.org/


[Chapter 7] 7.7 Configuring gated 

traceoptions trace Specifies which events are traced

options option Defines gated options

interfaces interface Defines interface options

autonomoussystem definition Defines the AS number

routerid definition Defines the originating router for BGP or OSPF

martians definition Defines invalid destination addresses

snmp protocol Enables reporting to SNMP

rip protocol Enables RIP

hello protocol Enables Hello protocol

isis protocol Enables ISIS protocol 

kernel protocol Configures kernel interface options

ospf protocol Enables OSPF protocol

redirect protocol Removes routes installed by ICMP

egp protocol Enables EGP

bgp protocol Enables BGP

icmp protocol Configures the processing of general ICMP packets

static static Defines static routes

import control Defines what routes are accepted

export control Defines what routes are advertised

aggregate aggregate Controls route aggregation

generate aggregate Controls creation of a default route

Just from this brief description, you can see that the gated configuration language has many 
commands. The language provides configuration control for several different protocols and additional 
commands to configure the added features of gated itself. All of this can be confusing.

To avoid confusion, don't try to understand the details of everything offered by gated. Your routing 
environment will not use all of these protocols and features. Even if you are providing the gateway at 
the border between two anonymous systems, you will probably only run two routing protocols: one 
interior protocol and one exterior protocol. Only those commands that relate to your actual 
configuration need to be included in your configuration file. As you read this section, skip the things 
you don't need. For example, if you don't use the BGP protocol, don't study the bgp statement. When 
you do need more details about a specific statement, look it up in Appendix B. With this in mind, let's 
look at some sample configurations.

7.7.1 Sample gated.conf Configurations 

The details in Appendix B may make gated configuration appear more complex than it is. gated's rich 
command language can be confusing, as can its support for multiple protocols and the fact that it often 
provides a few ways to do the same thing. But some realistic examples will show that individual 

file:///C|/mynapster/Downloads/warez/tcpip/ch07_07.htm (2 of 11) [2001-10-15 09:17:41]



[Chapter 7] 7.7 Configuring gated 

configurations do not need to be complex.

The basis for the sample configurations is the network in Figure 7.4 We have installed a new router 
that provides our backbone with direct access to the Internet, and we have decided to install new 
routing protocols. We'll configure a host to listen to RIP-2 updates, an interior gateway to run RIP-2 
and OSPF, and an exterior gateway to run OSPF and BGP.

Figure 7.4: Sample routing topology

Gateway cashew interconnects subnet 172.16.9.0 and subnet 172.16.1.0. To hosts on subnet 9, it 
advertises itself as the default gateway, because it is the gateway to the outside world. It uses RIP-2 to 
advertise routes on subnet 9. On subnet 1, gateway cashew advertises itself as the gateway to subnet 9 
using OSPF.

Gateway brazil provides subnet 1 with access to the Internet through autonomous system 164. 
Because gateway brazil provides access to the Internet, it announces itself as the default gateway to 
the other systems on subnet 1 using OSPF. To the external autonomous system, it uses BGP to 
announce itself as the path to the internal networks it learns about through OSPF.

Let's look at the routing configuration of host macadamia, gateway cashew, and gateway brazil.

file:///C|/mynapster/Downloads/warez/tcpip/ch07_07.htm (3 of 11) [2001-10-15 09:17:41]



[Chapter 7] 7.7 Configuring gated 

7.7.1.1 A host configuration 

The host routing configuration is very simple. The rip yes statement enables RIP, and that's all that is 
really required to run RIP. That basic configuration should work for any system that runs RIP. The 
additional clauses enclosed in curly braces modify the basic RIP configuration. We use a few clauses 
to create a more interesting example. Here is the RIP-2 configuration for host macadamia:

#
#  enable rip, don't broadcast updates,
#  listen for RIP-2 updates on the multicast address,
#  check that the updates are authentic.
#
rip yes {
        nobroadcast ;
        interface 172.16.9.23
             version 2 
             multicast 
             authentication simple "REALstuff" ;

} ;

This sample file shows the basic structure of gated.conf configuration statements. Lines beginning 
with a sharp sign (#) are comments. [12] All statements end with semicolons. Clauses associated with 
a configuration statement can span multiple lines and are enclosed in curly braces ({}). In the 
example, the nobroadcast and interface clauses apply directly to the rip statement. The 
version, multicast, and authentication keywords are part of the interface clause.

[12] Comments can also be enclosed between a \* and a *\.

The keyword nobroadcast prevents the host from broadcasting its own RIP updates. The default is 
nobroadcast when the system has one network interface and broadcast when it has more than 
one. The nobroadcast keyword performs the same function as the -q command-line option does 
for routed. However, gated can do much more than routed, as the next clause shows.

The interface clause defines interface parameters for RIP. The parameters associated with this 
clause say that RIP-2 updates will be received via the RIP-2 multicast address on interface 
172.16.9.23, and that authentic updates will contain the password REALstuff. For RIP-2, simple 
authentication is a clear-text password up to 16 bytes long. This is not intended to protect the system 
from malicious actions; it is only intended to protect the routers from a configuration accident. If a 
user mistakenly sets his system up as a RIP supplier, he is very unlikely to accidently enter the correct 
password into his configuration. Stronger authentication will soon be available in the form of a 
Message Digest 5 (MD5) cryptographic checksum by specifying md5 in the authentication clause.

7.7.1.2 Interior gateway configurations 

file:///C|/mynapster/Downloads/warez/tcpip/ch07_07.htm (4 of 11) [2001-10-15 09:17:41]



[Chapter 7] 7.7 Configuring gated 

Gateway configurations are more complicated than the simple host configuration shown above. 
Gateways always have multiple interfaces and occasionally run multiple routing protocols. Our first 
sample configuration is for the interior gateway between subnet 9 and the central backbone, subnet 1. 
It uses RIP-2 on subnet 9 to announce routes to the UNIX hosts. It uses OSPF on subnet 1 to 
exchange routes with the other gateways. Here's the configuration of gateway cashew:

#  Don't time-out subnet 9
interfaces {
    interface 172.16.9.1 passive ;
} ;
# Define the OSPF router id
routerid 172.16.1.9 ;
# Enable RIP-2; announce OSPF routes to
# subnet 9 with a cost of 5.
rip yes {
    broadcast ;
    defaultmetric 5 ;
    interface 172.16.9.1
         version 2
         multicast
         authentication simple "REALstuff" ;
} ;
# Enable OSPF; subnet 1 is the backbone area;
# use password authentication.
ospf yes {
     backbone {
         authtype simple ;
         interface 172.16.1.9 {
              priority 5 ;
              authkey "It'sREAL" ;
              } ;
          } ;
} ;

The interfaces statement defines routing characteristics for the network interfaces. The keyword 
passive in the interface clause is used here, just as we have seen it used before, to create a 
permanent static route that will not be removed from the routing table. In this case, the permanent 
route is through a directly attached network interface. Normally when gated thinks an interface is 
malfunctioning, it increases the cost of the interface by giving it a high-cost preference value (120) to 
reduce the probability of a gateway routing data through a non-operational interface. gated determines 
that an interface is malfunctioning when it does not receive routing updates on that interface. We don't 
want gated to downgrade the 172.16.9.1 interface, even if it does think the interface is 
malfunctioning, because our router is the only path to subnet 9. That's why this configuration includes 
the clause interface 172.16.9.1 passive.

The routerid statement defines the router identifier for OSPF. Unless it is explicitly defined in the 

file:///C|/mynapster/Downloads/warez/tcpip/ch07_07.htm (5 of 11) [2001-10-15 09:17:41]



[Chapter 7] 7.7 Configuring gated 

configuration file, gated uses the address of the first interface it encounters as the default router 
identifier address. Here we specify the address of the interface that actually speaks OSPF as the OSPF 
router identifier.

In the previous example we discussed all the clauses on the rip statement except one - the 
defaultmetric clause. The defaultmetric clause defines the RIP metric used to advertise 
routes learned from other routing protocols. This gateway runs both OSPF and RIP-2. We wish to 
advertise the routes learned via OSPF to our RIP clients, and to do that, a metric is required. We 
choose a RIP cost of 5. If the defaultmetric clause is not used, routes learned from OSPF are not 
advertised to the RIP clients. [13] This statement is required for our configuration.

[13] This is not strictly true. The routes are advertised with a cost of 16, meaning that 
the destinations are unreachable.

The ospf yes statement enables OSPF. The first clause associated with this statement is 
backbone. It states that the router is part of the OSPF backbone area. Every ospf yes statement 
must have at least one associated area clause. It can define a specific area, e.g., area 2, but at least 
one router must be in the backbone area. While the OSPF backbone is area 0, it cannot be specified as 
area 0; it must be specified with the keyword backbone. In our sample configuration, subnet 1 is 
the backbone and all routers attached to it are in the backbone area. It is possible for a single router to 
attach to multiple areas with a different set of configuration parameters for each area. Notice how the 
nested curly braces group the clauses together. The remaining clauses in the configuration file are 
directly associated with the backbone area clause.

The authtype simple ; clause says that simple, password-based authentication is used in the 
backbone area. Two choices, simple and none, are available for authtype in GateD 3.5.5. none 
means no authentication is used. simple means that the correct eight-character password must be 
used or the update will be rejected. Password authentication is used only to protect against accidents. 
It is not intended to protect against malicious actions. Stronger authentication based on MD5 is being 
developed.

The interface that connects this router to the backbone area is defined by the interface clause. It has 
two associated subclauses. The authkey "It'sREAL" ; clause defines the password used for 
simple authentication by this interface. The priority 5 ; clause defines the priority used by this 
router when the backbone is electing a designated router. The higher the priority number, the less 
likely a router will be elected as the designated router. Use priority to steer the election toward the 
most capable routers.

7.7.1.3 Exterior gateway configuration 

The configuration for gateway brazil is the most complex because it runs both OSPF and BGP. The 
configuration file for gateway brazil is:

# Defines our AS number for BGP
autonomoussystem 249;

file:///C|/mynapster/Downloads/warez/tcpip/ch07_07.htm (6 of 11) [2001-10-15 09:17:41]



[Chapter 7] 7.7 Configuring gated 

# Defines the OSPF router id
routerid 172.16.1.1;

# Disable RIP
rip no;

# Enable BGP
bgp yes {
   preference 50 ;
   group type external peeras 164 {
        peer 10.6.0.103 ;
        peer 10.20.0.72 ;
        };
};

# Enable OSPF; subnet 1 is the backbone area;
# use password authentication.
ospf yes {
     backbone {
         authtype simple ;
         interface 172.16.1.1 {
              priority 10 ;
              authkey "It'sREAL" ;
              } ;
          } ;
};

# Announce routes learned from OSPF and route
# to directly connected network via BGP to AS 164
export proto bgp as 164 {
     proto direct ;
     proto ospf ;
};

# Announce routes learned via BGP from 
# AS number 164 to our OSPF area.
export proto ospfase type 2  {
     proto bgp as 164  {
          all ;   
          };
};

This configuration enables both BGP and OSPF, and sets certain protocol-specific parameters. BGP 
needs to know the AS number, which is 249 for nuts-net. OSPF needs to know the router identifier 
address. We set it to the address of the router interface that runs OSPF. The AS number and the router 
identifier are defined early in the configuration because autonomoussystem and routerid are 

file:///C|/mynapster/Downloads/warez/tcpip/ch07_07.htm (7 of 11) [2001-10-15 09:17:41]



[Chapter 7] 7.7 Configuring gated 

definition statements, and therefore must occur before the first protocol statement. Refer back to Table 
7.2 for the various statement types.

The first protocol statement is the one that turns RIP off. We don't want to run RIP and the default for 
gated is to turn RIP on. Therefore we explicitly disable RIP with the rip no ; statement.

BGP is enabled by the egp yes statement, which also defines a few additional BGP parameters. The 
preference 50 ; clause tells gated to set the preference for routes received via BGP to 50. The 
default for these routes is 170. By changing the preference to 50, we make the routes highly favored. 
Setting a preference value of 50 allows BGP routes to override static routes, though they will not 
override routes learned from OSPF. This is solely for the purpose of illustration. You probably don't 
want to make an external route highly preferred. See Table 7.1 for the list of default preferences.

The group clause sets parameters for all of the BGP peers in the group. The clause defines the type 
of BGP connection being created. The example is a classic external routing protocol connection, and 
the external autonomous system we are connecting to is AS number 164. gated can create five 
different types of BGP sessions, but only one, type external, is used to directly communicate 
with an external autonomous system. The other four group types are used for internal BGP (IBGP). 
[14] IBGP is simply an acronym used for BGP when it is used to move routing information around 
inside of an autonomous system. In our example we use it to move routing information between 
autonomous systems.

[14] See Appendix B for information on all group types.

The BGP neighbors from which updates are accepted are indicated by the peer clauses. Each peer is a 
member of the group. Everything related to the group, such as the AS number, applies to every system 
in the group. To accept updates from any system, use allow in place of the list of peers.

The OSPF protocol is enabled by the ospf yes statement. The configuration of OSPF on this router is 
the same as it is for other routers in the backbone area. The only parameter that has been changed 
from the previous example is the priority number. Because this route has a particularly heavy load, we 
have decided to make it slightly less preferred for the designated router election.

The export statements control the routes that gated advertises to other routers. The first export 
statement directs gated to use BGP (proto bgp) to advertise to autonomous system 164 (as 164) 
any directly connected networks (proto direct) and any routes learned from OSPF (proto 
ospf). Notice that the AS number specified in this statement is not the AS number of nuts-net. It is 
the autonomous system number of the external system. The first line of the export statement defines to 
whom we are advertising. The proto clauses located within the curly braces define what we are 
advertising.

The second export statement announces the routes learned from the external autonomous system. The 
routes are received via BGP and are advertised via OSPF. Because these are routes from an external 
autonomous system, they are advertised as autonomous system external (ASE) routes. That's why the 
export statement specifies ospfase as the protocol through which the routes are announced. The 

file:///C|/mynapster/Downloads/warez/tcpip/ch07_07.htm (8 of 11) [2001-10-15 09:17:41]



[Chapter 7] 7.7 Configuring gated 

type 2 parameter defines the type of external routes that are being advertised. There are two types 
supported by gated. Type 2 routes are those learned from an exterior gateway protocol that does not 
provide a routing metric comparable to the OSPF metric. These routes are advertised with the cost of 
reaching the border router. In this case, the routes are advertised with the OSPF cost of reaching 
gateway brazil. Type 1 routes are those learned from an external protocol that does provide a metric 
directly comparable to the OSPF metric. In that case, the metric from the external protocol is added to 
the cost of reaching the border router when routes are advertised.

The source of the routes advertised in the second export statement is the BGP connection (proto 
bgp) to autonomous system 164 (as 164). The proto clause is qualified with an optional route filter. 
A route filter is used to select the routes from a specific source. The filter can list networks with 
associated netmasks to select an individual destination. In the example, the keyword all is used to 
select all routes received via BGP, which is, in fact, the default.

All of the routes received from an external autonomous system could produce a very large routing 
table. Individual routes are useful when you have multiple border routers that can reach the outside 
world. However, if you have only one border router, a default route may be all that is needed. To 
export a default route, insert an options gendefault ; statement in the beginning of the 
configuration file. [15] This tells gated to generate a default route when the system peers with a BGP 
neighbor. Next, replace the second export statement in the sample file with the following export 
statement:

[15] The generate statement is an alternative way to create a default route. See 
Appendix B for details.

# Announce a default route when peering 
# with a BGP neighbor. 
export proto ospfase type 2  {
     proto default ;   
};

This export statement tells gated to advertise the border router as the default gateway, but only when 
it has an active connection to the external system.

These few examples show that gated.conf files are usually small and easy to read. Use gated if you 
need to run a routing protocol on your computer. It allows you to use the same software and the same 
configuration language on all of your hosts, interior gateways, and exterior gateways.

7.7.2 Testing the Configuration 

Test the configuration file before you try to use it. The gated configuration syntax is complex and it is 
easy to make a mistake. Create your new configuration in a test file; test the new configuration; then 
move the test configuration to /etc/gated.conf. Here's how.

file:///C|/mynapster/Downloads/warez/tcpip/ch07_07.htm (9 of 11) [2001-10-15 09:17:41]



[Chapter 7] 7.7 Configuring gated 

Assume that a configuration file called test.conf has already been created. It is tested using -f and -c 
on the command line:

% gated -c -f test.conf trace.test

The -f option tells gated to read the configuration from the named file instead of from /etc/gated.conf. 
In the sample it reads the configuration from test.conf. The -c option tells gated to read the 
configuration file and check for syntax errors. When gated finishes reading the file, it terminates; it 
does not modify the routing table. The -c option turns on tracing, so specify a trace file or the trace 
data will be displayed on your terminal. In the sample we specified trace.test as the trace file. The -c 
option also produces a snapshot of the state of gated after reading the configuration file and writes the 
snapshot to /usr/tmp/gated_dump. You don't need to be superuser or to terminate the active gated 
process to run gated when the -c option is used.

The dump and the trace file (trace.test) can then be examined for errors and other information. When 
you're confident that the configuration is correct, become superuser and move your new configuration 
(test.conf) to /etc/gated.conf.

An alternative command for testing the configuration file is gdc, though it must be run by the root 
user. It includes features for checking and installing a new configuration. gdc uses three different 
configuration files. The current configuration is /etc/gated.conf. The previous configuration is stored 
in /etc/gated.conf-. The "next" configuration is stored in /etc/gated.conf+, which is normally the 
configuration that needs to be tested. Here's how gdc tests a configuration:

# cp test.conf /etc/gated.conf+
# gdc checknew
configuration file /etc/gated.conf+ checks out okay
# gdc newconf
# gdc restart
gated not currently running
gdc: /etc/gated was started

In this sample the test configuration was copied to /etc/gated.conf+ and tested with the gdc checknew 
command. If syntax problems are found in the file, a warning message is displayed and the detailed 
error messages are written to /usr/tmp/gated_parse. There were no syntax errors in the example so we 
make the test file the current configuration with the gdc newconf command. This command moves 
the current configuration to gated.conf- and moves the new configuration (gated.conf+) to the current 
configuration. The gdc restart command terminates gated if it is currently running - it was not in the 
example - and starts a new copy of gated using the new configuration.

7.7.2.1 Running gated at startup 

As with any routing software, gated should be included in your startup file. Some systems come with 
the code to start gated included in the startup file. If your system doesn't, you'll need to add it. If you 
already have code in your startup file that runs routed, replace it with code to run gated. gated and 

file:///C|/mynapster/Downloads/warez/tcpip/ch07_07.htm (10 of 11) [2001-10-15 09:17:41]



[Chapter 7] 7.7 Configuring gated 

routed should not be running at the same time. 

Our imaginary gateway, almond, is a Solaris system with code in the /etc/init.d/inetinit file that starts 
routed. We comment out those lines, and add these lines:

if [ -f /usr/sbin/gated -a -f /etc/gated.conf ]; then
     /usr/sbin/gated;      echo -n 'gated' > /dev/console
fi

This code assumes that gated is installed in /usr/sbin and that the configuration file is named 
/etc/gated.conf. The code checks that gated is present, and that the configuration file /etc/gated.conf 
exists. If both files are found, gated begins.

The code checks for a configuration file because gated usually runs with one. If gated is started 
without a configuration file, it checks the routing table for a default route. If it doesn't find one, it 
starts RIP; otherwise, it just uses the default route. Create an /etc/gated.conf file even if you only want 
to run RIP. The configuration file documents your routing configuration and protects you if the 
default configuration of gated changes in the future.

Previous: 7.6 Gateway 
Routing Daemon 

TCP/IP Network 
Administration

Next: 7.8 Summary 

7.6 Gateway Routing Daemon Book Index 7.8 Summary 

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/ch07_07.htm (11 of 11) [2001-10-15 09:17:41]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Chapter 7] 7.6 Gateway Routing Daemon 

Previous: 7.5 Exterior 
Routing Protocols 

Chapter 7
Configuring Routing 

Next: 7.7 Configuring gated 

 

7.6 Gateway Routing Daemon 

Routing software development for general purpose UNIX systems is limited. Most sites use UNIX 
systems only for simple routing tasks for which RIP is usually adequate. Large and complex routing 
applications, which require advanced routing protocols, are handled by dedicated router hardware that 
is optimized specifically for routing. Many of the advanced routing protocols are only available for 
UNIX systems in gated. gated combines several different routing protocols in a single software 
package. 

Additionally, gated provides other features that are usually only associated with dedicated routers:

●     Systems can run more than one routing protocol. gated combines the routing information 
learned from different protocols, and selects the "best" routes.

●     Routes learned through an interior routing protocol can be announced via an exterior routing 
protocol, which allows the reachability information announced externally to adjust 
dynamically to changing interior routes.

●     Routing policies can be implemented to control what routes are accepted and what routes are 
advertised.

●     All protocols are configured from a single file (/etc/gated.conf) using a single consistent syntax 
for the configuration commands.

●     gated is constantly being upgraded. Using gated ensures that you're running the most up-to-
date routing software.

7.6.1 gated's Preference Value 

There are two sides to every routing protocol implementation. One side, the external side, exchanges 
routing information with remote systems. The other side, the internal side, uses the information 
received from the remote systems to update the routing table. For example, when OSPF exchanges 
Hello packets to discover a neighbor, it is an external protocol function. When OSPF adds a route to 
the routing table, it is an internal function.

The external protocol functions implemented in gated are the same as those in other implementations 
of the protocols. However, the internal side of gated is unique for UNIX systems. Internally, gated 
processes routing information from different routing protocols, each of which has its own metric for 

file:///C|/mynapster/Downloads/warez/tcpip/ch07_06.htm (1 of 3) [2001-10-15 09:17:41]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


[Chapter 7] 7.6 Gateway Routing Daemon 

determining the best route, and combines that information to update the routing table. Before gated 
was written, if a UNIX system ran multiple routing protocols each would write routes into the routing 
table without knowledge of the other's action. The route found in the table was the last one written - 
not necessarily the best route.

With multiple routing protocols and multiple network interfaces, it is possible for a system to receive 
routes to the same destination from different protocols. gated compares these routes and attempts to 
select the best one. However, the metrics used by different protocols are not directly comparable. 
Each routing protocol has its own metric. It might be a hop count, the delay on the route, or an 
arbitrary value set by the administrator. gated needs more than that protocol's metric to select the best 
route. It uses its own value to prefer routes from one protocol or interface over another. This value is 
called preference.

Preference values help gated combine routing information from several different sources into a single 
routing table. Table 7.1 lists the sources from which gated receives routes, and the default preference 
given to each source. Preference values range from 0 to 255, with the lowest number indicating the 
most preferred route. From this table you can see that gated prefers a route learned from OSPF over 
the same route learned from BGP.

Table 7.1: Default Preference Values

Route Type Default Preference

direct route 0

OSPF 10

Internally generated default 20

ICMP redirect 30

static route 60

Hello protocol 90

RIP 100

OSPF ASE routes 150

BGP 170

EGP 200

Preference can be set in several different configuration statements. It can be used to prefer routes from 
one network interface over another, from one protocol over another, or from one remote gateway over 
another. Preference values are not transmitted or modified by the protocols. Preference is used only in 
the configuration file. In the next section we'll look at the gated configuration file (/etc/gated.conf) 
and the configuration commands it contains.

Previous: 7.5 Exterior 
Routing Protocols 

TCP/IP Network 
Administration

Next: 7.7 Configuring gated 

7.5 Exterior Routing Protocols Book Index 7.7 Configuring gated 

file:///C|/mynapster/Downloads/warez/tcpip/ch07_06.htm (2 of 3) [2001-10-15 09:17:41]



[Chapter 7] 7.6 Gateway Routing Daemon 

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/ch07_06.htm (3 of 3) [2001-10-15 09:17:41]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Chapter 7] 7.5 Exterior Routing Protocols 

Previous: 7.4 Interior 
Routing Protocols 

Chapter 7
Configuring Routing 

Next: 7.6 Gateway Routing 
Daemon 

 

7.5 Exterior Routing Protocols 

Exterior routing protocols are used to exchange routing information between autonomous systems. 
The routing information passed between autonomous systems is called reachability information. 
Reachability information is simply information about which networks can be reached through a 
specific autonomous system.

RFC 1771 defines Border Gateway Protocol, the leading exterior routing protocol, and provides the 
following description of the routing function of an autonomous system: 

The classic definition of an Autonomous System is a set of routers under a single 
technical administration, using an interior gateway protocol and common metrics to 
route packets within the AS, and using an exterior gateway protocol to route packets to 
other ASs.... The administration of an AS appears to other ASs to have a single coherent 
interior routing plan and presents a consistent picture of what networks are reachable 
through it. From the standpoint of exterior routing, an AS can be viewed as 
monolithic...

Moving routing information into and out of these monoliths is the function of exterior routing 
protocols. Exterior routing protocols are also called exterior gateway protocols. Don't confuse an 
exterior gateway protocol with the Exterior Gateway Protocol (EGP). EGP is not a generic term; it is a 
particular exterior routing protocol, and an old one at that.

7.5.1 Exterior Gateway Protocol 

A gateway running EGP announces that it can reach networks that are part of its autonomous system. 
It does not announce that it can reach networks outside its autonomous system. For example, the 
exterior gateway for our imaginary autonomous system nuts-as can reach the entire Internet through 
its external connection, but only one network is contained in its autonomous system. Therefore, it 
would only announce one network (172.16.0.0) if it ran EGP.

Before sending routing information, the systems first exchange EGP Hello and I-Heard-You (I-H-U) 
messages. These messages establish a dialog between two EGP gateways. Computers communicating 
via EGP are called EGP neighbors, and the exchange of Hello and I-H-U messages is called acquiring 

file:///C|/mynapster/Downloads/warez/tcpip/ch07_05.htm (1 of 4) [2001-10-15 09:17:42]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


[Chapter 7] 7.5 Exterior Routing Protocols 

a neighbor.

Once a neighbor is acquired, routing information is requested via a poll. The neighbor responds by 
sending a packet of reachability information called an update. The local system includes the routes 
from the update into its local routing table. If the neighbor fails to respond to three consecutive polls, 
the system assumes that the neighbor is down and removes the neighbor's routes from its table. If the 
system receives a poll from its EGP neighbor, it responds with its own update packet.

Unlike the interior protocols discussed above, EGP does not attempt to choose the "best" route. EGP 
updates contain distance-vector information, but EGP does not evaluate this information. The routing 
metrics from different autonomous systems are not directly comparable. Each AS may use different 
criteria for developing these values. Therefore, EGP leaves the choice of a "best" route to someone 
else.

When EGP was designed, the network relied upon a group of trusted core gateways to process and 
distribute the routes received from all of the autonomous systems. These core gateways were expected 
to have the information necessary to choose the best external routes. EGP reachability information 
was passed into the core gateways, where the information was combined and passed back out to the 
autonomous systems.

A routing structure that depends on a centrally controlled group of gateways does not scale well and is 
therefore inadequate for the rapidly growing Internet. As the number of autonomous systems and 
networks connected to the Internet grew, it became difficult for the core gateways to keep up with the 
expanding workload. This is one reason why the Internet moved to a more distributed architecture that 
places a share of the burden of processing routes on each autonomous system. Another reason is that 
no central authority controls the commercialized Internet. The Internet is composed of many equal 
networks. In a distributed architecture, the autonomous systems require routing protocols, both 
interior and exterior, that can make intelligent routing choices. Because of this, EGP is no longer 
popular.

7.5.2 Border Gateway Protocol 

Border Gateway Protocol (BGP) is the leading exterior routing protocol of the Internet. It is based on 
the OSI InterDomain Routing Protocol (IDRP). BGP supports policy-based routing, which uses non-
technical reasons (for example, political, organizational, or security considerations) to make routing 
decisions. Thus BGP enhances an autonomous system's ability to choose between routes and to 
implement routing policies without relying on a central routing authority. This feature is important in 
the absence of core gateways to perform these tasks.

Routing policies are not part of the BGP protocol. Policies are provided externally as configuration 
information. As described in Chapter 2, the National Science Foundation provides Routing Arbiters 
(RAs) at the Network Access Points (NAPs) where large Internet Service Providers (ISPs) 
interconnect. The RAs can be queried for routing policy information. Most ISPs also develop private 
policies based on the bilateral agreements they have with other ISPs. BGP can be used to implement 
these policies by controlling the routes it announces to others and the routes it accepts from others. In 

file:///C|/mynapster/Downloads/warez/tcpip/ch07_05.htm (2 of 4) [2001-10-15 09:17:42]



[Chapter 7] 7.5 Exterior Routing Protocols 

the gated section of this chapter we discuss the import command and the export command, which 
control what routes are accepted (import) and what routes are announced (export). The network 
administrator enforces the routing policy through configuring the router.

BGP is implemented on top of TCP, which provides BGP with a reliable delivery service. BGP uses 
well-known TCP port 179. It acquires its neighbors through the standard TCP three-way handshake. 
BGP neighbors are called peers. Once connected, BGP peers exchange OPEN messages to negotiate 
session parameters, such as the version of BGP that is to be used.

The UPDATE message lists the destinations that can be reached through a specific path and the 
attributes of the path. BGP is a path vector protocol. It is called a path vector protocol because it 
provides the entire end-to-end path of a route in the form of a sequence of autonomous system 
numbers. Having the complete AS path eliminates the possibility of routing loops and count-to-
infinity problems. A BGP UPDATE contains a single path vector and all of the destinations reachable 
through that path. Multiple UPDATE packets may be sent to build a routing table.

BGP peers send each other complete routing table updates when the connection is first established. 
After that, only changes are sent. If there are no changes, just a small (19-byte) KEEPALIVE message 
is sent to indicate that the peer and the link are still operational. BGP is very efficient in its use of 
network bandwidth and system resources.

By far the most important thing to remember about exterior protocols is that most systems never run 
them. Exterior protocols are only required when an AS must exchange routing information with 
another AS. Most routers within an AS run an interior protocol such as OSPF. Only those gateways 
that connect the AS to another AS need to run an exterior routing protocol. Your network is probably 
an independent part of an AS run by someone else. Internet Service Providers are good examples of 
autonomous systems made up of many independent networks. Unless you provide a similar level of 
service, you probably don't need to run an exterior routing protocol.

7.5.3 Choosing a Routing Protocol 

Although there are many routing protocols, choosing one is usually easy. Most of the interior routing 
protocols mentioned above were developed to handle the special routing problems of very large 
networks. Some of the protocols have only been used by large national and regional networks. For 
local area networks, RIP is still the most common choice. For larger networks, OSPF is the choice.

If you must run an exterior routing protocol, the protocol that you use is often not a matter of choice. 
For two autonomous systems to exchange routing information, they must use the same exterior 
protocol. If the other AS is already in operation, its administrators have probably decided which 
protocol to use, and you will be expected to conform to their choice. Most often this choice is BGP.

The type of equipment affects the choice of protocols. Routers support a wide range of protocols, 
though individual vendors may have a preferred protocol. Hosts don't usually run routing protocols at 
all, and most UNIX systems are delivered with only RIP. Allowing host systems to participate in 
dynamic routing could limit your choices. gated, however, gives you the option to run many different 

file:///C|/mynapster/Downloads/warez/tcpip/ch07_05.htm (3 of 4) [2001-10-15 09:17:42]



[Chapter 7] 7.5 Exterior Routing Protocols 

routing protocols on a UNIX system. While the performance of hardware designed specifically to be a 
router is generally better, gated gives you the option of using a UNIX system as a router.

In the following sections we discuss the Gateway Routing Daemon (gated) software that combines 
interior and exterior routing protocols into one software package. We look at examples of running 
RIP, RIPv2, OSPF, and BGP with gated.

Previous: 7.4 Interior 
Routing Protocols 

TCP/IP Network 
Administration

Next: 7.6 Gateway Routing 
Daemon 

7.4 Interior Routing Protocols Book Index 7.6 Gateway Routing Daemon 

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/ch07_05.htm (4 of 4) [2001-10-15 09:17:42]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Chapter 7] 7.4 Interior Routing Protocols 

Previous: 7.3 Building a 
Static Routing Table 

Chapter 7
Configuring Routing 

Next: 7.5 Exterior Routing 
Protocols 

 

7.4 Interior Routing Protocols 

Routing protocols are divided into two general groups: interior and exterior protocols. An interior 
protocol is a routing protocol used inside - interior to - an independent network system. In TCP/IP 
terminology, these independent network systems are called autonomous systems. [9] Within an 
autonomous system (AS), routing information is exchanged using an interior protocol chosen by the 
autonomous system's administration.

[9] Autonomous systems are described in Chapter 2, Delivering the Data.

All interior routing protocols perform the same basic functions. They determine the "best" route to 
each destination, and they distribute routing information among the systems on a network. How they 
perform these functions, in particular, how they decide which routes are best, is what makes routing 
protocols different from each other. There are several interior protocols:

●     The Routing Information Protocol (RIP) is the interior protocol most commonly used on UNIX 
systems. RIP is included as part of the UNIX software delivered with most systems. It is 
adequate for local area networks and is simple to configure. RIP selects the route with the 
lowest "hop count" (metric) as the best route. The RIP hop count represents the number of 
gateways through which data must pass to reach its destination. RIP assumes that the best route 
is the one that uses the fewest gateways. This approach to route choice is called a distance-
vector algorithm.

●     Hello is a protocol that uses delay as the deciding factor when choosing the best route. Delay is 
the length of time it takes a datagram to make the round trip between its source and 
destination. A Hello packet contains a time stamp indicating when it was sent. When the 
packet arrives at its destination, the receiving system subtracts the time stamp from the current 
time, to estimate how long it took the packet to arrive. Hello is not widely used. It was the 
interior protocol of the original 56 kbps NSFNET backbone and has had very little use 
otherwise.

●     Intermediate System to Intermediate System (IS-IS) is an interior routing protocol from the OSI 
protocol suite. It is a Shortest Path First (SPF) link-state protocol. It was the interior routing 
protocol used on the T1 NSFNET backbone, and it is still used by some large service 
providers.

●     Open Shortest Path First (OSPF) is another link-state protocol developed for TCP/IP. It is 
suitable for very large networks and provides several advantages over RIP.

file:///C|/mynapster/Downloads/warez/tcpip/ch07_04.htm (1 of 11) [2001-10-15 09:17:44]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


[Chapter 7] 7.4 Interior Routing Protocols 

Of these protocols, we will discuss RIP and OSPF in detail. OSPF is widely used on routers. RIP is 
widely used on UNIX systems. We will start the discussion with RIP.

7.4.1 Routing Information Protocol 

As delivered with most UNIX systems, Routing Information Protocol (RIP) is run by the routing 
daemon routed (pronounced "route" "d"). When routed starts, it issues a request for routing updates 
and then listens for responses to its request. When a system configured to supply RIP information 
hears the request, it responds with an update packet based on the information in its routing table. The 
update packet contains the destination addresses from the routing table and the routing metric 
associated with each destination. Update packets are issued in response to requests, as well as 
periodically to keep routing information accurate.

To build the routing table, routed uses the information in the update packets. If the routing update 
contains a route to a destination that does not exist in the local routing table, the new route is added. If 
the update describes a route whose destination is already in the local table, the new route is used only 
if it has a lower cost. The cost of a route is determined by adding the cost of reaching the gateway that 
sent the update to the metric contained in the RIP update packet. If the total metric is less than the 
metric of the current route, the new route is used.

RIP also deletes routes from the routing table. It accomplishes this in two ways. First, if the gateway 
to a destination says the cost of the route is greater than 15, the route is deleted. Second, RIP assumes 
that a gateway that doesn't send updates is dead. All routes through a gateway are deleted if no 
updates are received from that gateway for a specified time period. In general, RIP issues routing 
updates every 30 seconds. In many implementations, if a gateway does not issue routing updates for 
180 seconds, all routes through that gateway are deleted from the routing table.

7.4.1.1 Running RIP with routed 

To run RIP using the routing daemon (routed), [10] enter the following command:

[10] On some systems the routing daemon is in.routed.

# routed

The routed statement is often used without any command-line arguments, but you may want to use 
the -q option. The -q option prevents routed from advertising routes. It just listens to the routes 
advertised by other systems. If your computer is not a gateway, you should probably use the -q option.

In the section on static routing we commented out the routed statement found in a startup file. If that 
statement is in your startup file, no other action is required to run RIP; just boot your system and RIP 
will run. Otherwise, add the routed command to your startup.

file:///C|/mynapster/Downloads/warez/tcpip/ch07_04.htm (2 of 11) [2001-10-15 09:17:44]



[Chapter 7] 7.4 Interior Routing Protocols 

routed reads /etc/gateways at startup and adds its information to the routing table. routed can build a 
functioning routing table simply by using the RIP updates received from the RIP suppliers. However, 
it is sometimes useful to supplement this information with, for example, an initial default route or 
information about a gateway that does not announce its routes. The /etc/gateways file stores this 
additional routing information.

The most common use of the /etc/gateways file is to define an active default route, so we'll use that as 
an example. This one example is sufficient because all entries in the /etc/gateways file have the same 
basic format. On peanut, the following entry specifies almond as the default gateway:

net 0.0.0.0 gateway 172.16.12.1 metric 1 active

The entry starts with the keyword net. All entries start with the keyword net or the keyword host 
to indicate whether the address that follows is a network address or a host address. The destination 
address 0.0.0.0 is the address used for the default route. In the route command we used the keyword 
default to indicate this route, but in /etc/gateways the default route is indicated by network address 
0.0.0.0.

Next is the keyword gateway followed by the gateway's IP address. In this case it is the address of 
almond (172.16.12.1).

Then comes the keyword metric followed by a numeric metric value. The value, which is called the 
metric, is the cost of the route. The metric was almost meaningless when used with static routing. 
Now that we are running RIP, the metric is actually used to make routing decisions. The RIP metric 
represents the number of gateways through which data must pass to reach its final destination. But as 
we saw with ifconfig, the metric is really an arbitrary value used by the administrator to prefer one 
route over another. (The system administrator is free to assign any metric value.) However, it is useful 
to vary the metric only if you have more than one route to the same destination. With only one 
gateway to the Internet, the correct metric to use for almond is 1.

All /etc/gateways entries end with either the keyword passive or the keyword active. "Passive" 
means the gateway listed in the entry is not required to provide RIP updates. Use passive to 
prevent RIP from deleting the route if no updates are expected from the gateway. A passive route is 
placed in the routing table and kept there as long as the system is up. In effect, it becomes a permanent 
static route.

The keyword active, on the other hand, creates a route that can be updated by RIP. An active 
gateway is expected to supply routing information and will be removed from the routing table if, over 
a period of time, it does not provide routing updates. Active routes are used to "prime the pump" 
during the RIP startup phase, with the expectation that the routes will be updated by RIP when the 
protocol is up and running.

Our sample entry ends with the keyword active, which means that this default route will be deleted 
if no routing updates are received from almond. Default routes are convenient; this is especially true 
when you use static routing. But when you use dynamic routing, default routes should be used with 

file:///C|/mynapster/Downloads/warez/tcpip/ch07_04.htm (3 of 11) [2001-10-15 09:17:44]



[Chapter 7] 7.4 Interior Routing Protocols 

caution, especially if you have multiple gateways that can reach the same destination. A passive 
default route prevents the routing protocol from dynamically updating the route to reflect changing 
network conditions. Use an active default route that can be updated by the routing protocol.

RIP is easy to implement and simple to configure. Perfect! Well, not quite. RIP has three serious 
shortcomings:

Limited network diameter

The longest RIP route is 15 hops. A RIP router cannot maintain a complete routing table for a 
network that has destinations more than 15 hops away. The hop count cannot be increased 
because of the second shortcoming.

Slow convergence

Deleting a bad route sometimes requires the exchange of multiple routing update packets until 
the route's cost reaches 16. This is called "counting to infinity," because RIP keeps 
incrementing the route's cost until it becomes greater than the largest valid RIP metric. (In this 
case, 16 is infinity.) Additionally, RIP may wait 180 seconds before deleting the invalid routes. 
In network-speak, we say that these conditions delay the "convergence of routing"; i.e., it takes 
a long time for the routing table to reflect the current state of the network.

Classful routing

RIP interprets all addresses using the class rules described in Chapter 2. For RIP all addresses 
are class A, B, or C, which makes RIP incompatible with CIDR supernets and incapable of 
supporting variable-length subnets.

Nothing can be done to change the limited network diameter. A small metric is essential to reduce the 
impact of counting to infinity. However, limited network size is the least important of RIP's 
shortcomings. The real work of improving RIP concentrates on the other two problems, slow 
convergence and classful routing.

Features have been added to RIP to address slow convergence. Before discussing them we must 
understand how the "count-to-infinity" problem occurs. Figure 7.2 illustrates a network where a 
counting-to-infinity problem might happen.

Figure 7.2: Sample network

file:///C|/mynapster/Downloads/warez/tcpip/ch07_04.htm (4 of 11) [2001-10-15 09:17:44]



[Chapter 7] 7.4 Interior Routing Protocols 

Figure 7.2 shows that almond reaches subnet 3 through pecan and then through filbert. Subnet 3 is 2 
hops away from almond and 1 hop away from pecan. Therefore pecan advertises a cost of 1 for 
subnet 3 and almond advertises a cost of 2, and traffic continues to be routed through pecan. That is, 
until something goes wrong. If filbert crashes, pecan waits for an update from filbert for 180 seconds. 
While waiting, pecan continues to send updates to almond that keep the route to subnet 3 in almond's 
routing table. When pecan's timer finally expires, it removes all routes through filbert from its routing 
table, including the route to subnet 3. It then receives an update from almond advertising that almond 
is 2 hops away from subnet 3. pecan installs this route and announces that it is 3 hops away from 
subnet 3. almond receives this update, installs the route, and announces that it is 4 hops away from 
subnet 3. Things continue on in this manner until the cost of the route to subnet 3 reaches 16 in both 
routing tables. If the update interval is 30 seconds, this could take a long time!

Split horizon and poison reverse are two features that attempt to avoid counting to infinity. Here's 
how:

Split horizon

With this feature, a router does not advertise routes on the link from which those routes were 
obtained. This would solve the count-to-infinity problem described above. Using the split 
horizon rule, almond would not announce the route to subnet 3 on subnet 12 because it learned 
that route from the updates it received from pecan on subnet 12. While this feature works for 
the example described above, it does not work for all count-to-infinity configurations. (More 
on this later.)

Poison reverse

This feature is an enhancement of split horizon. It uses the same idea: "Don't advertise routes 
on the link from which those routes were obtained." But it adds a positive action to that 
essentially negative rule. Poison reverse says that a router should advertise an infinite distance 

file:///C|/mynapster/Downloads/warez/tcpip/ch07_04.htm (5 of 11) [2001-10-15 09:17:44]



[Chapter 7] 7.4 Interior Routing Protocols 

for routes on this link. With poison reverse, almond would advertise subnet 3 with a cost of 16 
to all systems on subnet 12. The cost of 16 means that subnet 3 cannot be reached through 
almond.

Split horizon and poison reverse solve the problem described above. But what happens if almond 
crashes? Refer to Figure 7.2 With split horizon, salted and roasted do not advertise to almond the 
route to subnet 12 because they learned the route from almond. They do, however, advertise the route 
to subnet 12 to each other. When almond goes down, salted and roasted perform their own count to 
infinity before they remove the route to subnet 12. Triggered updates address this problem.

Triggered updates are a big help. Instead of waiting the normal 30-second update interval, a triggered 
update is sent immediately. Therefore, when an upstream router crashes or a local link goes down, 
immediately after the router updates its local routing table, it sends the changes to its neighbors. 
Without triggered updates, counting to infinity can take almost 8 minutes! With triggered updates, 
neighbors are informed in a few seconds. Triggered updates also use network bandwidth efficiently. 
They don't include the full routing table; they include only the routes that have changed.

Triggered updates take positive action to eliminate bad routes. Using triggered updates, a router 
advertises the routes deleted from its routing table with a infinite cost to force downstream routers to 
also remove them. Again, look at Figure 7.2 If almond crashes, roasted and salted wait 180 seconds 
and remove the routes to subnets 1, 3, and 12 from their routing tables. They then send each other 
triggered updates with a metric of 16 for subnets 1, 3, and 12. Thus they tell each other that they 
cannot reach these networks and no count to infinity occurs. Split horizon, poison reverse, and 
triggered updates go a long way to eliminating counting to infinity.

It is the final shortcoming - the fact that RIP is incompatible with CIDR supernets and variable-length 
subnets - that caused the RIP protocol to be moved to "historical" status in 1996. RIP is not 
compatible with current and future plans for the TCP/IP protocol stack. A new version of RIP had to 
be created to address this final problem.

7.4.2 RIP Version 2 

RIP Version 2 (RIP-2), defined in RFC 1723, is a new version of RIP. It is not a completely new 
protocol. It simply defines extensions to the RIP packet format. RIP-2 adds a network mask and a next 
hop address to the destination address and metric found in the original RIP packet.

The network mask frees the RIP-2 router from the limitation of interpreting addresses based on strict 
address class rules. The mask is applied to the destination address to determine how the address 
should be interpreted. Using the mask, RIP-2 routers support variable-length subnets and CIDR 
supernets.

The next hop address is the IP address of the gateway that handles the route. If the address is 0.0.0.0, 
the source of the update packet is the gateway for the route. The next hop route permits a RIP-2 
supplier to provide routing information about gateways that do not speak RIP-2. Its function is similar 
to an ICMP Redirect, pointing to the best gateway for a route and eliminating extra routing hops.

file:///C|/mynapster/Downloads/warez/tcpip/ch07_04.htm (6 of 11) [2001-10-15 09:17:44]



[Chapter 7] 7.4 Interior Routing Protocols 

RIP-2 adds other new features to RIP. It transmits updates via the multicast address 224.0.0.9 to 
reduce the load on systems that are not capable of processing a RIP-2 packet. RIP-2 also introduces a 
packet authentication scheme to reduce the possibility of accepting erroneous updates from 
misconfigured systems.

Despite these changes, RIP-2 is compatible with RIP. The original RIP specification allowed for 
future versions of RIP. RIP has a version number in the packet header, and it had several empty fields 
for extending the packet. The new values used by RIP-2 did not require any changes to the structure 
of the packet. The new values are simply placed in the empty fields that the original protocol reserved 
for future use. Properly implemented RIP routers can receive RIP-2 packets and extract the data that 
they need from the packet without becoming confused by the new data.

Split horizon, poison reverse, triggered updates, and RIP-2 eliminate most of the problems with the 
original RIP protocol. But RIP-2 is still a distance vector protocol. There are other, newer routing 
technologies that are considered superior for large networks. In particular, link-state routing protocols 
are favored because they provide rapid routing convergence and reduce the possibility of routing 
loops.

7.4.3 Open Shortest Path First 

Open Shortest Path First (OSPF), defined by RFC 2178, is a link-state protocol. As such, it is very 
different from RIP. A router running RIP shares information about the entire network with its 
neighbors. Conversely, a router running OSPF shares information about its neighbors with the entire 
network. The "entire network" means, at most, a single autonomous system. RIP doesn't try to learn 
about the entire Internet, and OSPF doesn't try to advertise to the entire Internet. That's not their job. 
These are interior routing protocols; and so their job is to construct the routing inside of an 
autonomous system. OSPF further refines this task by defining a hierarchy of routing areas within an 
autonomous system:

Areas

An area is an arbitrary collection of interconnected networks, hosts and routers. Areas 
exchange routing information with other areas within the autonomous system through area 
border routers.

Backbone

A backbone is a special area that interconnects all of the other areas within an autonomous 
system. Every area must connect to the backbone, because the backbone is responsible for 
distributing routing information between the areas.

Stub area

A stub area has only one area border router, which means that there is only one route out of 
the area. In this case, the area border router does not need to advertise external routes to the 

file:///C|/mynapster/Downloads/warez/tcpip/ch07_04.htm (7 of 11) [2001-10-15 09:17:44]



[Chapter 7] 7.4 Interior Routing Protocols 

other routers within the stub area. It can simply advertise itself as the default route.

Only a large autonomous system needs to be subdivided into areas. The sample network shown in 
Figure 7.2 is small and would not need to be divided. We can, however, use it as an example to 
illustrate the different areas. We could divide this autonomous system into any areas we wish. Assume 
we divide it into three areas: area 1 contains subnet 3; area 2 contains subnet 1 and subnet 12; and area 
3 contains subnet 25, subnet 36, and the PPP links. Furthermore, we could define area 1 as a stub area 
because filbert is that area's only area border router. We also could define area 2 as the backbone area 
because it interconnects the other two areas and all routing information between areas 1 and 3 must be 
distributed by area 2. Area 2 contains two area border routers, almond and filbert, and one interior 
router, pecan. Area 3 contains three routers: almond, roasted, and salted.

Clearly OSPF provides lots of flexibility for subdividing an autonomous system. But why is it 
necessary? One problem for a link-state protocol is the large quantity of data that can be collected in 
the link-state database and the amount of time it can take to calculate the routes from that data. A look 
at the protocol shows why this is true.

Every OSPF router builds a directed graph of the entire network using the Dijkstra Shortest Path First 
(SPF) algorithm. A directed graph is a map of the network from the perspective of the router, that is, 
the root of the graph is the router. The graph is built from the link-state database, which includes 
information about every router on the network and all the neighbors of every router. The link-state 
database for the autonomous system in Figure 7.2 contains 5 routers and 10 neighbors: filbert has 1 
neighbor, pecan; pecan has 2 neighbors, filbert and almond; almond has 3 neighbors, pecan, salted, 
and roasted; salted has 2 neighbors, almond and roasted; and roasted has 2 neighbors, salted and 
almond. Figure 7.3 shows the graph of this autonomous system from the perspective of filbert. The 
Dijkstra algorithm builds the map in this manner:

Figure 7.3: A network graph

file:///C|/mynapster/Downloads/warez/tcpip/ch07_04.htm (8 of 11) [2001-10-15 09:17:44]



[Chapter 7] 7.4 Interior Routing Protocols 

1.  Install the local system as the root of the map with a cost of 0.
2.  Locate the neighbors of the system just installed and add them to the map. The cost of reaching 

the neighbors is calculated as the sum of the cost to reach the system just installed plus the cost 
it advertises for reaching each neighbor. For example: assume that almond advertises a cost of 
20 for salted and that the cost of reaching almond is 15. Then the cost for salted in filbert's 
map is 35.

3.  Walk through the map and select the lowest-cost path for each destination. For example, when 
salted is added to the map, its neighbors include roasted. The path to roasted through salted is 
temporarily added to the map. In this third phase of the algorithm, the cost of reaching roasted 
through almond is compared to the cost of reaching it through salted. The lowest-cost path is 
selected. Figure 7.3 shows the deleted paths in dotted lines. Steps 2 and 3 of the algorithm are 
repeated for every system in the link-state database.

The information in the link-state database is gathered and distributed in a simple and efficient manner. 
An OSPF router discovers its neighbors through the use of Hello packets. [11] It sends Hello packets 
and listens for Hello packets from adjacent routers. The Hello packet identifies the local router and 
lists the adjacent routers from which it has received packets. When a router receives a Hello packet 
that lists it as an adjacent router, it knows it has found a neighbor. It knows this because it can hear 
packets from that neighbor and, because the neighbor lists it as an adjacent router, the neighbor must 
be able to hear packets from it. The newly discovered neighbor is added to the local system's neighbor 
list.

[11] Don't confuse Hello packets with the Hello protocol. These are OSPF Hello 

file:///C|/mynapster/Downloads/warez/tcpip/ch07_04.htm (9 of 11) [2001-10-15 09:17:44]



[Chapter 7] 7.4 Interior Routing Protocols 

packets.

The OSPF router then advertises all of its neighbors. It does this by flooding a Link-State 
Advertisement (LSA) to the entire network. The LSA contains the address of every neighbor and the 
cost of reaching that neighbor from the local system. Flooding means that the router sends the LSA 
out of every interface and that every router that receives the LSA sends it out of every interface except 
the one from which it was received. To avoid flooding duplicate LSAs, the routers store a copy of the 
LSAs they receive and discard duplicates.

Figure 7.2 provides an example. When OSPF starts on pecan it sends a Hello packet on subnet 1 and 
one on subnet 12. filbert and almond hear the Hello and respond with Hello packets that list pecan as 
an adjacent router. pecan hears their Hello packets and adds them to its neighbor list. pecan then 
creates an LSA that lists filbert and almond as neighbors with appropriate cost assigned to each. For 
instance, pecan might assign a cost of 5 to filbert and a cost of 10 to almond. pecan then floods the 
LSA on subnet 1 and subnet 12. filbert hears the LSA and floods it on subnet 3. almond receives the 
LSA and floods it on both of its PPP links. salted floods the LSA on the link toward roasted, and 
roasted floods it on the same link to salted. When salted and roasted received the second copy of the 
LSA, they discarded it, because it duplicated one that they have already received from almond. In this 
manner, every router in the entire network receives every other router's link-state advertisement.

OSPF routers track the state of their neighbors by listening for Hello packets. Hello packets are issued 
by all routers on a periodic basis. When a router stops issuing packets, it or the link it is attached to is 
assumed to be down. Its neighbors update their LSA and flood them through the network. The new 
LSAs are included into the link-state database on every router on the network and every router 
recalculates their network map based on this new information. Clearly, limiting the number of routers 
by limiting the size of the network reduces the burden of recalculating the map. For many networks 
the entire autonomous system is small enough. For others, dividing the autonomous system into areas 
improves efficiency.

Another feature of OSPF that improves efficiency is the designated router. The designated router is 
one router on the network that treats all other routers on the network as its neighbors, while all other 
routers treat only the designated router as their neighbor. This helps reduce the size of the link-state 
database and thus improves the speed of the shortest-path-first calculation. Assume a broadcast 
network with 5 routers. Five routers each with 4 neighbors produce a link-state database with 20 
entries. But if one of those routers is the designated router, then that router has 4 neighbors and all 
other routers have only 1 neighbor, for a total of 10 link-state database entries. While there is no need 
for a designated router on such a small network, the larger the network, the more dramatic the gains. 
For example, a broadcast network with 25 routers has a link-state database of 50 entries when a 
designated router is used, versus a database of 600 entries without one.

OSPF provides the router with an end-to-end view of the route between two systems instead of the 
limited next-hop view provided by RIP. Flooding quickly disseminates routing information 
throughout the network. Limiting the size of the link-state database through areas and designated 
routers speeds the SPF calculation. Taken altogether, OSPF is an efficient link-state routing protocol.

file:///C|/mynapster/Downloads/warez/tcpip/ch07_04.htm (10 of 11) [2001-10-15 09:17:44]



[Chapter 7] 7.4 Interior Routing Protocols 

OSPF also offers additional features. It provides password authentication to ensure that the update 
comes from a valid router. Currently OSPF uses an eight-character, clear-text password. Work is 
underway to add a Message Digest 5 (MD5) crypto-checksum for stronger authentication.

OSPF also supports equal-cost multi-path routing. This mouthful means that OSPF routers can 
maintain more than one path to a single destination. Given the proper conditions, this feature can be 
used for load balancing across multiple network links. However, most systems are not designed to 
take advantage of this feature. Refer to your router's documentation to see if it supports load balancing 
across equal-cost OSPF routes.

With all of these features, OSPF is the preferred TCP/IP interior routing protocol for dedicated 
routers.

Previous: 7.3 Building a 
Static Routing Table 

TCP/IP Network 
Administration

Next: 7.5 Exterior Routing 
Protocols 

7.3 Building a Static Routing 
Table 

Book Index 7.5 Exterior Routing Protocols 

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/ch07_04.htm (11 of 11) [2001-10-15 09:17:44]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Chapter 7] 7.3 Building a Static Routing Table 

Previous: 7.2 The Minimal 
Routing Table 

Chapter 7
Configuring Routing 

Next: 7.4 Interior Routing 
Protocols 

 

7.3 Building a Static Routing Table 

As we have seen, the minimal routing table works to reach hosts only on the directly connected physical 
networks. To reach remote hosts, routes through external gateways must be added to the routing table. One 
way to do this is by constructing a static routing table with route commands.

Use the UNIX route command to add or delete entries manually in the routing table. For example, to add the 
route 207.25.98.0 to a Solaris system's routing table, enter:

# route add 207.25.98.0 172.16.12.1 1
add net 207.25.98.0: gateway almond

The first argument after the route command in this sample is the keyword add. The first keyword on a 
route command line is either add or delete, telling route either to add a new route or delete an existing one. 
There is no default; if neither keyword is used, route displays the routing table.

The next value is the destination address, which is the address reached via this route. The destination address 
can be specified as an IP address, a network name from the /etc/networks file, a host name from the 
/etc/hosts file, or the keyword default. Because most routes are added early in the startup process, numeric 
IP addresses are used more than names. This is done so that the routing configuration is not dependent on 
the state of the name server software. Always use the complete numeric address (all four bytes). route 
expands the address if it contains less than four bytes, and the expanded address may not be what you 
intended. [4]

[4] Some implementations of route expand "26" to 0.0.0.26, even though "26" could mean 
Milnet (26.0.0.0).

If the keyword default is used for the destination address, route creates a default route. [5] The default route 
is used whenever there is no specific route to a destination, and it is often the only route you need. If your 
network has only one gateway, use a default route to direct all traffic bound for remote networks through 
that gateway.

[5] The network address associated with the default route is 0.0.0.0.

Next on the route command line is the gateway address. [6] This is the IP address of the external gateway 
through which data is sent to the destination address. The address must be the address of a gateway on a 
directly connected network. TCP/IP routes specify the next-hop in the path to a remote destination. That next-

file:///C|/mynapster/Downloads/warez/tcpip/ch07_03.htm (1 of 6) [2001-10-15 09:17:45]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


[Chapter 7] 7.3 Building a Static Routing Table 

hop must be directly accessible to the local host; therefore, it must be on a directly connected network.

[6] The syntax varies slightly between systems. Linux precedes the gateway address with the 
keyword gw. Check your system's documentation for the details.

The last argument on the command line is the routing metric. The metric argument is not used when routes 
are deleted, but many systems require it when a route is added. Despite being required, route only uses the 
metric to decide if this is a route through a directly attached interface or a route through an external gateway. 
If the metric is 0, the route is installed as a route through a local interface, and the G flag, which we saw in 
the netstat -i display, is not set. If the metric value is greater than 0, the route is installed with the G flag set, 
and the gateway address is assumed to be the address of an external gateway. Static routing makes no other 
use of the metric. Dynamic routing is required to make real use of varying metric values.

7.3.1 Adding Static Routes 

As an example, let's configure static routing on the imaginary workstation peanut. Figure 7.1 shows the 
subnet 172.16.12.0. There are two gateways on this subnet, almond and pecan. almond is the gateway to 
thousands of networks on the Internet; pecan provides access to the other subnets on nuts-net. We'll use 
almond as our default gateway because it is used by thousands of routes. The smaller number of routes 
through pecan can easily be entered individually. The number of routes through a gateway, not the amount 
of traffic it handles, decides which gateway to select as the default. Even if most of peanut's network traffic 
goes through pecan to other hosts on nuts-net, the default gateway should be almond.

Figure 7.1: Routing on a subnet

To install the default route on peanut, we enter:

# route -n add default 172.16.12.1 1
add net default: gateway 172.16.12.1

file:///C|/mynapster/Downloads/warez/tcpip/ch07_03.htm (2 of 6) [2001-10-15 09:17:45]



[Chapter 7] 7.3 Building a Static Routing Table 

The destination is default, and the gateway address (172.16.12.1) is almond's address. Now almond is 
peanut's default gateway. The -n option is not required. It just tells route to display numeric addresses in its 
informational messages. When you add route commands to a startup file, use the -n option to prevent route 
from wasting time querying name server software that may not be running.

After installing the default route, examine the routing table to make sure the route has been added:

% netstat -rn
Routing tables
Destination     Gateway        Flags    Refcnt Use       Interface
127.0.0.1       127.0.0.1      UH       1      132       lo0
default         172.16.12.1    UG       0      0         le0
172.16.12.0     172.16.12.2     U       26     49041     le0

Try ping again to see whether peanut can now communicate with remote hosts. If we're lucky, [7] the 
remote host responds and we see:

[7] It is possible that the remote host is down. If it is, ping receives no answer. Don't give up; 
try another host.

% ping 207.25.98.2
PING 207.25.98.2: 56 data bytes
64 bytes from ruby.ora.com (207.25.98.2): icmp_seq=0. time=110. ms
64 bytes from ruby.ora.com (207.25.98.2): icmp_seq=1. time=100. ms
^C
----207.25.98.2 PING Statistics----
2 packets transmitted, 2 packets received, 0% packet loss
round-trip (ms)  min/avg/max = 100/105/110

This display indicates successful communication with the remote host, which means that we now have a 
good route to hosts on the Internet.

However, we still haven't installed routes to the rest of nuts-net. If we ping a host on another subnet, 
something interesting happens:

% ping 172.16.1.2
PING 172.16.1.2: 56 data bytes
ICMP Host redirect from gateway almond.nuts.com (172.16.12.1)
 to pecan.nuts.com (172.16.12.3) for filbert.nuts.com (172.16.1.2)
64 bytes from filbert.nuts.com (172.16.1.2): icmp_seq=1. time=30. ms
^C
----172.16.1.2 PING Statistics----
1 packets transmitted, 1 packets received, 0% packet loss
round-trip (ms)  min/avg/max = 30/30/30

peanut believes that all destinations are reachable through its default route. Therefore, even data destined for 
the other subnets is sent to almond. If peanut sends data to almond that should go through pecan, almond 

file:///C|/mynapster/Downloads/warez/tcpip/ch07_03.htm (3 of 6) [2001-10-15 09:17:45]



[Chapter 7] 7.3 Building a Static Routing Table 

sends an ICMP Redirect to peanut telling it to use pecan. (See Chapter 1, Overview of TCP/IP, for a 
description of the ICMP Redirect Message.) ping shows the ICMP Redirect in action. netstat shows the 
effect the redirect has on the routing table:

% netstat -nr
Routing tables
Destination     Gateway        Flags    Refcnt Use        Interface
127.0.0.1       127.0.0.1      UH       1      1604       lo0
172.16.1.2      172.16.12.3    UGHD     0      514        le0
default         172.16.12.1    UG       3      373964     le0
172.16.12.0     172.16.12.1    U        31     686547     le0

The route with the D flag set was installed by the ICMP Redirect.

Some network managers take advantage of ICMP Redirects when designing a network. All hosts are 
configured with a default route, even those on networks with more than one gateway. The gateways 
exchange routing information through routing protocols and redirect hosts to the best gateway for a specific 
route. This type of routing, which is dependent on ICMP Redirects, became popular because of personal 
computers (PCs). Many PCs cannot run a routing protocol; some do not have a route command and are 
limited to a single default route. Clearly, ICMP Redirects are needed to support these clients. Also, this type 
of routing is simple to configure and well suited for implementation through a configuration server, as the 
same default route is used on every host. For these reasons, some network managers encourage repeated 
ICMP Redirects.

Other network administrators prefer to avoid ICMP Redirects and to maintain direct control over the 
contents of the routing table. To avoid redirects, specific routes can be installed for each subnet, using 
individual route statements:

# route -n add 172.16.1.0 172.16.12.3 1
add net 172.16.1.0: gateway 172.16.12.3
# route -n add 172.16.6.0 172.16.12.3 1
add net 172.16.6.0: gateway 172.16.12.3
# route -n add 172.16.3.0 172.16.12.3 1
add net 172.16.3.0: gateway 172.16.12.3
# route -n add 172.16.9.0 172.16.12.3 1
add net 172.16.9.0: gateway 172.16.12.3

netstat shows what the completed routing table looks like. peanut is directly connected only to 172.16.12.0, 
so all gateways in its routing table have addresses that begin with 172.16.12. The finished routing table is 
shown below.

% netstat -rn
Routing tables
Destination          Gateway          Flags    Refcnt Use Interface
127.0.0.1            127.0.0.1        UH       1      132       lo0
172.16.12.0          172.16.12.2      U        26     49041     le0
172.16.1.3           172.16.12.3      UGHD     1      514       le0
default              172.16.12.1      UG       0      0         le0

file:///C|/mynapster/Downloads/warez/tcpip/ch07_03.htm (4 of 6) [2001-10-15 09:17:45]



[Chapter 7] 7.3 Building a Static Routing Table 

172.16.1.0           172.16.12.3      UG       1      4904      le0
172.16.6.0           172.16.12.3      UG       0      0         le0
172.16.3.0           172.16.12.3      UG       0      0         le0
172.16.9.0           172.16.12.3      UG       0      0         le0

The routing table we have constructed uses the default route (through almond) to reach external networks, 
and specific routes (through pecan) to reach other subnets within nuts-net. Rerunning the ping tests 
produces consistently successful results. However, if any subnets are added to the network, the routes to 
these new subnets must be manually added to the routing table. Additionally, if the system is rebooted, all 
static routing table entries are lost. Therefore, to use static routing, you must ensure that the routes are re-
installed each time your system boots.

7.3.1.1 Installing static routes at startup 

If you decide to use static routing, you need to make two modifications to your startup files:

1.  Add the desired route statements to a startup file.
2.  Remove any statements from the startup file that run a routing protocol.

Linux provides an interesting example, because it requires static routes to build the minimal routing table. 
The Linux implementation of ifconfig doesn't modify the routing table when a new interface is configured. 
The route for a new interface is explicitly added with a route command. These "interface routes" are stored 
in a startup script. On our sample Slackware Linux system, the routes are found in /etc/rc.d/rc.inet1: [8]

[8] The actual route statements in rc.inet1 use script variables. We changed these to addresses 
for the sake of clarity.

/sbin/route add -net 127.0.0.0
/sbin/route add -net 172.16.5.0 netmask 255.255.255.0

The first statement installs the route for the loopback interface. Note the abbreviated syntax of this 
command: it specifies a destination but no gateway. This is because Linux has a special syntax just for 
assigning a route to an interface. We could have written the command as:

/sbin/route add -net 127.0.0.0 dev lo0

If dev is not specified on the command line, the route command determines the correct interface from the 
destination address.

The second statement from the /etc/rc.d/rc.inet1 script installs the route for the Ethernet interface. This 
statement includes a subnet mask. If none was provided, it would default to 255.255.0.0, which is the 
standard for the class B address 172.16.0.0.

Installing routes for directly connected interfaces is specific to Linux. As another more general example, let's 
see how to add static routing to the startup script on a Solaris system. Before making changes to your real 
system, check your system's documentation. You may need to modify a different boot script, and the 
execution path of the routing daemon may be different. Only the documentation can provide the exact details 

file:///C|/mynapster/Downloads/warez/tcpip/ch07_03.htm (5 of 6) [2001-10-15 09:17:45]



[Chapter 7] 7.3 Building a Static Routing Table 

you need.

On a Solaris system, edit /etc/init.d/inetinit to add the route statements:

route -n add default 172.16.12.1 1 > /dev/console
route -n add 172.16.1.0 172.16.12.3 1 > /dev/console
route -n add 172.16.6.0 172.16.12.3 1 > /dev/console
route -n add 172.16.3.0 172.16.12.3 1 > /dev/console
route -n add 172.16.9.0 172.16.12.3 1 > /dev/console

Next, check whether or not the script starts a routing protocol. If it does, comment out the lines that start it. 
You don't want a routing protocol running when you are using static routing. On our Solaris sample system, 
the routing software is only started if the system has more than one network interface (i.e., is a router) or the 
/etc/gateways file has been created. (More on this file later.) Neither of these things is true. Therefore the 
routing daemon won't be run by the startup process and we don't have to do anything except add the route 
statements.

Although the startup filename may be different on your system, the procedure should be basically the same. 
These simple steps are all you need to set up static routing. The problem with static routing is not setting it 
up, but maintaining it, if you have a changeable networking environment. Routing protocols are flexible 
enough to handle simple and complex routing environments. That is why some startup procedures run 
routing protocols by default. However, most UNIX systems need only a static default route. Routing 
protocals are usually needed only by routers.

Previous: 7.2 The Minimal 
Routing Table 

TCP/IP Network 
Administration

Next: 7.4 Interior Routing 
Protocols 

7.2 The Minimal Routing 
Table 

Book Index 7.4 Interior Routing Protocols 

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/ch07_03.htm (6 of 6) [2001-10-15 09:17:45]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Chapter 7] 7.2 The Minimal Routing Table 

Previous: 7.1 Common 
Routing Configurations 

Chapter 7
Configuring Routing 

Next: 7.3 Building a Static 
Routing Table 

 

7.2 The Minimal Routing Table 

Let's look at the contents of the routing table constructed by ifconfig when peanut's network interfaces were 
configured:

% netstat -rn
Routing tables

Destination       Gateway          Flags    Refcnt Use      Interface
127.0.0.1         127.0.0.1        UH       1      132      lo0
172.16.12.0       172.16.12.2      U        26     49041    1e0

The first entry is the loopback route to localhost created when lo0 was configured. The other entry is the route 
to network 172.16.12.0 through interface le0. Address 172.16.12.2 is not a remote gateway address. It is the 
address assigned to the le0 interface on peanut.

Look at the Flags field for each entry. Both entries have the U (up) flag set, indicating that they are ready to 
be used, but neither entry has the G (gateway) flag set. The G flag indicates that an external gateway is used. 
The G flag is not set because both of these routes are direct routes through local interfaces, not through 
external gateways.

The loopback route also has the H (host) flag set. This indicates that only one host can be reached through this 
route. The meaning of this flag becomes clear when you look at the Destination field for the loopback entry. It 
shows that the destination is a host address, not a network address. The loopback network address is 
127.0.0.0. The destination address shown (127.0.0.1) is the address of localhost, an individual host. This 
particular host route is in most routing tables.

Although every routing table has this host-specific route, most routes lead to networks. One reason network 
routes are used is to reduce the size of the routing table. An organization may have only one network but 
hundreds of hosts. The Internet has thousands of networks but millions of hosts. A routing table with a route 
for every host would be unmanageable.

Our sample table contains only one network route, 172.16.12.0. Therefore, peanut can communicate only with 
hosts located on that network. The limited capability of this routing table is easily verified with the ping 
command. ping uses the ICMP Echo Message to force a remote host to echo a packet back to the local host. If 
packets can travel to and from a remote host, it indicates that the two hosts can successfully communicate.

To check the routing table on peanut, first ping another host on the local network:

file:///C|/mynapster/Downloads/warez/tcpip/ch07_02.htm (1 of 2) [2001-10-15 09:17:45]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


[Chapter 7] 7.2 The Minimal Routing Table 

% ping -s almond
PING almond.nuts.com: 56 data bytes
64 bytes from almond.nuts.com (172.16.12.1): icmp_seq=0. time=11. ms
64 bytes from almond.nuts.com (172.16.12.1): icmp_seq=1. time=10. ms
^C
----almond.nuts.com PING Statistics----
2 packets transmitted, 2 packets received, 0% packet loss
round-trip (ms)  min/avg/max = 10/10/11

ping displays a line of output for each ICMP ECHO_RESPONSE received. [3] When ping is interrupted, it 
displays some summary statistics. All of this indicates successful communication with almond. But if we 
check a host that is not on nuts-net, say a host at O'Reilly, the results are different.

[3] Sun's ping would only display the message "almond is alive" if the -s option was not used. 
Some other ping implementations do not require the -s option.

% ping 207.25.98.2
sendto: Network is unreachable

Here the message "sendto: Network is unreachable" indicates that peanut does not know how to send data to 
the network that host 207.25.98.2 is on. There are only two routes in the peanut routing table and neither is a 
route to 207.25.98.0.

Even other subnets on nuts-net cannot be reached using this routing table. To demonstrate this, ping a host on 
another subnet. For example:

% ping 172.16.1.2
sendto: Network is unreachable

These ping tests show that the routing table created by ifconfig allows communication only with other hosts 
on the local network. If your network does not require access to any other TCP/IP networks, this may be all 
you need. However, if it does require access to other networks, you must add more routes to the routing table.

Previous: 7.1 Common 
Routing Configurations 

TCP/IP Network 
Administration

Next: 7.3 Building a Static 
Routing Table 

7.1 Common Routing 
Configurations 

Book Index 7.3 Building a Static Routing 
Table 

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/ch07_02.htm (2 of 2) [2001-10-15 09:17:45]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Chapter 7] Configuring Routing 

Previous: 6.5 Summary Chapter 7 Next: 7.2 The Minimal 
Routing Table 

 

7. Configuring Routing 
Contents:
Common Routing Configurations 
The Minimal Routing Table 
Building a Static Routing Table 
Interior Routing Protocols 
Exterior Routing Protocols 
Gateway Routing Daemon 
Configuring gated 
Summary 

Routing is the glue that binds the Internet together. Without it, TCP/IP traffic is limited to a single 
physical network. Routing allows traffic from your local network to reach its destination somewhere 
else in the world - perhaps after passing through many intermediate networks.

The important role of routing and the complex interconnection of Internet networks make the design 
of routing protocols a major challenge to network software developers. Consequently, most 
discussions of routing concern protocol design. Very little is written about the important task of 
properly configuring routing protocols. However, more day-to-day problems are caused by 
improperly configured routers than are caused by improperly designed routing algorithms. As system 
administrators, we need to ensure that the routing on our systems is properly configured. This is the 
task we tackle in this chapter.

7.1 Common Routing Configurations 

First, we must make a distinction between routing and routing protocols. All systems route data, but 
not all systems run routing protocols. Routing is the act of forwarding datagrams based on the 
information contained in the routing table. Routing protocols are programs that exchange the 
information used to build routing tables.

A network's routing configuration does not always require a routing protocol. In situations where the 
routing information does not change - for example, when there is only one possible route, the system 

file:///C|/mynapster/Downloads/warez/tcpip/ch07_01.htm (1 of 3) [2001-10-15 09:17:46]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


[Chapter 7] Configuring Routing 

administrator usually builds the routing table manually. Some networks have no access to any other 
TCP/IP networks, and therefore do not require that the system administrator build the routing table at 
all. The three most common routing configurations are: [1]

[1] Chapter 4, Getting Started , presents guidelines for choosing the correct routing 
configuration for your network.

Minimal routing

A network completely isolated from all other TCP/IP networks requires only minimal routing. 
A minimal routing table usually is built by ifconfig when the network interface is configured. 
[2] If your network doesn't have direct access to other TCP/IP networks, and if you are not 
using subnetting, this may be the only routing table you'll require.

[2] Linux is an exception. ifconfig does not create routing table entries on a Linux 
system.

Static routing

A network with a limited number of gateways to other TCP/IP networks can be configured 
with static routing. When a network has only one gateway, a static route is the best choice. A 
static routing table is constructed manually by the system administrator using the route 
command. Static routing tables do not adjust to network changes, so they work best where 
routes do not change.

Dynamic routing

A network with more than one possible route to the same destination should use dynamic 
routing. A dynamic routing table is built from the information exchanged by routing protocols. 
The protocols are designed to distribute information that dynamically adjusts routes to reflect 
changing network conditions. Routing protocols handle complex routing situations more 
quickly and accurately than the system administrator can. Routing protocols are designed not 
only to switch to a backup route when the primary route becomes inoperable; they are also 
designed to decide which is the "best" route to a destination. On any network where there are 
multiple paths to the same destination, a routing protocol should be used.

Routes are built automatically by ifconfig, manually by the system administrator, or dynamically by 
routing protocols. But no matter how routes are entered, they all end up in the routing table.

Previous: 6.5 Summary TCP/IP Network 
Administration

Next: 7.2 The Minimal 
Routing Table 

6.5 Summary Book Index 7.2 The Minimal Routing 
Table 

file:///C|/mynapster/Downloads/warez/tcpip/ch07_01.htm (2 of 3) [2001-10-15 09:17:46]



[Chapter 7] Configuring Routing 

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/ch07_01.htm (3 of 3) [2001-10-15 09:17:46]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Chapter 6] 6.5 Summary 

Previous: 6.4 Installing 
SLIP 

Chapter 6
Configuring the Interface 

Next: 7. Configuring 
Routing 

 

6.5 Summary 

TCP/IP works with a wide variety of networks. TCP/IP cannot make assumptions about the network it 
runs on - the network interface and its characteristics must be identified to TCP/IP. In this chapter we 
have looked at several examples of how to configure the physical network interface over which 
TCP/IP runs.

ifconfig is the most commonly used interface configuration command. It assigns the interface its IP 
address, sets the subnet mask, sets the broadcast address, and performs several other functions.

TCP/IP can also run over telephone lines using dial-up connections. Two protocols are available to do 
this: Serial Line IP (SLIP) and Point-to-Point Protocol (PPP). PPP is the preferred choice. It is an 
Internet standard and offers better reliability, performance, and security.

There are several steps to setting up a PPP or a SLIP connection: selecting and configuring the serial 
protocol, configuring the port and modem, making the dial-up connection, and completing the remote 
login. Some programs, such as dip, combine all of these steps into one program. Other programs, such 
as pppd and chat, separate the functions. 

Configuring the network interface allows us to talk to the local network, while configuring routing 
allows us to talk to the world. We touched on routing in Chapter 2 and again in this chapter in our 
discussion of routing metrics for ifconfig and default routes for PPP and SLIP. In the next chapter we 
look at routing in much greater detail.

Previous: 6.4 Installing 
SLIP 

TCP/IP Network 
Administration

Next: 7. Configuring 
Routing 

6.4 Installing SLIP Book Index 7. Configuring Routing 

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/ch06_05.htm [2001-10-15 09:17:46]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm
file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Chapter 6] 6.4 Installing SLIP 

Previous: 6.3 Installing PPP Chapter 6
Configuring the Interface 

Next: 6.5 Summary 

 

6.4 Installing SLIP 

Installing Serial Line IP (SLIP) is very similar to installing PPP. As with PPP, support for SLIP is usually 
installed in the kernel - but that is only part of the configuration. The SLIP network interface also must be 
configured.

PPP and SLIP configuration is complicated by the fact that these serial line protocols support both dedicated and 
dial-up connections. For our Linux sample system, this means that two different commands are used to configure 
a SLIP interface depending on whether it is a dedicated or a dial-up connection. In this section we discuss both, 
beginning with the configuration command for dedicated connections.

6.4.1 slattach 

The slattach command "attaches" the SLIP protocol to a specific serial interface. For example:

# slattach /dev/tty03 &

This command tells the SLIP protocol to use /dev/tty03 as its serial interface. The slattach command can 
optionally set some configuration parameters for the serial interface. The syntax of slattach on a Slackware 96 
Linux system is:

slattach [-h | -c | -6] ttyname [baudrate]

The three options, -h, -c, and -6, select the type of SLIP protocol used. -h selects uncompressed SLIP with full 
headers. CSLIP with Van Jacobsen header compression is selected with -c. Use -6 to select six-bit SLIP. If none 
of these options is selected, the slattach command defaults to CSLIP.

The baudrate argument sets the interface's transmission speed. Set the speed by entering a number that 
corresponds to the bit rate that is used to transmit and receive data on this line, e.g., 56000. Both ends of the line 
must set exactly the same bit rate. This may be determined by the characteristics of the leased line, or by the 
hardware interfaces for a direct cable connection. Regardless, the transmission speed is a physical characteristic 
limited by the equipment on the line. A default transmission speed of 9600 bits per second is used if no 
baudrate value is entered on the command line.

The ttyname is the name of the serial interface attached to the leased line or direct cable connection. The serial 
interfaces are identified by the system during the boot. dmesg and grep displays the interface names on a 
Slackware 96 Linux system:

> dmesg | grep tty

file:///C|/mynapster/Downloads/warez/tcpip/ch06_04.htm (1 of 9) [2001-10-15 09:17:47]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


[Chapter 6] 6.4 Installing SLIP 

tty00 at 0x03f8 (irq = 4) is a 16550A
tty01 at 0x02f8 (irq = 3) is a 16550A
tty03 at 0x02e8 (irq = 3) is a 16550A

This list of serial interface names is from a PC running Linux. Assume we connect the direct connection cable to 
tty01, which is equivalent to the MS-DOS interface COM2. In that case, use tty01 as the ttyname value on the 
slattach command. Notice that the slattach command identifies the physical serial device (/dev/tty01) instead of 
the IP network interface (sl0). That is because the SLIP IP interface does not exist until after slattach executes. 
The first slattach command creates the sl0 interface, the second creates the sl1 interface, and so on. slattach 
attaches a physical interface to the logical IP network.

Like ifconfig, the slattach command is stored in a startup file. It configures the serial interface when the system 
boots, and the interface remains dedicated to SLIP use unless some action is taken to detach it, i.e., the slattach 
process is killed. On a Slackware 96 Linux system the following commands might be added to the 
/etc/rc.d/rc.inet1 file to configure a dedicated SLIP connection:

slattach -c /dev/tty01 19200 &
ifconfig sl0 macadamia pointopoint cashew
route add default cashew 1

The pppd dedicated line configuration requires only one command. The slattach command needs an ifconfig 
command and a route command to complete the configuration. The route command is explained in Chapter 7, 
Configuring Routing .

The slattach command declares that the physical serial device /dev/tty01 is the SLIP network interface. In 
essence this creates the interface sl0. The ifconfig command configures the newly created SLIP interface. It sets 
the address of the interface to the IP address of host macadamia. Further, it says that the destination address of 
this interface is the IP address of the host cashew at the far end of the dedicated SLIP link. The IP addresses for 
both macadamia and cashew should be in the local hosts file before this ifconfig command is executed.

The examples in this section all use the syntax of the slattach command that comes with Slackware 96 Linux. 
SLIP commands are not standardized. The command that comes with your system will probably have a different 
syntax; carefully read your system's documentation so you'll know the exact syntax used on your system. For 
example, other versions of Linux use this syntax:

slattach [-p protocol] [-s speed] device

Here the various SLIP protocols are selected with the -p option. The acceptable protocol values are: slip, cslip, 
slip6, cslip6, and adaptive. If adaptive is selected, the system tries to determine which protocol is acceptable to 
the remote system. The -s option sets the line speed, e.g., -s 56000. The device is one of the call units configured 
on the system. Examples of valid call unit device names are cua0, cua1, cua2, cua3, etc. The device names from 
cua0 to cua3 correspond to the MS-DOS devices COM1 to COM4. A call unit is normally associated with dial 
communications.

slattach expects the physical connection to the remote system to exist when slattach is invoked. The physical 
connection can be a direct connection, a leased line, or a dial line. But if a dial-up connection is used, some 
process, such as cu or tip, must establish the physical connection before slattach is invoked. As we have seen, 
dip is a command that is specifically designed to support dial-up IP connections.

file:///C|/mynapster/Downloads/warez/tcpip/ch06_04.htm (2 of 9) [2001-10-15 09:17:47]



[Chapter 6] 6.4 Installing SLIP 

6.4.2 Dial-Up IP 

Earlier in this chapter we used dip to create a dial-up PPP connection. dip can also be used for SLIP. It is 
actually quite simple. A slight modification of the dip script used earlier creates a SLIP link. The following script 
connects a PC named macadamia to a SLIP server named cashew:

# Set the local and remote addresses
get $locip 172.16.15.1
get $rmtip 172.16.15.3
# Select the port and set the line speed
port cua1
speed 38400
# Reset the modem and flush the terminal
reset
flush
# Dial the SLIP server and wait for the CONNECT response
dial *70,301-555-1234
wait CONNECT
# Wait 2 seconds for the remote server to get ready
sleep 2
# Send a carriage-return to wake up the server
send \r
# Wait for the Login> prompt and send the username
wait ogin>
send kristin\r
# Wait for the Password> prompt and send the password
wait word>
password
# Wait for the SLIP server's command line prompt
wait >
# Send the command required by the SLIP server
send set cslip enabled\r
# Select the SLIP interface as the default route
default
# Set the interface to CSLIP mode
mode CSLIP
# Exit the script
exit

Modifications to a few lines from the PPP script were required to create a SLIP dial-up script. Obvious changes 
replace the remote server's PPP command with a SLIP command and change the mode command in the script to 
invoke SLIP instead of PPP. We also added some new lines to perform tasks for SLIP that PPP can do on its 
own.

The script begins by setting the local IP address and the remote IP address. $locip and $rmtip are script 
variables used to identify the hosts at both ends of the link, which is analogous to the pointopoint parameter on 
the ifconfig command that we saw in the previous section. The two get statements set the local interface to the 
address 172.16.15.1 and the destination address to 172.16.15.3. SLIP does not have a standard way within the 
protocol to exchange addresses. We had to add specific local and remote IP addresses to the script.

file:///C|/mynapster/Downloads/warez/tcpip/ch06_04.htm (3 of 9) [2001-10-15 09:17:47]



[Chapter 6] 6.4 Installing SLIP 

The default statement near the end of the script says that the SLIP connection is the local system's default route. 
Since SLIP is most often used to connect small isolated systems into the network, this is usually true. This 
statement performs the same function as the route command in the slattach example or the defaultroute option 
in the /etc/ppp/options file.

6.4.3 SLIP Server Configuration 

So far, we have used dip to establish a dial-in SLIP link to a remote server. dip can also provide the server side 
of a SLIP connection. The -i option sets dip to input mode, which configures the system to act as a dial-in server. 
An alternative, and more popular, way to invoke dip with the -i option is to use the diplogin command. diplogin 
is symbolically linked to the dip command and is exactly the same as specifying dip with the -i option. We'll use 
diplogin throughout this section.

diplogin is used as the login shell for dial-in SLIP users. The system administrator puts diplogin in the 
/etc/passwd entry for each remote SLIP user as the user's login shell. For example:

craig:wJxX.iPuPzg:101:100:Craig Hunt:/tmp:/sbin/diplogin

login verifies the username and password, assigns the user /tmp as a home directory and starts his login shell. In 
this case the shell is diplogin.

The diplogin program then tries to find an entry for the user in the /etc/diphosts file. It searches for the username 
that was entered during the login process unless that username is overridden by another directly on the diplogin 
command line. For example: when the /etc/passwd entry shown above starts diplogin, the username craig is 
used to search the /etc/diphosts file. Conversely, in the /etc/passwd entry shown below, the username essex that 
appears after the diplogin command is used for the search.

hunt:AbxdkiThinR:102:100:Rebecca Hunt:/tmp:/sbin/diplogin essex

The format of entries in the /etc/diphost file is:

user:password:remote-host:local-host:netmask:comment:protocol,mtu

user

A username. This is the key field against which a username from the /etc/passwd file or from an argument 
on the diplogin command line is matched.

password

An unencrypted password, the keyword s/key, or null (an empty field). If an unencrypted password is 
entered in this field, diplogin prompts the user for the password. This is in addition to the standard 
password from the /etc/passwd file that the user has already been required to enter. Because this second 
password is stored in an unencrypted format, it is not considered very secure. Sites that are big on security 
don't consider any reusable passwords secure enough to be meaningful, and sites that don't worry too 
much about security don't consider a second password necessary. For these reasons, the unencrypted 
password is rarely used. If this field contains the keyword s/key, diplogin invokes S/Key 
authentication. This requires that S/Key support is compiled into diplogin, and that S/Key is installed in 
your system. Because S/Key is a one-time password system, it's considered very secure. However, it is a 
headache for users and system administrators. See Chapter 12, Network Security for a full discussion of 

file:///C|/mynapster/Downloads/warez/tcpip/ch06_04.htm (4 of 9) [2001-10-15 09:17:47]



[Chapter 6] 6.4 Installing SLIP 

one-time passwords. If the password field is null, the authentication is left to login and the user is not 
asked for a second password.

remote-host

The hostname or IP address of the remote host; i.e., the computer from which the user is logging in.
local-host

The hostname or IP address of the local host; i.e., the computer on which this SLIP server is running.
netmask

The network mask for the serial interface written in dotted decimal notation, such as 255.255.0.0. If no 
value is provided the netmask defaults to 255.255.255.0, regardless of the class of addresses used on the 
network.

comment

A free-form comment field, similar to the gcos field in the /etc/passwd file.
protocol,mtu

The IP protocol and the maximum transmission unit used for this connection. Possible protocol values are 
SLIP, CSLIP, and PPP. The MTU is any valid transmission unit specified in bytes. The largest MTU used 
on SLIP lines is generally 1006 bytes. However, SLIP performance is often improved by smaller packet 
sizes. Common choices are 512 and 256.

Assuming the two /etc/passwd entries shown above, we might have an /etc/diphosts file with the following 
entries:

craig::cashew:macadamia:255.255.255.240:Craig Hunt:CSLIP,512
essex::essex:macadamia::Remote client essex.nuts.com:PPP,1006

When the login authenticates the user craig, it starts diplogin as the login shell. diplogin finds the entry for 
craig, does not prompt for a second password, sets the local address to macadamia and the remote address to 
cashew, and starts a CSLIP server using an MTU of 512. However, if the user hunt logs into the system, login 
starts diplogin with the username essex. The /etc/diphosts entry for essex starts a PPP server with a local address 
of macadamia, a remote address of essex and an MTU of 1006. The essex entry allows the netmask to default to 
255.255.255.0. The servers started by diplogin run until the modem hangs up the connection.

Clearly dip is more than just a chat script. It provides client and server support for a variety of protocols. See 
Appendix A for more information about dip.

6.4.4 Troubleshooting Serial Connections 

There are several layers of complexity that make PPP and SLIP connections difficult to debug. To set up PPP 
and SLIP, we must set up the serial port, configure the modem, configure PPP or SLIP, and configure TCP/IP. A 
mistake in any one of these layers can cause a problem in another layer. All of these layers can obscure the true 
cause of a problem. The best way to approach troubleshooting on a serial line is by debugging each layer, one 
layer at a time. It is usually best to troubleshoot each layer before you move on to configure the next layer.

The physical serial ports should be configured by the system during the system boot. Check the /dev directory to 
make sure they are configured. On a Linux system the in-bound serial ports are /dev/ttyS0 through /dev/ttyS3 and 

file:///C|/mynapster/Downloads/warez/tcpip/ch06_04.htm (5 of 9) [2001-10-15 09:17:47]



[Chapter 6] 6.4 Installing SLIP 

the out-bound serial ports are /dev/cua0 through /dev/cua3. There are many more tty* and cua* device names. 
However, the other devices are only associated with real physical devices if you have a multi-port serial card 
installed in your Linux system. Most UNIX systems use the names tty* and cua*, even if those names are just 
symbolic links to the real devices. Solaris 2.5.1 is a good example:

% ls -l /dev/tty?
lrwxrwxrwx 1 root root 6 Sep 23  1996 /dev/ttya -> term/a
lrwxrwxrwx 1 root root 6 Sep 23  1996 /dev/ttyb -> term/b
% ls -l /dev/cua/*
lrwxrwxrwx 1 root root 35 Sep 23 1996 /dev/cua/a ->
     /devices/obio/zs@0,100000:a,cu
lrwxrwxrwx 1 root root 35 Sep 23 1996 /dev/cua/b ->
     /devices/obio/zs@0,100000:b,cu

If the serial devices do not show up in the /dev directory, they can be manually added with a mknod command. 
For example, the following commands create the serial devices for the first serial port on a Linux system:

# mknod -m 666 /dev/cua0 c 5 64
# mknod -m 666 /dev/ttyS0 c 4 64

However, if you need to add the serial devices manually, there may be a problem with the kernel configuration. 
The serial devices should be installed in your system by default during the boot.

The modem used for the connection is attached to one of the serial ports. Before attempting to build a dial-up 
script, make sure the modem works and that you can communicate with it through the port. Use a simple serial 
communications package, such as minicom, kermit, or seyon. First, make sure the program is configured to use 
your modem. It must be set to the correct port, speed, parity, number of databits, etc. Check your modem's 
documentation to determine these settings.

We'll use minicom on a Linux system for our examples. To configure minicom, su to root and run it with the -s 
option, which displays a configuration menu. Walk through the menu and make sure everything is properly set. 
One thing you might notice is that the port is set to /dev/modem. That device name is sometimes symbolically 
linked to the port to which the modem is connected. If you're not sure that the link exists on your system, enter 
the correct port name in the minicom configuration, e.g., /dev/cua1. After checking the configuration, exit the 
menu and use the minicom terminal emulator to make sure you can communicate with the modem:

Minicom 1.71 Copyright (c) Miquel van Smoorenburg
Press CTRL-A Z for help on special keys

AT S7=45 S0=0 L1 V1 X4 &c1 E1 Q0
OK
atz                                                 
OK                                                   
atdt555-1234                                         
CONNECT 26400/LAPM-V
^M                                 
Enter login> kristin
Enter user password> Wats?Watt?

   Welcome to the PPP MODEM POOL

file:///C|/mynapster/Downloads/warez/tcpip/ch06_04.htm (6 of 9) [2001-10-15 09:17:47]



[Chapter 6] 6.4 Installing SLIP 

PORT-9> set port ppp enabled 
+++
OK
ath
OK
atz
OK
^A
CTRL-A Z for help | 38400 8N1 | NOR | Minicom 1.71 1995 | VT102 |
     Offline
X

In the sample, minicom displays two header lines and then sends a Hayes command (AT) to the modem. We 
didn't set this command; it was part of the default minicom configuration. (If it causes problems, edit it out of the 
configuration using the menus discussed previously.) We then reset the modem (atz) and dial the remote server 
(atdt). When the modems connect, we log in to the server and configure it. (The login process is different for 
every remote server; this is just an example.) Everything appears to be running fine, so we end the connection by 
getting the modem's attention (+++), hanging up the line (ath), and resetting the modem. Exit minicom by 
pressing CTRL-A followed by X. On our sample system the port and modem are working. If you cannot send 
simple commands to your modem, check that:

●     The modem is properly connected to the port
●     You have the correct cables
●     The modem is powered up
●     The modem is properly configured for dial-out and for echoing commands

When the modem responds to simple commands, use it to dial the remote server as we did in the example above. 
If the modem fails to dial the number or displays the message NO DIALTONE, check that the telephone line is 
connected to the correct port of the modem and to the wall jack. You may need to use an analog phone to test the 
telephone wall jack and you may need to replace the line between the modem and the wall to make sure that the 
cable is good. If the modem dials but fails to successfully connect to the remote modem, check that the local 
modem configuration matches the configuration required by the remote system. You must know the 
requirements of that remote system to successfully debug a connection. See the following list of script debugging 
tips for some hints on what to check. If you can successfully connect to the remote system, note everything you 
entered to do so, and note everything that the modem and the remote server display. Then set the remote server to 
PPP or SLIP mode and note how you accomplished this. You will need to duplicate all of these steps in your dip 
script.

Start with a bare-bones script, like the sample start-ppp.dip script, so that you can debug the basic connection 
before adding the complexity of error processing to the script. Run the script through dip using the verbose 
option (-v) option. This displays each line of the script as it is processed. Look for the following problems:

●     The modem does not respond to the script. Check that you are using the correct device on the port 
command. Make sure that if the script contains databits, parity, speed, or stopbits commands that they 
are set to values compatible with your modem. Double-check that the modem is Hayes-compatible, 
particularly if you attempt to do modem configuration using dip keywords instead of using send.

●     The modem fails to connect to the remote host. Make sure the modem is configured exactly as it was 
during the manual login. The modem's databits, parity, etc. need to match the configuration of the remote 
system. It is possible that you will need a special configuration, for example, 7-bit/even-parity, to perform 
the login before you can switch to the 8-bit/no-parity configuration required by PPP and SLIP. Don't 

file:///C|/mynapster/Downloads/warez/tcpip/ch06_04.htm (7 of 9) [2001-10-15 09:17:47]



[Chapter 6] 6.4 Installing SLIP 

forget to check that the phone number entered in the dial command is correct, particularly if the modem 
displays VOICE, RING - NO ANSWER, or BUSY when you expect to see CONNECT.

●     The script hangs. It is probably waiting for a response. Make sure that the string in each wait command is 
correct. Remember that the string only needs to be a subset of the response. It is better to use the string 
">" than it is to use "Port9>" if you are not sure whether the remote system always displays the same 
port number. Use a substring from the end of the expected response so that the script does not send to the 
server before the server is ready for input. Also try putting a delay into the script just before the script 
sends the first command to the server, e.g., sleep 2 to delay 2 seconds. A delay is sometimes needed to 
allow the server to initialize the port after the modems connect.

●     The remote server displays an error message. The script probably sent an incorrect value. Check the string 
in each send command. Make sure they terminate with the correct carriage-return or line-feed 
combination expected by the remote server.

If you have trouble with the script, try running dip in test mode (-t), which allows you to enter each command 
manually one at a time. Do this repeatedly until you are positive that you know all the commands needed to log 
in to the remote server. Then go back to debugging the script. You'll probably have fresh insight into the login 
process that will help you find the flaw in the script.

Once the script is running and the connection is successfully made, things should run smoothly. You should be 
able to ping the remote server without difficulty. If you have problems they may be in the IP interface 
configuration or in the default route. The script should have created the serial interface. The netstat -ni 
command shows which interfaces have been configured:

# netstat -ni
Name Mtu  Net/Dest     Address     Ipkts Ierrs Opkts Oerrs Collis Queue
le0  1500 172.16.15.0  172.16.15.1      1     0    4     0      0     0
lo0  1536 127.0.0.0    127.0.0.1     1712     0 1712     0      0     0
ppp0 1006 172.16.15.26 172.16.15.3      0     0    0     0      0     0

The interface, ppp0 in the example, has been installed. The default command in the script creates a default route. 
Use netstat to see the contents of the routing table:

# netstat -nr
Routing tables
Destination      Gateway          Flags  Refcnt  Use Interface
127.0.0.1        127.0.0.1           UH      1    28      lo0
default          172.16.25.3          U      0     0      ppp0
172.16.15.0      172.16.15.1          U      21 1687      le0

The contents of routing tables are explained in detail in the next chapter. For now, just notice that interface used 
for the default route is ppp0, and that the default route is a route to the remote PPP server (172.16.25.3 in the 
example).

If the script creates the connection, the interface is installed, and the routing table contains the default route, 
everything should work fine. If you still have problems they may be related to other parts of the TCP/IP 
installation. Refer to Chapter 11, Troubleshooting TCP/IP , for more troubleshooting information.

file:///C|/mynapster/Downloads/warez/tcpip/ch06_04.htm (8 of 9) [2001-10-15 09:17:47]



[Chapter 6] 6.4 Installing SLIP 

Previous: 6.3 Installing PPP TCP/IP Network 
Administration

Next: 6.5 Summary 

6.3 Installing PPP Book Index 6.5 Summary 

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/ch06_04.htm (9 of 9) [2001-10-15 09:17:47]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Chapter 6] 6.3 Installing PPP 

Previous: 6.2 TCP/IP Over 
a Serial Line 

Chapter 6
Configuring the Interface 

Next: 6.4 Installing SLIP 

 

6.3 Installing PPP 

The procedures for installing and configuring PPP vary from implementation to implementation. [10] In this 
section, we use the implementation of PPP included with Linux 2.0 and the supporting configuration commands 
that come with it. PPP is an Internet standard and most UNIX systems include support for it in the kernel as part 
of the standard operating system installation. Usually this does not require any action on your part. Refer to 
Chapter 5 for examples of how PPP is configured in the Linux kernel. The Linux system installs the PPP 
physical and data link layer software (the HDLC protocol) in the kernel.

[10] Check your system documentation to find out exactly how to configure PPP on your system.

Installing PPP in the kernel is only the beginning. In this section we look at how pppd is configured to provide 
PPP services on a Slackware 96 Linux system.

6.3.1 The PPP Daemon 

Point-to-Point Protocol is implemented on the Linux system in the PPP daemon (pppd), which was derived from 
a freeware PPP implementation for BSD systems. pppd can be configured to run in all modes: as a client, as a 
server, over dial-up connections, and over dedicated connections. Clients and servers are familiar concepts from 
Chapter 3, Network Services. A dedicated connection is a direct cable connection or a leased line; neither of 
which need to have a telephone call placed to establish the connection. A dial-up connection is a modem link that 
is established by dialing a telephone number.

Configuring pppd for a dedicated line is the simplest configuration. A dial-up script is not needed for a leased 
line or direct connection. There is no point in dynamically assigning addresses because a dedicated line always 
connects the same two systems. Authentication is of limited use because the dedicated line physically runs 
between two points. There is no way for an intruder to access the link, short of "breaking and entering" or 
"wiretap." A single pppd command configures a dedicated PPP link for our Linux system. We place it in the 
/etc/rc.d/rc.inet1 file:

pppd /dev/cua3 56000 crtscts defaultroute

The /dev/cua3 argument selects the device to which PPP is attached. It is, of course, the same port to which 
the dedicated line is attached. Next, the line speed is specified in bits per second (56000). The remainder of the 
command line is a series of keyword options. The crtscts option turns on hardware flow control. The final 
option, defaultroute, creates a default route using the remote server as the default gateway. [11]

[11] If a default route already exists in the routing table, the defaultroute option is ignored.

file:///C|/mynapster/Downloads/warez/tcpip/ch06_03.htm (1 of 11) [2001-10-15 09:17:49]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


[Chapter 6] 6.3 Installing PPP 

PPP exchanges IP addresses during the initial link connection process. If no address is specified on the pppd 
command line, the daemon sends the address of the local host, which it learns from DNS or the host table, to the 
remote host. Likewise, the remote system sends its address to the local host. The addresses are then used as the 
source and destination addresses of the link. You can override this by specifying the addresses on the command 
line in the form local-address:remote-address. For example:

pppd /dev/cua3 56000 crtscts defaultroute 172.16.24.1:

Here we define the local address as 172.16.24.1 and leave the remote address blank. In this case pppd sends the 
address from the command line and waits for the remote server to send its address. The local address is specified 
on the command line when it is different from the address associated with the local hostname in the host table or 
the DNS server. For example, the system might have an Ethernet interface that already has an address assigned. 
If we want to use a different address for the PPP connection, we must specify it on the pppd command line; 
otherwise, the PPP link will be assigned the same address as the Ethernet interface.

The pppd command has many more options than those used in these examples. [12] In fact, there are so many 
pppd command-line options, it is sometimes easier to put them in a file than it is to enter them all on the 
command line. pppd reads its options from the /etc/ppp/options file, then the ~/.ppprc file, and finally from the 
command line. The order in which they are processed creates a hierarchy such that options on the command line 
can override those in the ~/.ppprc file, which can in turn override those in the /etc/ppp/options file. This permits 
the system administrator to establish certain system-wide defaults in the /etc/ppp/options file while still 
permitting the end user to customize the PPP configuration. The /etc/ppp/options file is a convenient and flexible 
way to pass parameters to pppd.

[12] There is a full list of the pppd options in Appendix A, PPP Tools.

A single pppd command is all that is needed to set up and configure the software for a dedicated PPP link. Dial-
up connections are more challenging.

6.3.2 Dial-Up PPP 

A direct connect cable can connect just two systems. When a third system is purchased, it cannot be added to the 
network. For that reason, most people use expandable network technologies, such as Ethernet, for connecting 
systems in a local area. Additionally, leased lines are expensive. They are primarily used by large organizations 
to connect together networks of systems. For these reasons, using PPP for dedicated network connections is less 
common than using it for dial-up connections.

Several different utilities provide dial-up support for PPP. Dial-up IP (dip) is a popular package for simplifying 
the process of dialing the remote server, performing the login, and attaching PPP to the resulting connection. We 
discuss dip in this section because it is popular and because it comes with Slackware 96 Linux, which is the 
system we have been using for our PPP examples.

One of the most important features of dip is a scripting language that lets you automate all of the steps necessary 
to set up an operational PPP link. Appendix A covers all of the scripting commands supported by the 3.3.7o-uri 
version of dip. You can list the commands supported by your system by running dip in test mode (-t) and then 
entering the help command:

> dip -t
DIP: Dialup IP Protocol Driver version 3.3.7o-uri (8 Feb 96)

file:///C|/mynapster/Downloads/warez/tcpip/ch06_03.htm (2 of 11) [2001-10-15 09:17:49]



[Chapter 6] 6.3 Installing PPP 

Written by Fred N. van Kempen, MicroWalt Corporation.

DIP> help
DIP knows about the following commands:

        beep     bootp    break    chatkey  config   
        databits dec      default  dial     echo     
        flush    get      goto     help     if       
        inc      init     mode     modem    netmask  
        onexit   parity   password proxyarp print    
        psend    port     quit     reset    send     
        shell    sleep    speed    stopbits term     
        timeout  wait     

DIP> quit

These commands can configure the interface, control the execution of the script, and process errors. Only a 
subset of the commands is required for a minimal script:

# Ask PPP to provide the local IP address
get $local 0.0.0.0
# Select the port and set the line speed
port cua1
speed 38400
# Reset the modem and flush the terminal
reset
flush
# Dial the PPP server and wait for the CONNECT response
dial *70,301-555-1234
wait CONNECT
# Give the server 2 seconds to get ready
sleep 2
# Send a carriage-return to wake up the server
send \r
# Wait for the Login> prompt and send the username
wait ogin>
send kristin\r
# Wait for the Password> prompt and send the password
wait word>
password
# Wait for the PPP server's command-line prompt
wait >
# Send the command required by the PPP server
send ppp enabled\r
# Set the interface to PPP mode
mode PPP
# Exit the script
exit

The get command at the beginning of the script allows PPP to provide the local and remote addresses. $local 
is a script variable. There are several available script variables; all of which are covered in Appendix A. $local 

file:///C|/mynapster/Downloads/warez/tcpip/ch06_03.htm (3 of 11) [2001-10-15 09:17:49]



[Chapter 6] 6.3 Installing PPP 

normally stores the local address, which can be set statically in the script. A PPP server, however, is capable of 
assigning an address to the local system dynamically. We take advantage of this capability by giving a local 
address of all zeros. This peculiar syntax tells dip to let pppd handle the address assignments. A pppd client can 
get addresses in three ways:

●     The PPP systems can exchange their local addresses as determined from DNS. This was discussed 
previously for the dedicated line configuration.

●     The addresses can be specified on the pppd command line. This was also discussed above.
●     The client can allow the server to assign both addresses. This feature is most commonly used on dial-up 

lines. It is very popular with servers that must handle a large number of short-lived connections. A dial-up 
Internet Service Provider (ISP) is a good example.

The next two lines select the physical device to which the modem is connected and set the speed at which the 
device operates. The port command assumes the path /dev, so the full device path is not used. On most PC 
UNIX systems the value provided to the port command is cua0, cua1, cua2, or cua3. These values correspond to 
MS-DOS ports COM1 to COM4. The speed command sets the maximum speed used to send data to the modem 
on this port. The default speed is 38400. Change it if your modem accepts data at a different speed.

The reset command resets the modem by sending it the Hayes modem interrupt (+++) followed by the Hayes 
modem reset command (ATZ). This version of dip uses the Hayes modem AT command set and works only with 
Hayes-compatible modems. [13] Fortunately, that includes most brands of modems. After being reset, the 
modem responds with a message indicating that the modem is ready to accept input. The flush command 
removes this message, and any others that might have been displayed by the modem, out of the input queue. Use 
flush to avoid the problems that can be caused by unexpected data in the queue.

[13] If your modem doesn't use the full Hayes modem command set, avoid using dip commands, 
such as rest and dial, that generate Hayes commands. Use send instead. It allows you to send any 
string you want to the modem.

The next command dials the remote server. The dial command sends a standard Hayes ATD dial command to 
the modem. It passes the entire string provided on the command line to the modem as part of the ATD command. 
The sample dial command generates ATD*70,301-555-1234. This causes the modem to dial *70 (which turns 
off call waiting), and then area code 301, exchange 555, and number 1234. [14] When this modem successfully 
connects to the remote modem, it displays the message CONNECT. The wait command waits for that message 
from the modem.

[14] If you have call waiting, turn it off before you attempt to make a SLIP or PPP connection. 
Different local telephone companies may use different codes to disable call waiting.

The sleep 2 command inserts a two-second delay into the script. It is often useful to delay at the beginning of the 
connection to allow the remote server to initialize. Remember that the CONNECT message is displayed by the 
modem, not by the remote server. The remote server may have several steps to execute before it is ready to 
accept input. A small delay can sometimes avoid unexplained intermittent problems.

The send command sends a carriage return (\r) to the remote system. Once the modems are connected, anything 
sent from the local system goes all the way to the remote system. The send command can send any string. In the 
sample script the remote server requires a carriage return before it issues its first prompt. The carriage return is 
entered as \r and the newline is entered as \n.

The remote server then prompts for the username with Login>. The wait ogin> command detects this prompt 

file:///C|/mynapster/Downloads/warez/tcpip/ch06_03.htm (4 of 11) [2001-10-15 09:17:49]



[Chapter 6] 6.3 Installing PPP 

and the send kristin command sends the username kristin as a response. The server then prompts for the 
password with Password>. The password command causes the script to ask the local user to manually enter 
the password. It is possible to store the password in a send command inside the script. However, this is a 
potential security problem if an unauthorized person gains access to the script and reads the password. The 
password command improves security.

If the password is accepted, our remote server prompts for input with the greater than (>) symbol. Many servers 
require a command to set the correct protocol mode. The server in our example supports several different 
protocols. We must tell it to use PPP by using send to pass it the correct command.

The script finishes with a few commands that set the correct environment on the local host. The mode command 
tells the local host to use the PPP protocol on this link. The protocol selected must match the protocol running on 
the remote server. Protocol values that are valid for the dip mode command are SLIP, CSLIP, PPP, and TERM. 
SLIP and CSLIP are variations of the SLIP protocol, which is discussed in the next section. TERM is terminal 
emulation mode. PPP is the Point-to-Point Protocol. Finally, the exit command ends the script, while dip keeps 
running in the background servicing the link.

This simple script does work and it should give you a good idea of the wait/send structure of a dip script. 
However, your scripts will probably be more complicated. The sample script is not robust because it does not do 
any error checking. If an expected response does not materialize, the sample script hangs. To address this 
problem, use a timeout on each wait command. For example, the wait OK 10 command tells the system to wait 
10 seconds for the OK response. When the OK response is detected, the $errlvl script variable is set to zero and 
the script falls through to the next command. If the OK response is not returned before the 10-second timer 
expires, $errlvl is set to a non-zero value and the script continues on to the next command. The $errlvl variable 
is combined with the if and goto commands to provide error handling in dip scripts. Refer to Appendix A for 
more details.

Once the script is created it is executed with the dip command. Assume that the sample script shown above was 
saved to a file named start-ppp.dip. The following command executes the script, creating a PPP link between the 
local system and the remote server:

> dip start-ppp

Terminate the PPP connection with the command dip -k. This closes the connection and kills the background dip 
process.

pppd options are not configured in the dip script. dip creates the PPP connection; it doesn't customize pppd. 
pppd options are stored in the /etc/ppp/options file.

Assuming the dip script shown above, we might use the following pppd options:

noipdefault
ipcp-accept-local
ipcp-accept-remote
defaultroute

The noipdefault option tells the client not to look up the local address. ipcp-accept-local tells the client to 
obtain its local address from the remote server. The ipcp-accept-remote option tells the system to accept the 
remote address from the remote server. Finally, pppd sets the PPP link as the default route. This is the same 
defaultroute option we saw on the pppd command line in an earlier example. Any pppd option that can be 

file:///C|/mynapster/Downloads/warez/tcpip/ch06_03.htm (5 of 11) [2001-10-15 09:17:49]



[Chapter 6] 6.3 Installing PPP 

invoked on the command line can be put in the /etc/ppp/options file and thus be invoked when pppd is started by 
a dip script.

I use dip on my home computer to set up my dial PPP connection. Personally, I find dip simple and 
straightforward to use. In part, that is because I am familiar with the dip scripting language. You may prefer to 
use the chat command that comes with the pppd software package.

6.3.3 chat 

A chat script is a simple "expect/send" script consisting of the strings the system expects and the strings the 
system sends in response. The script is organized as a list of expect/send pairs. chat does not really have a 
scripting language, but it does have some special characters that can be used to create more complex scripts. The 
chat script to perform the same dial-up and login functions as the sample dip script would contain:

'' ATZ
OK ATDT*70,301-555-1234
CONNECT \d\d\r
ogin> kristin
word> Wats?Wat?
> 'set port ppp enabled'

Each line in the script begins with an expected string and ends with the string sent as a response. The modem 
does not send a string until it receives a command. The first line on the script says, in effect, "expect nothing and 
send the modem a reset command." The pair of single quotes (") at the beginning of the line tells chat to expect 
nothing. The script then waits for the modem's OK prompt and dials the remote server. When the modem 
displays the CONNECT message, the script delays two seconds (\d\d) and then sends a carriage return (\r). Each 
\d special character causes a one-second delay. The \r special character is the carriage return. chat has many 
special characters that can be used in the expect strings and the send strings. [15] Finally, the script ends by 
sending the username, password, and remote server configuration command in response to the server's prompts.

[15] See Appendix A for more details.

Create the script with your favorite editor and save it in a file such as dial-server. Test the script using chat with 
the -V option, which logs the script execution through stderr:

% chat -V -f dial-server

Invoking the chat script is not sufficient to configure the PPP line. It must be combined with pppd to do the 
whole job. The connection command-line option allows you to start pppd and invoke a dial-up script all in one 
command:

# pppd /dev/cua1 56700 connect "chat -V -f dial-server" \
     -detach crtscts modem defaultroute

The chat command following the connect option is used to perform the dial-up and login. Any package capable 
of doing the job could be called here; it doesn't have to be chat.

The pppd command has some other options that are used when PPP is run as a dial-up client. The modem option 
causes pppd to monitor the carrier-detect (DCD) indicator of the modem. This indicator tells pppd when the 

file:///C|/mynapster/Downloads/warez/tcpip/ch06_03.htm (6 of 11) [2001-10-15 09:17:49]



[Chapter 6] 6.3 Installing PPP 

connection is made and when the connection is broken. pppd monitors DCD to know when the remote server 
hangs up the line. The -detach option prevents pppd from detaching from the terminal to run as a background 
process. This is only necessary when running chat with the -V option. When you are done debugging the chat 
script, you can remove the -V option from the chat subcommand and the -detach option from the pppd 
command. An alternative is to use -v on the chat command. -v does not require pppd to remain attached to a 
terminal because it sends the chat logging information to syslogd instead of to stderr. We have seen all of the 
other options on this command line before.

6.3.4 PPP Daemon Security 

A major benefit of PPP over SLIP is the enhanced security PPP provides. Put the following pppd options in the 
/etc/ppp/options file to enhance security:

lock
auth
usehostname
domain nuts.com

The first option, lock, makes pppd use UUCP-style lock files. This prevents other applications, such as UUCP or 
a terminal emulator, from interfering with the PPP connection. The auth option requires the remote system to be 
authenticated before the PPP link is established. This option causes the local system to request authentication 
data from the remote system. It does not cause the remote system to request similar data from the local system. If 
the remote system administrator wants to authenticate your system before allowing a connection, she must put 
the auth keyword in the configuration of her system. The usehostname option requires that the hostname is used 
in the authentication process and prevents the user from setting an arbitrary name for the local system with the 
name option. (More on authentication in a minute.) The final option makes sure that the local hostname is fully 
qualified with the specified domain before it is used in any authentication procedure.

Recall that the ~/.ppprc file and the pppd command-line options can override options set in the /etc/ppp/options 
file, which could be a security problem. For this reason, several options, once configured in the /etc/ppp/options 
file, cannot be overridden. That includes the options just listed.

pppd supports two authentication protocols: Challenge Handshake Authentication Protocol (CHAP) and 
Password Authentication Protocol (PAP). PAP is a simple password security system that is vulnerable to all of 
the attacks of any reusable password system. CHAP, however, is an advanced authentication system that does 
not use reusable passwords and that repeatedly re-authenticates the remote system.

Two files are used in the authentication process, the /etc/ppp/chap-secrets file and the /etc/ppp/pap-secrets file. 
Given the options file shown above, pppd first attempts to authenticate the remote system with CHAP. To do 
this, there must be data in the chap-secrets file and the remote system must respond to the CHAP challenge. If 
either of these conditions are not true, pppd attempts to authenticate the remote system with PAP. If there is no 
applicable entry in the pap-secrets file or the remote system does not respond to the PAP challenge, the PPP 
connection is not established. This process allows you to authenticate remote systems with CHAP (the preferred 
protocol), if they support it, and to fall back to PAP for systems that support only PAP. For this to work, 
however, you must have the correct entries in both files.

Each entry in the chap-secrets file contains up to four fields:

client

file:///C|/mynapster/Downloads/warez/tcpip/ch06_03.htm (7 of 11) [2001-10-15 09:17:49]



[Chapter 6] 6.3 Installing PPP 

The name of the computer that must answer the challenge, i.e., the computer that must be authenticated 
before the connection is made. This is not necessarily a client that is seeking access to a PPP server. 
Client is the term used in most of the documentation, but really this is the respondent - the system that 
responds to the challenge. Both ends of a PPP link can be forced to undergo authentication. In your chap-
secrets file you will probably have two entries for each remote system: one entry to authenticate the 
remote system and a corresponding entry to authenticate your system when it is challenged by the remote 
system.

server

The name of the system that issues the CHAP challenge, i.e., the computer that requires the authentication 
before the PPP link is established. This is not necessarily a PPP server. The client system can require the 
server to authenticate itself. Server is the term used in most documentation, but really this is the 
authenticator - the system that authenticates the response.

secret

The secret key that is used to encrypt the challenge string before it is sent back to the system that issued 
the challenge.

address

An address, written as a hostname or an IP address, that is acceptable for the host named in the first field. 
If the host listed in the first field attempts to use an address other than the address listed here, the 
connection is terminated even if the remote host properly encrypts the challenge response. This field is 
optional.

A sample chap-secrets file for the host macadamia might contain:

cashew     macadamia  Peopledon'tknowyou    172.16.15.3
macadamia  cashew     andtrustisajoke.      172.16.15.1

The first entry is used to validate cashew, the remote PPP server. cashew is being authenticated and the system 
performing the authentication is macadamia. The secret key is "Peopledon'tknowyou". The allowable address is 
172.16.15.3, which is the address assigned to cashew in the host table. The second entry is used to validate 
macadamia when cashew issues the challenge. The secret key is "andtrustisajoke.". The only address macadamia 
is allowed to use is 172.16.15.1. A pair of entries, one for each end of the link, is normal. The chap-secret file 
usually contains two entries for every PPP link: one entry for validating the remote system and one entry for 
answering the challenge of that remote system.

Use PAP only when you must. If you deal with a system that does not support CHAP, make an entry for that 
system in the pap-secrets file. The format of pap-secrets entries is the same as those used in the chap-secrets file. 
A system that does not support CHAP might have the following entry in the pap-secrets file:

acorn     macadamia  Wherearethestrong?  acorn.nuts.com
macadamia acorn      Whoarethetrusted?   macadamia.nuts.com

Again we have a pair of entries: one for the remote system and one for our system. We support CHAP but the 
remote system does not. Thus we must be able to respond using the PAP protocol in case the remote system 
requests authentication.

PPP authentication improves security in a dial-up environment. It is most important when you run the PPP server 
into which remote systems dial. In the next section, we look at PPP server configuration.

file:///C|/mynapster/Downloads/warez/tcpip/ch06_03.htm (8 of 11) [2001-10-15 09:17:50]



[Chapter 6] 6.3 Installing PPP 

6.3.5 PPP Server Configuration 

The PPP server is started by the /etc/ppp/ppplogin script. [16] ppplogin is a login shell script for dial-in PPP 
users. Replace the login shell entry in the /etc/passwd file with the path of ppplogin to start the server. A 
modified /etc/passwd entry might contain:

[16] The example is for Linux systems running pppd. It may be different on your system. Check 
your system's documentation.

craig:wJxX.iPuPzg:101:100:Craig Hunt:/tmp:/etc/ppp/ppplogin

The fields are exactly the same as any /etc/passwd entry: username, password, uid, gid, gcos information, home 
directory, and login shell. For a remote PPP user, the home directory is /tmp and the login shell is the full path of 
the ppplogin program. The encrypted password must be set using the passwd program, just as it is for any user. 
And the login process is the same as it is for any user. When getty detects incoming traffic on the serial port it 
invokes login to authenticate the user. login verifies the username and the password entered by the user and 
starts the login shell. In this case the login shell is actually a shell script that configures the PPP port and starts 
the PPP daemon. Our sample /etc/ppp/ppplogin script is:

#!/bin/sh
mesg -n
stty -echo
exec /sbin/pppd auth passive crtscts modem

The first two lines demonstrate that the ppplogin file can contain more than just the pppd command. The mesg -
n command makes sure that other users cannot write to this terminal with talk, write, or similar programs. The 
stty command turns off character echoing. On some systems, characters typed at the terminal are echoed from 
the remote host instead of being locally echoed by the terminal; this behavior is called full duplex. We don't want 
to echo anything back on a PPP link, so we turn full duplex off. 

The key line in the script is, of course, the line that starts pppd. We start the daemon with several options, but 
one thing that is not included on the command line is the tty device name. In all of the previous pppd examples, 
we provided a device name. When it is not provided, as is this case, pppd uses the controlling terminal as its 
device and doesn't put itself in background mode. This is just what we want. We want to use the device that login 
was servicing when it invoked the ppplogin script.

The auth command-line option tells pppd to authenticate the remote system, which of course requires us to 
place an entry for that system in the chap-secrets or the pap-secret file. The crtscts option turns on hardware 
flow control, and the modem option tells PPP to monitor the modem's DCD indicator so that it can detect when 
the remote system drops the line. We have seen all of these options before. The one new option is passive. With 
passive set, the local system waits until it receives a valid LCP packet from the remote system, even if the 
remote system fails to respond to its first packet. Normally, the local system would drop the connection if the 
remote system fails to respond in a timely manner. This option gives the remote system time to initialize its own 
PPP daemon.

Creating an appropriate ppplogin script and defining it as a login shell in the /etc/passwd file are all that is 
necessary to run pppd as a server.

file:///C|/mynapster/Downloads/warez/tcpip/ch06_03.htm (9 of 11) [2001-10-15 09:17:50]



[Chapter 6] 6.3 Installing PPP 

6.3.6 Solaris PPP 

dip and pppd are available for Linux, BSD, AIX, Ultrix, OSF/1, and SunOS. If you have a different operating 
system, you probably won't use these packages. Solaris is a good example of a system that uses a different set of 
commands to configure PPP.

PPP is implemented under Solaris as the Asynchronous PPP Daemon (aspppd). aspppd is configured by the 
/etc/asppp.cf file. The asppp.cf file is divided into two sections: an ifconfig section and a path section.

ifconfig ipdptp0 plumb macadamia cashew up

path
   interface ipdptp0
   peer_system_name cashew
   inactivity_timeout 300

The ifconfig command configures the PPP interface (ipdptp0) as a point to point link with a local address of 
macadamia and a destination address of cashew. The ifconfig command does not have to define the destination 
address of the link. However, if you always connect to the same remote server, it will probably be defined here 
as the destination address. We saw all of these options in the discussion of the ifconfig command earlier in this 
chapter.

The more interesting part of this file is the path section, which defines the PPP environment. The interface 
statement identifies the interface used for the connection. It must be one of the PPP interfaces defined in the 
ifconfig section. In the example, only one is defined, so it must be ipdptp0. The peer_system_name 
statement identifies the system at the remote end of the connection, which may be the same address as the 
destination address from the ifconfig statement as it is in our example. But it doesn't have to be. It is possible to 
have no destination address on the ifconfig command and several path sections if you connect to several 
different remote hosts. The hostname on the peer_system_name statement is used in the dialing process as 
described later.

The path section ends with an inactivity_timeout statement. The command in the sample sets the timeout to 
300 seconds. This is interesting because it points to a nice feature of the Solaris system. Solaris automatically 
dials the remote system when it detect data that needs to be delivered through that system. Further, it 
automatically disconnects the PPP link when it is inactive for the specified time. With this feature you can use a 
PPP link without manually initiating the dial program and without tying up phone lines when the link is not in 
use.

Like pppd, aspppd does not have a built-in dial facility. It relies on an external program to do the dialing. In the 
case of aspppd, it utilizes the dial-up facility that comes with UUCP. Here's how.

First, the serial port, the modem attached to it, and the speed at which they operate are defined in the 
/etc/uucp/Devices file. For example, here we define an Automatic Call Unit (ACU is another name for a modem) 
attached to serial port B (cua/b) that operates at any speed defined in the Systems file, and that has the modem 
characteristics defined by the "hayes" entry in the Dialers file:

ACU cua/b - Any hayes

Next, the modem characteristics, such as its initialization setting and dial command, are defined in the 
/etc/uucp/Dialers file. The initialization and dial commands are defined as a chat script using the standard 

file:///C|/mynapster/Downloads/warez/tcpip/ch06_03.htm (10 of 11) [2001-10-15 09:17:50]



[Chapter 6] 6.3 Installing PPP 

expect/send format and the standard set of chat special characters. For example:

hayes =,-, "" \dA\pTE1V1X1Q0S2=255S12=255\r\c OK\r \EATDT\T\r\c CONNECT

The system comes with Devices and Dialers pre-configured. The pre-configured entries are probably compatible 
with the modem on your system. The /etc/uucp/Systems file may be the only configuration file that you modify. 
In the systems file you need to enter the name of the remote system, select the modem you'll use, enter the 
telephone number, and enter a chat script to handle the login. For example:

cashew Any ACU 19200 5551234 "" \r ogin> kristin word> Wats?Watt? >
     set ppp on

In this one line, we identify cashew as the remote system, declare that we allow connections to and from that 
hosts at any time of the day (Any), select the ACU entry in the Devices file to specify the port and modem, set 
the line speed to 19200, send the dialer the telephone number, and define the login chat script.

This is not a book about UUCP, so we won't go into further details about these files. I'd suggest Using and 
Managing UUCP (by Ed Ravin, O'Reilly & Associates) for more information about UUCP and the Solaris 
TCP/IP Network Administration Guide (where did they come up with such a great name?) for more information 
about aspppd.

Previous: 6.2 TCP/IP Over 
a Serial Line 

TCP/IP Network 
Administration

Next: 6.4 Installing SLIP 

6.2 TCP/IP Over a Serial Line Book Index 6.4 Installing SLIP 

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/ch06_03.htm (11 of 11) [2001-10-15 09:17:50]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Chapter 6] 6.2 TCP/IP Over a Serial Line 

Previous: 6.1 The ifconfig 
Command 

Chapter 6
Configuring the Interface 

Next: 6.3 Installing PPP 

 

6.2 TCP/IP Over a Serial Line 

TCP/IP runs over a wide variety of physical media. The media can be Ethernet cables, as in your local 
Ethernet, or telephone circuits, as in a wide area network. In the first half of this chapter, we used 
ifconfig to configure a local Ethernet interface. In this section, we use other commands to configure a 
network interface to use a telephone circuit.

Almost all data communication takes place via serial interfaces. A serial interface is just an interface 
that sends the data as a series of bits over a single wire, as opposed to a parallel interface that sends 
the data bits in parallel over several wires simultaneously. This description of a serial interface would 
fit almost any communications interface (including Ethernet itself), but the term is usually applied to 
an interface that connects to a telephone circuit via a modem or similar device. Likewise, a telephone 
circuit is often called a serial line.

In the TCP/IP world, serial lines are used to create wide area networks (WANs). Unfortunately, 
TCP/IP has not always had a standard physical layer protocol for serial lines. Because of the lack of a 
standard, network designers were forced to use a single brand of routers within their WANs to ensure 
successful physical layer communication. The growth of TCP/IP WANs led to a strong interest in 
standardizing serial-line communications to provide vendor independence.

Other forces that increased interest in serial line communications were the advent of small affordable 
systems that run TCP/IP and the advent of high-speed, dial-up modems that provide "reasonable" 
TCP/IP performance. When the ARPANET was formed, computers were very expensive and dial-up 
modems were very slow. At that time, if you could afford a computer, you could afford a leased 
telephone line. In recent years, however, it has become possible to own a UNIX system at home. In 
this new environment, there is an increasing demand for services that allow TCP/IP access over low-
cost, dial-up serial lines.

These two forces - the need for standardized wide area communications and the need for dial-up 
TCP/IP access - have led to the creation of two serial-line protocols: Serial Line IP (SLIP) and Point-
to-Point Protocol (PPP). [7]

[7] Dial-up modems are usually asynchronous. Both PPP and SLIP support 
asynchronous, dial-up service as well as synchronous leased-line service.

file:///C|/mynapster/Downloads/warez/tcpip/ch06_02.htm (1 of 4) [2001-10-15 09:17:50]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


[Chapter 6] 6.2 TCP/IP Over a Serial Line 

6.2.1 The Serial Protocols 

Serial Line IP was created first. It is a minimal protocol that allows isolated hosts to link via TCP/IP 
over the telephone network. The SLIP protocol defines a simple mechanism for framing datagrams for 
transmission across serial lines. SLIP sends the datagram across the serial line as a series of bytes, and 
it uses special characters to mark when a series of bytes should be grouped together as a datagram. 
SLIP defines two special characters for this purpose:

●     The SLIP END character, a single byte with the decimal value 192, is the character that marks 
the end of a datagram. When the receiving SLIP encounters the END character, it knows that it 
has a complete datagram that can be sent up to IP.

●     The SLIP ESC character, a single byte with the decimal value of 219, is used to "escape" the 
SLIP control characters. If the sending SLIP encounters a byte value equivalent to either a 
SLIP END character or a SLIP ESC character in the datagram it is sending, it converts that 
character to a sequence of two characters. The two-character sequences are ESC 220 for the 
END character, and ESC 221 for the ESC character itself. [8] When the receiving SLIP 
encounters these two-byte sequences, it converts them back to single-byte values. This 
procedure prevents the receiving SLIP from incorrectly interpreting a data byte as the end of 
the datagram.

[8] Here ESC refers to the SLIP escape character, not the ASCII escape 
character.

SLIP is described in RFC 1055, A Nonstandard for Transmission of IP Datagrams Over Serial Lines: 
SLIP. As the name of the RFC makes clear, SLIP is not an Internet standard. The RFC does not 
propose a standard; it documents an existing protocol. The RFC identifies the deficiencies in SLIP, 
which fall into two categories:

●     The SLIP protocol does not define any link control information that could be used to 
dynamically control the characteristics of a connection. Therefore, SLIP systems must assume 
certain link characteristics. Because of this limitation, SLIP can only be used when both hosts 
know each other's address, and only when IP datagrams are being transmitted.

●     SLIP does not compensate for noisy, low-speed telephone lines. The protocol does not provide 
error correction or data compression.

To address SLIP's weaknesses, Point-to-Point Protocol (PPP) was developed as an Internet standard. 
At this writing, there are several RFCs that document Point-to-Point Protocol. [9] Two key documents 
are: RFC 1548, The Point-to-Point Protocol (PPP), and RFC 1172, The Point-to-Point Protocol 
(PPP) Initial Configuration Options.

[9] If you want to make sure you have the very latest version of a standard, obtain the 
latest list of RFCs as described in Chapter 13, Internet Information Resources .

PPP addresses the weaknesses of SLIP with a three-layered protocol:

file:///C|/mynapster/Downloads/warez/tcpip/ch06_02.htm (2 of 4) [2001-10-15 09:17:50]



[Chapter 6] 6.2 TCP/IP Over a Serial Line 

Data Link Layer Protocol

The Data Link Layer Protocol used by PPP is a slightly modified version of High-level Data 
Link Control (HDLC). PPP modifies HDLC by adding a Protocol field that allows PPP to pass 
traffic for multiple Network Layer protocols. HDLC is an international standard protocol for 
reliably sending data over synchronous, serial communications lines. PPP also uses a proposed 
international standard for transmitting HDLC over asynchronous lines; so PPP can guarantee 
reliable delivery over any type of serial line.

Link Control Protocol

The Link Control Protocol (LCP) provides control information for the serial link. It is used to 
establish the connection, negotiate configuration parameters, check link quality, and close the 
connection. LCP was developed specifically for PPP.

Network Control protocols

The Network Control protocols are individual protocols that provide configuration and control 
information for the Network Layer protocols. Remember, PPP is designed to pass data for a 
wide variety of network protocols. NCP allows PPP to be customized to do just that. Each 
network protocol (DECNET, IP, OSI, etc.) has its own Network Control protocol. The 
Network Control protocol defined in RFCs 1331 and 1332 is the Internet Control Protocol 
(IPCP), which supports Internet Protocol.

6.2.2 Choosing a Serial Protocol 

Point-to-Point Protocol (PPP) is the best TCP/IP serial protocol. PPP is preferred because it is an 
Internet standard, which ensures interoperability between systems from a wide variety of vendors. It 
has more features than SLIP, and is more robust. These benefits make PPP the best choice as a non-
proprietary protocol for connecting routers over serial lines and for connecting in remote computers 
via dial-up lines.

However, sometimes your choice is limited. SLIP was the first widely available serial protocol for IP, 
and some older dial-up servers support SLIP only. PPP and SLIP do not interoperate; they are 
completely different protocols. So if your terminal servers only have SLIP, the remote hosts that 
connect through these servers must also have SLIP. Because of its installed base, SLIP will continue 
to be used for the foreseeable future.

So which protocol should you use? When you are designing a new serial-line service, use PPP. 
However, you may be forced to also support SLIP. SLIP is sometimes the only serial protocol 
available for a specific piece of hardware. Simply put, use PPP where you can and SLIP where you 
must.

Linux systems include both SLIP and PPP. However, on some other UNIX systems such as Solaris, 
PPP is included and SLIP is not. The only time you should consider using SLIP is when it comes as 
part of the operating system. Avoid downloading SLIP source code and porting it on to your system. 
Use PPP instead. If you have old terminal servers that support only SLIP and new computers that 

file:///C|/mynapster/Downloads/warez/tcpip/ch06_02.htm (3 of 4) [2001-10-15 09:17:50]



[Chapter 6] 6.2 TCP/IP Over a Serial Line 

support only PPP, it's time to upgrade the old terminal server.

Previous: 6.1 The ifconfig 
Command 

TCP/IP Network 
Administration

Next: 6.3 Installing PPP 

6.1 The ifconfig Command Book Index 6.3 Installing PPP 

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/ch06_02.htm (4 of 4) [2001-10-15 09:17:50]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Chapter 6] Configuring the Interface 

Previous: 5.5 Summary Chapter 6 Next: 6.2 TCP/IP Over a 
Serial Line 

 

6. Configuring the Interface 
Contents:
The ifconfig Command 
TCP/IP Over a Serial Line 
Installing PPP 
Installing SLIP 
Summary 

When networking protocols work only with a single kind of physical network, there is no need to identify the 
network interface to the software. The software knows what the interface must be; no configuration issues are left 
for the administrator. However, one important strength of TCP/IP is its flexible use of different physical 
networks. This flexibility adds complexity to the system administrator's task, because you must tell TCP/IP 
which interfaces to use, and you must define the characteristics of each interface.

Because TCP/IP is independent of the underlying physical network, IP addresses are implemented in the network 
software - not in the network hardware. Unlike Ethernet addresses, which are determined by the Ethernet 
hardware, the system administrator assigns an IP address to each network interface.

In this chapter, we use the ifconfig (interface configure) command to identify the network interface to TCP/IP 
and to assign the IP address, subnet mask, and broadcast address to the interface. We also configure a network 
interface to run Point-to-Point Protocol (PPP), which is the standard Network Access Layer protocol used to run 
TCP/IP over modem connections. Let's begin with a discussion of ifconfig.

6.1 The ifconfig Command 

The ifconfig command sets, or checks, configuration values for network interfaces. Regardless of the vendor or 
version of UNIX, the ifconfig command will set the IP address, the subnet mask, and the broadcast address for 
each interface. Its most basic function is assigning the IP address.

Here is the ifconfig command that configures the Ethernet interface on peanut:

# ifconfig le0 172.16.12.2 netmask 255.255.255.0  \
broadcast 172.16.12.255

Many other arguments can be used with the ifconfig command; we discuss several of these later. But a few 
important arguments provide the basic information required by TCP/IP for every network interface. These are:

file:///C|/mynapster/Downloads/warez/tcpip/ch06_01.htm (1 of 12) [2001-10-15 09:17:52]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


[Chapter 6] Configuring the Interface 

interface

The name of the network interface that you want to configure for TCP/IP. In the example above, this is 
the Ethernet interface le0.

address

The IP address assigned to this interface. Enter the address as either an IP address (in dotted decimal 
form) or as a hostname. If you use a hostname, place the hostname and its address in the /etc/hosts file. 
Your system must be able to find the hostname in /etc/hosts because ifconfig usually executes before 
DNS is running. The example uses the numeric IP address 172.16.12.2 as the address value.

netmask mask

The subnet mask for this interface. Ignore this argument only if you're using the default mask derived 
from the traditional address class structure. If you are subnetting, use your subnet mask. The subnet mask 
chosen for our imaginary network is 255.255.255.0, so that is the value assigned to peanut's le0 interface. 
See Chapters 2 and 4 for information on address masks and subnets.

broadcast address

The broadcast address for the network. Most, but not all, systems default to the standard broadcast 
address, which is an IP address with all host bits set to 1. In the ifconfig example we explicitly set the 
broadcast address to 172.16.12.255 to avoid any confusion. Every system on the subnet must agree on the 
broadcast address.

The network administrator provides the values for the address, subnet mask, and broadcast address. The values in 
our example are taken directly from the planning sheet we developed in Chapter 4, Getting Started . But the 
name of the interface, the first argument on every ifconfig command line, must often be determined from the 
system's documentation.

6.1.1 Determining the Interface Name 

In Chapter 5, Basic Configuration , we saw that Ethernet network interfaces come in many varieties, and that 
different Ethernet cards usually have different interface names. You can usually determine which interface is 
used on a system from the messages displayed on the console during a boot. On many systems these messages 
can be examined with the dmesg command. But even with this information, determining the name of the 
Ethernet interface is not always easy. The following example shows the output of the dmesg command on two 
different systems:

almond% dmesg | grep le0
le0 at ledma0: SBus slot f 0xc00000 sparc ipl 6
le0 is /iommu@f,e0000000/sbus@f,e0001000/ledma@f,400010/le@f,c00000

acorn> dmesg | grep eth0
eth0: smc8432 (DEC 21041 Tulip) at 0xfc80, 00:00:c0:dd:d4:da, IRQ 10
eth0: enabling 10TP port.

The first dmesg command in the example shows the messages displayed when an le0 Ethernet interface is 
detected during the boot of a Solaris 2.5.1 system. Nothing about these messages makes it clear that le0 is an 
Ethernet interface. The second dmesg example, which comes from a PC running Linux, provides more clues. 
eth0 is a more intuitive Ethernet interface name; and the Linux system displays the Ethernet address 

file:///C|/mynapster/Downloads/warez/tcpip/ch06_01.htm (2 of 12) [2001-10-15 09:17:52]



[Chapter 6] Configuring the Interface 

(00:00:c0:dd:d4:da) and the make and model (SMC8432) of the network adapter card. If you know what these 
things mean, it makes guessing the Ethernet interface name simpler.

It is not always easy to determine all available interfaces on your system by looking at the output of dmesg, nor 
by looking at device statements in the kernel configuration file. These only show you the physical hardware 
interfaces. In the TCP/IP protocol architecture, the Network Access Layer encompasses all functions that fall 
below the Internet Layer. This can include all three lower layers of the OSI Reference Model: the Physical Layer, 
the Data Link Layer, and the Network Layer. IP needs to know the specific interface in the Network Access 
Layer where packets should be passed for delivery to a particular network. This interface is not limited to a 
physical hardware driver. It could be a software interface into the network layer of another protocol suite. So 
what other methods can help you determine the network interfaces available on a system? Use the netstat and 
the ifconfig commands. For example, to see all network interfaces that are already configured, enter:

% netstat -in

The -i option tells netstat to display the status of all configured network interfaces, and the -n tells netstat to 
display its output in numeric form. The netstat -in command displays the following fields:

Name

The Interface Name field shows the actual name assigned to the interface. This is the name you give to 
ifconfig to identify the interface. An asterisk (*) in this field indicates that the interface is not enabled; 
i.e., the interface is not "up."

Mtu

The Maximum Transmission Unit shows the longest frame (packet) that can be transmitted by this 
interface without fragmentation. The MTU is displayed in bytes. MTU is discussed in the section "The 
datagram" in Chapter 1, Overview of TCP/IP.

Net/Dest

The Network/Destination field shows the network or the destination host to which the interface provides 
access. In our Ethernet examples, this field contains a network address. The network address is derived 
from the IP address of the interface and the subnet mask. This field contains a host address if the interface 
is configured for a point-to-point (host-specific) link. The destination address is the address of the remote 
host at the other end of the point-to-point link. [1] A point-to-point link is a direct connection between 
two computers. You can create a point-to-point link with the ifconfig command. How this is done is 
covered later in this chapter.

[1] See the description of the H flag in the section "Routing Table" in Chapter 2, Delivering the 
Data.

Address

The IP Address field shows the Internet address assigned to this interface.
Ipkts

The Input Packets field shows how many packets this interface has received.
Ierrs

file:///C|/mynapster/Downloads/warez/tcpip/ch06_01.htm (3 of 12) [2001-10-15 09:17:52]



[Chapter 6] Configuring the Interface 

The Input Errors field shows how many damaged packets the interface has received.
Opkts

The Output Packets field shows how many packets were sent out by this interface.
Oerrs

The Output Errors field shows how many of the packets caused an error condition.
Collis

The Collisions field shows how many Ethernet collisions were detected by this interface. Ethernet 
collisions are a normal condition caused by Ethernet traffic contention. This field is not applicable to non-
Ethernet interfaces.

Queue

The Packets Queued field shows how many packets are in the queue, awaiting transmission via this 
interface. Normally this is zero.

The output of a netstat command shows:

% netstat -in
Name  Mtu   Net/Dest   Address     Ipkts Ierrs Opkts Oerrs Collis Queue
le0   1500  172.16.0.0 172.16.12.2 1547   1    1127  0     135    0
lo0   1536  127.0.0.0  127.0.0.1    133   0     133  0     0      0

This display shows that this workstation has only two network interfaces. In this case it is easy to identify each 
network interface. The lo0 interface is the loopback interface, which every TCP/IP system has. It is the same 
loopback device discussed in Chapter 5. le0 is a Lance Ethernet interface, also discussed in Chapter 5.

On most systems, the loopback interface is part of the default configuration, so you won't need to configure it. If 
you do need to configure lo0 on your system, use the following command:

# ifconfig lo0 127.0.0.1

The configuration of the Ethernet interface requires more attention. The surprising thing about the sample netstat 
display is that we haven't yet entered an ifconfig command for le0, and it already has an IP address! Many 
systems use an installation script to install UNIX. This script requests the host address, which it then uses to 
configure the interface. [2] Later we'll look at whether the user successfully set up this interface with the 
installation script.

[2] The netconfig command, discussed in Chapter 4, is an example of a network configuration 
script that runs when the operating system is installed.

The ifconfig command can also be used to find out what network interfaces are available on a system. The 
netstat command shows only interfaces that are configured. On some systems the ifconfig command can be used 
to show all interfaces, even those that have not yet been configured. On Solaris 2.5.1 systems, ifconfig -a does 
this; on a Linux 2.0.0 system, entering ifconfig without any arguments will list all of the network interfaces.

While most hosts have only one real network interface, some hosts and all gateways have multiple interfaces. 
Sometimes all interfaces are the same type; i.e., a gateway between two Ethernets may have two Ethernet 

file:///C|/mynapster/Downloads/warez/tcpip/ch06_01.htm (4 of 12) [2001-10-15 09:17:52]



[Chapter 6] Configuring the Interface 

interfaces. netstat on a gateway like this might display lo0, le0, and le1. Deciphering a netstat display with 
multiple interfaces of the same type is still very simple. But deciphering a system with many different types of 
network interfaces is more difficult. You must rely on documentation that comes with optional software to 
choose the correct interface. When installing new network software, always read documentation carefully.

This long discussion about determining the network interface may seem to overshadow the important ifconfig 
functions of assigning the IP address, subnet mask, and broadcast address. So let's return to these important 
topics.

6.1.2 Checking the Interface with ifconfig 

As noted above, the UNIX installation script configures the network interface. However, this configuration may 
not be exactly what you want. Check the configuration of an interface with ifconfig. To display the current 
values assigned to the interface, enter ifconfig with an interface name and no other arguments. For example, to 
check interface le0:

% ifconfig le0
le0: flags=863<UP,BROADCAST,NOTRAILERS,RUNNING,MULTICAST> mtu 1500
        inet 172.16.12.2 netmask ffff0000 broadcast 172.16.255.255

When used to check the status of an interface on a Solaris 2.5.1 system, the ifconfig command displays two lines 
of output. The first line shows the interface name, the flags that define the interface's characteristics, and the 
Maximum Transmission Unit (MTU) of this interface. In our example the interface name is le0, and the MTU is 
1500 bytes. The flags are displayed as both a numeric value and a set of keywords. The interface's flags have the 
numeric value 863, which corresponds to:

UP  

The interface is enabled for use.
BROADCAST

The interface supports broadcasts, which means it is connected to a network that supports broadcasts, 
such as an Ethernet.

NOTRAILERS

This interface does not support trailer encapsulation. This is an Ethernet-specific characteristic which we 
discuss in more detail later.

RUNNING

This interface is operational.
MULTICAST

This interface supports multicasting.

The second line of ifconfig output displays information that directly relates to TCP/IP. The keyword inet is 
followed by the Internet address assigned to this interface. Next comes the keyword netmask, followed by the 
address mask written in hexadecimal. Finally, the keyword broadcast and the broadcast address are 
displayed.

file:///C|/mynapster/Downloads/warez/tcpip/ch06_01.htm (5 of 12) [2001-10-15 09:17:52]



[Chapter 6] Configuring the Interface 

On a Linux system the ifconfig command displays up to six lines of information for each interface instead of the 
two lines displayed by the Solaris system. The additional information includes the Ethernet address, the PC IRQ 
and I/O Base Address, and packet statistics. The basic information is the same on both systems.

> ifconfig eth0
eth0  Link encap:10Mbps Ethernet  HWaddr 00:00:C0:9A:D0:DB
      inet addr:172.16.55.106  Bcast:172.16.55.255  Mask:255.255.255.0
      UP BROADCAST RUNNING MULTICAST  MTU:1500  Metric:1
      RX packets:844886 errors:0 dropped:0 overruns:0
      TX packets:7668 errors:0 dropped:0 overruns:0
      Interrupt:11 Base address:0x7c80

Refer to the Solaris ifconfig le0 example at the beginning of this section. Check the information displayed in that 
example against the configuration plan developed in Chapter 4. You'll see that the interface needs to be 
reconfigured. The configuration done by the user during the UNIX installation did not provide all of the values 
we planned. The address (172.16.12.2) is correct, but the address mask (ffff0000 or 255.255.0.0) and the 
broadcast address (172.16.0.0) are incorrect. Let's look at how these values are assigned, and how to correct 
them. 

6.1.3 Assigning a Subnet Mask 

In order to function properly, every interface on a specific physical network segment must have the same subnet 
mask. For le0 on almond and peanut, the netmask value is 255.255.255.0, because both systems are attached to 
the same subnet. However, although almond's local network interface and its external network interface are parts 
of the same computer, they use different netmasks because they are on different networks.

To assign a subnet mask, write the subnet mask value after the keyword "netmask" on the ifconfig command 
line. The subnet mask is usually written in the "dotted decimal" form used for IP addresses. [3] For example, the 
following command assigns the correct subnet mask to the le0 interface on peanut: 

[3] Hexadecimal notation can also be used for the subnet mask. To enter a netmask in hexadecimal 
form, write the value as a single hex number starting with a leading 0x. For example, the 
hexadecimal form of 255.255.255.0 is 0xffffff00. Choose the form that is easier for you to 
understand.

# ifconfig le0 172.16.12.2 netmask 255.255.255.0  \
broadcast 172.16.12.255

Putting the netmask value directly on the ifconfig command line is the most common, the simplest, and the best 
way to manually assign the subnet mask to an interface. But it is also possible to tell ifconfig to take the netmask 
value from a file instead of from the command line. Conceptually, this is similar to using a hostname in place of 
an IP address. The administrator can place the subnet mask value in either the hosts file or the networks file and 
then reference it by name. For example, the nuts-net administrator might add the following entry to 
/etc/networks:

nuts-mask       255.255.255.0

Once this entry has been added, you can use the name nuts-mask on the ifconfig command line, instead of the 
actual mask. For example:

file:///C|/mynapster/Downloads/warez/tcpip/ch06_01.htm (6 of 12) [2001-10-15 09:17:52]



[Chapter 6] Configuring the Interface 

# ifconfig le0 172.16.5.2 netmask nuts-mask

The name nuts-mask resolves to 255.255.255.0, which is the correct netmask value for our sample systems.

On Solaris systems, you can also use /etc/inet/netmasks to set the subnet mask. [4] The /etc/inet/netmasks file is a 
table of one-line entries, each containing a network address separated from a subnet mask by whitespace. [5] If a 
Solaris system on nuts-net (172.16.0.0) has a /etc/inet/netmasks file that contains the entry:

[4] /etc/netmasks is symbolically linked to /etc/inet/netmasks.

[5] Use the official network address, not a subnet address.

172.16.0.0      255.255.255.0

then the following ifconfig command can be used to set the subnet mask:

# ifconfig le0 172.16.5.1 netmask +

The plus sign after the keyword netmask causes ifconfig to take the mask value from /etc/inet/netmasks. 
ifconfig searches the file for a network address that matches the network address of the interface being 
configured. It then extracts the subnet mask associated with that address and applies it to the interface.

Some systems take advantage of the fact that the IP address, subnet mask, and broadcast address can be set 
indirectly to reduce the extent that startup files need to be customized. Reducing customization lessens the 
chance that a system might hang while booting because a startup file was improperly edited, and it makes it 
possible to pre-configure these files for all of the systems on the network. The hosts, networks, and netmasks 
files, which provide input to the ifconfig command, all produce NIS maps that can be centrally managed at sites 
using NIS.

A disadvantage of setting the ifconfig values indirectly is that it can make troubleshooting more cumbersome. If 
all values are set in the boot file, you only need to check the values there. When network configuration 
information is supplied indirectly, you may need to check the boot file, the hosts file, the networks file, and the 
netmasks file to find the problem. An error in any of these files could cause an incorrect configuration. To make 
debugging easier, many system administrators prefer to set the configuration values directly on the ifconfig 
command line.

Another disadvantage of setting the subnet mask value indirectly is that some of the files used for this are not 
primarily intended for this use. The hosts file is a particularly bad choice for storing subnet values. The hosts file 
is heavily used by other programs. Placing a subnet value in the hosts file might confuse one of these programs. 
Setting the subnet value directly on the command line or from a file, such as the netmasks file, that is dedicated 
to this purpose is probably the best approach.

6.1.4 Setting the Broadcast Address 

RFC 919, Broadcasting Internet Datagrams, clearly defines the format of a broadcast address as an address with 
all host bits set to 1. Since the broadcast address is so precisely defined, ifconfig should be able to compute it 
automatically, and you should always be able to use the default. Unfortunately, this is not the case. TCP/IP was 
included in BSD 4.2 before RFC 919 was an adopted standard. BSD 4.2 used a broadcast address with all host 
bits set to 0, and didn't allow the broadcast address to be modified during configuration. Because of this history, 

file:///C|/mynapster/Downloads/warez/tcpip/ch06_01.htm (7 of 12) [2001-10-15 09:17:52]



[Chapter 6] Configuring the Interface 

some releases of UNIX default to a "0-style" broadcast address for compatibility with older systems, while other 
releases default to the standard "1-style" broadcast address.

Avoid this confusion by defining a broadcast address for the entire network and ensuring that every device on the 
network explicitly sets it during configuration. Set the broadcast address in the ifconfig command using the 
keyword broadcast followed by the correct broadcast address. For example, the ifconfig command to set the 
broadcast address for almond's le0 interface is:

# ifconfig le0 172.16.12.1 netmask 255.255.255.0  \
broadcast 172.16.12.255

Note that the broadcast address is relative to the local subnet. almond views this interface as connected to 
network 172.16.12.0; therefore, its broadcast address is 172.16.12.255. Depending on the implementation, a 
UNIX system could interpret the address 172.16.255.255 as host address 255 on subnet 255 of network 
172.16.0.0, or as the broadcast address for nuts-net as a whole. In neither case would it consider 172.16.255.255 
the broadcast address for subnet 172.16.12.0.

6.1.5 The Other Command Options 

We've used ifconfig to set the interface address, the subnet mask, and the broadcast address. These are certainly 
the most important functions of ifconfig, but it has other functions as well. It can enable or disable trailer 
encapsulation, the address resolution protocol, and the interface itself. ifconfig also can set the routing metric 
used by the Routing Information Protocol and the Maximum Transmission Unit (MTU) used by the interface. 
We'll look at each of these functions.

6.1.5.1 Enabling and disabling the interface 

The ifconfig command has two arguments, up and down, for enabling and disabling the network interface. The 
up argument enables the network interface and marks it ready for use. The down argument disables the interface 
so that it cannot be used for network traffic.

Use the down argument when interactively reconfiguring an interface. Some configuration parameters - for 
example, the IP address - cannot be changed unless the interface is down. First, the interface is brought down. 
Then, the reconfiguration is done, and the interface is brought back up. For example, the following steps change 
the address for an interface:

# ifconfig le0 down
# ifconfig le0 172.16.1.2 up

After these commands execute, the interface operates with the new configuration values. The up argument in the 
second ifconfig command is not actually required because it is the default. However, an explicit up is commonly 
used after the interface has been disabled, or when an ifconfig command is used in a script file to avoid problems 
if the default is changed in a future release.

6.1.5.2 ARP and trailers 

Two options on the ifconfig command line, arp and trailers, are used only for Ethernet interfaces. The trailers 
option enables or disables negotiations for trailer encapsulation of IP packets. In Chapter 1, we discussed how IP 
packets are sent over different physical networks by being encapsulated in the frames that those networks 

file:///C|/mynapster/Downloads/warez/tcpip/ch06_01.htm (8 of 12) [2001-10-15 09:17:52]



[Chapter 6] Configuring the Interface 

transmit. Trailer encapsulation is an optional technique that reduces the number of memory-to-memory copies 
the receiving system needs to perform.

To enable trailer encapsulation, put the keyword trailers on the ifconfig command line. When trailer 
encapsulation is enabled, the system requests (via the ARP protocol) that other systems also use trailer 
encapsulation when sending it data.

The option -trailers disables trailer encapsulation. Trailer encapsulation is disabled for two basic reasons. First, 
the I/O architecture of some systems does not derive any benefit from trailer encapsulation. If a system doesn't 
do memory-to-memory copies when receiving data from the network, it doesn't benefit from trailer 
encapsulation. Second, there are some systems that have difficulties with the negotiations for trailer 
encapsulation. For these reasons, many systems ignore the trailers argument and never use trailer encapsulation, 
and others allow trailer encapsulation but default to -trailers. Both of our sample systems, Solaris and Linux, 
ignore the trailers argument. However, some systems enable trailer encapsulation by default. Check your system 
documentation for the default on your system.

Chapter 2 discusses the Address Resolution Protocol (ARP), an important protocol that maps IP addresses to 
physical Ethernet addresses. Enable ARP with the ifconfig keyword arp and disable it with the keyword -arp. 
It is possible (though very unlikely) that a host attached to your network cannot handle ARP. This would only 
happen on a network using specialized equipment or developmental hardware. In these very rare circumstances, 
it may be necessary to disable ARP in order to interoperate with the non-standard systems. By default, ifconfig 
enables ARP. Leave ARP enabled on all your systems. 

6.1.5.3 Metric 

On some systems, the ifconfig command creates an entry in the routing table for every interface that is assigned 
an IP address. Each interface is the route to a network. Even if a host isn't a gateway, its interface is still its 
"route" to the local network. ifconfig determines the route's destination network by applying the interface's 
subnet mask to the interface's IP address. For example, the le0 interface on almond has an address of 172.16.12.1 
and a mask of 255.255.255.0. Applying this mask to the address provides the destination network, which is 
172.16.12.0. The netstat -in display shows the destination address: 

% netstat -in
Name Mtu  Net/Dest    Address     Ipkts  Ierrs Opkts Oerrs Collis Queue
le0  1500 172.16.12.0 172.16.12.1 1125826 16   569786  0    8914   0
lo0  1536 127.0.0.0   127.0.0.1   94280   0    94280   0    0      0

The Routing Information Protocol (RIP) is a routing protocol commonly used by UNIX. RIP does two things: it 
distributes routing information to other hosts, and it uses incoming routing information to build routing tables 
dynamically. The routes created by ifconfig are one source of the routing information distributed by RIP, and the 
ifconfig metric argument can be used to control how RIP uses this routing information.

RIP makes routing decisions based on the cost of a route. The route's cost is determined by a routing metric 
associated with the route. A routing metric is just a number. The lower the number, the lower the cost of the 
route. The higher the number, the higher the cost. When building a routing table, RIP favors low-cost routes over 
high-cost routes. Directly connected networks are given a very low cost. Therefore, the default metric is 0 for a 
route through an interface to a directly attached network. However, you can use the metric argument to supply a 
different routing metric for an interface.

To increase the cost of an interface to three, so that RIP prefers routes with values of 0, 1, or 2, use metric 3 on 

file:///C|/mynapster/Downloads/warez/tcpip/ch06_01.htm (9 of 12) [2001-10-15 09:17:52]



[Chapter 6] Configuring the Interface 

the ifconfig command line: 

# ifconfig std0 26.104.0.19 metric 3

Use the metric option only if there is another route to the same destination and you want to use it as the primary 
route. We did not use this command on almond, because it has only one interface connected to the outside world. 
But if it had a second connection, say, through a higher-speed link, then the command shown above could be 
used to direct traffic through the higher-performance interface.

A related ifconfig parameter is available on Solaris systems. RIP builds the routing table by choosing the most 
economical routes, and it distributes the routing table information to other hosts. The metric parameter controls 
which routes RIP selects as the lowest cost. The private argument, available on Solaris systems, controls the 
routes that RIP distributes. If private is specified on the ifconfig command line, the route created by that ifconfig 
command is not distributed by RIP. The default is -private, which permits the route to be distributed. The 
private parameter is not universally supported.

Additionally, not all systems make use of the metric argument. A Linux system doesn't create a routing table 
entry when it processes the ifconfig command. When configuring a Linux system, you add an explicit route 
command for each interface. (The route command is covered in the next chapter.) Linux systems ignore the 
metric argument.

Set the routing metric in a routing configuration file instead of on the ifconfig command line. This is the 
preferred method of providing routing information for newer routing software. We discuss the format of routing 
configuration files in the next chapter.

6.1.5.4 Maximum transmission unit 

A network has a maximum transmission unit, which is the largest packet that can be transported over that 
physical network. On Ethernet, the maximum size is 1500 bytes, which is defined as part of the Ethernet 
standard. There is rarely any need to change the MTU on the ifconfig command line. By default, ifconfig 
chooses the optimum MTU, which is usually the largest legal MTU for a given type of network hardware. A 
large MTU is the default because it normally provides the best performance. However, a smaller MTU is helpful 
to achieve the following goals:

●     To avoid fragmentation. If the traffic travels from a network with a large MTU - such as an FDDI 
network with an MTU of 4500 bytes - through a network with a smaller MTU like an Ethernet, the 
smaller MTU size may be best in order to avoid packet fragmentation. It is possible that specifying an 
MTU of 1500 on the interface connected to the FDDI may actually improve performance by avoiding 
fragmentation in the routers. This would only be done if fragmentation actually appeared to be the cause 
of a performance problem.

●     To reduce buffer overruns or similar problems. On serial line connections it is possible to have equipment 
of such low performance that it cannot keep up with standard 1006-byte packets. In this case, it is possible 
to avoid buffer overruns or SILO overflows by using a smaller MTU. However, such solutions are 
temporary fixes. The real fix is to purchase the correct hardware for the application.

To change the MTU, use the mtu command-line argument:

# ifconfig fddi0 172.16.16.1 netmask 255.255.255.0 mtu 1500

This forces the FDDI interface on 172.16.16.1 to use an MTU of 1500 bytes.

file:///C|/mynapster/Downloads/warez/tcpip/ch06_01.htm (10 of 12) [2001-10-15 09:17:52]



[Chapter 6] Configuring the Interface 

6.1.5.5 Point-to-point 

There are probably several more ifconfig command-line arguments available on your system. Linux has 
parameters to define the PC interrupt of the Ethernet hardware (irq) and the Ethernet hardware address (hw), and 
to enable multicasting (multicast) and promiscuous mode (allmulti). Solaris has arguments to set up or tear 
down the streams for an interface (plumb/unplumb), and to use Reverse ARP (RARP) to obtain the IP address 
for an interface (auto-revarp). But most of these parameters are not standardized between versions of UNIX.

One last feature that is available on most versions of UNIX is the ability to define point-to-point connections 
with the ifconfig command. Point-to-point connections are network links that directly connect together only two 
computers. Of course the computers at either end of the link could be gateways to the world, but only two 
computers are directly connected to the link. Examples of a point-to-point connection are two computers linked 
together by a leased telephone line, or two computers in an office linked together by a null modem cable.

To define a point-to-point link on a Solaris system:

# ifconfig zs0 172.16.62.1 172.16.62.2

This ifconfig command has two addresses immediately following the interface name. The first is the address of 
the local host. The second address, called the destination address, is the address of the remote host at the other 
end of the point-to-point link. The second address shows up as the Net/Dest value in an netstat -ni display.

On a Linux system, this same configuration looks slightly different:

> ifconfig sl0 172.16.62.1 point-to-point 172.16.62.2

The syntax is different but the effect is the same. This enables the interface to run in point-to-point mode and 
identifies the hosts at both ends of the link.

Does this set up the Point-to-Point Protocol (PPP) used for TCP/IP serial line communication? No, it does not. 
These ifconfig parameters sometimes confuse people about how to set up PPP. There is much more to 
configuring PPP and SLIP, which we cover in the remainder of this chapter.

Before moving on to PPP and SLIP we should note that the configuration entered on an ifconfig command line 
will not survive a system boot. For a permanent configuration, put ifconfig in a startup file.

6.1.5.6 Putting ifconfig in the startup files 

The ifconfig command is normally executed at boot time by a startup file. On BSD UNIX systems, the ifconfig 
commands are usually located in /etc/rc.boot or /etc/rc.local. System V UNIX presents a much more complex set 
of startup files, but the ifconfig statements are usually located in a file in the /etc/init.d directory. [6] On Linux 
systems, the startup files containing the ifconfig commands are usually in the /etc/rc.d or the /etc/rc.d/init.d 
directory. Use grep to locate the specific file that contains the ifconfig command:

[6] A good description of the maze of System V initialization files is provided in Essential System 
Administration, Second Edition, by Æleen Frisch (O'Reilly & Associates).

> cd /etc/rc.d

file:///C|/mynapster/Downloads/warez/tcpip/ch06_01.htm (11 of 12) [2001-10-15 09:17:52]



[Chapter 6] Configuring the Interface 

> grep ifconfig *
rc.inet1:/sbin/ifconfig lo 127.0.0.1
rc.inet1:/sbin/ifconfig eth0 172.16.12.1 broadcast 172.16.12.255
   netmask 255.255.255.0

Because network access is important for some of the processes run by the startup files, the ifconfig statements 
execute near the beginning of the startup procedure. The simplest way to configure a network interface to suit 
your requirements is to edit the startup files and insert the correct ifconfig statements.

On our Linux system, we edit /etc/rc.d/rc.inet1 and check the two lines necessary to configure the loopback 
interface and the Ethernet interface. We use the rc.inet1 file because it runs early in network startup procedure 
and it is the file in which the installation script placed the ifconfig commands. The two lines placed in the file 
are:

ifconfig lo0 127.0.0.1
ifconfig eth0 172.16.12.1 broadcast 172.16.12.255 netmask 255.255.255.0

Check the startup files to ensure that the interfaces on the host are properly configured at every boot.

Previous: 5.5 Summary TCP/IP Network 
Administration

Next: 6.2 TCP/IP Over a 
Serial Line 

5.5 Summary Book Index 6.2 TCP/IP Over a Serial Line 

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/ch06_01.htm (12 of 12) [2001-10-15 09:17:52]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Chapter 5] 5.5 Summary 

Previous: 5.4 The Internet 
Daemon 

Chapter 5
Basic Configuration 

Next: 6. Configuring the 
Interface 

 

5.5 Summary 

The basic configuration files, the kernel configuration file, the startup files, and the /etc/inetd.conf file 
are necessary for installing the TCP/IP software on a UNIX system, but they require little attention 
from the system administrator. The kernel comes configured to run TCP/IP on most systems. Some 
systems, such as Solaris, are designed to eliminate kernel configuration. Others, such as Linux, 
encourage it as a way to produce a more efficient kernel. In either case, the only thing a network 
administrator needs to be aware of are the kernel configuration commands required for TCP/IP so that 
they are not accidentally removed from the kernel when it is rebuilt.

inetd starts essential system services. You would reconfigure only to add new services or to improve 
security. Security can be improved by removing unneeded services or by adding access control.

The kernel configuration defined the network interface. In Chapter 6 we configure it, calling upon the 
planning we did in Chapter 4.

Previous: 5.4 The Internet 
Daemon 

TCP/IP Network 
Administration

Next: 6. Configuring the 
Interface 

5.4 The Internet Daemon Book Index 6. Configuring the Interface 

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/ch05_05.htm [2001-10-15 09:17:53]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm
file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Chapter 5] 5.4 The Internet Daemon 

Previous: 5.3 The BSD 
Kernel Configuration File 

Chapter 5
Basic Configuration 

Next: 5.5 Summary 

 

5.4 The Internet Daemon 

The kernel configuration brings the basic transport and IP datagram services of TCP/IP into UNIX. But 
there is much more to the TCP/IP suite than just the basic services. How are these other protocols 
included in the UNIX configuration?

Some protocols are explicitly started by including them in the boot files. This technique is used, for 
example, to start the Routing Information Protocol (RIP) and the Domain Name Service (DNS). The 
daemons that service these protocols, routed and named respectively, are run from a startup file such as 
/etc/rc.d/rc.inet2 on a Linux system or /etc/init.d/inetsvc and /etc/init.d/inetinit on a Solaris system. [8]

[8] Your system may not use these startup files, but startup files are usually located under 
the /etc directory and often have names that contain rc or init.

Many other network daemons are not started individually. These daemons are started by a server that 
listens for network service requests and starts the appropriate daemon to process the request. This server 
is called the internet daemon.

The internet daemon - inetd (pronounced "i net d") - is started at boot time from an initialization file such 
as /etc/rc.d/rc.inet2. When it is started, inetd reads its configuration from the /etc/inetd.conf file. This file 
contains the names of the services that inetd listens for and starts. You can add or delete services by 
making changes to the inetd.conf file.

An example of a file entry is:

ftp  stream  tcp  nowait  root  /usr/sbin/in.ftpd   in.ftpd

The fields in the inetd.conf entry are, from left to right:

name

The name of a service, as listed in the /etc/services file. In the sample entry, the value in this field 
is ftp.

type

The type of data delivery service used, also called socket type. The commonly used socket types 

file:///C|/mynapster/Downloads/warez/tcpip/ch05_04.htm (1 of 4) [2001-10-15 09:17:53]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


[Chapter 5] 5.4 The Internet Daemon 

are: 

stream

The stream delivery service provided by TCP; i.e., TCP byte stream.[9]

[9] Here the reference is to TCP/IP sockets and TCP streams - not to AT&T streams 
I/O or BSD socket I/O.

dgram

The packet (datagram) delivery service provided by UDP
raw

Direct IP datagram service

The sample shows that FTP uses a stream socket.

protocol

This is the name of a protocol, as given in the /etc/protocols file. Its value is usually either "tcp" or 
"udp." The FTP protocol uses TCP as its transport layer protocol, so the sample entry contains tcp in 
this field.
wait-status

The value for this field is either "wait" or "nowait." Generally, but not always, datagram type 
servers require "wait," and stream type servers allow "nowait." If the status is "wait," inetd must wait for 
the server to release the socket before it begins to listen for more requests on that socket. If the status is 
"nowait," inetd can immediately begin to listen for more connection requests on the socket. Servers with 
"nowait" status use sockets other than the connection request socket for processing; i.e., they use 
dynamically allocated sockets.
uid

The uid is the username under which the server runs. This can be any valid username, but it is 
normally root. There are two common exceptions. The finger service often runs as the user nobody or 
daemon for security reasons, and the uucp service is sometimes run as the user uucp to save space in the 
system's accounting files.
server

This is the full pathname of the server program started by inetd. Because our example is from a 
Solaris system, the path is /usr/sbin/in.ftpd. On your system the path may be different. It is more efficient 
for inetd to provide some small services directly than it is for inetd to start separate servers for these 
functions. For these small services, the value of the server field is the keyword "internal," which means 
that this service is an internal inetd service.
arguments

file:///C|/mynapster/Downloads/warez/tcpip/ch05_04.htm (2 of 4) [2001-10-15 09:17:53]



[Chapter 5] 5.4 The Internet Daemon 

These are any command-line arguments that should be passed to the server program when it is 
invoked. This list always starts with argv[0] (the name of the program being executed). The program's 
manpage documents the valid command-line arguments for each program. In the example only 
in.ftpd, the server's name, is provided.

There are a few situations in which you need to modify the inetd.conf file. For example, you may wish to 
disable a service. The default configuration provides a full array of servers. Not all of them are required 
on every system, and for security reasons you may want to disable non-essential services on some 
computers. To disable a service, place a # at the beginning of its entry (which turns the line into a 
comment) and pass a hang-up signal to the inetd server. When inetd receives a hang-up signal, it re-reads 
the configuration file and the new configuration takes effect immediately.

You may also need to add new services. We'll see some examples of that in later chapters. Let's look in 
detail at an example of restoring a service that has been previously disabled. We'll begin by looking at the 
contents of an /etc/inetd.conf file:

# @(#)inetd.conf 1.17 88/02/07 SMI
ftp     stream  tcp  nowait  root  /usr/sbin/in.ftpd    in.ftpd
telnet  stream  tcp  nowait  root  /usr/sbin/in.telnetd in.telnetd
shell   stream  tcp  nowait  root  /usr/sbin/in.rshd    in.rshd
login   stream  tcp  nowait  root  /usr/sbin/in.rlogind in.rlogind
exec    stream  tcp  nowait  root  /usr/sbin/in.rexecd  in.rexecd
finger  stream  tcp  nowait  root  /usr/sbin/in.fingerd in.fingerd
#tftp dgram udp wait root /usr/sbin/in.tftpd in.tftpd -s /tftpboot
comsat  dgram   udp  wait    root  /usr/sbin/in.comsat  in.comsat
talk    dgram   udp  wait    root  /usr/sbin/in.talkd   in.talkd
name    dgram   udp  wait    root  /usr/sbin/in.tnamed  in.tnamed
daytime stream  tcp  nowait  root    internal
time    stream  tcp  nowait  root    internal
echo    dgram   udp  wait    root    internal
discard dgram   udp  wait    root    internal
time    dgram   udp  wait    root    internal

This part of the file shows several standard TCP/IP services. One of these, tftp, is commented out. The 
TFTP protocol is a special version of FTP that allows file transfers without username/password 
verification. Because of this, it is a possible security hole and is often disabled in the inetd.conf file.

As an example of modifying the inetd.conf file, we'll reconfigure the system to provide tftp service, 
which is sometimes necessary for supporting diskless devices. First, use your favorite editor to remove 
the comment (#) from the tftp entry in inetd.conf. (The example uses sed, everyone's favorite editor!) 
Then find out the process ID for inetd and pass it the SIGHUP signal. The following steps show how this 
is done on peanut:

# cd /etc
# mv inetd.conf inetd.conf.org
# cat inetd.conf.org | sed s/#tftp/tftp/ > inetd.conf
# ps -acx | grep inetd

file:///C|/mynapster/Downloads/warez/tcpip/ch05_04.htm (3 of 4) [2001-10-15 09:17:53]



[Chapter 5] 5.4 The Internet Daemon 

  144 ?  I     0:12 inetd
# kill -HUP 144

In some situations, you may also need to modify the pathname of a server or the arguments passed to a 
particular server when it is invoked. For example, look again at the tftp entry. This line contains 
command-line arguments that are passed to the tftp server when it is started. The -s /tftpboot option 
addresses the most obvious tftp security hole. It prevents tftp users from retrieving files that are not 
located in the directory specified after the -s option. If you want to use another directory for tftp, you 
must change the inetd.conf file. The only command-line arguments passed to servers started by inetd are 
those defined in the inetd.conf file.

Security is one of the most important reasons for modifying the inetd.conf file. inetd.conf is used to 
implement access control through the wrapper program tcpd. The wrapper program replaces the server 
program in the server field of the inetd.conf entry. Then when inetd hears a connection request on the 
port, it starts tcpd instead of the application server. tcpd can then enforce extra security before it starts 
the application server. How to use the wrapper program for access control is covered in Chapter 12.

Previous: 5.3 The BSD 
Kernel Configuration File 

TCP/IP Network 
Administration

Next: 5.5 Summary 

5.3 The BSD Kernel 
Configuration File 

Book Index 5.5 Summary 

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/ch05_04.htm (4 of 4) [2001-10-15 09:17:53]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Chapter 5] 5.3 The BSD Kernel Configuration File 

Previous: 5.2 Linux Kernel 
Configuration 

Chapter 5
Basic Configuration 

Next: 5.4 The Internet 
Daemon 

 

5.3 The BSD Kernel Configuration File 

The BSD UNIX kernel is a C program compiled and installed by make. The config command reads the 
kernel configuration file and generates the files (including the Makefile) needed to compile and link the 
kernel. On FreeBSD systems, the kernel configuration file is located in the directory /usr/src/sys/i386/conf. 
[5]

[5] /usr/src/sys is symbolically linked to /sys. We use /usr/src/sys only as an example. Your 
system may use another directory.

A large kernel configuration file named GENERIC is delivered with the FreeBSD system. The GENERIC 
kernel file configures all of the standard devices for your system - including everything necessary for 
TCP/IP. No modifications are necessary for the GENERIC kernel to run basic TCP/IP services. The reasons 
for modifying the BSD kernel are the same as those discussed for the Linux kernel: to make a smaller, more 
efficient kernel, or to add new features.

There is no standard name for a BSD kernel configuration file. When you create a configuration file, choose 
any name you wish. By convention, BSD kernel configuration filenames use uppercase letters. To create a 
new configuration, copy GENERIC to the new file and then edit the newly created file. The following 
creates a new configuration file called FILBERT:

# cd /usr/src/sys/i386/conf
# cp GENERIC FILBERT

If the kernel has been modified on your system, the system administrator will have created a new 
configuration file in the /usr/src/sys/i386/conf directory. The kernel configuration file contains many 
configuration commands that cover all aspects of the system configuration. This text discusses only those 
parameters that directly affect TCP/IP configuration. See the documentation that comes with the FreeBSD 
system for information about the other configuration commands.

5.3.1 TCP/IP in the BSD Kernel 

For a network administrator, it is more important to understand which kernel statements are necessary to 
configure TCP/IP than to understand the detailed structure of each statement. Three types of statements are 
used to configure TCP/IP in the BSD kernel: options, pseudo-device, and device statements.

5.3.1.1 Options 

file:///C|/mynapster/Downloads/warez/tcpip/ch05_03.htm (1 of 6) [2001-10-15 09:17:54]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


[Chapter 5] 5.3 The BSD Kernel Configuration File 

The options statement tells the kernel to compile a software option into the system. The options statement 
that is most important to TCP/IP is:

options INET                   # basic networking support--mandatory

Every BSD-based system running TCP/IP has an options INET statement in its kernel configuration file. 
The statement produces a -DINET argument for the C complier, which in turn causes the IP, ICMP, TCP, 
UDP, and ARP modules to be compiled into the kernel. This single statement incorporates the basic 
transport and IP datagram services into the system. Never remove this statement from the configuration file.

There are several other options statements in addition to the required INET option. Some of these perform 
functions identical to features we have already seen in the Linux configuration. A few have no direct 
parallels in the Linux configuration.

options GATEWAY                # internetwork gateway

The GATEWAY option determines whether the system forwards IP datagrams destined for another 
computer. When this option is selected, the system forwards datagrams if it has more than one network 
interface; i.e., the system is assumed to be a gateway. You don't need GATEWAY on a system with a single 
network interface. Hosts - systems with one network interface - do not forward the packets of other systems, 
because this would hide configuration problems on other systems on the network. If the other systems are 
incorrectly delivering datagrams to a host, forwarding the datagrams makes it appear as if they were 
correctly addressed and makes it difficult to detect the real problem. On occasion, you might even want to 
force a system that has multiple network interfaces not to forward datagrams by commenting options 
GATEWAY out of your configuration. This is useful for preventing a multi-homed host (a host with two 
network interfaces) from acting as a gateway.

options IPFIREWALL             # firewall

The IPFIREWALL option prepares the system to act as a firewall. The full firewall implementation requires 
application software and other tools. However, certain functions of a firewall, such as address filtering, must 
be implemented in the kernel. This option requests those kernel-level services. A variant of this option is 
IPFIREWALL_VERBOSE, which enables the same basic kernel services with enhanced error reporting. 
The enhanced errors can be useful for detecting intrusions, but they increase the size of the kernel.

options MROUTING               # Multicast routing

The MROUTING option adds multicast routing support to the kernel. A multicast kernel is necessary for the 
system to be able to interpret multicast addresses and for the system to support multicast applications like 
MBONE and Internet Talk Radio.

options IPACCT                 # ipaccounting

The IPACCT option adds additional code and counters that keep track of network usage, which is helpful for 
billing purposes.

options ARP_PROXYALL           # global proxy ARP

file:///C|/mynapster/Downloads/warez/tcpip/ch05_03.htm (2 of 6) [2001-10-15 09:17:54]



[Chapter 5] 5.3 The BSD Kernel Configuration File 

The ARP_PROXYALL option turns the system into a proxy ARP server. The Address Resolution Protocol 
(ARP) is discussed in Chapter 2, Delivering the Data. Proxy ARP is a variant on the standard protocol in 
which a server answers the ARP request for its clients. Here's how it works. Host A sends out an ARP 
request for the Ethernet address of host B. The proxy ARP server, C, hears the request and sends an ARP 
response back to A claiming that C's Ethernet address is the address of host B. A then sends traffic intended 
for B to C because it uses C's Ethernet address. C is therefore responsible for forwarding the traffic on to B. 
The proxy ARP server is usually a router and proxy ARP is used as a means of forwarding traffic between 
systems that cannot use normal routing for that traffic.

In Chapter 2, we saw how a system can act as a proxy ARP server for individual addresses using the publish 
option on the arp command. The ARP_PROXYALL kernel option creates a server for all addresses; not just 
for individual addresses configured in the ARP table.

options "TCP_COMPAT_42"        # emulate 4.2BSD TCP bugs

This option prevents connections between 4.2 and FreeBSD systems from hanging by adjusting FreeBSD to 
ignore mistakes made by 4.2. This parameter also disables UDP checksum calculations. The UDP checksum 
calculation in BSD 4.2 was incorrect, so when a host receives a UDP packet from a system running 4.2, it 
causes a checksum error. This parameter tells the system to ignore these errors. In addition, setting this 
parameter prevents the system from sending TCP Sequence Numbers that are interpreted as negative 
numbers by 4.2 systems. With this option, the initial sequence number will be set to zero for each 
connection. Forcing sequence numbers to zero is a potential security problem because it allows an intruder 
to guess the sequence number and to interject bogus packets into a TCP stream. For this reason, avoid using 
this parameter unless you must.

5.3.1.2 Pseudo-device 

The second statement required by TCP/IP in all BSD configurations is a pseudo-device statement. A pseudo-
device is a device driver not directly associated with an actual piece of hardware. The pseudo-device 
statement creates a header (.h) file that is identified by the pseudo-device name in the kernel directory. For 
example, the statement shown below creates the file loop.h:

pseudo-device   loop           # loopback network--mandatory

The loop pseudo-device is necessary to create the loopback device (lo0). This device is associated with the 
loopback address 127.0.0.1; it is defined as a pseudo-device because it is not really a piece of hardware.

Another pseudo-device that is used on many FreeBSD TCP/IP systems is:

pseudo-device   ether          # basic Ethernet support

This statement is necessary to support Ethernet. The ether pseudo-device is required for full support of ARP 
and other Ethernet specific functions. While it is possible that a system that does not have Ethernet may not 
require this statement, it is usually configured, and should remain in your kernel configuration.

The pseudo-terminals, or ptys, are other pseudo-devices that are universally configured:

file:///C|/mynapster/Downloads/warez/tcpip/ch05_03.htm (3 of 6) [2001-10-15 09:17:54]



[Chapter 5] 5.3 The BSD Kernel Configuration File 

pseudo-device   pty     16     # pseudo-tty's

This statement defines the virtual terminal devices used by remote login services such as rlogin and telnet. 
Pseudo-terminals are also used by many other applications, such as Emacs, that have no direct connection to 
TCP/IP networking. The number, 16 in the example, is the number of ptys created by the kernel. The 
maximum on a FreeBSD system is 64.

Other commonly configured pseudo-devices are those that support SLIP and PPP.

pseudo-device   sl        2    # Serial Line IP

This statement defines the interface for the Serial Line IP protocol. The number, 2 in the example, defines 
the number of SLIP pseudo-devices created by the kernel. The two devices created here would be addressed 
as device sl0 and sl1.

pseudo-device   ppp       2    # Point-to-point protocol

The ppp pseudo-device is the interface for the Point-to-Point Protocol. The number, 2 in the example, 
defines the number of PPP pseudo-devices created by the kernel. The two devices created here would be 
addressed as device ppp0 and ppp1. Two other pseudo-devices directly related to PPP are shown next.

pseudo-device   sppp           # Generic synchronous PPP
pseudo-device   tun        1   # Tunnel driver(user process ppp)

The sppp statement adds support for synchronous PPP data link-layer protocols. Normally, PPP runs over a 
dial-up line using an asynchronous link protocol. Asynchronous modems are the common modems all of us 
have on our home computers. Synchronous modems and synchronous link protocols are used on leased 
lines.

The tun pseudo-device is a tunnel driver used by user-level PPP software. Tunneling is when a system 
passes one protocol through another protocol; tun is a FreeBSD feature for doing this over PPP links. The 
number, 1 in the example, is the number of tunnels that will be supported by this kernel.

The last three pseudo-devices are less frequently used.

pseudo-device   fddi           # Generic FDDI
pseudo-device   bpfilter   4   # Berkeley packet filter
pseudo-device   disc           # Discard device

The fddi statement adds support for the Fiber Digital Data Interface (FDDI) to the kernel. FDDI is a local 
area network standard for transmitting data at 100M bps over fiber-optic cable.

The bpfilter statement adds the support necessary for capturing packets. Capturing packets is an essential 
part of protocol analyzers; see Chapter 11, Troubleshooting TCP/IP . When the bpfilter statement is included 
in the BSD kernel, the Ethernet interface can be placed into "promiscuous mode". [6] An interface in 
promiscuous mode passes all packets, not just those addressed to the local system, up to the software at the 
next layer. This feature is useful for a system administrator troubleshooting a network. But it can also be 

file:///C|/mynapster/Downloads/warez/tcpip/ch05_03.htm (4 of 6) [2001-10-15 09:17:54]



[Chapter 5] 5.3 The BSD Kernel Configuration File 

used by intruders to steal passwords and compromise security. Use the bpfilter pseudo-device only if you 
really need it. The number, 4 in the example, indicates the maximum number of Ethernet interfaces that can 
be monitored by bpfilter.

[6] This assumes that the Ethernet hardware is capable of functioning in promiscuous mode. 
Not all Ethernet boards support this feature.

The final network pseudo-device is disc. It discards all data that it receives. This device is used only for 
testing.

5.3.1.3 Devices 

Real hardware devices are defined using the device statement. Every host attached to a TCP/IP network 
requires some physical hardware for that attachment. The hardware is declared with a device statement in 
the kernel configuration file. There are many possible network interfaces for TCP/IP, but the most common 
are Ethernet interfaces. 

Table 5.1 lists the Ethernet device drivers available with FreeeBSD 2.1.5.

Table 5.1: Ethernet Cards Supported by FreeBSD

Device Description

de0 DEC DC21040 PCI adapter

ed0 Western Digital SMC 80xx, Novell NE1000/2000, 3COM 3C503

eg0 3COM 3C505

el0 3COM 3C501

ep0 3COM 3C509

fe0 Fujitsu MB86960A/MB86965A

ie0 AT&T StarLAN 10 & EN100, 3COM 3C507, N15210

ix0 Intel EtherExpress 16

le0 DEC EtherWorks 2 and EtherWorks3

lnc0 Isolan, Novell NE2100 and NE32-VL

ze0 IBM/National Semiconductor PCMCIA adapter

zp0 3COM Etherlink III PCMICA adapter

A sample device statement shows the general format of the commands used to configure an Ethernet 
interface in the FreeBSD kernel:

device ed0 at isa? port 0x280 net irq 5 iomem 0xd8000 vector edintr
device de0

Note that the ed0 device statement defines the bus type (isa), the I/O base address (port 0x280), the interrupt 
number (irq 5) and the memory address (iomem 0xd8000). These values should match the values configured 
on the adapter card. All of these are standard items for configuring PC hardware. [7] On the other hand, the 
de0 device statement requires very little configuration because it configures a card attached to the PCI bus. 

file:///C|/mynapster/Downloads/warez/tcpip/ch05_03.htm (5 of 6) [2001-10-15 09:17:54]



[Chapter 5] 5.3 The BSD Kernel Configuration File 

The PCI is an intelligent bus that can determine the configuration directly from the hardware.

[7] See Networking Personal Computers with TCP/IP, by Craig Hunt (O'Reilly & Associates), 
for details about PC hardware configuration.

Ethernet is not the only TCP/IP network interface supported by FreeBSD. It supports an experimental ISDN 
interface as well as the DEC FDDI adapter. More widely used than these are the serial line interfaces 
necessary for SLIP and PPP.

device sio0  at isa? port "IO_COM1" tty irq 4  vector siointr
device sio1  at isa? port "IO_COM2" tty irq 3  vector siointr
device sio2  at isa? port "IO_COM3" tty irq 5  vector siointr
device sio3  at isa? port "IO_COM4" tty irq 9  vector siointr

The four serial interfaces, sio0 through sio3, correspond to the MS-DOS interfaces COM1 to COM4. These 
are needed for SLIP and PPP. Chapter 6 covers other aspects of configuring PPP and SLIP.

The device statement varies according to the interface being configured. But how do you know which 
hardware interfaces are installed in your system? Remember that the GENERIC kernel that comes with your 
FreeBSD system is configured for a large number of devices. A simple way to tell which hardware interfaces 
are installed in your system is to look at the messages displayed on the console at boot time. These messages 
show all of the devices, including network devices, that the kernel found during initialization. Look at the 
output of the dmesg command. It displays a copy of the console messages generated during the last boot.

The options, pseudo-device, and device statements found in the kernel configuration file tell the system to 
include the TCP/IP hardware and software in the kernel. The statements in your configuration may vary 
somewhat from those shown in the previous examples. But you have the same basic statements in your 
kernel configuration file. With these basic statements, FreeBSD UNIX is ready to run TCP/IP.

You will probably never change any of the variables discussed in this section. Like everything else in the 
kernel configuration file, they usually come correctly configured to run TCP/IP.

Previous: 5.2 Linux Kernel 
Configuration 

TCP/IP Network 
Administration

Next: 5.4 The Internet 
Daemon 

5.2 Linux Kernel 
Configuration 

Book Index 5.4 The Internet Daemon 

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/ch05_03.htm (6 of 6) [2001-10-15 09:17:54]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Chapter 5] 5.2 Linux Kernel Configuration 

Previous: 5.1 Kernel 
Configuration 

Chapter 5
Basic Configuration 

Next: 5.3 The BSD Kernel 
Configuration File 

 

5.2 Linux Kernel Configuration 

The Linux kernel is a C program compiled and installed by make. The make config command customizes the 
kernel configuration and generates the files (including the Makefile) needed to compile and link the kernel. On 
Linux systems, the kernel source directory is /usr/src/linux. To start the configuration process, change to the 
source directory and run make config:

# cd /usr/src/linux
# make config

The make config command asks many questions about your system configuration. Some of these are directly 
related to network configuration. The first network configuration question is:

Networking support (CONFIG_NET) [Y/n/?]

Answer "yes" (y), which is the default. Networking support is necessary for all of the TCP/IP networking 
features that we will request later in the configuration. Even if you don't run TCP/IP, you should answer "yes" 
to this question. Basic network support is essential to many services.

The make config command asks several more general configuration questions before returning to the topic of 
networking. When it does, it has many networking questions to ask. The example below is an excerpt from the 
actual configuration of the Linux 2.0 kernel on a Slackware 96 system. [2]

[2] The configuration questions change with every new kernel. Refer to your system's 
documentation for the latest information.

Network firewalls (CONFIG_FIREWALL) [N/y/?] 
Network aliasing (CONFIG_NET_ALIAS) [N/y/?] 
TCP/IP networking (CONFIG_INET) [Y/n/?] 
IP: forwarding/gatewaying (CONFIG_IP_FORWARD) [N/y/?] 
IP: multicasting (CONFIG_IP_MULTICAST) [N/y/?] 
IP: accounting (CONFIG_IP_ACCT) [N/y/?] 
IP: PC/TCP compatibility mode (CONFIG_INET_PCTCP) [N/y/?] 
IP: Reverse ARP (CONFIG_INET_RARP) [N/y/m/?] 
IP: Disable Path MTU Discovery (normally enabled)
     (CONFIG_NO_PATH_MTU_DISCOVERY) [N/y/?] 
IP: Drop source routed frames (CONFIG_IP_NOSR) [Y/n/?] 
IP: Allow large windows (not recommended if <16Mb of memory)
     (CONFIG_SKB_LARGE) [Y/n/?] 

file:///C|/mynapster/Downloads/warez/tcpip/ch05_02.htm (1 of 5) [2001-10-15 09:17:55]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


[Chapter 5] 5.2 Linux Kernel Configuration 

Network device support (CONFIG_NETDEVICES) [Y/n/?] 
Dummy net driver support (CONFIG_DUMMY) [N/y/m/?] 
EQL (serial line load balancing) support (CONFIG_EQUALIZER) [N/y/m/?] 
PLIP (parallel port) support (CONFIG_PLIP) [N/y/m/?] 
PPP (point-to-point) support (CONFIG_PPP) [Y/m/n/?] 
SLIP (serial line) support (CONFIG_SLIP) [Y/m/n/?] 
 CSLIP compressed headers (CONFIG_SLIP_COMPRESSED) [Y/n/?] 
 Keepalive and linefill (CONFIG_SLIP_SMART) [N/y/?] 
 Six bit SLIP encapsulation (CONFIG_SLIP_MODE_SLIP6) [N/y/?] 
Radio network interfaces (CONFIG_NET_RADIO) [N/y/?] 
Ethernet (10 or 100Mbit) (CONFIG_NET_ETHERNET) [Y/n/?] 
3COM cards (CONFIG_NET_VENDOR_3COM) [Y/n/?] 
3c501 support (CONFIG_EL1) [N/y/m/?] 
3c503 support (CONFIG_EL2) [N/y/m/?] 
3c509/3c579 support (CONFIG_EL3) [Y/m/n/?] 
3c590 series (592/595/597) "Vortex" support (CONFIG_VORTEX) [N/y/m/?] 
AMD LANCE and PCnet (AT1500 and NE2100) support (CONFIG_LANCE) [N/y/?] 
Western Digital/SMC cards (CONFIG_NET_VENDOR_SMC) [N/y/?] 
Other ISA cards (CONFIG_NET_ISA) [N/y/?] 
EISA, VLB, PCI and on board controllers (CONFIG_NET_EISA) [N/y/?] 
Pocket and portable adaptors (CONFIG_NET_POCKET) [N/y/?] 
Token Ring driver support (CONFIG_TR) [N/y/?] 
ARCnet support (CONFIG_ARCNET) [N/y/m/?] 
ISDN support (CONFIG_ISDN) [N/y/m/?]

Each configuration option is either enabled by entering a "y" for "yes", or disabled with an "n" for "no". "m" for 
"module" is an alternative method for enabling some features. Features that are available as dynamically 
loadable modules list "m" as a possible response. If "m" is selected, the dynamically loadable module is loaded 
the first time a call is made to the kernel that requires the module. If "y" is selected for a feature, the code that 
supports that feature is compiled directly into the kernel. The default setting of each option is indicated by the 
uppercase letter in the square brackets at the end of the option line. For example, [Y,n] indicates an option that 
is enabled by default. Here, we list each option and its purpose:

CONFIG_FIREWALL

Adds the kernel support necessary to make this system a firewall. Enable this only if the Linux system 
will be your firewall. The full firewall installation requires additional software outside the kernel. See 
Chapter 12, Network Security , for a discussion of firewalls. [3]

[3] Building a firewall is beyond the scope of this book. See Building Internet Firewalls, by 
Brent Chapman and Elizabeth Zwicky (O'Reilly & Associates), for a full treatment of the subject.

CONFIG_NET_ALIAS

Adds the kernel support necessary for address translation. Use this feature only if you have a private 
internal network number and a different network address for external communications. If you do, 
internal addresses must be translated to valid external addresses whenever connections are made to the 
outside world, but it is likely that the translation will be done by your router or firewall. You should 
select "yes" only in the rare circumstance that the Linux box must do the translation; otherwise, select 

file:///C|/mynapster/Downloads/warez/tcpip/ch05_02.htm (2 of 5) [2001-10-15 09:17:55]



[Chapter 5] 5.2 Linux Kernel Configuration 

"no". See Chapter 4, Getting Started , for a discussion of private network numbers and address 
translation.

CONFIG_INET

Adds TCP/IP networking to the kernel. This is an absolute must!
CONFIG_IP_FORWARD

Determines whether or not the system forwards IP datagrams. This feature must be enabled if the Linux 
system is an IP router. On Linux host systems, this feature is disabled, which is the default. Select "no" 
unless this box is a router.

CONFIG_IP_MULTICAST

Adds multicast support to the kernel. Enable this to use multicast applications such as MBONE or 
Internet Talk Radio. Not sure if you need multicasting? Select "yes". You never know what applications 
you will add later.

CONFIG_IP_ACCT

Adds code to count the bytes in incoming and outgoing traffic on a per-port/pre-address basis. This 
could be useful for monitoring system usage, particularly in a commercial environment where usage is 
billed back to the originator. Additional application software would be needed to make this useful. 
Select "no" unless you plan to keep close tabs on usage.

CONFIG_INET_PCTCP

Handles an incompatibility problem with older versions of FTP software's PC/TCP. Use if you have 
clients who run the old PC/TCP software on PCs.

CONFIG_INET_RARP

Adds support for Reverse Address Resolution Protocol (RARP) to the kernel. Enable this if you plan to 
use RARP on your network. Not sure? Use "m" to select the loadable module that can be used when 
your system needs it. See Chapter 3, Network Services, for a description of RARP and Chapter 9, 
Configuring Network Servers for information on configuring a RARP server.

CONFIG_NO_PATH_MTU_DISCOVERY

Removes path MTU discovery code from the kernel. (Beware of the double negative! A "y" [yes] 
disables MTU discovery and an "n" [no] enables it.) Select "no". Path MTU discovery is a technique that 
attempts to determine the smallest maximum transmission unit (MTU) along the entire path from a 
source to a destination. That MTU is then used for subsequent transmissions to avoid datagram 
fragmentation. See Chapter 1, Overview of TCP/IP, for a description of fragmentation.

CONFIG_IP_NOSR

Determines whether the system accepts source-routed datagrams. Source routing allows the source of 
the datagram to specify the routers that are used to deliver the packet. Source routes are used to force 
packets to travel over a specific path; for example, to test the routers in a path or to avoid a high-cost 
link. However, the problem with source routes is that they are used by spoofers. Spoofers are network 
intruders who pretend to be a system they are not. For example, a spoofer might pretend to be a 
computer on one of your enterprise subnets. By using source routing, the spoofer could cause your 
system to route packets off of your enterprise net that you thought were going to a local system. 
Enabling CONFIG_IP_NOSR makes it impossible for a spoofer to use source routes against you. Select 
"yes" unless you are positive that you must use source routes.

file:///C|/mynapster/Downloads/warez/tcpip/ch05_02.htm (3 of 5) [2001-10-15 09:17:55]



[Chapter 5] 5.2 Linux Kernel Configuration 

CONFIG_SKB_LARGE

Sets whether or not the system will use a large transmission window size. Large windows improve 
network performance at the cost of additional buffer space. Large windows can be disabled to save 
memory on systems with less than 16MB of RAM. See Chapter 1 for a description of the TCP 
transmission window.

CONFIG_NETDEVICES

Adds the general support required for network hardware devices. Always answer "yes", which is the 
default, to this question. It is required before configuring your Ethernet card.

CONFIG_DUMMY

Enables support for a dummy interface. An IP address can be assigned to the dummy interface even if 
the system has no network interface hardware. This is sometimes used by people who want to work on 
TCP/IP configuration even though they don't have a network connection. If you have a network, select 
"no".

CONFIG_EQUALIZER

Adds support for using multiple serial lines simultaneously. Using this feature, it is possible to have 
more than one physical PPP link established between the local host and the remote server. The system 
load balances between the links and attempts to treat them as a single logical network connection. This 
is a technique for increasing the bandwidth simply by adding additional modems and phone lines. The 
systems at both ends must support serial line load balancing and they must do so in exactly the same 
way. This option is used only when both systems are Linux systems connected by multiple serial lines. 
Otherwise, select "no".

CONFIG_PLIP

Adds Parallel Line IP to the kernel. PLIP is a version of SLIP that runs over the parallel printer port 
using a special crossover cable. This protocol is intended for transferring data between two co-located 
PCs, as the cable should be only 1 or 2 meters long. This has very limited applicability.

CONFIG_PPP

Adds the Point-to-Point Protocol (PPP) to the kernel. PPP is the TCP/IP standard protocol for 
communicating over serial lines. Select "yes" if your system will use a modem connection for TCP/IP. 
Chapter 6, Configuring the Interface , covers the configuration of this important protocol in detail.

CONFIG_SLIP

Adds the Serial Line IP (SLIP) to the kernel. SLIP is an older TCP/IP protocol once widely used for 
communicating over serial lines. Chapter 6 covers SLIP configuration in detail.

CONFIG_SLIP_COMPRESSED

Adds support for Van Jacobsen header compression to the kernel. Packet headers add a large amount of 
overhead when communicating over low-speed serial lines. Header compression greatly reduces this 
overhead. The systems at both ends of the serial link must use header compression for it to work. Most 
systems that run SLIP do use header compression.

CONFIG_SLIP_SMART

Adds support for keepalives to the kernel. Some servers drop a connection or timeout a route if the route 
or connection appears unused. Use is determined by whether or not traffic is coming in over the link. 

file:///C|/mynapster/Downloads/warez/tcpip/ch05_02.htm (4 of 5) [2001-10-15 09:17:55]



[Chapter 5] 5.2 Linux Kernel Configuration 

Keepalives are periodic transmissions sent for the explicit purpose of generating traffic on a link so that 
it is not dropped as an inactive line. The use of keepalives is discouraged. Most networks are busy 
enough as it is!

CONFIG_SLIP_MODE_SLIP6

Adds support for running SLIP over 6-bit serial lines. Normally a modem and line are configured for 8-
bit, no-parity to run SLIP or PPP. This feature allows SLIP to be run in an environment that can not 
support 8-bit transmissions. This is non-standard and rarely used. The systems at both ends of the link 
must support this protocol for it to work.

CONFIG_NET_ETHERNET

Adds support for Ethernet hardware to the kernel. You need this for your Ethernet LAN.

The remaining questions allow you to select your network hardware. A large number of Ethernet cards are 
supported by Linux. In the sample, we selected the 3COM 3C509 card. The make config command also allows 
us to select ARCnet, token ring, or ISDN interfaces. Some hosts use no specific network hardware. Instead, 
they run SLIP or PPP over a serial port as their sole network connection. Select the hardware appropriate for 
your system.

After make config asks questions about the network configuration, it goes on to ask about several other aspects 
of the system configuration. Next, it tells you to do a make dep; make clean to build the dependencies and 
clean up the odds and ends. When the makes are complete, you are ready to compile the kernel. The make 
zImage command builds a compressed kernel and puts it in the /usr/src/linux/i386/boot directory. [4] Simply 
copy the new kernel file, zImage, to /vmlinuz and you're ready to run.

[4] Most Linux systems use a compressed kernel that is automatically decompressed during the 
system boot.

Linux's list of network configuration options is as long lists for UNIX kernel configuration. Linux is yin to the 
Solaris yang. Linux permits the system administrator to configure everything, while Solaris configures 
everything for the administrator. BSD kernel configuration lies somewhere between these two extremes.

Previous: 5.1 Kernel 
Configuration 

TCP/IP Network 
Administration

Next: 5.3 The BSD Kernel 
Configuration File 

5.1 Kernel Configuration Book Index 5.3 The BSD Kernel 
Configuration File 

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/ch05_02.htm (5 of 5) [2001-10-15 09:17:55]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


file:///C|/mynapster/Downloads/warez/tcpip/ch05_01.htm

Previous: 4.8 Summary Chapter 5 Next: 5.2 Linux Kernel 
Configuration 

 

5. Basic Configuration 
Contents:
Kernel Configuration 
Linux Kernel Configuration 
The BSD Kernel Configuration File 
The Internet Daemon 
Summary 

Every UNIX computer that runs TCP/IP has a technique for incorporating the basic transport and IP 
datagram services into its operating system. This chapter discusses two files that are fundamental to 
the basic configuration of TCP/IP on UNIX systems: the kernel configuration file and the inetd.conf 
file. Because these files are so basic to network configuration, they usually come from the 
manufacturer preconfigured to run TCP/IP.

We'll examine the contents of these files and the role they play in linking TCP/IP and UNIX. With 
this information, you should be able to modify these files for your own custom configurations.

5.1 Kernel Configuration 

Kernel configuration is not really a network administration task - rather, it is a basic part of UNIX 
system administration, whether or not the computer is connected to a network. But TCP/IP 
networking, like other system functions, is integrated into the kernel.

There are two very different approaches to kernel configuration. Some systems are designed to 
eliminate the need to configure the kernel yourself, while others encourage you to do your own kernel 
configuration. Solaris 2.5.1 is an example of the former. The system comes with a generic kernel that 
supports all basic system services. When a Solaris system boots, it detects any new hardware added to 
the system. Dynamically loadable modules are used to add new features to the system. The 
configuration is defined in the /etc/system file, but this file is not directly edited by the system 
administrator. When a new software package is added to the system, the script that installs that 
package makes any changes it requires to the /etc/system file.

file:///C|/mynapster/Downloads/warez/tcpip/ch05_01.htm (1 of 2) [2001-10-15 09:17:56]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


file:///C|/mynapster/Downloads/warez/tcpip/ch05_01.htm

Linux is an example of the latter philosophy: its documentation encourages you to create your own 
configuration. In this text we concentrate on Linux and on FreeBSD, systems that allow you to build 
your own custom kernel. [1] Throughout this chapter, we provide examples of kernel configuration 
statements using these two UNIX systems. While kernel configuration involves all aspects of system 
configuration, we include only statements that directly affect TCP/IP configuration.

[1] The kernel configuration process of other BSD systems, such as SunOS 4.1.3, is 
similar to the FreeBSD example.

Both of the UNIX systems used in the examples come with a kernel configuration file preconfigured 
for TCP/IP. During the initial installation, you may need to select a preconfigured kernel that includes 
network support, but you probably won't need to modify the kernel configuration for networking. The 
kernel configuration file is normally changed only when you wish to:

●     Produce a smaller, more efficient kernel by removing unneeded items
●     Add a new device
●     Modify a system parameter

While there is rarely any need to modify the kernel network statements, it is useful to understand what 
these statements do. Looking into the kernel configuration file shows how UNIX is tied to the 
hardware and software of the network.

CAUTION: The procedures and files used for kernel configuration vary dramatically 
depending on UNIX implementation. These variations make it essential that you refer to 
your system documentation before trying to configure the kernel on your system. Only 
your system documentation can provide you with the accurate, detailed instructions 
required to successfully complete this task.

Previous: 4.8 Summary TCP/IP Network 
Administration

Next: 5.2 Linux Kernel 
Configuration 

4.8 Summary Book Index 5.2 Linux Kernel 
Configuration 

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/ch05_01.htm (2 of 2) [2001-10-15 09:17:56]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Chapter 4] 4.8 Summary 

Previous: 4.7 netconfig Chapter 4
Getting Started 

Next: 5. Basic 
Configuration 

 

4.8 Summary 

Planning is the first step in configuring TCP/IP. We began this chapter by deciding whether your 
network will connect to the Internet and exploring how that decision impacts the rest of your 
planning. We also looked at the basic information needed to configure a physical network: an IP 
address, a subnet mask, and a broadcast address. We discussed how to plan routing, which is essential 
for communicating between TCP/IP networks. We outlined the basic network services, starting with 
domain name service, and discussed file, print, and email servers. Finally, we looked at the different 
ways that this planning information is communicated from the network administrator to the system 
administrators and users.

In the chapters that follow, we put these plans into action, starting with the configuration of the 
network interface in Chapter 6. First, however, we will go inside the UNIX kernel to see how TCP/IP 
is built into the operating system.

Previous: 4.7 netconfig TCP/IP Network 
Administration

Next: 5. Basic 
Configuration 

4.7 netconfig Book Index 5. Basic Configuration 

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/ch04_08.htm [2001-10-15 09:17:56]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm
file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Chapter 4] 4.7 netconfig 

Previous: 4.6 Informing the 
Users 

Chapter 4
Getting Started 

Next: 4.8 Summary 

 

4.7 netconfig 

During the installation of the Slackware 96 Linux operating system you are asked if you want to 
configure the network. If you answer "yes", netconfig begins. netconfig can be run by the superuser 
at any time from the shell prompt.

netconfig presents a series of screens that prompt for basic configuration information. The first two 
questions, hostname and domain name, are simple enough. However, the third question may cause 
some confusion. It asks if the system should be configured to use only the loopback interface. You 
may wonder why anyone would limit TCP/IP to the loopback interface. The reason is simple: the 
person wants to run TCP/IP but has no physical network. Students who are studying TCP/IP, perhaps 
on a home computer, sometimes use this so that they can work with TCP/IP without a physical 
network. Clearly, the users attached to your network should answer "no" to this question.

The remaining questions are straightforward. netconfig asks for the system's IP address, the IP 
address of the default gateway, and the subnet mask. It then asks if you will use a name server. If you 
answer "yes", it asks for the IP address of the name server.

That's it. It is easy to answer these questions using the planning sheet we developed above. But if you 
know what configuration questions your users will be asked and what order they will have to answer 
them, you can improve the planning sheet. Reorder the planning information to match the order of the 
questions and add answers for the yes/no questions so that the users do not get confused. Here is the 
peanut planning sheet redesigned for netconfig:

Enter hostname:

peanut
Enter domain name:

nuts.com
Do you plan to ONLY use loopback:

No
Enter IP address:

file:///C|/mynapster/Downloads/warez/tcpip/ch04_07.htm (1 of 2) [2001-10-15 09:17:57]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


[Chapter 4] 4.7 netconfig 

172.16.12.2
Enter gateway address:

172.16.12.1
Enter netmask:

255.255.255.0
Will you access a nameserver:

Yes
Name Server:

172.16.12.1

## This completes your network setup. ##
## Hold on to the remaining information for future reference.##

Broadcast address:

172.16.12.255
Mail server:

172.16.12.1
Mail relay:

172.16.12.1
Print server:

172.16.12.3
NFS server:

172.16.1.2

Previous: 4.6 Informing the 
Users 

TCP/IP Network 
Administration

Next: 4.8 Summary 

4.6 Informing the Users Book Index 4.8 Summary 

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/ch04_07.htm (2 of 2) [2001-10-15 09:17:57]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Chapter 4] 4.6 Informing the Users 

Previous: 4.5 Other 
Services 

Chapter 4
Getting Started 

Next: 4.7 netconfig 

 

4.6 Informing the Users 

All of the configuration information that you gather or develop through the planning process must be 
given to the users so that they can configure their systems. You can distribute information with 
several techniques.

In Chapter 3 we discussed NIS, NFS, and configuration servers. All of these play a role in informing 
the user and in simplifying the configuration process. NIS supports several system administration 
databases that provide many of the basic configuration values. NFS can distribute pre-configured 
system files to client systems. Configuration servers, such as BOOTP and DHCP, offer every 
parameter needed to configure a TCP/IP system directly to the client. All of these are important, but 
they are not the complete solution.

The servers require that the client is configured to be a client. For NIS and NFS, the client must have a 
full basic configuration. Even BOOTP and DHCP require that the user know whether BOOTP or 
DHCP is being used so that he does not enter any incorrect values during the initial system 
installation. Therefore, the network administrator must directly communicate with the administrator of 
the end system, usually through written documentation.

4.6.1 Sample Planning Sheets 

To communicate this information, the network administrator will often create an installation planning 
sheet - a short list of information for the system administrator. A sample planning sheet for the 
workstation peanut, based on some of the topics we have discussed, provides basic configuration 
details. The planning sheet lists the name, address, subnet mask, the fact that DNS is used, and the 
fact that RIP is used on subnet 172.16.12.0: 

Hostname:

peanut
IP address:

172.16.12.2
Subnet mask:

file:///C|/mynapster/Downloads/warez/tcpip/ch04_06.htm (1 of 4) [2001-10-15 09:17:58]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


[Chapter 4] 4.6 Informing the Users 

255.255.255.0
Default gateway:

172.16.12.1 (almond.nuts.com)
Broadcast address:

172.16.12.255
Domain name:

nuts.com
Name servers:

172.16.12.1 (almond.nuts.com)
172.16.6.8 (pack.plant.nuts.com)

Routing protocol:

Routing Information Protocol (RIP)
Mail server:

172.16.12.1 (almond.nuts.com)
Mail relay:

172.16.12.1 (almond.nuts.com)
Print server:

172.16.12.3 (pecan.nuts.com)
NFS server:

172.16.1.2 (filbert.nuts.com)

A similar sheet prepared for almond (see below) varies slightly from the planning sheet for peanut. 
The names and address are different, of course, but the real differences are caused by the fact that 
almond is a gateway. As a gateway, almond has more than one network interface, and each interface 
requires its own configuration. Each interface has its own address and can have its own name, subnet 
mask, and routing protocol.

Hostname:

almond (172.16.12.1)
mil-gw (10.104.0.19)

IP address:

file:///C|/mynapster/Downloads/warez/tcpip/ch04_06.htm (2 of 4) [2001-10-15 09:17:58]



[Chapter 4] 4.6 Informing the Users 

172.16.12.1
10.104.0.19

Subnet mask:

255.255.255.0 (172.16.12.1)
default (10.104.0.19)

Default gateway:

none
Broadcast address:

172.16.12.255 (172.16.12.1)
default (10.104.0.19)

Domain name:

nuts.com
Name servers:

172.16.12.1 (almond.nuts.com)
172.16.6.8 (pack.plant.nuts.com)

Routing protocol:

Routing Information Protocol (RIP) (172.16.12.1)
Border Gateway Protocol (BGP) (10.104.0.19)

Print server:

172.16.12.3 (pecan.nuts.com)
NFS server:

172.16.1.2 (filbert.nuts.com)

We use the information from these planning sheets to configure the systems in subsequent chapters. 
You may, however, want to format your planning sheets differently. In this book we configure the 
system directly. We use the configuration commands ourselves so that we can understand and master 
them. In reality many basic configuration tasks are performed by a network configuration script 
during the initial operating system installation. You may want to format your planning sheet to be 
compatible with the prompts of that script. One such script is netconfig, which is used on Linux 
systems.

file:///C|/mynapster/Downloads/warez/tcpip/ch04_06.htm (3 of 4) [2001-10-15 09:17:58]



[Chapter 4] 4.6 Informing the Users 

Previous: 4.5 Other 
Services 

TCP/IP Network 
Administration

Next: 4.7 netconfig 

4.5 Other Services Book Index 4.7 netconfig 

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/ch04_06.htm (4 of 4) [2001-10-15 09:17:58]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Chapter 4] 4.5 Other Services 

Previous: 4.4 Planning 
Naming Service 

Chapter 4
Getting Started 

Next: 4.6 Informing the 
Users 

 

4.5 Other Services 

Three services that are used on many networks are file servers, print servers, and mail servers. The 
purpose of these services and the protocols they are built on is discussed in Chapter 3. In this section 
we investigate what information must be passed to the users so that the client systems can be 
successfully configured, and how the network administrator determines that information.

4.5.1 File servers 

At a minimum the user needs to know the hostnames of the network file servers. Using the names and 
the showmount command, the user can determine what filesystems are being offer by the servers and 
who is permitted to use those filesystems. [8] Without at least the hostname, the user would have to 
guess which system offered file service.

[8] See the showmount command in Chapter 9.

A better approach is to give users information that also includes what filesystems are being offered 
and who should use those filesystems. For example, if the UNIX man pages are made available from 
a central server, the users should be informed not to install the man pages on their local disk drives 
and they should be told exactly how to access the centrally supported files.

4.5.2 Print servers 

Whether printers are shared using lp, lpd, or NFS, the basic information needed to configure the print 
server's clients is the same: the hostname and IP address of the print server, and the name of the 
printer. Printer security may also require that the user be given a username and password to access the 
printer.

This is the only information needed to configure the client. However, you probably will want to 
provide your users with additional information about the features, location and administration of 
shared printers.

4.5.3 Planning Your Mail System 

file:///C|/mynapster/Downloads/warez/tcpip/ch04_05.htm (1 of 3) [2001-10-15 09:17:58]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


[Chapter 4] 4.5 Other Services 

TCP/IP provides the tools you need to create a reliable, flexible electronic mail system. Servers are 
one of the tools that improve reliability. It is possible to create a peer-to-peer email network in which 
every end system directly sends and receives its own mail. However, relying on every system to 
deliver and collect the mail requires that every system be properly administered and consistently up 
and running. This isn't practical, because many small systems are offline for large portions of the day. 
Most networks use servers so that only a few systems need to be properly configured and operational 
for the mail to go through.

The terminology that describes email servers is confusing because all of the server functions usually 
occur in one computer, and all of the terms are used interchangeably to refer to that system. In this 
text we differentiate between these functions, but we expect you will do all of these tasks on one 
UNIX system running sendmail. We use these terms in the following manner:

Mail server

The mail server collects incoming mail for other computers on the network. It supports 
interactive logins as well as POP or IMAP so that users can read their mail as they see fit.

Mail relay

A mail relay is a host that forwards mail between internal systems and from internal systems to 
remote hosts. Mail relays allow internal systems to have simple mail configurations because 
only the relay host needs to have software to handle special mail addressing schemes and 
aliases.

Mail gateway

A mail gateway is a system that forwards email between dissimilar systems. You don't need a 
gateway to go from one Internet host to another because both systems use SMTP. You do need 
a gateway to go from SMTP to X.400 or to a proprietary mailer. In a pure TCP/IP network, this 
function is not needed.

The mail server is the most important component of a reliable system because it eliminates reliance on 
the user's system. A centrally controlled, professionally operated server collects the mail regardless of 
whether or not the end system is operational.

The relay host also contributes to the reliability of the email system. If mail cannot be immediately 
delivered by the relay host, it is queued and processed later. An end system also queues mail, but if it 
is shut down no attempts can be made to deliver queued mail until the system is back online. The mail 
server and the mail relay are operated 24 hours a day.

The design of most TCP/IP email networks is based on the following guidelines:

●     Use a mail server to collect mail, and POP or IMAP to deliver the mail.
●     Use a mail relay host to forward mail. Implement a simplified email address scheme on the 

relay host.

file:///C|/mynapster/Downloads/warez/tcpip/ch04_05.htm (2 of 3) [2001-10-15 09:17:58]



[Chapter 4] 4.5 Other Services 

●     Standardize on TCP/IP and SMTP. Users who insist on using a proprietary email system 
should be responsible for obtaining and configuring an SMTP mail gateway for that system in 
order to connect to your TCP/IP email network.

●     Standardize on MIME for binary attachments. Avoid proprietary attachment schemes; they just 
cause confusion when the users of Brand X email cannot read attachments received from 
Brand Y.

For their client configurations, provide the users with the hostname and IP address of the mail server 
and the mail relay. The mail server will also require a username and password for each person.

Previous: 4.4 Planning 
Naming Service 

TCP/IP Network 
Administration

Next: 4.6 Informing the 
Users 

4.4 Planning Naming Service Book Index 4.6 Informing the Users 

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/ch04_05.htm (3 of 3) [2001-10-15 09:17:58]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


file:///C|/mynapster/Downloads/warez/tcpip/ch04_04.htm

Previous: 4.3 Planning 
Routing 

Chapter 4
Getting Started 

Next: 4.5 Other Services 

 

4.4 Planning Naming Service 

To make your network user-friendly, you need to provide a service to convert hostnames into IP 
addresses. Domain name service (DNS) and the host table, explained in Chapter 3, perform this 
function. You should plan to use both.

To configure her computer, a network user needs to know the domain name, her system's hostname, 
and the hostname and address of at least one name server. The network administrator provides this 
information.

4.4.1 Obtaining a Domain Name 

The first item you need for domain name service is a domain name. You can obtain an official domain 
name from the InterNIC. Your ISP may be willing to do this for you or to assign you a name within its 
domain; however, it is likely that you will have to apply for a domain name yourself. You can 
download the application from ftp://rs.internic.net/templates/domain-template.txt.

Pre-select a domain name and have your primary domain name server up and running before you 
attempt to register the domain name. Use whois as described in Chapter 13, Internet Information 
Resources , to see if the name you want is in use. Double-check with nslookup as described in 
Chapter 8, Configuring DNS Name Service . When you are reasonably sure the domain name is still 
available, start your primary name server running. If you don't want to run your own server, ask your 
ISP if they offer this service. If they don't, you must either find a new ISP that does, or run the service 
yourself.

Having the primary server up and running doesn't mean that your entire domain must be fully 
operational, but it does mean that a server must be running to respond to basic queries. When asked, 
the server should answer that it is the name server for your domain. Configure the primary server as 
described in Chapter 8. Test it with nslookup. Once you are sure that it at least answers queries about 
itself, register the domain name.

Submit the domain name application form via email to hostmaster@internic.net with a subject line 
containing the words "NEW DOMAIN" followed by the name of your domain. For example, 
assuming the completed template is stored in the file domain.application on a Solaris system, the 

file:///C|/mynapster/Downloads/warez/tcpip/ch04_04.htm (1 of 4) [2001-10-15 09:17:59]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm
ftp://rs.internic.net/templates/domain%E2%80%93template.txt
mailto:hostmaster@internic.net


file:///C|/mynapster/Downloads/warez/tcpip/ch04_04.htm

following command might be used to mail it to the InterNIC for a domain named nuts.com:

% Mail hostmaster@internic.net
Subject: NEW DOMAIN nuts.com
~r domain.application
"domain.application" 49/2732
^D
EOT

In response to your email, you receive a reply that contains a tracking number that you use to monitor 
the status of your domain registration.

Use the domain name registration form to change or delete your existing domain name registration. 
Just fill in the form with the corrected information and mail it to hostmaster@internic.net with a 
subject line that contains either "MODIFY DOMAIN" or "REMOVE DOMAIN", as appropriate, 
followed by your domain name. In the very first field of the application form, item 0, ask for the type 
of registration action: either New ("N"), Modify ("M"), or Delete ("D"). Make sure the letter in this 
field matches the action indicated on the subject line when you mail in the application.

You're required to use email to submit the domain name application. The logic behind this is that if 
you don't have at least email access to the Internet, you don't need an Internet domain name. This 
helps reduce the number of frivolous domain name requests, and it automates part of the registration, 
further reducing the burden of handling domain name requests.

Another thing that dramatically reduces the number of frivolous domain name applications is the $100 
registration fee. The registration service charges each domain $50 a year to be maintained in the 
registry. The initial $100 fee covers the first two years. Question 9 asks if the InterNIC should send 
the bill for the registration fee to you via email or postal mail. Answer with an "E" or a "P". If your 
"bean counters" will accept an email bill, go that way. You'll get everything finished more quickly.

The application form is largely self-explanatory, but a few items require some thought. Two things 
may be confusing - handles and servers. One is the request for a NIC handle. You have a NIC handle 
only if you are registered in the NIC white pages. The white pages (discussed in Chapter 12) is a 
directory of information about users, networks, hosts, and domains. A NIC handle is a record 
identifier for this directory. A personal NIC handle for a user entry is composed of the user's initials 
and perhaps a number. For example, my initials are cwh and my NIC handle is cwh3. It is unlikely 
that you will have a handle unless you have contacted the NIC before. If you don't have a handle, just 
leave it blank. The NIC will assign you one.

You're also asked for the names and addresses of your primary and secondary name servers. The 
servers listed must be operational and connected to the Internet. [7] Provide the full domain name of 
the primary server in response to question 7a; e.g. almond.nuts.com. The primary server is usually a 
name server located at your site, but not always. It isn't necessary to provide your own primary server; 
and if you aren't directly connected to the Internet, you can't. Even though you are not connected, you 
may still want to register your domain name with the NIC if you have email access to the Internet. 

file:///C|/mynapster/Downloads/warez/tcpip/ch04_04.htm (2 of 4) [2001-10-15 09:17:59]

mailto:hostmaster@internic.net


file:///C|/mynapster/Downloads/warez/tcpip/ch04_04.htm

This allows you to use an email address that clearly identifies your organization. In order to do this, 
the online service that receives your email must be able to provide your primary name service. Check 
with them before you fill out this form.

[7] Chapter 8 tells you how to get a name server up and running.

The secondary server should be on a separate physical network from the primary server. Putting it on 
a different network guarantees that other sites can look up information about your network, even if 
access to your network is unavailable for some reason. A large organization may have multiple 
independent networks, but for many sites this requirement means asking another organization to 
provide a secondary name server. Who do you ask?

Again, you should turn to the people who are providing your Internet access. The network that 
connects you to the Internet should provide secondary name servers as a service to its users. If they do 
not, they should be able to point you to other organizations that do provide the service. It is even 
possible for two organizations who are both applying for new domains to provide secondary service 
for each other. In other words, you provide someone with a secondary server; in return, they provide a 
secondary server for you.

Read the instructions that come with the domain application. The remainder of the form should be 
easy to fill out.

4.4.1.1 Obtaining an IN-ADDR.ARPA domain 

When you obtain your Internet domain name, you should also apply for an in-addr.arpa domain. This 
special domain is sometimes called a reverse domain. Chapter 8 contains more information about how 
the in-addr.arpa domain is set up and used, but basically the reverse domain maps numeric IP 
addresses into domain names. This is the reverse of the normal process, which converts domain names 
to addresses. If your ISP provides your name service or your ISP assigned you an address from a 
block of its own addresses, you may not need to apply for an in-addr.arpa domain on your own. 
Check with your ISP before applying. If you do need to get a reverse domain, you can obtain the 
application from ftp://rs.internic.net/templates/in-addr-template.txt.

4.4.2 Choosing a Hostname 

Once you have a domain name, you are responsible for assigning hostnames within that domain. You 
must ensure that hostnames are unique within your domain or subdomain, in the same way that host 
addresses must be unique within a network or subnet. But there is more to choosing a host name than 
just making sure the name is unique. Choosing a hostname is a surprisingly emotional issue. Many 
people feel very strongly about the name of their computer because they identify their computer with 
themselves or their work.

RFC 1178 provides excellent guidelines on how to choose a hostname. Some key suggestions from 
these guidelines are:

file:///C|/mynapster/Downloads/warez/tcpip/ch04_04.htm (3 of 4) [2001-10-15 09:17:59]

ftp://rs.internic.net/templates/in%E2%80%93addr%E2%80%93template.txt


file:///C|/mynapster/Downloads/warez/tcpip/ch04_04.htm

●     Use real words that are short, easy to spell, and easy to remember. The point of using 
hostnames instead of IP addresses is that they are easier to use. If hostnames are difficult to 
spell and remember, they defeat their own purpose.

●     Use theme names. For example, all hosts in a group could be named after human movements: 
fall, jump, hop, skip, walk, run, stagger, wiggle, stumble, trip, limp, lurch, hobble, etc. Theme 
names are often easier to choose than unrestricted names, and increase the sense of community 
among network users.

●     Avoid using project names, personal names, acronyms, numeric names, and technical jargon. 
Projects and users change over time. If you name a computer after the person who is currently 
using it or the project it is currently assigned to, you will probably have to rename the 
computer in the future. Use nicknames to identify the server function of a system, e.g., www, 
ftp, ns, etc. Nicknames can easily move between systems if the server function moves. See the 
description of CNAME records in Chapter 8 for information on creating nicknames.

The only requirement for a hostname is that it be unique within its domain. But a well-chosen 
hostname can save future work and make the user happier.

Name service is the most basic network service, and it is one service that you will certainly run on 
your network. There are, however, other services that you should also include in your network 
planning process.

Previous: 4.3 Planning 
Routing 

TCP/IP Network 
Administration

Next: 4.5 Other Services 

4.3 Planning Routing Book Index 4.5 Other Services 

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/ch04_04.htm (4 of 4) [2001-10-15 09:17:59]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Chapter 4] 4.3 Planning Routing 

Previous: 4.2 Basic 
Information 

Chapter 4
Getting Started 

Next: 4.4 Planning Naming 
Service 

 

4.3 Planning Routing 

In Chapter 2, we learned that hosts communicate directly only with other computers connected to the 
same network. Gateways are needed to communicate with systems on other networks. If the hosts on 
your network need to communicate with computers on other networks, a route through a gateway 
must be defined. There are two ways to do this:

●     Routing can be handled by a static routing table built by the system administrator. Static 
routing tables are most useful when the number of gateways is limited. Static tables do not 
dynamically adjust to changing network conditions, so each change in the table is made 
manually by the network administrator. Complex environments require a more flexible 
approach to routing than a static routing table provides.

●     Routing can be handled by a dynamic routing table that responds to changing network 
conditions. Dynamic routing tables are built by routing protocols. Routing protocols exchange 
routing information that is used to update the routing table. Dynamic routing is used when 
there are multiple gateways on a network, and is essential when more than one gateway can 
reach the same destination.

Many networks use a combination of both static and dynamic routing. Some systems on the network 
use static routing tables, while others run routing protocols and have dynamic tables. While it is often 
appropriate for hosts to use static routing tables, gateways usually run routing protocols.

The network administrator is responsible for deciding what type of routing to use and for choosing the 
default gateway for each host. Make these decisions before you start to configure your system. Here 
are a few guidelines to help you plan routing. If you have:

A network with no gateways to other TCP/IP networks

No special routing configuration is required in this case. The gateways referred to in this 
discussion are IP routers that interconnect TCP/IP networks. If you are not interconnecting 
TCP/IP networks, you do not need an IP router. Neither a default gateway nor a routing 
protocol needs to be specified.

A network with a single gateway

If you have only one gateway, don't run any routing protocols. Specify the single gateway as 

file:///C|/mynapster/Downloads/warez/tcpip/ch04_03.htm (1 of 4) [2001-10-15 09:18:00]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


[Chapter 4] 4.3 Planning Routing 

the default gateway in a static routing table.
A network with internal gateways to other subnets and a single gateway to the world

Here there is a real choice. You can statically specify each subnet route and make the gateway 
to the world your default route, or you can run a routing protocol. Decide which you want to 
do based on the effort involved in maintaining a static table versus the slight overhead of 
running a routing protocol on your hosts and networks. If you have more than a few hosts, 
running a routing protocol is probably easiest.

A network with multiple gateways to the world

If you have multiple gateways that can reach the same destination, use a routing protocol. This 
allows the gateways to adapt to network changes, giving you redundant access to the remote 
networks.

Figure 4.1 shows a subnetted network with five gateways identified as A through E. A central subnet 
(172.16.1.0) interconnects five other subnets. One of the subnets has a gateway to an external 
network. The network administrator would probably choose to run a routing protocol on the central 
subnet (172.16.1.0) and perhaps on subnet 172.16.12.0, which is attached to an external network. 
Dynamic routing is appropriate on these subnets because they have multiple gateways. Without 
dynamic routing, the administrator would need to update every one of these gateways manually 
whenever any change occurred in the network - for example, whenever a new subnet was added. A 
mistake during the manual update could disrupt network service. Running a routing protocol on these 
two subnets is simpler and more reliable.

Figure 4.1: Routing and subnets

file:///C|/mynapster/Downloads/warez/tcpip/ch04_03.htm (2 of 4) [2001-10-15 09:18:00]



[Chapter 4] 4.3 Planning Routing 

On the other hand, the administrator would probably choose static routing for the other subnets 
(172.16.3.0, 172.16.6.0, and 172.16.9.0). These subnets each use only one gateway to reach all 
destinations. Changes external to the subnets, such as the addition of a new subnet, do not change the 
fact that these three subnets still have only one routing choice. Newly added networks are still reached 
through the same gateway. The hosts on these subnets specify the subnet's gateway as their default 
route. In other words, the hosts on subnet 172.16.3.0 specify B as the default gateway, while the hosts 
on subnet 172.16.9.0 specify D as the default, no matter what happens on the external networks.

Some routing decisions are thrust upon you by the external networks to which you connect. In Figure 
4.1 the local network connects to an external network that requires that Border Gateway Protocol 
(BGP) be used for routing. Therefore, gateway E has to run BGP to exchange routes with the external 
network.

4.3.1 Obtaining an autonomous system number 

The Border Gateway Protocol (BGP) requires that gateways have a special identifier called an 
autonomous system number (ASN). (Refer to the section "Internet Routing Architecture" in Chapter 2 

file:///C|/mynapster/Downloads/warez/tcpip/ch04_03.htm (3 of 4) [2001-10-15 09:18:00]



[Chapter 4] 4.3 Planning Routing 

for a discussion of autonomous systems.) Most sites do not need to run BGP. Most sites do not need a 
unique ASN, even when they do run BGP. Usually those sites can select one of the ASNs that have 
been set aside for private use, which are the numbers from 64512 to 65535. Select a number and 
coordinate your selection with your border gateway peers to avoid any possible conflicts. If you 
connect to the Internet through a single ISP, you almost certainly do not need an official ASN. If after 
discussions with your service provider you find that you must obtain an official ASN, obtain the 
application form at ftp://rs.internic.net/templates/asn-template.txt. (See the "Internet Registries" 
sidebar earlier in this chapter.)

If you submit an application, you're asked to explain why you need a unique autonomous system 
number. Unless you are an ISP, probably the only reason to obtain an ASN is that you are a multi-
homed site. A multi-homed site is any site that connects to more than one ISP. Reachability 
information for the site may be advertised by both ISPs, confusing the routing policy. Assigning the 
site an ASN gives it direct responsibility for setting its own routing policy and advertising its own 
reachability information. This doesn't prevent the site from advertising bad routes, but it makes the 
advertisement traceable back to one site and ultimately to one technical contact. (Once you submit an 
ASN application, you have no one to blame but yourself!)

All of the items we have discussed so far (addressing, subnetting, and routing) are required to 
configure the basic physical network on top of which the applications and services run. Now we begin 
planning the services that make the network useful and usable.

Previous: 4.2 Basic 
Information 

TCP/IP Network 
Administration

Next: 4.4 Planning Naming 
Service 

4.2 Basic Information Book Index 4.4 Planning Naming Service 

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/ch04_03.htm (4 of 4) [2001-10-15 09:18:00]

ftp://rs.internic.net/templates/asn%E2%80%93template.txt.
file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Chapter 4] 4.2 Basic Information 

Previous: 4.1 Connected 
and Non-Connected 
Networks 

Chapter 4
Getting Started 

Next: 4.3 Planning Routing 

 

4.2 Basic Information 

Regardless of whether or not your network is connected to the Internet, you must provide certain basic 
information to configure the physical TCP/IP network interface. As we see in Chapter 6, Configuring 
the Interface , the network interface needs an IP address and may also need a subnet mask and 
broadcast address. In this section we look at how the network administrator arrives at each of the 
required values.

4.2.1 Obtaining an IP Address 

Every interface on a TCP/IP network must have a unique IP address. If a host is part of the Internet, 
its IP address must be unique within the entire Internet. If a host's TCP/IP communications are limited 
to a local network, its IP address only needs to be unique locally. Administrators whose networks will 
not be connected to the Internet select an address from RFC 1918, Address Allocation for Private 
Internets, which lists network numbers that are reserved for private use. [2] The private network 
numbers are:

[2] The address (172.16.0.0) used in this book is an address set aside for use by non-
connected enterprise networks. Feel free to use this address on your network if it will 
not be connected to the Internet.

●     Class A network 10.0.0.0 (10/8 prefix and a 24-bit block of addresses).
●     Class B networks 172.16.0.0 to 172.31.0.0 (172.16/12 prefix and a 20-bit block of addresses).
●     Class C network 192.168.0.0 to 192.168.255.0 (192.168/16 prefix and a 16-bit block of 

addresses).

Networks connecting to the Internet must obtain official network addresses. An official address is 
needed for every system on your network that directly exchanges data with remote Internet hosts. [3] 
Obtain the address from your ISP. Your ISP has been delegated authority over a group of network 
addresses, and should be able to assign you a network number. If your local ISP doesn't offer this 
service, perhaps the ISP's upstream provider does. Ask your local ISP who it receives service from 
and ask that organization for an address. If all else fails, you may be forced to go directly to an 
Internet registry. The box Internet Registries provides information about the Internet registry services. 

file:///C|/mynapster/Downloads/warez/tcpip/ch04_02.htm (1 of 8) [2001-10-15 09:18:01]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


[Chapter 4] 4.2 Basic Information 

The form required for registering an address is available at ftp://rs.internic.net/templates/internet-
number-template.txt. Use the application as a last resort to obtain an address.

[3] Hosts that communicate with the Internet through a firewall or proxy server may not 
need official addresses. Check your firewall/proxy server documentation.

The advantages to choosing a network address from RFC 1918 are that you do not have to apply for 
an official address and you save address space for those who do need to connect to the Internet. [4] 
The advantage to obtaining your address from an Internet registry is that you will not have to change 
your address in the future if you do connect to the Internet.

[4] See Chapter 2, Delivering the Data.

If you do choose an address from RFC 1918 it is still possible to connect to the Internet without 
renumbering all of your systems. But it will take some effort. You'll need a network address 
translation (NAT) box or a proxy server. NAT is available as a separate piece of hardware or as an 
optional piece of software in some routers and firewalls. It works by converting the source address of 
datagrams leaving your network from your private address to your official address. Address 
translation has several advantages.

●     It conserves IP addresses. Most network connections are between systems on the same 
enterprise network. Only a small percentage of systems need to connect to the Internet at any 
one time. Therefore far fewer official IP addresses are needed than the total number of systems 
on an enterprise network. NAT makes it possible for you to use a large address space from 
RFC 1918 for configuring your enterprise network while using only a small official address 
space for Internet connections.

●     It eliminates address spoofing, a security attack in which a remote system pretends to be a local 
system. The addresses in RFC 1918 cannot be routed over the Internet. Therefore, even if a 
datagram is routed off of your network toward the remote system, the fact that the datagram 
contains an RFC 1918 destination address means that the routers in the Internet will discard the 
datagram as a martian. [5]

[5] A martian is a datagram with an address that is known to be invalid.

●     It eliminates the need to renumber your hosts when you connect to the Internet.

Network address translation also has disadvantages:

Cost

NAT may add cost for new hardware or optional software.
Performance

Address translation adds overhead to the processing of every datagram. When the address is 

file:///C|/mynapster/Downloads/warez/tcpip/ch04_02.htm (2 of 8) [2001-10-15 09:18:01]

ftp://rs.internic.net/templates/internet%E2%80%93number%E2%80%93template.txt
ftp://rs.internic.net/templates/internet%E2%80%93number%E2%80%93template.txt


[Chapter 4] 4.2 Basic Information 

changed, the checksum must be recalculated. Furthermore, some upper-layer protocols carry a 
copy of the IP address that also must be converted.

Reliability

NAT is a new technology and there is very little experience with it in the network. Routers 
never modify the addresses in a datagram header, but NAT does. This might introduce some 
instability. Similarly, no one has much experience in determining how many addresses should 
be kept in a NAT address pool or how long an address should be held by a connection before it 
is released back to the pool.

Security

NAT limits the use of encryption and authentication. Authentication schemes that include the 
header within the calculation do not work because the router changes the addresses in the 
header. Encryption does not work if the encrypted data includes the source address.

Proxy servers provide many of the same advantages as NAT boxes. In fact, these terms are often used 
interchangeably. But there are differences. Proxy servers are application gateways originally created 
as part of firewall systems to improve security. Internal systems connect to the outside world through 
the proxy server, and external systems respond to the proxy server. Unlike routers, even routers with 
network address translation, the external systems do not see a network of internal systems. They see 
only one system - the proxy server. All ftp, telnet, and other connections appear to come from one IP 
address: the address of the proxy server. Therefore, the difference between NAT boxes and proxy 
servers is that NAT uses a pool of IP addresses to differentiate the connection between internal and 
external systems. The true proxy server has only one address and therefore must use protocol numbers 
and port numbers to differentiate the connections.

Internet Registries

The original network information center was the SRI NIC, sri-nic.arpa. In 1992 the NIC moved to 
nic.ddn.mil and became the DDN NIC. Then in April 1993 the registration, directory, and information 
services it provided for the Internet moved to the new Internet NIC, internic.net. The InterNIC still 
provides these services but it does not do so alone.

Almost every large network has its own network information center. Most of these NICs provide 
access to all the RFCs, FYIs, and other TCP/IP documentation. A few provide registration services. 
For the Internet to work properly, IP addresses and domain names must be unique. To guarantee this 
addressing, authority is carefully delegated. Authority to delegate domains and addresses has been 
given to the Internet Resource Registries (IRR). Currently these are: RIPE for Europe, APNIC for 
Asia and the Pacific, CA*net for Canada, RNP for Brazil, and InterNIC for the rest of us. More 
registries may be created at any time. (See the discussion of generic top-level domains (gTLDs) in 
Chapter 3, Network Services.) Additionally large groups of addresses have been delegated to ISPs so 
that they can assign them to their customers.

The place to start looking for registry services is your ISP. If it does not provide these services, 
contact the InterNIC. You can contact the InterNIC at the postal address:

file:///C|/mynapster/Downloads/warez/tcpip/ch04_02.htm (3 of 8) [2001-10-15 09:18:01]



[Chapter 4] 4.2 Basic Information 

Network Solutions
InterNIC Registration Services
505 Huntmar Park Drive
Herndon, VA 22070

You can also reach the InterNIC via telephone at 703-742-4777 or via fax at 703-742-4811.

All of the forms needed to register an address, domain name, or other essential value can be obtained 
from the InterNIC using either anonymous FTP or a Web browser. Obtain the forms via anonymous 
FTP from rs.internic.net, where they are stored in the templates directory. Via the Web, connect to the 
Registration Template Guide at http://rs.internic.net/help/templates.html. It provides links to all of the 
forms and descriptions of when they are used and how they are filled in.

Proxy servers often have added security features. Address translation can be done at the IP layer. 
Proxy services require the server to handle data up to the application layer. Security filters can be put 
in proxy servers that filter data at all layers of the protocol stack.

Given the differences discussed here, network address translation servers should scale better than 
proxy servers, and proxy servers should provide better security. Proxy servers are frequently used in 
place of address translation for small networks. Before you decide to use either NAT or proxy 
services, make sure they are suitable for your network needs.

4.2.1.1 Assigning host addresses 

So far we have been discussing network numbers. Our imaginary company's network (nuts-net) was 
assigned network number 172.16.0.0/16. The network administrator assigns individual host addresses 
within the range of IP addresses available to the network address; i.e., the nuts-net administrator 
assigns the last two bytes of the four-byte address. [6] The portion of the address assigned by the 
administrator cannot have all bits 0 or all bits 1; i.e., 172.16.0.0 and 172.16.255.255 are not valid host 
addresses. Beyond these two restrictions, you're free to assign host addresses in any way that seems 
reasonable to you.

[6] The range of addresses is called the address space.

Network administrators usually assign host addresses in one of two ways:

One address at a time

Each individual host is assigned an address, perhaps in sequential order, through the address 
range.

Groups of addresses

Blocks of addresses are delegated to smaller organizations within the overall organization, 
which then assign the individual host addresses.

file:///C|/mynapster/Downloads/warez/tcpip/ch04_02.htm (4 of 8) [2001-10-15 09:18:01]

http://rs.internic.net/help/templates.html


[Chapter 4] 4.2 Basic Information 

The assignment of groups of addresses is most common when the network is subnetted, and the 
address groups are divided along subnet boundaries. But assigning blocks of addresses does not 
require subnetting. It can be just an organizational device for delegating authority. Delegating 
authority for groups of addresses is often very convenient for large networks, while small networks 
tend to assign host addresses one at a time. No matter how addresses are assigned, someone must 
retain sufficient central control to prevent duplication and to ensure that the addresses are recorded 
correctly on the domain name servers.

Addresses can be assigned statically or dynamically. Static assignment is handled through manually 
configuring the boot file on the host computer, or through a server such as BOOTP. Dynamic address 
assignments are always handled by a server, such as PPP or DHCP. Before installing a server for 
dynamic addressing, make sure it is useful for your purposes. Dynamic PPP addressing is useful for 
servers that handle many remote dial-in clients that connect for a short duration. If the PPP server is 
used to connect together various parts of the enterprise network and has long-lived connections, 
dynamic addressing is probably unnecessary. Likewise, the dynamic address assignment features of 
DHCP are of most use if you have mobile systems in your network that move between subnets and 
therefore need to frequently change addresses. See Chapter 6 for information on PPP, and Chapters 3 
and 9 for details of DHCP.

Clearly, you must make several decisions about obtaining and assigning addresses. In the next section 
we look at the subnet mask, which changes how the address is interpreted.

4.2.2 Defining the Subnet Mask 

Chapter 2 describes the structure of IP addresses and touches upon the reasons for subnetting. Unless 
you wish to change the interpretation of your assigned network number, you do not have to define a 
subnet mask. The decision to subnet is commonly driven by topological or organizational 
considerations.

The topological reasons for subnetting include:

Overcoming distance limitations

Some network hardware has very strict distance limitations. Ethernet is the most common 
example. The maximum length of a "thick" Ethernet cable is 500 meters; the maximum length 
of a "thin" cable is 300 meters; the total length of an Ethernet, called the maximum diameter, is 
2500 meters. If you need to cover a greater distance, you can use IP routers to link a series of 
Ethernet cables. Individual cable still must not exceed the maximum allowable length, but 
using this approach, every cable is a separate Ethernet. Therefore the total length of the IP 
network can exceed the maximum length of an Ethernet.

Interconnecting dissimilar physical networks

IP routers can be used to link together networks that have different and incompatible 

file:///C|/mynapster/Downloads/warez/tcpip/ch04_02.htm (5 of 8) [2001-10-15 09:18:01]



[Chapter 4] 4.2 Basic Information 

underlying network technologies. Figure 4.1 later in this chapter shows a central token ring 
subnet, 172.16.1.0, connecting two Ethernet subnets 172.16.6.0 and 172.16.12.0.

Filtering traffic between networks

Local traffic stays on the local subnet. Only traffic intended for other networks is forwarded 
through the gateway.

Subnetting is not the only way to solve topology problems. Networks are implemented in hardware 
and can be altered by changing or adding hardware, but subnetting is an effective way to overcome 
these problems at the TCP/IP software level.

Of course, there are non-technical reasons for creating subnets. Subnets often serve organizational 
purposes such as: 

Simplifying network administration

Subnets can be used to delegate address management, troubleshooting, and other network 
administration responsibilities to smaller organizations within the overall organization. This is 
an effective tool for managing a large network with a limited staff. It places the responsibility 
for managing the subnet on the people who benefit from its use.

Recognizing organizational structure

The structure of an organization (or simply office politics) may require independent network 
management for some divisions. Creating independently managed subnets for these divisions 
is preferable to having them go directly to an ISP to get their own independent network 
numbers.

Isolating traffic by organization

Certain organizations may prefer to have their local traffic isolated to a network that is 
primarily accessible only to members of that organization. This is particularly appropriate 
when security is involved. For example, the payroll department might not want their network 
packets on the engineering network, where some clever person could figure out how to 
intercept them.

Isolating potential problems

If a certain segment is less reliable than the remainder of the net, you may want to make that 
segment a subnet. For example, if the research group puts experimental systems on the 
network from time to time, or experiments with the network itself, this part of the network will 
be unstable. You would make it a subnet to prevent experimental hardware or software from 
interfering with the rest of the network.

The network administrator decides if subnetting is required and defines the subnet mask for the 
network. The subnet mask has the same form as an IP address mask. As described in Chapter 2, it 
defines which bits form the "network part" of the address and which bits form the "host part." Bits in 
the "network part" are turned on (i.e., 1), while bits in the "host part" are turned off (i.e., 0).

file:///C|/mynapster/Downloads/warez/tcpip/ch04_02.htm (6 of 8) [2001-10-15 09:18:01]



[Chapter 4] 4.2 Basic Information 

The subnet mask used on nuts-net is 255.255.255.0. This mask sets aside 8 bits to identify subnets, 
which creates 256 subnets. The nuts-net administrator has decided that this mask provides enough 
subnets and that the individual subnets have enough hosts to effectively use the address space of 253 
hosts per subnet. Figure 4.1 later in this chapter shows an example of this type of subnetting. 
Applying this subnet mask to the addresses 172.16.1.0 and 172.16.12.0 causes them to be interpreted 
as the addresses of two different networks, not as two different hosts on the same network.

Once a mask is defined, it must be disseminated to all hosts on the network. There are two ways this is 
done: manually, through the configuration of network interfaces; and automatically, through routing 
protocols. Old routing protocols cannot distribute subnet masks, and old operating systems cannot 
store the masks in the routing table. In an environment that contains these old systems, every device 
on the network must use the same subnet mask because every computer believes that the entire 
network is subnetted in exactly the same way as its local subnet.

New routing protocols distribute address masks for each destination, and new operating systems store 
those masks in the routing table. This makes it possible to use variable-length subnet masks (VLSM). 
Using variable-length subnet masks increases the flexibility and power of subnetting. Assume you 
wanted to divide 192.168.5.0/24 into three networks: one network of 110 hosts, one network of 50 
hosts, and one network of 60 hosts. Using traditional subnet masks, a single subnet mask would have 
to be chosen and applied to the entire address space. At best this would be a compromise. With 
variable length subnet masks you could use a mask of 255.255.255.128, which creates subnets of 126 
hosts, for the large subnet and a mask of 255.255.255.192 to create subnets of 62 hosts for the smaller 
subnets. VLSMs, however, require UNIX kernels that know how to store and use the masks and 
routing protocols that can transmit them. See Chapter 7, Configuring Routing , for more information 
on routing.

4.2.2.1 Specifying the broadcast address 

The need to specify a broadcast address may not be as clear as, for example, the need to specify a 
subnet mask. The standard broadcast address is an address where all host bits are set to 1s. This means 
the standard broadcast address on subnet 172.16.12.0 is 172.16.12.255. We want to use the standard 
broadcast address, so why worry about it?

The problem arises because some devices use the wrong broadcast address. The BSD 4.2 UNIX 
release used a broadcast address where the host bits were all set to 0, and there was no facility for 
changing it. The problem did not exist in BSD 4.3 and later releases; however, some systems still 
default to the wrong broadcast address. If you have systems on your network that use the wrong 
broadcast address, fix the address.

In Chapter 6, we discuss how the IP address, subnet mask, and broadcast address are used to configure 
the physical network interface. Another essential part of a TCP/IP network is routing.

file:///C|/mynapster/Downloads/warez/tcpip/ch04_02.htm (7 of 8) [2001-10-15 09:18:01]



[Chapter 4] 4.2 Basic Information 

Previous: 4.1 Connected 
and Non-Connected 
Networks 

TCP/IP Network 
Administration

Next: 4.3 Planning Routing 

4.1 Connected and Non-
Connected Networks 

Book Index 4.3 Planning Routing 

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/ch04_02.htm (8 of 8) [2001-10-15 09:18:01]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Chapter 4] Getting Started 

Previous: 3.8 Summary Chapter 4 Next: 4.2 Basic Information 

 

4. Getting Started 
Contents:
Connected and Non-Connected Networks 
Basic Information 
Planning Routing 
Planning Naming Service 
Other Services 
Informing the Users 
netconfig 
Summary 

In this chapter, our emphasis shifts from how TCP/IP functions to how it is configured. While 
Chapters 1-3 describe the TCP/IP protocols and how they work, now we begin to explore the network 
configuration process. The first step in this process is planning. Before configuring a host to run 
TCP/IP, you must have certain information. At the very least, every host must have a unique IP 
address and hostname. You should also decide on the items below before configuring a system:

Default gateway address

If the system communicates with TCP/IP hosts that are not on its local network, a default 
gateway address may be needed. Alternatively, if a routing protocol is used on the network, 
each device needs to know that protocol.

Name server addresses

To resolve hostnames into IP addresses, each host needs to know the addresses of the domain 
name servers.

Domain name

Hosts using the domain name service must know their correct domain name.
Subnet mask

To communicate properly, each system on a network must use the same subnet mask.
Broadcast address

file:///C|/mynapster/Downloads/warez/tcpip/ch04_01.htm (1 of 4) [2001-10-15 09:18:02]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


[Chapter 4] Getting Started 

To avoid broadcast problems, the broadcast address of every computer on a network must be 
the same.

If you're adding a system to an existing network, make sure you find out the answers from your 
network administrator before putting the system online. The network administrator is responsible for 
making and communicating decisions about overall network configuration. If you have an established 
TCP/IP network, you can skip several sections in this chapter, but you may still want to read about 
selecting hostnames, planning mail systems, and other topics that affect mature networks as much as 
they do new networks.

If you are creating a new TCP/IP network, you will have to make some basic decisions. Will the new 
network connect to the Internet? If it will, how is the connection to be made? How should the network 
number be chosen? How do I register a domain name? How do I choose hostnames? In the following 
sections, we cover the information you need to make these decisions.

4.1 Connected and Non-Connected Networks 

First, you must decide whether or not your new network will be directly connected to the Internet. The 
Internet's administration makes a distinction between networks connected to the Internet and those 
that are not connected. A connected network is directly attached to the Internet and has full access to 
other networks on the Internet. A non-connected network is not directly attached to the Internet, and 
its access to Internet networks is limited. An example of a non-connected network is a TCP/IP 
network that attaches to the outside world via a mail gateway at America Online (AOL). Users on the 
network can send mail to Internet hosts but they cannot directly rlogin to one of them. [1]

[1] rlogin is covered in Chapter 9, Configuring Network Servers . 

Many TCP/IP networks are not connected to the Internet. On these networks, TCP/IP is used for 
communication between the organization's various networks. Private networks that interconnect the 
various parts of an organization are often called enterprise networks. When those private networks use 
the information services applications that are built on top of TCP/IP, particularly Web servers and 
browsers, to distribute internal information, those networks are called intranets.

There are a few basic reasons why many sites do not connect to the Internet. One reason is security. 
Connecting to any network gives more people access to your system. Connecting to a global network 
with millions of users is enough to scare any security expert. There is no doubt about it: connecting to 
the Internet increases the security risks for your computer. Chapter 12, Network Security , covers 
some techniques for reducing this risk.

Cost versus benefit is another consideration. Many organizations do not see sufficient value in an 
Internet connection. For some organizations, low use or limited requirements, such as only needing 
email access, make the cost of an Internet connection exceed the benefit. For others, the primary 
reason for an Internet connection is to provide information about their products. It is not necessary to 
connect the entire enterprise network to the Internet to do this. It is often sufficient to connect a single 

file:///C|/mynapster/Downloads/warez/tcpip/ch04_01.htm (2 of 4) [2001-10-15 09:18:02]



[Chapter 4] Getting Started 

Web server to the local Internet Service Provider (ISP) or to buy Web services from the ISP to 
provide information to your customers.

Other organizations consider an Internet connection an essential requirement. Educational and 
research institutions depend on the Internet as a source of information. Many companies use it as a 
means of delivering service and support to their customers.

You may have both types of networks: a "non-connected" enterprise network sitting behind a security 
firewall, and a small "connected" network that provides services to your external customers and proxy 
service for your internal users.

Unless you have carefully determined what your needs are and what an Internet connection will cost, 
you cannot know whether an Internet connection is right for your organization. Your local Internet 
service provider (ISP) can give you the various cost and performance alternatives. The next section 
offers ways to locate appropriate ISPs. Regardless of whether or not you decide to connect your 
network to the Internet, one thing is certain: you should build your enterprise network using the 
TCP/IP protocols.

4.1.1 Network Contacts 

Choosing an ISP for your network can be confusing. Currently more than 5,000 ISPs operate in the 
United States alone. No attempt is made to list them all here. Instead we provide pointers to where 
you can obtain information on ISPs via email, newsgroups, the Web, and in print.

Readers who want basic information about the Internet can start by reading a book about the Internet. 
My favorite is The Whole Internet Users' Guide and Catalog, by Ed Krol (O'Reilly & Associates). It 
provides a user-oriented focus on the Internet and a substantial list of ISPs. Another book that 
provides a business focus on "getting connected" is Getting Connected: Establishing a Presence on 
the Internet, by Kevin Dowd (O'Reilly & Associates).

If you can send email to the Internet, request information about the ISPs in your area by sending email 
to zahner@aimnet.com with the words "MY AREA CODE =" followed by your area code in both the 
subject line and the body of the message. Here is an example for mail sent from a Solaris system to 
inquire for service providers for the 301 area code:

% Mail zahner@aimnet.com
Subject: MY AREA CODE = 301
MY AREA CODE = 301
^D
EOT

Use network news to obtain information about ISPs from the newsgroups alt.internet.services and 
alt.internet.services.wanted. Monitor alt.internet.services for announcements. Post a query to 
alt.internet.services.wanted asking if anyone knows of a good ISP in your area. Generally people in 

file:///C|/mynapster/Downloads/warez/tcpip/ch04_01.htm (3 of 4) [2001-10-15 09:18:02]

mailto:zahner@aimnet.com
news:alt.internet.services
news:alt.internet.services.wanted
news:alt.internet.services
news:alt.internet.services.wanted


[Chapter 4] Getting Started 

newsgroups have strong opinions and are willing to share them!

A good source of information about service providers is The List from Mecklermedia, which is 
accessible on the Web at http://thelist.iworld.com. The List contains information on thousands of 
ISPs. The information is sorted into country code and telephone area code lists to make it more useful.

Ask prospective ISPs about services as well as prices. Some ISPs specialize in providing low-cost 
service to home users. They emphasize price. However, if you are connecting a full network to the 
Internet, you may want an ISP that can provide network address, name service, Web services, and 
other features that your network might need.

Previous: 3.8 Summary TCP/IP Network 
Administration

Next: 4.2 Basic Information 

3.8 Summary Book Index 4.2 Basic Information 

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/ch04_01.htm (4 of 4) [2001-10-15 09:18:02]

http://thelist.iworld.com/
file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Chapter 3] 3.8 Summary

Previous: 3.7 File and Print 
Servers

Chapter 3
Network Services

Next: 4. Getting Started 

 

3.8 Summary

TCP/IP provides some network services that simplify network installation, configuration, and use. 
Name service is one such service and it is used on every TCP/IP network.

Name service can be provided by the host table, Domain Name Service (DNS), and Network 
Information Service (NIS). The host table is a simple text file stored in /etc/hosts. Most systems have 
a small host table, but it cannot be used for all applications because it is not scalable and does not 
have a standard method for automatic distribution. NIS, the Sun "yellow pages" server, solves the 
problem of automatic distribution for the host table but does not solve the problem of scaling. DNS, 
which superceded the host table as a TCP/IP standard, does scale. DNS is a hierarchical, distributed 
database system that provides hostname and address information for all of the systems in the Internet.

Simple Mail Transfer Protocol (SMTP), Post Office Protocol (POP), and Multipurpose Internet Mail 
Extensions (MIME) are the building blocks of a TCP/IP email network. SMTP is a simple 
request/response protocol that provides end-to-end mail delivery. Sometimes end-to-end mail delivery 
is not suitable and the mail must be routed to a mail server. TCP/IP mail servers can use POP to move 
the mail from the server to the end system where it is read by the user. SMTP can only deliver 7-bit 
ASCII data. MIME extends the TCP/IP mail system so that it can carry a wide variety of data.

Many configuration values are needed to install TCP/IP. These values can be provided by a 
configuration server. Three protocols are popular for distributing configuration information:

RARP

Reverse Address Resolution Protocol tells a client its IP address. The RARP server does this 
by mapping the client's Ethernet address to its IP address. The Ethernet to IP address mappings 
are stored on the server in the /etc/ethers file.

BOOTP

Bootstrap Protocol provides a wide range of configuration values.
DHCP

Dynamic Host Configuration Protocol extends BOOTP to provide the full set of configuration 

file:///C|/mynapster/Downloads/warez/tcpip/ch03_08.htm (1 of 2) [2001-10-15 09:18:03]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


[Chapter 3] 3.8 Summary

parameters defined in the Requirements for Internet Hosts RFC. It also provides for dynamic 
address allocation, which allows a network to make maximum use of a limited set of 
addresses.

Network File System (NFS) is the leading TCP/IP file sharing protocol. It allows server systems to 
export directories that are then mounted by clients and used as if they were local disk drives. The 
UNIX LPD/LPR protocol can be used for printer sharing on a TCP/IP network.

This chapter concludes our introduction to the architecture, protocols, and services of a TCP/IP 
network. In the next chapter we begin to look at how to install a TCP/IP network by examining the 
process of planning an installation.

Previous: 3.7 File and Print 
Servers

TCP/IP Network 
Administration

Next: 4. Getting Started 

3.7 File and Print Servers Book Index 4. Getting Started 

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/ch03_08.htm (2 of 2) [2001-10-15 09:18:03]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


file:///C|/mynapster/Downloads/warez/tcpip/ch03_07.htm

Previous: 3.6 Bootstrap 
Protocol

Chapter 3
Network Services

Next: 3.8 Summary

 

3.7 File and Print Servers

The last two network services, file and print services, make the network more convenient for users. 
Not long ago, disk drives and high-quality printers were relatively expensive, and diskless 
workstations were common. Today every system has a large hard drive and many have their own high-
quality laser printers, but the demand for resource-sharing services is higher than ever.

3.7.1 File Sharing

File sharing is not the same as file transfer. It is not simply the ability to move a file from one system 
to another. A true file-sharing system does not require you to move entire files across the network. It 
allows files to be accessed at the record level so that it is possible for a client to read a record from a 
file located on a remote server, update that record, and write it back to the server - without moving the 
full file from the server to the client.

File sharing is transparent to the user and to the application software running on the user's system. 
Through file sharing, users and programs access files located on remote systems as if they were local 
files. In a perfect file-sharing environment, the user neither knows nor cares where files are actually 
stored.

File sharing didn't exist in the original TCP/IP protocol suite. It was added to support diskless 
workstations. Unlike a proprietary LAN where one vendor defines the official file-sharing protocol, 
TCP/IP is an open protocol suite and anyone can propose a new protocol. That's why there are three 
TCP/IP protocols for file sharing:

Remote File System

RFS was defined by AT&T for UNIX System V. It is offered on many UNIX systems, but 
rarely used.

Andrew File System

AFS is a file-sharing system developed at Carnegie Mellon University. AFS has several 
performance enhancements that make it particularly well-suited for wide area network (WAN) 
use. AFS has evolved into Distributed File System (DFS). Despite its features, it is not the most 

file:///C|/mynapster/Downloads/warez/tcpip/ch03_07.htm (1 of 2) [2001-10-15 09:18:03]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


file:///C|/mynapster/Downloads/warez/tcpip/ch03_07.htm

widely used file sharing system.
Network File System

NFS was defined by Sun Microsystems to support their diskless workstations. NFS is designed 
primarily for LAN applications and is implemented for all UNIX systems and many other 
operating systems.

You will probably use NFS, as it is the most widely used TCP/IP file-sharing protocol. For a detailed 
discussion, see Chapter 9.

3.7.2 Print Services

A print server allows printers to be shared by everyone on the network. Printer sharing is not as 
important as file sharing, but it is a useful network service. The advantages of printer sharing are:

●     Fewer printers are needed, and less money is spent on printers and supplies.
●     Reduced maintenance. There are fewer machines to maintain, and fewer people spending time 

fiddling with printers.
●     Access to special printers. Very high-quality color printers and very high-speed printers are 

expensive and needed only occasionally. Sharing these printers makes the best use of expensive 
resources.

There are two techniques commonly used for sharing printers on a TCP/IP network. One technique is 
to use the network's file sharing services. The other approach is to use the traditional UNIX lpr 
command and an lpd server. Print server configuration is covered in Chapter 9.

Previous: 3.6 Bootstrap 
Protocol

TCP/IP Network 
Administration

Next: 3.8 Summary

3.6 Bootstrap Protocol Book Index 3.8 Summary

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/ch03_07.htm (2 of 2) [2001-10-15 09:18:03]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Chapter 3] 3.6 Bootstrap Protocol

Previous: 3.5 Configuration 
Servers

Chapter 3
Network Services

Next: 3.7 File and Print 
Servers

 

3.6 Bootstrap Protocol

Bootstrap Protocol (BOOTP) is defined in RFCs 951 and 1532. The RFCs describe BOOTP as an 
alternative to RARP, and when BOOTP is used RARP is not needed. BOOTP, however, is a more 
comprehensive configuration protocol than RARP. It provides much more configuration information 
and has the potential to offer still more. The original specification allowed vendor extensions as a 
vehicle for the protocol's evolution. RFC 1048 first formalized the definition of these extensions, 
which have been updated over time and are currently defined in RFC 2132. BOOTP and its extensions 
became the basis for the Dynamic Host Configuration Protocol (DHCP). (More on DHCP later.)

The BOOTP client broadcasts a single packet called a BOOTREQUEST packet that contains, at a 
minimum, the client's physical network address. The client sends the broadcast using the address 
255.255.255.255, which is a special address called the limited broadcast address. [14] The client 
waits for a response from the server. If a response is not received within a specified time interval, the 
client retransmits the request. BOOTP uses UDP as a transport protocol and, unlike RARP, it does not 
require any special Network Access Layer protocols.

[14] This address is useful because, unlike the normal broadcast address, it doesn't 
require the system to know the address of the network it is on.

The server responds to the client's request with a BOOTREPLY packet. BOOTP uses two different 
well-known port numbers. UDP port number 67 is used for the server and UDP port number 68 is 
used for the client. This is very unusual. Most software uses a well-known port on the server side and 
a randomly generated port on the client side. [15] The random port number ensures that each pair of 
source/destination ports identifies a unique path for exchanging information. A BOOTP client, 
however, is still in the process of booting. It may not know its IP address. Even if the client generates 
a source port for the BOOTREQUEST packet, a server response that is addressed to that port and the 
client's IP address won't be read by a client that doesn't recognize the address. Therefore, BOOTP 
sends the response to a specific port on all hosts. A broadcast sent to UDP port 68 is read by all hosts, 
even by a system that doesn't know its specific address. The system then determines if it is the 
intended recipient by checking the physical network address embedded in the response.

[15] How and why random source port numbers are used is described in Chapter 1.

The server fills in all of the fields in the packet for which it has data. BOOTP can provide every 

file:///C|/mynapster/Downloads/warez/tcpip/ch03_06.htm (1 of 4) [2001-10-15 09:18:04]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


[Chapter 3] 3.6 Bootstrap Protocol

essential TCP/IP configuration value. Chapter 9 provides a tutorial on setting up a BOOTP server, as 
well as a complete list of all of the configuration parameters that BOOTP can provide. In the next 
section we look at DHCP, which is based on BOOTP. 

3.6.1 Dynamic Host Configuration Protocol

Dynamic Host Configuration Protocol (DHCP) is defined in RFCs 2131 and 2132. It's designed to be 
compatible with BOOTP. RFC 1534 outlines interactions between BOOTP clients and DHCP servers, 
and between DHCP clients and BOOTP servers. But interoperability problems are possible; many 
network administrators limit DHCP servers to DHCP clients. That's not necessary. See Chapter 9 and 
Appendix D, A dhcpd Reference for information on supporting BOOTP clients with DHCP servers.

DHCP uses the same UDP ports, 67 and 68, as BOOTP and the same BOOTREQUEST and 
BOOTREPLY packet format. But DHCP is more then just an update of BOOTP. The new protocol 
expands the function of BOOTP in two areas:

●     The configuration parameters provided by a DHCP server include everything defined in the 
Requirements for Internet Hosts RFC. DHCP provides a client with a complete set of TCP/IP 
configuration values. 

●     DHCP permits automated allocation of IP addresses.

DHCP uses the portion of the BOOTP packet originally set aside for vendor extensions to indicate the 
DHCP packet type and to carry a complete set of configuration information. DHCP calls the values in 
this part of the packet options instead of vendor extensions. This is a more accurate description 
because DHCP defines how the options are used and does not leave their definition up to the vendors. 
To handle the full set of configuration values from the Requirements for Internet Hosts RFC, the 
Options field is expanded to 312 bytes from the original 64 bytes of the BOOTP Vendor Extensions 
field.

You don't usually need to use this full set of configuration values. Don't get me wrong. The 
parameters are needed for a complete TCP/IP configuration. It's just that you don't need to define 
values for them. Default values are provided in most TCP/IP implementations, and the defaults only 
need to be changed in special circumstances. Frankly, you don't need most of the parameters defined 
by BOOTP, let alone any additional parameters. The expanded configuration parameters of DHCP 
make it a more complete protocol than BOOTP, but they are of only marginal value.

For most network administrators, automatic allocation of IP addresses is a more interesting feature. 
DHCP allows addresses to be assigned in three ways:

Manual allocation

The network administrator keeps complete control over addresses by specifically assigning 
them to clients. This is exactly the same way that addresses are handled under BOOTP.

Automatic allocation

file:///C|/mynapster/Downloads/warez/tcpip/ch03_06.htm (2 of 4) [2001-10-15 09:18:04]



[Chapter 3] 3.6 Bootstrap Protocol

The DHCP server permanently assigns an address from a pool of addresses. The administrator 
is not involved in the details of assigning a client an address.

Dynamic allocation

The server assigns an address to a DHCP client for a limited period of time. The limited life of 
the address is called a lease. The client can return the address to the server at any time, but 
must request an extension from the server to retain the address longer than the time permitted. 
The server automatically reclaims the address after the lease expires if the client has not 
requested an extension.

Dynamic allocation is useful in a large distributed network where many systems are being added and 
deleted. Unused addresses are returned to the pool of addresses without relying on users or system 
administrators to take action to return them. Addresses are only used when and where they're needed. 
Dynamic allocation allows a network to make the maximum use of a limited set of addresses. It is 
particularly well-suited to mobile systems that move from subnet to subnet and therefore must be 
constantly reassigned addresses appropriate for their current network location.

Dynamic address allocation does not work for every system. Name servers, email servers, login hosts 
and other shared systems are always online, and they are not mobile. These systems are accessed by 
name, so a shared system's domain name must resolve to the correct address. Shared systems are 
manually allocated permanent, fixed addresses.

Dynamic address assignment has major repercussions for DNS. DNS is required to map hostnames to 
IP addresses. It cannot perform this job if IP addresses are constantly changing and DNS is not 
informed of the changes. To make dynamic address assignment work for all types of systems, we need 
a new DNS that can be dynamically updated by the DHCP server. The IETF is currently working on a 
standard for Dynamic DNS. When fully operational, it will help make dynamic addresses available to 
systems that provide services and to those that use them.

Given the nature of dynamic addressing, most sites assign permanent fixed addresses to shared 
servers. This happens through traditional system administration and is not handled by DHCP. In 
effect, the administrator of the shared server is given an address and puts that address in the shared 
server's configuration. Using DHCP for some systems doesn't mean it must be used for all systems.

Many DHCP servers can support BOOTP clients. However, a DHCP client is needed to take full 
advantage of the services offered by DHCP. BOOTP clients do not understand dynamic address 
leases. They do not know that an address can time out and that it must be renewed. BOOTP clients 
must be manually or automatically assigned permanent address. True dynamic address assignment is 
limited to DHCP clients.

Therefore, most sites that use DHCP have a mixture of:

●     Permanent addresses assigned to systems that can't use DHCP or BOOTP
●     Manual addresses assigned by DHCP to BOOTP clients

file:///C|/mynapster/Downloads/warez/tcpip/ch03_06.htm (3 of 4) [2001-10-15 09:18:04]



[Chapter 3] 3.6 Bootstrap Protocol

●     Dynamic addresses assigned to all DHCP clients

We conclude this chapter with a discussion of file and print servers.

Previous: 3.5 Configuration 
Servers

TCP/IP Network 
Administration

Next: 3.7 File and Print 
Servers

3.5 Configuration Servers Book Index 3.7 File and Print Servers

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/ch03_06.htm (4 of 4) [2001-10-15 09:18:04]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Chapter 3] 3.5 Configuration Servers

Previous: 3.4 Mail Services Chapter 3
Network Services

Next: 3.6 Bootstrap 
Protocol

 

3.5 Configuration Servers

The powerful features that add to the utility and flexibility of TCP/IP also add to its complexity. TCP/IP 
is not as easy to configure as some other networking systems. TCP/IP requires that the configuration 
provide hardware, addressing, and routing information. It is designed to be independent of any specific 
underlying network hardware, so configuration information that can be built into the hardware in some 
network systems cannot be built-in for TCP/IP. The information must be provided by the person 
responsible for the configuration. This assumes that every system is run by people who are 
knowledgeable enough to provide the proper information to configure the system. Unfortunately, this 
assumption does not always prove correct.

Configuration servers make it possible for the network administrator to control TCP/IP configuration 
from a central point. This relieves the end user of some of the burden of configuration and improves the 
quality of the information used to configure systems.

TCP/IP has three protocols that simplify the task of configuration: RARP, BOOTP, and DHCP. We 
begin with RARP, the oldest and most basic of these configuration tools.

3.5.1 Reverse Address Resolution Protocol

RARP, defined in RFC 903, is a protocol that converts a physical network address into an IP address, 
which is the reverse of what Address Resolution Protocol (ARP) does. A Reverse Address Resolution 
Protocol server maps a physical address to an IP address for a client that doesn't know its own IP 
address. The client sends out a broadcast using the broadcast services of the physical network. [12] The 
broadcast packet contains the client's physical network address and asks if any system on the network 
knows what IP address is associated with the address. The RARP server responds with a packet that 
contains the client's IP address.

[12] Like ARP, RARP is a Network Access Layer protocol that uses physical network 
services that reside below the Internet Layer. See the discussion of TCP/IP protocol 
layers in Chapter 1, Overview of TCP/IP.

The client knows its physical network address because it is encoded in the Ethernet interface hardware. 
On most systems you can easily check the value with a command. For example, on a Solaris system the 
superuser can type:

file:///C|/mynapster/Downloads/warez/tcpip/ch03_05.htm (1 of 3) [2001-10-15 09:18:04]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


[Chapter 3] 3.5 Configuration Servers

# ifconfig le0
le0: flags=63<UP,BROADCAST,NOTRAILERS,RUNNING>
        inet 128.66.12.1 netmask ffffff00 broadcast 128.66.12.255
        ether 8:0:20:e:12:37

The ifconfig command can set or display the configuration values for a network interface. [13] le0 is the 
device name of the Ethernet interface. The Ethernet address is displayed after the ether label. In the 
example, the address is 8:0:20:e:12:37.

[13] See Chapter 6, Configuring the Interface , for information about the ifconfig 
command.

The RARP server looks up the IP address that it uses in its response to the client in the /etc/ethers file. 
The /etc/ethers file contains the PC's Ethernet address followed by the PC's hostname. For example:

2:60:8c:48:84:49        hazel
0:0:c0:a1:5e:10         hickory
0:80:c7:aa:a8:04        acorn
8:0:5a:1d:c0:7e         cashew
8:0:69:4:6:31           pistachio

To respond to a RARP request, the server must also resolve the host name found in the /etc/ethers file 
into an IP address. Domain name service or the hosts file is used for this task. The following hosts file 
entries could be used with the ethers file shown above.

hazel           172.16.3.10
hickory         172.16.3.16
acorn           172.16.3.4
cashew          172.16.3.7
pistachio       172.16.3.21

Given these sample files, if the server receives an RARP request that contains the Ethernet address, 
0:80:c7:aa:a8:04, it matches it to acorn in the /etc/ethers file. The server uses the name acorn to look up 
the IP address. It then sends the IP address 172.16.3.4 out as its ARP response.

RARP is a useful tool, but it provides only the IP address. There are still several other values that need 
to be manually configured. BOOTP is a more flexible configuration tool that provides more values than 
just the IP address and can deliver those values via the network.

Previous: 3.4 Mail Services TCP/IP Network 
Administration

Next: 3.6 Bootstrap 
Protocol

3.4 Mail Services Book Index 3.6 Bootstrap Protocol

file:///C|/mynapster/Downloads/warez/tcpip/ch03_05.htm (2 of 3) [2001-10-15 09:18:04]



[Chapter 3] 3.5 Configuration Servers

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/ch03_05.htm (3 of 3) [2001-10-15 09:18:04]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Chapter 3] 3.4 Mail Services

Previous: 3.3 Domain Name 
Service

Chapter 3
Network Services

Next: 3.5 Configuration 
Servers

 

3.4 Mail Services

Users consider electronic mail the most important network service because they use it for interpersonal 
communications. Some applications are newer and fancier. Other applications consume more network 
bandwidth. Others are more important for the continued operation of the network. But email is the application 
people use to communicate with each other. It isn't very fancy, but it's vital.

TCP/IP provides a reliable, flexible email system built on a few basic protocols. These are: Simple Mail 
Transfer Protocol (SMTP), Post Office Protocol (POP), and Multipurpose Internet Mail Extensions (MIME). 
There are other TCP/IP mail protocols. Interactive Mail Access Protocol, defined in RFC 1176, is an interesting 
protocol designed to supplant POP. It provides remote text searches and message parsing features not found in 
POP. We will touch only briefly on IMAP. It and other protocols have some very interesting features, but they 
are not yet widely implemented.

Our coverage concentrates on the three protocols you are most likely to use building your network: SMTP, 
POP, and MIME. We start with SMTP, the foundation of all TCP/IP email systems.

3.4.1 Simple Mail Transfer Protocol

SMTP is the TCP/IP mail delivery protocol. It moves mail across the Internet and across your local network. 
SMTP is defined in RFC 821, A Simple Mail Transfer Protocol. It runs over the reliable, connection-oriented 
service provided by Transmission Control Protocol (TCP), and it uses well-known port number 25. [7] Table 
3.1 lists some of the simple, human-readable commands used by SMTP.

[7] Most standard TCP/IP applications are assigned a well-known port in the Assigned Numbers 
RFC, so that remote systems know how to connect the service.

Table 3.1: SMTP Commands

Command Syntax Function

Hello HELO <sending-host> Identify sending SMTP

From MAIL FROM:<from-address> Sender address

Recipient RCPT TO:<to-address> Recipient address

Data DATA Begin a message

Reset RSET Abort a message

Verify VRFY <string> Verify a username

Expand EXPN <string> Expand a mailing list

file:///C|/mynapster/Downloads/warez/tcpip/ch03_04.htm (1 of 11) [2001-10-15 09:18:06]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


[Chapter 3] 3.4 Mail Services

Help HELP [string] Request online help

Quit QUIT End the SMTP session

SMTP is such a simple protocol you can literally do it yourself. telnet to port 25 on a remote host and type mail 
in from the command line using the SMTP commands. This technique is sometimes used to test a remote 
system's SMTP server, but we use it here to illustrate how mail is delivered between systems. The example 
below shows mail manually input from Daniel on peanut.nuts.com to Tyler on almond.nuts.com.

% telnet almond.nuts.com 25
Trying 172.16.12.1 ...
Connected to almond.nuts.com.
Escape character is '^]'.
220 almond Sendmail 4.1/1.41 ready at Tue, 29 Mar 94 17:21:26 EST
helo peanut.nuts.com
250 almond Hello peanut.nuts.com, pleased to meet you
mail from:<daniel@peanut.nuts.com>
250 <daniel@peanut.nuts.com>... Sender ok
rcpt to:<tyler@almond.nuts.com>
250 <tyler@almond.nuts.com>... Recipient ok
data
354 Enter mail, end with "." on a line by itself
Hi Tyler!
.
250 Mail accepted
quit
221 almond delivering mail
Connection closed by foreign host.

The user input is shown in bold type. All of the other lines are output from the system. This example shows 
how simple it is. A TCP connection is opened. The sending system identifies itself. The From address and the 
To address are provided. The message transmission begins with the DATA command and ends with a line that 
contains only a period (.). The session terminates with a QUIT command. Very simple, and very few 
commands are used.

There are other commands (SEND, SOML, SAML, and TURN) defined in RFC 821 that are optional and not 
widely implemented. Even some of the commands that are implemented are not commonly used. The 
commands HELP, VRFY, and EXPN are designed more for interactive use than for the normal machine-to-
machine interaction used by SMTP. The following excerpt from a SMTP session shows how these odd 
commands work.

HELP
214-Commands:
214-    HELO    MAIL    RCPT    DATA    RSET
214-    NOOP    QUIT    HELP    VRFY    EXPN
214-For more info use "HELP <topic>".
214-For local information contact postmaster at this site.
214 End of HELP info
HELP RSET
214-RSET

file:///C|/mynapster/Downloads/warez/tcpip/ch03_04.htm (2 of 11) [2001-10-15 09:18:06]



[Chapter 3] 3.4 Mail Services

214-    Resets the system.
214 End of HELP info
VRFY <jane>
250 <jane@brazil.nuts.com>
VRFY <mac>
250 Kathy McCafferty <<mac>>
EXPN <admin>
250-<sara@pecan.nuts.com>
250 David Craig <<david>>
250-<tyler@nuts.com>

The HELP command prints out a summary of the commands implemented on the system. The HELP RSET 
command specifically requests information about the RSET command. Frankly, this help system isn't very 
helpful!

The VRFY and EXPN commands are more useful, but are often disabled for security reasons because they 
provide user account information that might be exploited by network intruders. The EXPN <admin> command 
asks for a listing of the email addresses in the mailing list admin, and that is what the system provides. The 
VRFY command asks for information about an individual instead of a mailing list. In the case of the VRFY 
<mac> command, mac is a local user account and the user's account information is returned. In the case of 
VRFY <jane>, jane is an alias in the /etc/aliases file. The value returned is the email address for jane found in 
that file. The three commands in this example are interesting, but rarely used. SMTP depends on the other 
commands to get the real work done.

SMTP provides direct end-to-end mail delivery. This is unusual. Most mail systems use store and forward 
protocols like UUCP and X.400 that move mail toward its destination one hop at a time, storing the complete 
message at each hop and then forwarding it on to the next system. The message proceeds in this manner until 
final delivery is made. Figure 3.3 illustrates both store and forward and direct delivery mail systems. The 
UUCP address clearly shows the path that the mail takes to its destination, while the SMTP mail address 
implies direct delivery. [8]

[8] The address doesn't have anything to do with whether or not a system is store and forward or 
direct delivery. It just happens that UUCP provides an address that helps to illustrate this point.

Figure 3.3: Mail delivery systems

file:///C|/mynapster/Downloads/warez/tcpip/ch03_04.htm (3 of 11) [2001-10-15 09:18:06]



[Chapter 3] 3.4 Mail Services

Direct delivery allows SMTP to deliver mail without relying on intermediate hosts. If the delivery fails, the 
local system knows it right away. It can inform the user that sent the mail or queue the mail for later delivery 
without reliance on remote systems. The disadvantage of direct delivery is that it requires both systems to be 
fully capable of handling mail. Some systems cannot handle mail, particularly small systems such as PCs or 
mobile systems such as laptops. These systems are usually shut down at the end of the day and are frequently 
offline. Mail directed from a remote host fails with a "cannot connect" error when the local system is turned off 
or offline. To handle these cases, features in the DNS system are used to route the message to a mail server in 
lieu of direct delivery. The mail is then moved from the server to the client system when the client is back 
online. The protocol most TCP/IP networks use for this task is POP.

3.4.2 Post Office Protocol

There are two versions of POP in widespread use: POP2 and POP3. POP2 is defined in RFC 937 and POP3 is 
defined in RFC 1725. POP2 uses port 109 and POP3 uses port 110. These are incompatible protocols that use 
different commands, but they perform the same basic functions. The POP protocols verify the user's login name 
and password, and move the user's mail from the server to the user's local mail reader.

A sample POP2 session clearly illustrates how a POP protocol works. POP2 is a simple request/response 
protocol, and just as with SMTP, you can type POP2 commands directly into its well-known port (109) and 
observe their effect. Here's an example with the user input shown in bold type:

% telnet almond.nuts.com 109
Trying 172.16.12.1 ...
Connected to almond.nuts.com.
Escape character is '^]'.
+ POP2 almond POP2 Server at Wed 30-Mar-94 3:48PM-EST
HELO hunt WatsWatt
#3  ...(From folder 'NEWMAIL')
READ

file:///C|/mynapster/Downloads/warez/tcpip/ch03_04.htm (4 of 11) [2001-10-15 09:18:06]



[Chapter 3] 3.4 Mail Services

=496
RETR
{The full text of message 1}
ACKD
=929
RETR
{The full text of message 2}
ACKD
=624
RETR
{The full text of message 3}
ACKD
=0
QUIT
+OK POP2 Server exiting (0 NEWMAIL messages left)
Connection closed by foreign host.

The HELO command provides the username and password for the account of the mailbox that is being 
retrieved. (This is the same username and password used to log into the mail server.) In response to the HELO 
command the server sends a count of the number of messages in the mailbox, three (#3) in our example. The 
READ command begins reading the mail. RETR retrieves the full text of the current message. ACKD 
acknowledges receipt of the message and deletes it from the server. After each acknowledgment the server 
sends a count of the number of bytes in the new message. If the byte count is zero (=0) it indicates that there are 
no more messages to be retrieved and the client ends the session with the QUIT command. Simple! Table 3.2 
lists the full set of POP2 commands.

Table 3.2: POP2 Commands

Command Syntax Function

Hello HELO user password Identify user account

Folder FOLD mail-folder Select mail folder

Read READ [n] Read mail, optionally start with message n

Retrieve RETR Retrieve message

Save ACKS Acknowledge and save

Delete ACKD Acknowledge and delete

Failed NACK Negative acknowledgement

Quit QUIT End the POP2 session

The commands for POP3 are completely different from the commands used for POP2. Table 3.3 shows the set 
of POP3 commands defined in RFC 1725.

Table 3.3: POP3 Commands

Command Function

USER username The user's account name

PASS password The user's password

STAT Display the number of unread messages/bytes

file:///C|/mynapster/Downloads/warez/tcpip/ch03_04.htm (5 of 11) [2001-10-15 09:18:06]



[Chapter 3] 3.4 Mail Services

RETR n Retrieve message number n

DELE n Delete message number n

LAST Display the number of the last message accessed

LIST [n] Display the size of message n or of all messages

RSET Undelete all messages; reset message number to 1

TOP n l Print the headers and l lines of message n

NOOP Do nothing

QUIT End the POP3 session

Despite the fact that these commands are different from those used by POP2, they can be used to perform 
similar functions. In the POP2 example we logged into the server and read and deleted three mail messages. 
Here's a similar session using POP3:

% telnet almond 110
Trying 172.16.12.1 ...
Connected to almond.nuts.com.
Escape character is '^]'.
+OK almond POP3 Server Process 3.3(1) at Mon 15-May-95 4:48PM-EDT
user hunt
+OK User name (hunt) ok. Password, please.
pass Watts?Watt?
+OK 3 messages in folder NEWMAIL (V3.3 Rev B04)
stat
+OK 3 459
retr 1
+OK 146 octets
  The full text of message 1
dele 1
+OK message # 1 deleted
retr 2
+OK 155 octets
  The full text of message 2
dele 2
+OK message # 2 deleted
retr 3
+OK 158 octets
  The full text of message 3
dele 3
+OK message # 3 deleted
quit
+OK POP3 almond Server exiting (0 NEWMAIL messages left)
Connection closed by foreign host.

Naturally you don't really type these commands in yourself, but experiencing hands-on interaction with SMTP 
and POP gives you a clearer understanding of what these programs do and why they are needed.

3.4.3 Multipurpose Internet Mail Extensions

file:///C|/mynapster/Downloads/warez/tcpip/ch03_04.htm (6 of 11) [2001-10-15 09:18:06]



[Chapter 3] 3.4 Mail Services

The last email protocol on our quick tour is MIME. [9] As its name implies, Multipurpose Internet Mail 
Extensions is an extension of the existing TCP/IP mail system, not a replacement for it. MIME is more 
concerned with what the mail system delivers then it is with the mechanics of delivery. It doesn't attempt to 
replace SMTP or TCP; it extends the definition of what constitutes "mail."

[9] MIME is also an integral part of the Web and HTTP.

The structure of the mail message carried by SMTP is defined in RFC 822, Standard for the Format of ARPA 
Internet Text Messages. RFC 822 defines a set of mail headers that are so widely accepted they are used by 
many mail systems that do not use SMTP. This is a great benefit to email because it provides a common ground 
for mail translation and delivery through gateways to different mail networks. MIME extends RFC 822 into two 
areas not covered by the original RFC:

●     Support for various data types. The mail system defined by RFC 821 and RFC 822 transfers only 7-bit 
ASCII data. This is suitable for carrying text data composed of US ASCII characters, but it does not 
support several languages that have richer character sets and it does not support binary data transfer.

●     Support for complex message bodies. RFC 822 does not provide a detailed description of the body of an 
electronic message. It concentrates on the mail headers.

MIME addresses these two weaknesses by defining encoding techniques for carrying various forms of data, and 
by defining a structure for the message body that allows multiple objects to be carried in a single message. The 
RFC 1521, MIME (Multipurpose Internet Mail Extensions) Part One: Mechanisms for Specifying and 
Describing the Format of Internet Message Bodies, defines two headers that give structure to the mail message 
body and allow it to carry various forms of data. These are the Content-Type header and the Content-Transfer-
Encoding header.

As the name implies, the Content-Type header defines the type of data being carried in the message. The header 
has a Subtype field that refines the definition. Many subtypes have been defined since the original RFC was 
released. A current list of MIME types can be obtained from the Internet. [10] The original RFC defines seven 
initial content types and a few subtypes:

[10] Go to ftp://ftp.isi.edu/in-notes/iana/assignments/media-types and retrieve the file media-
types.

text

Text data. RFC 1521 defines text subtypes plain and richtext. Several subtypes have since been added, 
including enriched and html.

application

Binary data. The primary subtype defined in RFC 1521 is octet-stream, which indicates the data is a 
stream of 8-bit binary bytes. One other subtype, PostScript, is defined in the standard. Since then more 
than 90 subtypes have been defined. They specify binary data formatted for a particular application. For 
example, msword is an application subtype.

image

Still graphic images. Two subtypes are defined in RFC 1521: jpeg and gif. More than 10 additional 
subtypes have since been added, including widely used image data standards such as tiff, cgm, and 
g3fax.

file:///C|/mynapster/Downloads/warez/tcpip/ch03_04.htm (7 of 11) [2001-10-15 09:18:06]

ftp://ftp.isi.edu/in-notes/iana/assignments/media-types


[Chapter 3] 3.4 Mail Services

video

Moving graphic images. The initially defined subtype was mpeg, which is a widely used standard for 
computer video data. A few others have since been added, including quicktime.

audio

Audio data. The only subtype initially defined for audio was basic, which means the sounds are encoded 
using pulse code modulation (PCM).

multipart

Data composed of multiple independent sections. A multipart message body is made up of several 
independent parts. RFC 1521 defines four subtypes. The primary subtype is mixed, which means that 
each part of the message can be data of any content type. Other subtypes are: alternative, meaning that 
the same data is repeated in each section in different formats; parallel, meaning that the data in the 
various parts is to be viewed simultaneously; and digest, meaning that each section is data of the type 
message. Several subtypes have since been added, including support for voice messages (voice-message) 
and encrypted messages.

message

Data that is an encapsulated mail message. RFC 1521 defines three subtypes. The primary subtype, 
rfc822, indicates that the data is a complete RFC 822 mail message. The other subtypes, partial and 
External-body, are both designed to handle large messages. partial allows large encapsulated messages 
to be split among multiple MIME messages. External-body points to an external source for the contents 
of a large message body, so that only the pointer, not the message itself, is contained in the MIME 
message. Two additional subtypes have been defined: news for carrying network news, and http for 
HTTP traffic formatted to comply with MIME content typing.

The Content-Transfer-Encoding header identifies the type of encoding used on the data. Traditional SMTP 
systems only forward 7-bit ASCII data with a line length of less than 1000 bytes. To ensure that the data from a 
MIME system is forwarded through gateways that may only support 7-bit ASCII, the data can be encoded. RFC 
1521 defines six types of encoding. Some types are used to identify the encoding inherent in the data. Only two 
types are actual encoding techniques defined in the RFC. The six encoding types are:

7bit

US ASCII data. No encoding is performed on 7-bit ASCII data.
8bit

Octet data. No encoding is performed. The data is binary, but the lines of data are short enough for 
SMTP transport; i.e., the lines are fewer than 1000 bytes long.

binary

Binary data. No encoding is performed. The data is binary and the lines may be longer than 1000 bytes. 
There is no difference between binary and 8bit data except the line length restriction; both types of data 
are unencoded byte (octet) streams. MIME does not handle unencoded bitstream data.

quoted-printable

Encoded text data. This encoding technique handles data that is largely composed of printable ASCII 
text. The ASCII text is sent unencoded, while bytes with a value greater than 127 or less than 33 are sent 

file:///C|/mynapster/Downloads/warez/tcpip/ch03_04.htm (8 of 11) [2001-10-15 09:18:06]



[Chapter 3] 3.4 Mail Services

encoded as strings made up of the equal sign followed by the hexadecimal value of the byte. For 
example: the ASCII form feed character, which has the hexadecimal value of 0C, is sent as =0C. 
Naturally there's more to it than this - for example, the literal equal sign has to be sent as =3D, and the 
newline at the end of each line is not encoded. But this is the general idea of how quoted-printable data 
is sent.

base64

Encoded binary data. This encoding technique can be used on any byte-stream data. Three octets of data 
are encoded as four 6-bit characters, which increases the size of the file by one-third. The 6-bit 
characters are a subset of US ASCII, chosen because they can be handled by any type of mail system. 
The maximum line length for base64 data is 76 characters. Figure 3.4 illustrates this 3 to 4 encoding 
technique.

x-token

Specially encoded data. It is possible for software developers to define their own private encoding 
techniques. If they do so, the name of the encoding technique must begin with X-. Doing this is strongly 
discouraged because it limits interoperability between mail systems.

Figure 3.4: base64 encoding

The number of supported data types and encoding techniques grows as new data formats appear and are used in 
message transmissions. New RFCs constantly define new data types and encoding. Read the latest RFCs to 
keep up with MIME developments.

MIME defines data types that SMTP was not designed to carry. To handle these and other future requirements, 
RFC 1869, SMTP Service Extensions, defines a technique for making SMTP extensible. The RFC does not 
define new services for SMTP; in fact, the only service extensions mentioned in the RFC are defined in other 
RFCs. What this RFC does define is a simple mechanism for systems to negotiate which SMTP extensions are 
supported. The RFC defines a new hello command (EHLO) and the legal responses to that command. One 
response is for the receiving system to return a list of the SMTP extensions it supports. This response allows the 
sending system to know what extended services can be used, and to avoid those that are not implemented on the 
remote system. SMTP implementations that support the EHLO command are called Extended SMTP 

file:///C|/mynapster/Downloads/warez/tcpip/ch03_04.htm (9 of 11) [2001-10-15 09:18:06]



[Chapter 3] 3.4 Mail Services

(ESMTP).

Several ESMTP service extensions have been defined for MIME mailers. Table 3.4 lists some of these. The 
table lists the EHLO keyword associated with each extension, the number of the RFC that defines it, and its 
purpose. These service extensions are just the beginning. Undoubtedly more will be defined to support MIME 
and other SMTP enhancements.

Table 3.4: SMTP Service Extensions

Keyword RFC Server Extension 

8BITMIME 1652 Accept 8bit binary data

CHUNKING 1830 Accept messages cut into chunks

CHECKPOINT 1845 Checkpoint/restart mail transactions

PIPELINING 1854 Accept multiple commands in a single send

SIZE 1870 Display maximum acceptable message size

DSN 1891 Provide delivery status notifications

ETRN 1985 Accept remote queue processing requests

ENHANCEDSTATUSCODES 2034 Provide enhanced error codes

It is easy to check which extensions are supported by your server by using the EHLO command. The following 
example is from a sendmail 8.8.5. system:

> telnet localhost 25
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
220 peanut ESMTP Sendmail 8.7.5/8.7.3; Tue, 11 Nov 1997 15:22:34 -0500
ehlo peanut
250-peanut Hello craig@localhost [127.0.0.1], pleased to meet you
250-EXPN
250 HELP
250-8BITMIME
250-SIZE
250-DSN
250-ETRN
250-VERB
250-ONEX
250-XUSR
quit
221 peanut closing connection
Connection closed by foreign host.

The sample system lists nine commands in response to the EHLO greeting. Two of these, EXPN and HELP, 
are standard SMTP commands that aren't implemented on all systems (the standard commands are listed in 
Table 3.1 8BITMIME, SIZE, DSN, and ETRN are ESMTP extensions, all of which are described in Table 3.4 
The last three keywords in the response are VERB, ONEX, and XUSR. All of these are specific to sendmail 
version 8. None is defined in an RFC. VERB simply places the sendmail server in verbose mode. ONEX limits 
the session to a single message transaction. XUSR is as yet unimplemented, but it will be equivalent to the -U 

file:///C|/mynapster/Downloads/warez/tcpip/ch03_04.htm (10 of 11) [2001-10-15 09:18:06]



[Chapter 3] 3.4 Mail Services

sendmail command-line argument. [11] As the last three keywords indicate, the RFCs allow for private ESMTP 
extensions.

[11] See Appendix E, A sendmail Reference, for a list of the sendmail command-line arguments.

The specific extensions implemented on each operating systems are different. For example, on a Solaris 2.5.1 
system only three keywords (EXPN, SIZE, and HELP) are displayed in response to EHLO. The purpose of 
EHLO is to identify these differences at the begining of the SMTP mail exchange.

ESMTP and MIME are important because they provide a standard way to transfer non-ASCII data through 
email. Users share lots of application specific data that are not 7-bit ASCII. Many users depend on email as a 
file transfer mechanism.

SMTP, POP, and MIME are essential parts of the mail system, but other email protocols may also be essential 
in the future. The one certainty is that the network will continue to change. You need to track current 
developments and include helpful technologies into your planning. In the next section we look at the various 
types of TCP/IP configuration servers. Unlike DNS and email, configuration servers are not used on most 
networks. This is changing, however. The demand for easier installation and improved mobility may make 
configuration servers part of your network's future.

Previous: 3.3 Domain Name 
Service

TCP/IP Network 
Administration

Next: 3.5 Configuration 
Servers

3.3 Domain Name Service Book Index 3.5 Configuration Servers

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/ch03_04.htm (11 of 11) [2001-10-15 09:18:06]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Chapter 3] 3.3 Domain Name Service

Previous: 3.2 The Host 
Table

Chapter 3
Network Services

Next: 3.4 Mail Services

 

3.3 Domain Name Service

The Domain Name System (DNS) overcomes both major weaknesses of the host table:

●     DNS scales well. It doesn't rely on a single large table; it is a distributed database system that 
doesn't bog down as the database grows. DNS currently provides information on 
approximately 16,000,000 hosts, while less than 10,000 are listed in the host table.

●     DNS guarantees that new host information will be disseminated to the rest of the network as it 
is needed.

Information is automatically disseminated, and only to those who are interested. Here's how it works. 
If a DNS server receives a request for information about a host for which it has no information, it 
passes on the request to an authoritative server. An authoritative server is any server responsible for 
maintaining accurate information about the domain being queried. When the authoritative server 
answers, the local server saves (caches) the answer for future use. The next time the local server 
receives a request for this information, it answers the request itself. The ability to control host 
information from an authoritative source and to automatically disseminate accurate information makes 
DNS superior to the host table, even for networks not connected to the Internet.

In addition to superseding the host table, DNS also replaces an earlier form of name service. 
Unfortunately, both the old and new services are commonly called name service. Both are listed in the 
/etc/services file. In that file, the old software is assigned UDP port 42 and is called nameserver or 
name. DNS name service is assigned port 53 and is called domain. Naturally, there is some confusion 
between the two name servers. This text discusses DNS only; when we refer to "name service," we 
always mean DNS.

3.3.1 The Domain Hierarchy

DNS is a distributed hierarchical system for resolving hostnames into IP addresses. Under DNS, there 
is no central database with all of the Internet host information. The information is distributed among 
thousands of name servers organized into a hierarchy similar to the hierarchy of the UNIX filesystem. 
DNS has a root domain at the top of the domain hierarchy that is served by a group of name servers 
called the root servers.

file:///C|/mynapster/Downloads/warez/tcpip/ch03_03.htm (1 of 8) [2001-10-15 09:18:07]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


[Chapter 3] 3.3 Domain Name Service

Just as directories in the UNIX filesystem are found by following a path from the root directory, 
through subordinate directories, to the target directory, information about a domain is found by tracing 
pointers from the root domain, through subordinate domains, to the target domain.

Directly under the root domain are the top-level domains. There are two basic types of top-level 
domains - geographic and organizational. Geographic domains have been set aside for each country in 
the world, and are identified by a two-letter code. For example, the United Kingdom is domain UK, 
Japan is JP, and the United States is US. When US is used as the top-level domain, the second-level 
domain is usually a state's two-letter postal abbreviation (e.g., WY for Wyoming). US geographic 
domains are usually used by state governments and K-12 schools and are not widely used for other 
hosts within the United States.

Within the United States, the most popular top-level domains are organizational - that is, membership 
in a domain is based on the type of organization (commercial, military, etc.) to which the system 
belongs. [3] The top-level domains used in the United States are:

[3] There is no relationship between the organizational and geographic domains in the 
U.S. Each system belongs to either an organizational domain or a geographical domain, 
not both. 

com

Commercial organizations
edu

Educational institutions
gov

Government agencies
mil

Military organizations
net

Network support organizations, such as network operation centers
int  

International governmental or quasi-governmental organizations
org

Organizations that don't fit in any of the above, such as non-profit organizations

Several proposals have been made to increase the number of top-level domains. The proposed 
domains are called generic top level domains or gTLDs. The proposals call for the creation of 
additional top-level domains and for the creation of new registrars to manage the domains. All of the 

file:///C|/mynapster/Downloads/warez/tcpip/ch03_03.htm (2 of 8) [2001-10-15 09:18:07]



[Chapter 3] 3.3 Domain Name Service

current domains are handled by a single registrar - the InterNIC. One motivation for these efforts is 
the huge size of the .com domain. It is so large some people feel it will be difficult to maintain an 
efficient .com database. But the largest motivation for creating new gTLDs is money. Now that it 
charges fifty dollars a year for domain registration, some people see the InterNIC as a profitable 
monopoly. They have asked for the opportunity to create their own domain registration "businesses." 
A quick way to respond to that request is to create more official top-level domains and more 
registrars. The best known gTLDs proposal is the one from the International Ad Hoc Committee 
(IAHC). The IAHC proposes the following new generic top-level domains:

firm

businesses or firms
store

businesses selling goods
web

organizations emphasizing the World Wide Web
arts

cultural and entertainment organizations
rec

recreational and entertainment organizations
info

sites providing information services
nom

individuals or organizations that want to define a personal nomenclature

Will the IAHC proposal be adopted? Will it be modified? Will another proposal win out? I don't 
know. There are several other proposals, and as you would expect when money is involved, plenty of 
controversy. At this writing the only official organizational domain names are: com, edu, gov, mil, net, 
int, and org.

Figure 3.1 illustrates the domain hierarchy by using the organizational top-level domains. At the top is 
the root. Directly below the root domain are the top-level domains. The root servers only have 
complete information about the top-level domains. No servers, not even the root servers, have 
complete information about all domains, but the root servers have pointers to the servers for the 
second-level domains. [4] So while the root servers may not know the answer to a query, they know 
who to ask.

[4] Figure 3.2 shows two second-level domains: nih under gov and nuts under com.

file:///C|/mynapster/Downloads/warez/tcpip/ch03_03.htm (3 of 8) [2001-10-15 09:18:07]



[Chapter 3] 3.3 Domain Name Service

Figure 3.1: Domain hierarchy

3.3.2 Creating Domains and Subdomains

The Network Information Center has the authority to allocate domains. To obtain a domain, you apply 
to the NIC for authority to create a domain under one of the top-level domains. Once the authority to 
create a domain is granted, you can create additional domains, called subdomains, under your domain. 
Let's look at how this works at our imaginary nut packing company.

Our company is a commercial profit-making (we hope) enterprise. It clearly falls into the com 
domain. We apply to the NIC for authority to create a domain named nuts within the com domain. The 
request for the new domain contains the hostnames and addresses of at least two servers that will 
provide name service for the new domain. (Chapter 4, Getting Started discusses the domain name 
application.) When the NIC approves the request, it adds pointers in the com domain to the new 
domain's name servers. Now when queries are received by the root servers for the nuts.com domain, 
the queries are referred to the new name servers.

The NIC's approval grants us complete authority over our new domain. Any registered domain has 
authority to divide its domain into subdomains. Our imaginary company can create separate domains 
for the sales organization (sales.nuts.com) and for the packing plant (plant.nuts.com) without 
consulting the NIC. The decision to add subdomains is completely up to the local domain 
administrator.

Name assignment is, in some ways, similar to address assignment. The NIC assigns a network address 
to an organization, and the organization assigns subnet addresses and host addresses within the range 
of that network address. Similarly, the NIC assigns a domain to an organization, and the organization 
assigns subdomains and hostnames within that domain. The NIC is the central authority that delegates 
authority and distributes control over names and addresses to individual organizations. Once that 
authority has been delegated, the individual organization is responsible for managing the names and 

file:///C|/mynapster/Downloads/warez/tcpip/ch03_03.htm (4 of 8) [2001-10-15 09:18:07]



[Chapter 3] 3.3 Domain Name Service

addresses it has been assigned.

The parallel between subnet and subdomain assignment can cause confusion. Subnets and subdomains 
are not linked. A subdomain may contain information about hosts from several different networks. 
Creating a new subnet does not require creating a new subdomain, and creating a new subdomain 
does not require creating a new subnet.

A new subdomain becomes accessible when pointers to the servers for the new domain are placed in 
the domain above it (see Figure 3.1 Remote servers cannot locate the nuts.com domain until a pointer 
to its server is placed in the com domain. Likewise, the subdomains sales and plant cannot be 
accessed until pointers to them are placed in nuts.com. The DNS database record that points to the 
name servers for a domain is the NS (name server) record. This record contains the name of the 
domain and the name of the host that is a server for that domain. Chapter 8, Configuring DNS Name 
Service , discusses the actual DNS database. For now, let's just think of these records as pointers.

Figure 3.2: Non-recursive query

Figure 3.2 illustrates how the NS records are used as pointers. A local server has a request to resolve 
salt.plant.nuts.com into an IP address. The server has no information on nuts.com in its cache, so it 
queries a root server (terp.umd.edu in our example) for the address. The root server replies with an NS 
record that points to almond.nuts.com as the source of information on nuts.com. The local server 
queries almond, which points it to pack.plant.nuts.com as the server for plant.nuts.com. The local 
server then queries pack.plant.nuts.com, and finally receives the desired IP address. The local server 
caches the A (address) record and each of the NS records. The next time it has a query for 
salt.plant.nuts.com, it will answer the query itself. And the next time the server has a query for other 
information in the nuts.com domain, it will go directly to almond without involving a root server.

Figure 3.2 is an example of a non-recursive query. In a non-recursive query, the remote server tells 

file:///C|/mynapster/Downloads/warez/tcpip/ch03_03.htm (5 of 8) [2001-10-15 09:18:07]



[Chapter 3] 3.3 Domain Name Service

the local server who to ask next. The local server must follow the pointers itself. In a recursive search, 
the remote server follows the pointers and returns the final answer to the local server. The root servers 
generally perform only non-recursive searches.

3.3.3 Domain Names

Domain names reflect the domain hierarchy. Domain names are written from most specific (a 
hostname) to least specific (a top-level domain), with each part of the domain name separated by a 
dot. [5] A fully qualified domain name (FQDN) starts with a specific host and ends with a top-level 
domain. peanut.nuts.com is the FQDN of workstation peanut, in the nuts domain, of the com domain.

[5] The root domain is identified by a single dot; i.e., the root name is a null name 
written simply as ".".

Domain names are not always written as fully qualified domain names. Domain names can be written 
relative to a default domain in the same way that UNIX pathnames are written relative to the current 
(default) working directory. DNS adds the default domain to the user input when constructing the 
query for the name server. For example, if the default domain is nuts.com, a user can omit the 
nuts.com extension for any hostnames in that domain. almond.nuts.com could be addressed simply as 
almond. DNS adds the default domain nuts.com.

This feature is implemented in different ways on different systems, but there are two predominant 
techniques. On some systems the extension is added to every hostname request unless it ends with a 
dot, i.e., is qualified out to the root. For example, assume that there is a host named salt in the 
subdomain plant of the nuts.com domain. salt.plant does not end with a dot, so nuts.com is added to it 
giving the domain name salt.plant.nuts.com. On most systems, the extension is added only if there is 
no dot embedded in the requested hostname. On this type of system, salt.plant would not be extended 
and would therefore not be resolved by the name server because plant is not a valid top-level domain. 
But almond, which contains no embedded dot, would be extended with nuts.com, giving the valid 
domain name almond.nuts.com.

How the default domain is used and how queries are constructed varies depending on software 
implementation. It can even vary by release level. For this reason, you should exercise caution when 
embedding a hostname in a program. Only a fully qualified domain name or an IP address is immune 
from changes in the name server software.

3.3.4 BIND, resolver, and named

The implementation of DNS used on most UNIX systems is the Berkeley Internet Name Domain 
(BIND) software. Descriptions in this text are based on the BIND name server implementation.

DNS name service software is conceptually divided into two components - a resolver and a name 
server. The resolver is the software that forms the query; it asks the questions. The name server is the 
process that responds to the query; it answers the questions.

file:///C|/mynapster/Downloads/warez/tcpip/ch03_03.htm (6 of 8) [2001-10-15 09:18:08]



[Chapter 3] 3.3 Domain Name Service

The resolver does not exist as a distinct process running on the computer. Rather, the resolver is a 
library of software routines (called the "resolver code") that is linked into any program that needs to 
look up addresses. This library knows how to ask the name server for host information.

Under BIND, all computers use resolver code, but not all computers run the name server process. A 
computer that does not run a local name server process and relies on other systems for all name 
service answers is called a resolver-only system. Resolver-only configurations are common on single 
user systems. Larger UNIX systems run a local name server process.

The BIND name server runs as a distinct process called named (pronounced "name" "d"). Name 
servers are classified differently depending on how they are configured. The three main categories of 
name servers are:

Primary

The primary server is the server from which all data about a domain is derived. The primary 
server loads the domain's information directly from a disk file created by the domain 
administrator. Primary servers are authoritative, meaning they have complete information 
about their domain and their responses are always accurate. There should be only one primary 
server for a domain. 

Secondary

Secondary servers transfer the entire domain database from the primary server. A particular 
domain's database file is called a zone file; copying this file to a secondary server is called a 
zone file transfer. A secondary server assures that it has current information about a domain by 
periodically transferring the domain's zone file. Secondary servers are also authoritative for 
their domain.

Caching-only

Caching-only servers get the answers to all name service queries from other name servers. 
Once a caching server has received an answer to a query, it caches the information and will use 
it in the future to answer queries itself. Most name servers cache answers and use them in this 
way. What makes the caching-only server unique is that this is the only technique it uses to 
build its domain database. Caching servers are non-authoritative, meaning that their 
information is second-hand and incomplete, though usually accurate.

The relationship between the different types of servers is an advantage that DNS has over the host 
table for most networks, even very small networks. Under DNS, there should be only one primary 
name server for each domain. DNS data is entered into the primary server's database by the domain 
administrator. Therefore, the administrator has central control of the hostname information. An 
automatically distributed, centrally controlled database is an advantage for a network of any size. 
When you add a new system to the network, you don't need to modify the /etc/hosts files on every 
node in the network; you modify only the DNS database on the primary server. The information is 
automatically disseminated to the other servers by full zone transfers or by caching single answers.

file:///C|/mynapster/Downloads/warez/tcpip/ch03_03.htm (7 of 8) [2001-10-15 09:18:08]



[Chapter 3] 3.3 Domain Name Service

3.3.5 Network Information Service

The Network Information Service (NIS) [6] is an administrative database system developed by Sun 
Microsystems. It provides central control and automatic dissemination of important administrative 
files. NIS can be used in conjunction with DNS, or as an alternative to it.

[6] NIS was formerly called the "Yellow Pages," or yp. Although the name has 
changed, the abbreviation yp is still used.

NIS and DNS have similarities and differences. Like DNS, the Network Information Service 
overcomes the problem of accurately distributing the host table, but unlike DNS, it provides service 
only for local area networks. NIS is not intended as a service for the Internet as a whole. Another 
difference is that NIS provides access to a wider range of information than DNS - much more than 
name-to-address conversions. It converts several standard UNIX files into databases that can be 
queried over the network. These databases are called NIS maps.

NIS converts files such as /etc/hosts and /etc/networks into maps. The maps can be stored on a central 
server where they can be centrally maintained while still being fully accessible to the NIS clients. 
Because the maps can be both centrally maintained and automatically disseminated to users, NIS 
overcomes a major weakness of the host table. But NIS is not an alternative to DNS for Internet hosts, 
because the host table, and therefore NIS, contains only a fraction of the information available to 
DNS. For this reason DNS and NIS are usually used together.

This section has introduced the concept of hostnames and provided an overview of the various 
techniques used to translate hostnames into IP addresses. This is by no means the complete story. 
Assigning host names and managing name service are important tasks for the network administrator. 
These topics are revisited several times in this book and discussed in extensive detail in Chapter 8.

Name service is not the only service that you will install on your network. Another service that you 
are sure to use is electronic mail.

Previous: 3.2 The Host 
Table

TCP/IP Network 
Administration

Next: 3.4 Mail Services

3.2 The Host Table Book Index 3.4 Mail Services

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/ch03_03.htm (8 of 8) [2001-10-15 09:18:08]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Chapter 3] 3.2 The Host Table

Previous: 3.1 Names and 
Addresses

Chapter 3
Network Services

Next: 3.3 Domain Name 
Service

 

3.2 The Host Table

The host table is a simple text file that associates IP addresses with hostnames. On most UNIX 
systems, the table is in the file /etc/hosts. Each table entry in /etc/hosts contains an IP address 
separated by whitespace from a list of hostnames associated with that address. Comments begin with 
#.

The host table on peanut might contain the following entries:

#
# Table of IP addresses and hostnames
#
172.16.12.2     peanut.nuts.com peanut
127.0.0.1       localhost
172.16.12.1     almond.nuts.com almond loghost
172.16.12.4     walnut.nuts.com walnut
172.16.12.3     pecan.nuts.com pecan
172.16.1.2      filbert.nuts.com filbert
172.16.6.4      salt.plant.nuts.com salt.plant salt

The first entry in the sample table is for peanut itself. The IP address 172.16.12.2 is associated with 
the hostname peanut.nuts.com and the alternate hostname (or alias) peanut. The hostname and all of 
its aliases resolve to the same IP address, in this case 172.16.12.2.

Aliases provide for name changes, alternate spellings, and shorter hostnames. They also allow for 
"generic hostnames." Look at the entry for 172.16.12.1. One of the aliases associated with that address 
is loghost. loghost is a special hostname used by the syslog daemon, syslogd. Programs like syslogd 
are designed to direct their output to the host that has a certain generic name. You can direct the 
output to any host you choose by assigning it the appropriate generic name as an alias. Other 
commonly used generic host names are lprhost, mailhost, and dumphost.

The second entry in the sample file assigns the address 127.0.0.1 to the hostname localhost. As we 
have discussed, the class A network address 127 is reserved for the loopback network. The host 
address 127.0.0.1 is a special address used to designate the loopback address of the local host - hence 
the hostname localhost. This special addressing convention allows the host to address itself the same 

file:///C|/mynapster/Downloads/warez/tcpip/ch03_02.htm (1 of 3) [2001-10-15 09:18:08]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


[Chapter 3] 3.2 The Host Table

way it addresses a remote host. The loopback address simplifies software by allowing common code 
to be used for communicating with local or remote processes. This addressing convention also reduces 
network traffic because the localhost address is associated with a loopback device that loops data back 
to the host before it is written out to the network.

Although the host table system has been superseded by DNS, it is still widely used for the following 
reasons:

●     Most systems have a small host table containing name and address information about the 
important hosts on the local network. This small table is used when DNS is not running, such 
as during the initial system startup. Even if you use DNS, you should create a small /etc/hosts 
file containing entries for your host, for localhost, and for the gateways and servers on your 
local net.

●     Sites that use NIS use the host table as input to the NIS host database. You can use NIS in 
conjunction with DNS; but even when they are used together, most NIS sites create host tables 
that have an entry for every host on the local network. Chapter 9, Configuring Network Servers 
, explains how to use NIS with DNS.

●     Very small sites that are not connected to the Internet sometimes use the host table. If there are 
few local hosts and the information about these hosts rarely changes, and there is no need to 
communicate via TCP/IP with remote sites, then there is little advantage to using DNS.

The old host table system is inadequate for the global Internet for two reasons: inability to scale and 
lack of an automated update process. Prior to adopting DNS, the Network Information Center (NIC) 
maintained a large table of Internet hosts called the NIC host table. Hosts included in the table were 
called registered hosts, and the NIC placed hostnames and addresses into this file for all sites on the 
Internet.

Even when the host table was the primary means for translating hostnames to IP addresses, most sites 
registered only a limited number of key systems. But even with limited registration, the table grew so 
large that it became an inefficient way to convert host names to IP addresses. There is no way that a 
simple table could provide adequate service for the enormous number of hosts in today's Internet.

Another problem with the host table system is that it lacks a technique for automatically distributing 
information about newly registered hosts. Newly registered hosts can be referenced by name as soon 
as a site receives the new version of the host table. However, there is no way to guarantee that the host 
table is distributed to a site. The NIC didn't know who had a current version of the table, and who did 
not. This lack of guaranteed uniform distribution is a major weakness of the host table system.

Some versions of UNIX provide the command htable to automatically build /etc/hosts and 
/etc/networks from the NIC host table. htable and the NIC host table are no longer used to build the 
/etc/hosts file. However, the command is still useful for building /etc/networks. The /etc/networks file 
is still used to map network addresses to network names because many network names are not 
included in the DNS database. To create the /etc/networks file, download the file 
ftp://rs.internic.net/netinfo/networks.txt into a local work directory. Run htable networks.txt. Discard 
the hosts file and the gateways file produced by htable, and move the networks file to the /etc 

file:///C|/mynapster/Downloads/warez/tcpip/ch03_02.htm (2 of 3) [2001-10-15 09:18:08]

ftp://rs.internic.net/netinfo/networks.txt


[Chapter 3] 3.2 The Host Table

directory.

This is the last we'll speak of the NIC host table: it has been superseded by DNS. All hosts connected 
to the Internet should use DNS.

Previous: 3.1 Names and 
Addresses

TCP/IP Network 
Administration

Next: 3.3 Domain Name 
Service

3.1 Names and Addresses Book Index 3.3 Domain Name Service

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/ch03_02.htm (3 of 3) [2001-10-15 09:18:08]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Chapter 3] Network Services

Previous: 2.8 Summary Chapter 3 Next: 3.2 The Host Table

 

3. Network Services
Contents:
Names and Addresses
The Host Table
Domain Name Service
Mail Services
Configuration Servers
Bootstrap Protocol
File and Print Servers
Summary

Some network servers provide essential computer-to-computer services. These differ from application 
services in that they are not directly accessed by end users. Instead, these services are used by 
networked computers to simplify the installation, configuration, and operation of the network.

The functions performed by the servers covered in this chapter are varied:

●     Name service for converting IP addresses to hostnames
●     Configuration servers that simplify the installation of networked hosts by handling part or all 

of the TCP/IP configuration
●     Electronic mail services for moving mail through the network from the sender to the recipient
●     File servers that allow client computers to transparently share files
●     Print servers that allow printers to be centrally maintained and shared by all users

Servers on a TCP/IP network should not be confused with traditional PC LAN servers. Every UNIX 
host on your network can be both a server and a client. The hosts on a TCP/IP network are "peers." 
All systems are equal. The network is not dependent on any one server. All of the services discussed 
in this chapter can be installed on one or several systems on your network.

We begin with a discussion of name service. It is an essential service that you will certainly use on 
your network.

3.1 Names and Addresses

file:///C|/mynapster/Downloads/warez/tcpip/ch03_01.htm (1 of 3) [2001-10-15 09:18:09]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


[Chapter 3] Network Services

The Internet Protocol document [1] defines names, addresses, and routes as follows: 

A name indicates what we seek. An address indicates where it is.
A route indicates how to get there.

Names, addresses, and routes all require the network administrator's attention. Routes and addresses 
are covered in the previous chapter. This section discusses names and how they are disseminated 
throughout the network. Every network interface attached to a TCP/IP network is identified by a 
unique 32-bit IP address. A name (called a hostname) can be assigned to any device that has an IP 
address. Names are assigned to devices because, compared to numeric Internet addresses, names are 
easier to remember and type correctly. The network software doesn't require names, but they do make 
it easier for humans to use the network.

[1] RFC 791, Internet Protocol, Jon Postel, ISI, 1981, page 7.

In most cases, hostnames and numeric addresses can be used interchangeably. A user wishing to 
telnet to the workstation at IP address 172.16.12.2 can enter:

% telnet 172.16.12.2

or use the hostname associated with that address and enter the equivalent command:

% telnet peanut.nuts.com

Whether a command is entered with an address or a hostname, the network connection always takes 
place based on the IP address. The system converts the hostname to an address before the network 
connection is made. The network administrator is responsible for assigning names and addresses and 
storing them in the database used for the conversion.

Translating names into addresses isn't simply a "local" issue. The command telnet peanut.nuts.com 
is expected to work correctly on every host that's connected to the network. If peanut.nuts.com is 
connected to the Internet, hosts all over the world should be able to translate the name 
peanut.nuts.com into the proper address. Therefore, some facility must exist for disseminating the 
hostname information to all hosts on the network.

There are two common methods for translating names into addresses. The older method simply looks 
up the hostname in a table called the host table. [2] The newer technique uses a distributed database 
system called Domain Name Service (DNS) to translate names to addresses. We'll examine the host 
table first.

[2] Sun's Network Information Service (NIS) is an improved technique for accessing 
the host table. NIS is discussed in a later section.

file:///C|/mynapster/Downloads/warez/tcpip/ch03_01.htm (2 of 3) [2001-10-15 09:18:09]



[Chapter 3] Network Services

Previous: 2.8 Summary TCP/IP Network 
Administration

Next: 3.2 The Host Table

2.8 Summary Book Index 3.2 The Host Table

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/ch03_01.htm (3 of 3) [2001-10-15 09:18:09]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


file:///C|/mynapster/Downloads/warez/tcpip/ch02_08.htm

Previous: 2.7 Protocols, 
Ports, and Sockets

Chapter 2
Delivering the Data

Next: 3. Network Services

 

2.8 Summary

This chapter shows how data moves through the global Internet from one specific process on the 
source computer to a single cooperating process on the other side of the world. TCP/IP uses globally 
unique addresses to identify any computer in the world. It uses protocol numbers and port numbers to 
uniquely identify a single process running on that computer.

Routing directs the datagrams destined for a remote process through the maze of the global network. 
Routing uses part of the IP address to identify the destination network. Every system maintains a 
routing table that describes how to reach remote networks. The routing table usually contains a default 
route that is used if the table does not contain a specific route to the remote network. A route only 
identifies the next computer along the path to the destination. TCP/IP uses hop-by-hop routing to 
move datagrams one step closer to the destination until the datagram finally reaches the destination 
network.

At the destination network, final delivery is made by using the full IP address (including the host part) 
and converting that address to a physical layer address. An example of the type of protocol used to 
convert IP addresses to physical layer addresses is Address Resolution Protocol (ARP). It converts IP 
addresses to Ethernet addresses for final delivery.

The first two chapters described the structure of the TCP/IP protocol stack and the way in which it 
moves data across a network. In the next chapter we move up the protocol stack to look at the type of 
services the network provides to simplify configuration and use.

Previous: 2.7 Protocols, 
Ports, and Sockets

TCP/IP Network 
Administration

Next: 3. Network Services

2.7 Protocols, Ports, and 
Sockets

Book Index 3. Network Services

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/ch02_08.htm [2001-10-15 09:18:09]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm
file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Chapter 2] 2.7 Protocols, Ports, and Sockets

Previous: 2.6 Address 
Resolution

Chapter 2
Delivering the Data

Next: 2.8 Summary

 

2.7 Protocols, Ports, and Sockets

Once data is routed through the network and delivered to a specific host, it must be delivered to the correct 
user or process. As the data moves up or down the TCP/IP layers, a mechanism is needed to deliver it to 
the correct protocols in each layer. The system must be able to combine data from many applications into a 
few transport protocols, and from the transport protocols into the Internet Protocol. Combining many 
sources of data into a single data stream is called multiplexing.

Data arriving from the network must be demultiplexed: divided for delivery to multiple processes. To 
accomplish this task, IP uses protocol numbers to identify transport protocols, and the transport protocols 
use port numbers to identify applications.

Some protocol and port numbers are reserved to identify well-known services. Well-known services are 
standard network protocols, such as FTP and telnet, that are commonly used throughout the network. The 
protocol numbers and port numbers allocated to well-known services are documented in the Assigned 
Numbers RFC. UNIX systems define protocol and port numbers in two simple text files.

2.7.1 Protocol Numbers

The protocol number is a single byte in the third word of the datagram header. The value identifies the 
protocol in the layer above IP to which the data should be passed.

On a UNIX system, the protocol numbers are defined in /etc/protocols. This file is a simple table 
containing the protocol name and the protocol number associated with that name. The format of the table is 
a single entry per line, consisting of the official protocol name, separated by whitespace from the protocol 
number. The protocol number is separated by whitespace from the "alias" for the protocol name. 
Comments in the table begin with #. An /etc/protocols file is shown below:

% cat /etc/protocols
#ident  "@(#)protocols  1.2     90/02/03 SMI"   /* SVr4.0 1.1   */

#
# Internet (IP) protocols
#
ip      0       IP      # internet protocol, pseudo protocol number
icmp    1       ICMP    # internet control message protocol
ggp     3       GGP     # gateway-gateway protocol

file:///C|/mynapster/Downloads/warez/tcpip/ch02_07.htm (1 of 6) [2001-10-15 09:18:10]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


[Chapter 2] 2.7 Protocols, Ports, and Sockets

tcp     6       TCP     # transmission control protocol
egp     8       EGP     # exterior gateway protocol
pup     12      PUP     # PARC universal packet protocol
udp     17      UDP     # user datagram protocol
hmp     20      HMP     # host monitoring protocol
xns-idp 22      XNS-IDP # Xerox NS IDP
rdp     27      RDP     # "reliable datagram" protocol

The listing shown above is the contents of the /etc/protocols file from a Solaris 2.5.1 workstation. This list 
of numbers is by no means complete. If you refer to the Protocol Numbers section of the Assigned 
Numbers RFC, you'll see many more protocol numbers. However, a system needs to include only the 
numbers of the protocols that it actually uses. Even the list shown above is more than this specific 
workstation needed, but the additional entries do no harm.

What exactly does this table mean? When a datagram arrives and its destination address matches the local 
IP address, the IP layer knows that the datagram has to be delivered to one of the transport protocols above 
it. To decide which protocol should receive the datagram, IP looks at the datagram's protocol number. 
Using this table you can see that, if the datagram's protocol number is 6, IP delivers the datagram to TCP. 
If the protocol number is 17, IP delivers the datagram to UDP. TCP and UDP are the two transport layer 
services we are concerned with, but all of the protocols listed in the table use IP datagram delivery service 
directly. Some, such as ICMP, EGP, and GGP, have already been mentioned. You don't need to be 
concerned with the minor protocols.

2.7.2 Port Numbers

After IP passes incoming data to the transport protocol, the transport protocol passes the data to the correct 
application process. Application processes (also called network services) are identified by port numbers, 
which are 16-bit values. The source port number, which identifies the process that sent the data, and the 
destination port number, which identifies the process that is to receive the data, are contained in the first 
header word of each TCP segment and UDP packet.

On UNIX systems, port numbers are defined in the /etc/services file. There are many more network 
applications than there are transport layer protocols, as the size of the table shows. Port numbers below 256 
are reserved for well-known services (like FTP and telnet) and are defined in the Assigned Numbers RFC. 
Ports numbered from 256 to 1024 are used for UNIX-specific services, services like rlogin that were 
originally developed for UNIX systems. However, most of them are no longer UNIX-specific.

Port numbers are not unique between transport layer protocols; the numbers are only unique within a 
specific transport protocol. In other words, TCP and UDP can, and do, both assign the same port numbers. 
It is the combination of protocol and port numbers that uniquely identifies the specific process to which the 
data should be delivered.

A partial /etc/services file from a Solaris 2.5.1 workstation is shown below. The format of this file is very 
similar to the /etc/protocols file. Each single-line entry starts with the official name of the service, 
separated by whitespace from the port number/protocol pairing associated with that service. The port 
numbers are paired with transport protocol names, because different transport protocols may use the same 
port number. An optional list of aliases for the official service name may be provided after the port 

file:///C|/mynapster/Downloads/warez/tcpip/ch02_07.htm (2 of 6) [2001-10-15 09:18:10]



[Chapter 2] 2.7 Protocols, Ports, and Sockets

number/protocol pair.

peanut% cat head -20 /etc/services
#ident  "@(#)services   1.13    95/07/28 SMI"   /* SVr4.0 1.8   */

#
# Network services, Internet style
#
tcpmux          1/tcp
echo            7/tcp
echo            7/udp
discard         9/tcp           sink null
discard         9/udp           sink null
systat          11/tcp          users
daytime         13/tcp
daytime         13/udp
netstat         15/tcp
chargen         19/tcp          ttytst source
chargen         19/udp          ttytst source
ftp-data        20/tcp
ftp             21/tcp
telnet          23/tcp
smtp            25/tcp          mail

This table, combined with the /etc/protocols table, provides all of the information necessary to deliver data 
to the correct application. A datagram arrives at its destination based on the destination address in the fifth 
word of the datagram header. Using the protocol number in the third word of the datagram header, IP 
delivers the data from the datagram to the proper transport layer protocol. The first word of the data 
delivered to the transport protocol contains the destination port number that tells the transport protocol to 
pass the data up to a specific application. Figure 2.6 shows this delivery process.

Figure 2.6: Protocol and port numbers

file:///C|/mynapster/Downloads/warez/tcpip/ch02_07.htm (3 of 6) [2001-10-15 09:18:10]



[Chapter 2] 2.7 Protocols, Ports, and Sockets

Despite its size, the /etc/protocols file does not contain the port number of every well-known application. 
You won't find the port number of every Remote Procedure Call (RPC) service in the services file. Sun 
developed a different technique for reserving ports for RPC services that doesn't involve registering well-
known port numbers. When an RPC service starts, it picks any unused port number and registers that 
number with the portmapper. The portmapper is a program that keeps track of the port numbers being 
used by RPC services. When a client wants to use an RPC service, it queries the portmapper running on 
the server to discover the port assigned to the service. The client can find portmapper because it is 
assigned well-known port 111. portmapper makes it possible to install well-known services without 
formally obtaining a well-known port.

2.7.3 Sockets

Well-known ports are standardized port numbers that enable remote computers to know which port to 
connect to for a particular network service. This simplifies the connection process because both the sender 
and receiver know in advance that data bound for a specific process will use a specific port. For example, 
all systems that offer telnet do so on port 23.

There is a second type of port number called a dynamically allocated port. As the name implies, 
dynamically allocated ports are not pre-assigned. They are assigned to processes when needed. The system 
ensures that it does not assign the same port number to two processes, and that the numbers assigned are 
above the range of standard port numbers.

Dynamically allocated ports provide the flexibility needed to support multiple users. If a telnet user is 
assigned port number 23 for both the source and destination ports, what port numbers are assigned to the 

file:///C|/mynapster/Downloads/warez/tcpip/ch02_07.htm (4 of 6) [2001-10-15 09:18:10]



[Chapter 2] 2.7 Protocols, Ports, and Sockets

second concurrent telnet user? To uniquely identify every connection, the source port is assigned a 
dynamically allocated port number, and the well-known port number is used for the destination port.

In the telnet example, the first user is given a random source port number and a destination port number of 
23 (telnet). The second user is given a different random source port number and the same destination port. 
It is the pair of port numbers, source and destination, that uniquely identifies each network connection. The 
destination host knows the source port, because it is provided in both the TCP segment header and the 
UDP packet header. Both hosts know the destination port because it is a well-known port.

Figure 2.7 shows the exchange of port numbers during the TCP handshake. The source host randomly 
generates a source port, in this example 3044. It sends out a segment with a source port of 3044 and a 
destination port of 23. The destination host receives the segment, and responds back using 23 as its source 
port and 3044 as its destination port.

Figure 2.7: Passing port numbers

The combination of an IP address and a port number is called a socket. A socket uniquely identifies a 
single network process within the entire Internet. Sometimes the terms "socket" and "port number" are 
used interchangeably. In fact, well-known services are frequently referred to as "well-known sockets." In 
the context of this discussion, a "socket" is the combination of an IP address and a port number. A pair of 
sockets, one socket for the receiving host and one for the sending host, define the connection for 
connection-oriented protocols such as TCP.

Let's build on the example of dynamically assigned ports and well-known ports. Assume a user on host 
172.16.12.2 uses telnet to connect to host 192.168.16.2. Host 172.16.12.2 is the source host. The user is 
dynamically assigned a unique port number - 3382. The connection is made to the telnet service on the 
remote host which is, according to the standard, assigned well-known port 23. The socket for the source 
side of the connection is 172.16.12.2.3382 (IP address 172.16.12.2 plus port number 3382). For the 
destination side of the connection, the socket is 192.168.16.2.23 (address 192.168.16.2 plus port 23). The 
port of the destination socket is known by both systems because it is a well-known port. The port of the 
source socket is known, because the source host informed the destination host of the source socket when 
the connection request was made. The socket pair is therefore known by both the source and destination 

file:///C|/mynapster/Downloads/warez/tcpip/ch02_07.htm (5 of 6) [2001-10-15 09:18:10]



[Chapter 2] 2.7 Protocols, Ports, and Sockets

computers. The combination of the two sockets uniquely identifies this connection; no other connection in 
the Internet has this socket pair.

Previous: 2.6 Address 
Resolution

TCP/IP Network 
Administration

Next: 2.8 Summary

2.6 Address Resolution Book Index 2.8 Summary

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/ch02_07.htm (6 of 6) [2001-10-15 09:18:10]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Chapter 2] 2.6 Address Resolution

Previous: 2.5 The Routing 
Table

Chapter 2
Delivering the Data

Next: 2.7 Protocols, Ports, 
and Sockets

 

2.6 Address Resolution

The IP address and the routing table direct a datagram to a specific physical network, but when data travels 
across a network, it must obey the physical layer protocols used by that network. The physical networks that 
underlay the TCP/IP network do not understand IP addressing. Physical networks have their own addressing 
schemes, and there are as many different addressing schemes as there are different types of physical networks. 
One task of the network access protocols is to map IP addresses to physical network addresses.

The most common example of this network access layer function is the translation of IP addresses to Ethernet 
addresses. The protocol that performs this function is Address Resolution Protocol (ARP), which is defined in 
RFC 826.

The ARP software maintains a table of translations between IP addresses and Ethernet addresses. This table is 
built dynamically. When ARP receives a request to translate an IP address, it checks for the address in its 
table. If the address is found, it returns the Ethernet address to the requesting software. If the address is not 
found in the table, ARP broadcasts a packet to every host on the Ethernet. The packet contains the IP address 
for which an Ethernet address is sought. If a receiving host identifies the IP address as its own, it responds by 
sending its Ethernet address back to the requesting host. The response is then cached in the ARP table.

The arp command displays the contents of the ARP table. To display the entire ARP table, use the arp -a 
command. Individual entries can be displayed by specifying a hostname on the arp command line. For 
example, to check the entry for peanut in the ARP table on almond, enter:

% arp peanut
peanut (172.16.12.2) at 8:0:20:0:e:c8

Checking all entries in the table with the -a option produces the following output:

% arp -a
Net to Media Table

Device   IP Address                 Mask      Flags   Phys Addr 
------ -----------------      --------------- ----- ---------------
le0    peanut.nuts.com        255.255.255.255       08:00:20:00:0e:c8
le0    acorn.nuts.com         255.255.255.255       08:00:02:05:21:33
le0    almond.nuts.com        255.255.255.255 SP    08:00:20:22:fd:51
le0    pecan.nuts.com         255.255.255.255       00:20:af:1e:7e:5f
le0    BASE-ADDRESS.MCAST.NET 240.0.0.0       SM    01:00:5e:00:00:00

file:///C|/mynapster/Downloads/warez/tcpip/ch02_06.htm (1 of 2) [2001-10-15 09:18:10]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


[Chapter 2] 2.6 Address Resolution

This table tells you that when almond forwards datagrams addressed to peanut, it puts those datagrams into 
Ethernet frames and sends them to Ethernet address 08:00:20:00:0e:c8.

Three of the entries in the sample table (peanut, acorn, and pecan) were added dynamically as a result of 
queries by almond. Two of the entries (almond and BASE-ADDRESS.MCAST.NET) are static entries added as 
a result of the configuration of almond. We know this because both of these entries have an S, for "static," in 
the Flags field. The special BASE-ADDRESS.MCAST.NET entry is for all multicast addresses. The M flag 
means "mapping" and is only used for the multicast entry. On a broadcast medium like Ethernet, the Ethernet 
broadcast address is used to make final delivery to a multicast group.

The P flag on the almond entry means that this entry will be "published." The "publish" flag indicates that 
when an ARP query is received for the IP address of almond, this system answers it with the Ethernet address 
08:00:20:22:fd:51. This is logical because this is the ARP table on almond. However, it is also possible to 
publish Ethernet addresses for other hosts, not just for the local host. Answering ARP queries for other 
computers is called proxy ARP.

For example: assume that acorn is the server for a remote system named hazel connected via a dial-up 
telephone line. Instead of setting up routing to the remote system, the administrator of acorn could place a 
static, published entry in the ARP table with the IP address of hazel and the Ethernet address of acorn. Now 
when acorn hears an ARP query for the IP address of hazel, it answers with its own Ethernet address. The 
other systems on the network therefore send packets destined for hazel to acorn. acorn then forwards the 
packets on to hazel over the telephone line. Proxy ARP is used to answer queries for systems that can't answer 
for themselves.

ARP tables normally don't require any attention because they are built automatically by the ARP protocol, 
which is very stable. However, if things go wrong, the ARP table can be manually adjusted. See Chapter 11, 
Troubleshooting TCP/IP , the section called "Troubleshooting with the arp Command."

Previous: 2.5 The Routing 
Table

TCP/IP Network 
Administration

Next: 2.7 Protocols, Ports, 
and Sockets

2.5 The Routing Table Book Index 2.7 Protocols, Ports, and 
Sockets

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/ch02_06.htm (2 of 2) [2001-10-15 09:18:10]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Chapter 2] 2.5 The Routing Table

Previous: 2.4 Internet 
Routing Architecture

Chapter 2
Delivering the Data

Next: 2.6 Address 
Resolution

 

2.5 The Routing Table

Gateways route data between networks; but all network devices, hosts as well as gateways, must make 
routing decisions. For most hosts, the routing decisions are simple:

●     If the destination host is on the local network, the data is delivered to the destination host.
●     If the destination host is on a remote network, the data is forwarded to a local gateway.

Because routing is network-oriented, IP makes routing decisions based on the network portion of the 
address. The IP module determines the network part of the destination's IP address by applying the 
network mask to the address. If the destination network is the local network, the mask that is applied 
may be the local subnet mask. If no mask is provided with the address, the address class determines 
the network portion of the address.

After determining the destination network, the IP module looks up the network in the local routing 
table. [7] Packets are routed toward their destination as directed by the routing table. The routing table 
may be built by the system administrator or by routing protocols, but the end result is the same; IP 
routing decisions are simple table look-ups.

[7] This table is also called the forwarding table.

You can display the routing table's contents with the netstat -nr command. The -r option tells netstat 
to display the routing table, and the -n option tells netstat to display the table in numeric form. It's 
useful to display the routing table in numeric form because the destination of most routes is a network, 
and networks are usually referred to by network numbers.

On a Solaris system, the netstat command displays the routing table with the following fields:

Destination

The destination network (or host).
Gateway

The gateway to use to reach the specified destination.

file:///C|/mynapster/Downloads/warez/tcpip/ch02_05.htm (1 of 4) [2001-10-15 09:18:11]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


[Chapter 2] 2.5 The Routing Table

Flags

The flags describe certain characteristics of this route. The possible flag values are: 

U

Indicates that the route is up and operational.
H

Indicates this is a route to a specific host (most routes are to networks).
G

Means the route uses a gateway. The system's network interfaces provide routes to 
directly connected networks. All other routes use remote gateways. Directly connected 
networks do not have the G flag set; all other routes do.

D

Means that this route was added because of an ICMP Redirect Message. When a system 
learns of a route via an ICMP Redirect, it adds the route to its routing table, so that 
additional packets bound for that destination will not need to be redirected. The system 
uses the D flag to mark these routes.

Ref

The number of times the route has been referenced to establish a connection.
Use

The number of packets transmitted via this route.
Interface

The name of the network interface [8] used by this route.

[8] The network interface is the network access hardware and software that IP uses to 
communicate with the physical network. See Chapter 6, Configuring the Interface , for 
details.

The only two fields important for our current discussion are the destination and gateway fields. The 
following is a sample routing table:

% netstat -nr
Routing Table:
Destination  Gateway        Flags  Ref    Use   Interface
----------- -----------     -----  ----  -----  ---------
127.0.0.1   127.0.0.1       UH      1      298       lo0 

file:///C|/mynapster/Downloads/warez/tcpip/ch02_05.htm (2 of 4) [2001-10-15 09:18:11]



[Chapter 2] 2.5 The Routing Table

default     172.16.12.1     UG      2    50360         
172.16.12.0 172.16.12.2     U      40   111379       le0 
172.16.2.0  172.16.12.3     UG      4     1179         
172.16.1.0  172.16.12.3     UG     10     1113        
172.16.3.0  172.16.12.3     UG      2     1379        
172.16.4.0  172.16.12.3     UG      4     1119

The first table entry is the loopback route for the local host. This is the loopback address mentioned 
earlier as a reserved network number. Because every system uses the loopback route to send 
datagrams to itself, this entry is in every host's routing table. The H flag is set because it is a route to a 
specific host (127.0.0.1), not a route to an entire network (127.0.0.0). We'll see the loopback facility 
again when we discuss kernel configuration and the ifconfig command. For now, however, our real 
interest is in external routes.

Another unique entry in the routing table is the entry with the word "default" in the destination field. 
This entry is for the default route, and the gateway specified in this entry is the default gateway. The 
default route is the other reserved network number mentioned earlier: 0.0.0.0. The default gateway is 
used whenever there is no specific route in the table for a destination network address. For example, 
this routing table has no entry for network 192.168.16.0. If IP receives any datagrams addressed to 
this network, it will send the datagram via the default gateway 172.16.12.1.

You can tell from the sample routing table display that this host (peanut) is directly connected to 
network 172.16.12.0. The routing table entry for that network does not specify an external gateway; 
i.e., the routing table entry for 172.16.12.0 does not have the G flag set. Therefore, peanut must be 
directly connected to that network.

All of the gateways that appear in a routing table are on networks directly connected to the local 
system. In the sample shown above this means that, regardless of the destination address, the gateway 
addresses all begin with 172.16.12. This is the only network to which peanut is directly attached, and 
therefore it is the only network to which peanut can directly deliver data. The gateways that peanut 
uses to reach the rest of the Internet must be on peanut's subnet.

In Figure 2.5 the IP layer of each host and gateway on our imaginary network is replaced by a small 
piece of a routing table, showing destination networks and the gateways used to reach those 
destinations. When the source host (172.16.12.2) sends data to the destination host (172.16.1.2), it 
first determines that 172.16.1.2 is the local network's official address and applies the subnet mask. 
(Network 172.16.0.0 is subnetted using the mask 255.255.255.0.) After applying the subnet mask, IP 
knows that the destination's network address is 172.16.1.0. The routing table in the source host shows 
that data bound for 172.16.1.0 should be sent to gateway 172.16.12.3. Gateway 172.16.12.3 makes 
direct delivery through its 172.16.1.5 interface. Examining the routing tables shows that all systems 
list only gateways on networks they are directly connected to. Note that 172.16.12.1 is the default 
gateway for both 172.16.12.2 and 172.16.12.3. But because 172.16.1.2 cannot reach network 
172.16.12.0 directly, it has a different default route.

Figure 2.5: Table-based routing

file:///C|/mynapster/Downloads/warez/tcpip/ch02_05.htm (3 of 4) [2001-10-15 09:18:11]



[Chapter 2] 2.5 The Routing Table

A routing table does not contain end-to-end routes. A route points only to the next gateway, called the 
next hop, along the path to the destination network. [9] The host relies on the local gateway to deliver 
the data, and the gateway relies on other gateways. As a datagram moves from one gateway to 
another, it should eventually reach one that is directly connected to its destination network. It is this 
last gateway that finally delivers the data to the destination host.

[9] As we'll see in Chapter 7, Configuring Routing , some routing protocols, such as 
OSPF and BGP, obtain end-to-end routing information. Nevertheless, the packet is still 
passed to the next-hop router.

Previous: 2.4 Internet 
Routing Architecture

TCP/IP Network 
Administration

Next: 2.6 Address 
Resolution

2.4 Internet Routing 
Architecture

Book Index 2.6 Address Resolution

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/ch02_05.htm (4 of 4) [2001-10-15 09:18:11]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Chapter 2] 2.4 Internet Routing Architecture

Previous: 2.3 Subnets Chapter 2
Delivering the Data

Next: 2.5 The Routing 
Table

 

2.4 Internet Routing Architecture

Chapter 1 described the evolution of the Internet architecture over the years. Along with these 
architectural changes have come changes in the way that routing information is disseminated within 
the network.

In the original Internet structure, there was a hierarchy of gateways. This hierarchy reflected the fact 
that the Internet was built upon the existing ARPANET. When the Internet was created, the 
ARPANET was the backbone of the network: a central delivery medium to carry long-distance traffic. 
This central system was called the core, and the centrally managed gateways that interconnected it 
were called the core gateways.

In that hierarchical structure, routing information about all of the networks in the Internet was passed 
into the core gateways. The core gateways processed the information, and then exchanged it among 
themselves using the Gateway to Gateway Protocol (GGP). The processed routing information was 
then passed back out to the external gateways. The core gateways maintained accurate routing 
information for the entire Internet.

Using the hierarchical core router model to distribute routing information has a major weakness: every 
route must be processed by the core. This places a tremendous processing burden on the core, and as 
the Internet grew larger the burden increased. In network-speak, we say that this routing model does 
not "scale well." For this reason, a new model emerged.

Even in the days of a single Internet, core groups of independent networks called autonomous systems 
(AS) existed outside of the core. The term "autonomous system" has a formal meaning in TCP/IP 
routing. An autonomous system is not merely an independent network. It is a collection of networks 
and gateways with its own internal mechanism for collecting routing information and passing it to 
other independent network systems. The routing information passed to the other network systems is 
called reachability information. Reachability information simply says which networks can be reached 
through that autonomous system. The Exterior Gateway Protocol (EGP) was the protocol used to pass 
reachability information between autonomous systems and into the core (see Figure 2.3

Figure 2.3: Gateway hierarchy

file:///C|/mynapster/Downloads/warez/tcpip/ch02_04.htm (1 of 4) [2001-10-15 09:18:12]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


[Chapter 2] 2.4 Internet Routing Architecture

The new routing model is based on co-equal collections of autonomous systems, called routing 
domains. Routing domains exchange routing information with other domains using Border Gateway 
Protocol (BGP). Each routing domain processes the information it receives from other domains. 
Unlike the hierarchical model, this model does not depend on a single core system to choose the 
"best" routes. Each routing domain does this processing for itself; therefore, this model is more 
expandable. Figure 2.4 represents this model with three intersecting circles. Each circle is a routing 
domain. The overlapping areas are border areas, where routing information is shared. The domains 
share information, but do not rely on any one system to provide all routing information.

Figure 2.4: Routing domains

file:///C|/mynapster/Downloads/warez/tcpip/ch02_04.htm (2 of 4) [2001-10-15 09:18:12]



[Chapter 2] 2.4 Internet Routing Architecture

The problem with this model is: how are "best" routes determined in a global network if there is no 
central routing authority, like the core, that is trusted to determine the "best" routes? In the days of the 
NSFNET, the policy routing database (PRDB) was used to determine whether the reachability 
information advertised by an autonomous system was valid. But now, even the NSFNET does not 
play a central role.

To fill this void, NSF created the Routing Arbiter (RA) servers when it created the Network Access 
Points (NAPs) that replaced the role of the NSFNET. A route arbiter is located at each NAP. The 
server provides access to the Routing Arbiter Database (RADB), which replaced the PRDB. Internet 
Service Providers can query servers to validate the reachability information advertised by an 
autonomous system.

Many ISPs do not use the route servers. Instead they depend on formal and informal bilateral 
agreements. In essence, two ISPs get together and decide what reachability information each will 
accept from the other. They create, in effect, local routing policies. This is a slow manual process that 
probably will not be flexible enough for a rapidly growing Internet.

The RADB is only part of the Internet Routing Registry (IRR). As befits a distributed routing 
architecture, there are multiple organizations that validate and register routing information. Europeans 
were the pioneers in this. The Reseaux IP Europeens (RIPE) Network Control Center (NCC) provides 
the routing registry for European IP networks. Big network carriers, like MCI and ANS, provide 
registries for their customers. All of the registries share a common format based on the RIPE-181 
standard.

Creating an effective routing architecture continues to be a major challenge for the Internet that will 

file:///C|/mynapster/Downloads/warez/tcpip/ch02_04.htm (3 of 4) [2001-10-15 09:18:12]



[Chapter 2] 2.4 Internet Routing Architecture

certainly evolve over time. No matter how it is derived, eventually the routing information winds up 
in your local gateway, where it is used by IP to make routing decisions.

Previous: 2.3 Subnets TCP/IP Network 
Administration

Next: 2.5 The Routing 
Table

2.3 Subnets Book Index 2.5 The Routing Table

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/ch02_04.htm (4 of 4) [2001-10-15 09:18:12]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Chapter 2] 2.3 Subnets

Previous: 2.2 The IP 
Address

Chapter 2
Delivering the Data

Next: 2.4 Internet Routing 
Architecture

 

2.3 Subnets

The structure of an IP address can be locally modified by using host address bits as additional network 
address bits. Essentially, the "dividing line" between network address bits and host address bits is 
moved, creating additional networks, but reducing the maximum number of hosts that can belong to 
each network. These newly designated network bits define a network within the larger network, called 
a subnet.

Organizations usually decide to subnet in order to overcome topological or organizational problems. 
Subnetting allows decentralized management of host addressing. With the standard addressing 
scheme, a central administrator is responsible for managing host addresses for the entire network. By 
subnetting, the administrator can delegate address assignment to smaller organizations within the 
overall organization - which may be a political expedient, if not a technical requirement. If you don't 
want to deal with the data processing department, assign them their own subnet and let them manage 
it themselves.

Subnetting can also be used to overcome hardware differences and distance limitations. IP routers can 
link dissimilar physical networks together, but only if each physical network has its own unique 
network address. Subnetting divides a single network address into many unique subnet addresses, so 
that each physical network can have its own unique address.

A subnet is defined by changing the bit mask of the IP address. A subnet mask functions in the same 
way as a normal address mask: an "on" bit is interpreted as a network bit; an "off" bit belongs to the 
host part of the address. The difference is that a subnet mask is only used locally. In the outside world 
the address is still interpreted as a standard IP address.

Assume we have been assigned network address 172.16.0.0/16. The subnet mask associated with that 
address is 255.255.0.0. The most commonly used subnet mask, and the one we use in most of our 
examples, extends the network portion of the address by an additional byte, e.g., 172.16.0.0/24. The 
subnet mask that does this is 255.255.255.0; all bits on in the first three bytes, and all bits off in the 
last byte. The first two bytes define the original network; the third byte defines the the subnet address; 
the fourth byte defines the host on that subnet.

Many network administrators prefer byte-oriented masks because they are easy to read and understand 
when addresses are written in dotted decimal notation. However, limiting subnet masks to byte 

file:///C|/mynapster/Downloads/warez/tcpip/ch02_03.htm (1 of 3) [2001-10-15 09:18:12]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


[Chapter 2] 2.3 Subnets

boundaries does not take advantage of their true power. The subnet mask is bit-oriented. We could 
subdivide 172.16.0.0/16 into 16 subnets with the mask 255.255.240.0, i.e. 172.16.0.0/20. Applying 
this mask defines the four high-order bits of the third byte as the subnet part of the address, and the 
remaining 12 bits - four bits of the third byte and all of the fourth byte - as the host portion of the 
address. This creates 16 subnets that each contain more than four thousand host addresses, which may 
well be better suited to our network and organization. For example, we may have a small number of 
large subdivisions. Table 2.1 shows the subnets and host addresses produced by applying this subnet 
masks to network address 172.16.0.0/16. 

Table 2.1: Effect of a Subnet Mask

Network Number First Address Last Address

172.16.0.0 172.16.0.1 172.16.15.254

172.16.16.0 172.16.16.1 172.16.31.254

172.16.32.0 172.16.32.1 172.16.47.254

172.16.48.0 172.16.48.1 172.16.63.254

172.16.64.0 172.16.64.1 172.16.79.254

172.16.80.0 172.16.80.1 172.16.95.254

172.16.96.0 172.16.96.1 172.16.111.254

172.16.112.0 172.16.112.1 172.16.127.254

172.16.128.0 172.16.128.1 172.16.143.254

172.16.144.0 172.16.144.1 172.16.159.254

172.16.160.0 172.16.160.1 172.16.175.254

172.16.176.0 172.16.176.1 172.16.191.254

172.16.192.0 172.16.192.1 172.16.207.254

172.16.208.0 172.16.208.1 172.16.223.254

172.16.224.0 172.16.224.1 172.16.239.254

172.16.240.0 172.16.240.1 172.16.254.254

You don't have to manually calculate a table like Table 2.1 to know what subnets and host addresses 
are produced by a subnet mask. The calculations have already been done for you. RFC 1878 lists all 
possible subnet masks and the valid addresses they produce.

Organizations have been discouraged from subnetting class C addresses because of the fear that 
subnetting reduces the number of host addresses to increase the number of network addresses. A class 
C network is limited to fewer than 255 host addresses. Further limiting the number of hosts would 
reduce the utility of a class C address. The mask 255.255.255.192 divides a class C address into four 
subnets of 64 host addresses. The fear is that the subnet address of all 0s and the subnet address of all 
1s will not be usable. This leaves only two subnets; and because host addresses of all 1s and all 0s are 
also unusable, the remaining two subnets can only address 62 hosts. Therefore the address space of 
this class C network number is reduced from 254 hosts to 124 hosts. The fear of subnetting class C 
addresses is no longer justified.

file:///C|/mynapster/Downloads/warez/tcpip/ch02_03.htm (2 of 3) [2001-10-15 09:18:12]



[Chapter 2] 2.3 Subnets

Originally, the RFCs implied that you should not used subnet numbers of all 0s or all 1s. However, 
RFC 1812, Requirements for IP Version 4 Routers, makes it clear that subnets of all 0s and all 1s are 
legal and should be supported by all routers. Some older routers do not allow the use of these 
addresses despite the newer RFCs. Updating router software or hardware should make it possible for 
you to reliably subnet class C addresses.

Class C subnets are used when very small networks are needed for specialized network equipment, 
such as terminal servers, cluster controllers or routers. In some configurations an entire subnet may be 
consumed for the link between two routers. In this case only two host addresses are need, one for the 
router at each end of the link. A subnet mask of 255.255.255.252 applied to a class C address creates 
64 subnets each containing four host addresses. In a special case this might be just what is needed.

Previous: 2.2 The IP 
Address

TCP/IP Network 
Administration

Next: 2.4 Internet Routing 
Architecture

2.2 The IP Address Book Index 2.4 Internet Routing 
Architecture

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/ch02_03.htm (3 of 3) [2001-10-15 09:18:12]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Chapter 2] 2.2 The IP Address

Previous: 2.1 Addressing, 
Routing, and Multiplexing

Chapter 2
Delivering the Data

Next: 2.3 Subnets

 

2.2 The IP Address

The Internet Protocol moves data between hosts in the form of datagrams. Each datagram is delivered to the 
address contained in the Destination Address (word 5) of the datagram's header. The Destination Address is a 
standard 32-bit IP address that contains sufficient information to uniquely identify a network and a specific host 
on that network.

An IP address contains a network part and a host part, but the format of these parts is not the same in every IP 
address. The number of address bits used to identify the network, and the number used to identify the host, vary 
according to the prefix length of the address. There are two ways the prefix length is determined: by address 
class or by a CIDR address mask. We begin with a discussion of traditional IP address classes.

2.2.1 Address Classes

Originally, the IP address space was divided into a few fixed-length structures called address classes. The three 
main address classes are class A, class B, and class C. By examining the first few bits of an address, IP software 
can quickly determine the class, and therefore the structure, of an address. IP follows these rules to determine the 
address class:

●     If the first bit of an IP address is 0, it is the address of a class A network. The first bit of a class A address 
identifies the address class. The next 7 bits identify the network, and the last 24 bits identify the host. 
There are fewer than 128 class A network numbers, but each class A network can be composed of 
millions of hosts.

●     If the first 2 bits of the address are 1 0, it is a class B network address. The first 2 bits identify class; the 
next 14 bits identify the network, and the last 16 bits identify the host. There are thousands of class B 
network numbers and each class B network can contain thousands of hosts.

●     If the first 3 bits of the address are 1 1 0, it is a class C network address. In a class C address, the first 3 
bits are class identifiers; the next 21 bits are the network address, and the last 8 bits identify the host. 
There are millions of class C network numbers, but each class C network is composed of fewer than 254 
hosts.

●     If the first 4 bits of the address are 1 1 1 0, it is a multicast address. These addresses are sometimes called 
class D addresses, but they don't really refer to specific networks. Multicast addresses are used to address 
groups of computers all at one time. Multicast addresses identify a group of computers that share a 
common application, such as a video conference, as opposed to a group of computers that share a 
common network.

●     If the first four bits of the address are 1 1 1 1, it is a special reserved address. These addresses are 
sometimes called class E addresses, but they don't really refer to specific networks. No numbers are 
currently assigned in this range.

file:///C|/mynapster/Downloads/warez/tcpip/ch02_02.htm (1 of 6) [2001-10-15 09:18:14]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


[Chapter 2] 2.2 The IP Address

Luckily, this is not as complicated as it sounds. IP addresses are usually written as four decimal numbers 
separated by dots (periods). [1] Each of the four numbers is in the range 0-255 (the decimal values possible for a 
single byte). Because the bits that identify class are contiguous with the network bits of the address, we can lump 
them together and look at the address as composed of full bytes of network address and full bytes of host 
address. If the value of the first byte is:

[1] Addresses are occasionally written in other formats, e.g., as hexadecimal numbers. However, 
the "dot" notation form is the most widely used. Whatever the notation, the structure of the address 
is the same.

●     Less than 128, the address is class A; the first byte is the network number, and the next three bytes are the 
host address.

●     From 128 to 191, the address is class B; the first two bytes identify the network, and the last two bytes 
identify the host.

●     From 192 to 223, the address is class C; the first three bytes are the network address, and the last byte is 
the host number.

●     From 224 to 239, the address is multicast. There is no network part. The entire address identifies a 
specific multicast group.

●     Greater than 239, the address is reserved. We can ignore reserved addresses.

Figure 2.2 illustrates how the address structure varies with address class. The class A address is 10.104.0.19. The 
first bit of this address is 0, so the address is interpreted as host 104.0.19 on network 10. One byte specifies the 
network and three bytes specify the host. In the address 172.16.12.1, the two high-order bits are 1 0 so the 
address refers to host 12.1 on network 172.16. Two bytes identify the network and two identify the host. Finally, 
in the class C example, 192.168.16.1, the three high-order bits are 1 1 0, so this is the address of host 1 on 
network 192.168.16 - three network bytes and one host byte.

Figure 2.2: IP address structure

file:///C|/mynapster/Downloads/warez/tcpip/ch02_02.htm (2 of 6) [2001-10-15 09:18:14]



[Chapter 2] 2.2 The IP Address

The IP address, which provides universal addressing across all of the networks of the Internet, is one of the great 
strengths of the TCP/IP protocol suite. However, the original class structure of the IP address has weaknesses. 
The TCP/IP designers did not envision the enormous scale of today's network. When TCP/IP was being 
designed, networking was limited to large organizations that could afford substantial computer systems. The idea 
of a powerful UNIX system on every desktop did not exist. At that time, a 32-bit address seemed so large that it 
was divided into classes to reduce the processing load on routers, even though dividing the address into classes 
sharply reduced the number of host addresses actually available for use. For example, assigning a large network 
a single class B address, instead of six class C addresses, reduced the load on the router because the router 
needed to keep only one route for that entire organization. However, an organization that was given the class B 
address probably did not have 64,000 computers, so most of the host addresses available to the organization were 
never assigned.

The class-structured address design was critically strained by the rapid growth of the Internet. At one point it 
appeared that all class B addresses might be rapidly exhausted. [2] To prevent this, a new way of looking at IP 
addresses without a class structure was developed.

[2] The source for this prediction is the draft of Supernetting: an Address Assignment and 
Aggregation Strategy, by V. Fuller, T. Li, J. Yu, and K. Varadhan, March 1992.

2.2.2 Classless IP Addresses

The rapid depletion of the class B addresses showed that three primary address classes were not enough: class A 
was much too large and class C was much too small. Even a class B address was too large for many networks but 
was used because it was better than the alternatives.

file:///C|/mynapster/Downloads/warez/tcpip/ch02_02.htm (3 of 6) [2001-10-15 09:18:14]



[Chapter 2] 2.2 The IP Address

The obvious solution to the class B address crisis was to force organizations to use multiple class C addresses. 
There were millions of these addresses available and they were in no immediate danger of depletion. As is often 
the case, the obvious solution is not as simple as it may seem. Each class C address requires its own entry within 
the routing table. Assigning thousands or millions of class C addresses would cause the routing table to grow so 
rapidly that the routers would soon be overwhelmed. The solution required a new way of assigning addresses and 
a new way of looking at addresses.

Originally network addresses were assigned in more or less sequential order as they were requested. This worked 
fine when the network was small and centralized. However, it did not take network topology into account. Thus 
only random chance would determine if the same intermediate routers would be used to reach network 
195.4.12.0 and network 195.4.13.0, which makes it difficult to reduce the size of the routing table. Addresses can 
only be aggregated if they are contiguous numbers and are reachable through the same route. For example, if 
addresses are contiguous for one service provider, a single route can be created for that aggregation because that 
service provide will have a limited number of routes to the Internet. But if one network address is in France and 
the next contiguous address is in Australia, creating a consolidated route for these addresses does not work.

Today, large, contiguous blocks of addresses are assigned to large network service providers in a manner that 
better reflects the topology of the network. The service providers then allocate chunks of these address blocks to 
the organizations to which they provide network services. This alleviates the short-term shortage of class B 
addresses and, because the assignment of addressees reflects the topology of the network, it permits route 
aggregation. Under this new scheme, we know that network 195.4.12.0 and network 195.4.13.0 are reachable 
through the same intermediate routers. In fact, both of these addresses are in the range of the addresses assigned 
to Europe, 194.0.0.0 to 195.255.255.255. Assigning addresses that reflect the topology of the network enables 
route aggregation, but does not implement it. As long as network 195.4.12.0 and network 195.4.13.0 are 
interpreted as separate class C addresses, they will require separate entries in the routing table. A new, flexible 
way of defining addresses is needed.

Evaluating addresses according to the class rules discussed above limits the length of network numbers to 8, 16, 
or 24 bits - 1, 2, or 3 bytes. The IP address, however, is not really byte-oriented. It is 32 contiguous bits. A more 
flexible way to interpret the network and host portions of an address is with a bit mask. An address bit mask 
works in this way: if a bit is on in the mask, that equivalent bit in the address is interpreted as a network bit; if a 
bit in the mask is off, the bit belongs to the host part of the address. For example, if address 195.4.12.0 is 
interpreted as a class C address, the first 24 bits are the network number and the last 8 bits are the host address. 
The network mask that represents this is 255.255.255.0, 24 bits on and 8 bits off. The bit mask that is derived 
from the traditional class structure is called the default mask or the natural mask. However, with bit masks we 
are no longer limited by the address class structure. A mask of 255.255.0.0 can be applied to network address 
195.4.0.0. This mask includes all addresses from 195.4.0.0 to 195.4.255.255 in a single network number. In 
effect, it creates a network number as large as a class B network in the class C address space. Using bit masks to 
create networks larger than the natural mask is called supernetting, and the use of a mask instead of the address 
class to determine the destination network is called Classless Inter-Domain Routing (CIDR). [3]

[3] CIDR is pronounced "cider."

CIDR requires modifications to the routers and routing protocols. The protocols need to distribute, along with the 
destination addresses, address masks that define how the addresses are interpreted. The routers and hosts need to 
know how to interpret these addresses as "classless" addresses and how to apply the bit mask that accompanies 
the address. Older routing protocols, such as Routing Information Protocol (RIP), and older operating systems do 
not support CIDR address masks. As the incorporation of the mask information in the routing table shows, new 
operating systems like Linux 2.0.0 do support CIDR.

file:///C|/mynapster/Downloads/warez/tcpip/ch02_02.htm (4 of 6) [2001-10-15 09:18:14]



[Chapter 2] 2.2 The IP Address

# route
Kernel routing table
Destination  Gateway      Genmask         Flags MSS    Window Use Iface
172.16.26.32 *            255.255.255.224 U     1500   0        2 eth0
195.4.0.0    129.6.26.62  255.255.0.0     UG    1500   0        0 eth0
loopback     *            255.0.0.0       U     3584   0        1 lo
default      129.6.26.62  *               UG    1500   0        3 eth0

Specifying both the address and the mask is cumbersome when writing out addresses. A shorthand notation has 
been developed for writing CIDR addresses. Instead of writing network 172.16.26.32 with a mask of 
255.255.255.224, we can write 172.16.26.32/27. The format of this notation is address/prefix-length, where 
prefix-length is the number of bits in the network portion of the address. Without this notation, the address 
172.16.26.32 could easily be interpreted as a host address. RFC 1878 list all 32 possible prefix values. But little 
documentation is needed because the CIDR prefix is much easier to understand and remember than are address 
classes. I know that 10.104.0.19 is a class A address, but writing it as 10.104.0.19/8 shows me that this address 
has 8 bits for the network number and therefore 24 bits for the host number. I don't have to remember anything 
about the class A address structure.

CIDR is an interim solution, though it is capable of providing address and routing relief for many more years. 
The long-term solution is to replace the current addressing scheme with a new one. In the TCP/IP protocol suite 
addressing is defined by the IP protocol. Therefore, to define a new address structure, the Internet Engineering 
Task Force (IETF) created a new version of IP called IPv6. [4] IPv6 has a very large 128-bit address, so address 
depletion is not an issue. The large address also makes it possible to use a hierarchical address structure to reduce 
the burden on routers while still maintaining more than enough addresses for future network growth. Other 
benefits of IPv6 are:

[4] The current release of IP is IP version 4 (IPv4). IP version 5 is an experimental Stream 
Transport (ST) protocol used for real-time data delivery.

●     Improved security built into the protocol
●     Simplified, fixed-length, word-aligned headers to speed header processing and reduce overhead
●     Improved techniques for handling header options

IPv6 has several good features, but it is still a few years from widespread availability. In the meantime, the 
current generation of TCP/IP should be more than adequate for your network needs. On your network you will 
use IP and standard IP addressing.

2.2.2.1 Final notes on IP addresses

Not all network addresses or host addresses are available for use. We have already said that the addresses with a 
first byte greater than 223 cannot be used as host addresses. There are also two large pieces of the address space, 
0.0.0.0/8 and 127.0.0.0/8, that are reserved for special uses. Network 0 designates the default route and network 
127 is the loopback address. The default route is used to simplify the routing information that IP must handle. 
The loopback address simplifies network applications by allowing the local host to be addressed in the same 
manner as a remote host. We use these special network addresses when configuring a host.

There are also some host addresses reserved for special uses. In all network classes, host numbers 0 and 255 are 
reserved. An IP address with all host bits set to 0 identifies the network itself. For example, 10.0.0.0 refers to 
network 10, and 172.16.0.0 refers to network 172.16. Addresses in this form are used in routing table listings to 
refer to entire networks. An IP address with all host bits set to 1 is a broadcast address. [5] A broadcast address 

file:///C|/mynapster/Downloads/warez/tcpip/ch02_02.htm (5 of 6) [2001-10-15 09:18:14]



[Chapter 2] 2.2 The IP Address

is used to simultaneously address every host on a network. The broadcast address for network 172.16 is 
172.16.255.255. A datagram sent to this address is delivered to every individual host on network 172.16.

[5] Unfortunately, there are implementation-specific variations in broadcast addresses. Chapter 5, 
Basic Configuration , discusses these variations.

IP addresses are often called host addresses. While this is common usage, it is slightly misleading. IP addresses 
are assigned to network interfaces, not to computer systems. A gateway, such as almond (see Figure 2.1 has a 
different address for each network to which it is connected. The gateway is known to other devices by the 
address associated with the network that it shares with those devices. For example, peanut addresses almond as 
172.16.12.1, while external hosts address it as 10.104.0.19.

Systems can be addressed in three different ways. Individual systems are directly addressed by a host address, 
which is called a unicast address. A unicast packet is addressed to one individual host. Groups of systems can be 
addressed using a multicast address, e.g., 224.0.0.9. Routers along the path from the source to destination 
recognize the special address and route copies of the packet to each member of the multicast group. [6] All 
systems on a network are addressed using the broadcast address, e.g., 172.16.255.255. The broadcast address 
depends on the broadcast capabilities of the underlying physical network.

[6] This is only partially true. Multicasting is not supported by every router. Sometimes it is 
necessary to tunnel through routers and networks by encapsulating the multicast packet inside of a 
unicast packet.

IP uses the network portion of the address to route the datagram between networks. The full address, including 
the host information, is used to make final delivery when the datagram reaches the destination network.

Previous: 2.1 Addressing, 
Routing, and Multiplexing

TCP/IP Network 
Administration

Next: 2.3 Subnets

2.1 Addressing, Routing, and 
Multiplexing

Book Index 2.3 Subnets

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/ch02_02.htm (6 of 6) [2001-10-15 09:18:14]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Chapter 2] Delivering the Data

Previous: 1.8 Summary Chapter 2 Next: 2.2 The IP Address

 

2. Delivering the Data
Contents:
Addressing, Routing, and Multiplexing
The IP Address
Subnets
Internet Routing Architecture
The Routing Table
Address Resolution
Protocols, Ports, and Sockets
Summary

In Chapter 1, Overview of TCP/IP, we touched on the basic architecture and design of the TCP/IP 
protocols. From that discussion, we know that TCP/IP is a hierarchy of four layers. In this chapter, we 
explore in finer detail how data moves between the protocol layers and the systems on the network. 
We examine the structure of Internet addresses, including how addresses route data to its final 
destination, and how addressing rules are locally redefined to create subnets. We also look at the 
protocol and port numbers used to deliver data to the correct applications. These additional details 
move us from an overview of TCP/IP to the specific implementation details that affect your system's 
configuration.

2.1 Addressing, Routing, and Multiplexing

To deliver data between two Internet hosts, it is necessary to move the data across the network to the 
correct host, and within that host to the correct user or process. TCP/IP uses three schemes to 
accomplish these tasks:

Addressing

IP addresses, which uniquely identify every host on the network, deliver data to the correct 
host.

Routing

Gateways deliver data to the correct network.

file:///C|/mynapster/Downloads/warez/tcpip/ch02_01.htm (1 of 3) [2001-10-15 09:18:14]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


[Chapter 2] Delivering the Data

Multiplexing

Protocol and port numbers deliver data to the correct software module within the host.

Each of these functions - addressing between hosts, routing between networks, and multiplexing 
between layers - is necessary to send data between two cooperating applications across the Internet. 
Let's examine each of these functions in detail.

To illustrate these concepts and provide consistent examples, we use an imaginary corporate network. 
Our imaginary company sells packaged nuts to the Army. Our company network is made up of 
several networks at our packing plant and sales office, as well as a connection to the Internet. We are 
responsible for managing the Ethernet in the computing center. This network's structure, or topology, 
is shown in Figure 2.1

Figure 2.1: Sample network

The icons in the figure represent computer systems. There are, of course, several other imaginary 
systems on our imaginary network. You'll just have to use your imagination! But we'll use the hosts 
peanut (a workstation) and almond (a system that serves as a gateway) for most of our examples. The 
thick line is our computer center Ethernet and the circle is the local network that connects our various 
corporate networks. The cloud is the Internet. What the numbers are, how they're used, and how 
datagrams are delivered are the topics of this chapter.

file:///C|/mynapster/Downloads/warez/tcpip/ch02_01.htm (2 of 3) [2001-10-15 09:18:14]



[Chapter 2] Delivering the Data

Previous: 1.8 Summary TCP/IP Network 
Administration

Next: 2.2 The IP Address

1.8 Summary Book Index 2.2 The IP Address

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/ch02_01.htm (3 of 3) [2001-10-15 09:18:14]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Chapter 1] 1.8 Summary

Previous: 1.7 Application 
Layer

Chapter 1
Overview of TCP/IP

Next: 2. Delivering the Data

 

1.8 Summary

In this chapter we discussed the structure of TCP/IP, the protocol suite upon which the Internet is 
built. We have seen that TCP/IP is a hierarchy of four layers: Applications, Host-to-Host Transport, 
Internet, and Network Access. We have examined the function of each of these layers. In the next 
chapter we look at how the IP packet, the datagram, moves through a network when data is delivered 
between hosts.

Previous: 1.7 Application 
Layer

TCP/IP Network 
Administration

Next: 2. Delivering the Data

1.7 Application Layer Book Index 2. Delivering the Data

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/ch01_08.htm [2001-10-15 09:18:15]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm
file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Chapter 1] 1.7 Application Layer

Previous: 1.6 Transport 
Layer

Chapter 1
Overview of TCP/IP

Next: 1.8 Summary

 

1.7 Application Layer

At the top of the TCP/IP protocol architecture is the Application Layer. This layer includes all 
processes that use the Transport Layer protocols to deliver data. There are many applications 
protocols. Most provide user services, and new services are always being added to this layer.

The most widely known and implemented applications protocols are:

telnet

The Network Terminal Protocol, which provides remote login over the network.
FTP

The File Transfer Protocol, which is used for interactive file transfer.
SMTP

The Simple Mail Transfer Protocol, which delivers electronic mail.
HTTP

The Hypertext Transfer Protocol, which delivers Web pages over the network.

While HTTP, FTP, SMTP, and telnet are the most widely implemented TCP/IP applications, you will 
work with many others as both a user and a system administrator. Some other commonly used TCP/IP 
applications are:

Domain Name Service (DNS)

Also called name service, this application maps IP addresses to the names assigned to network 
devices. DNS is discussed in detail in this book.

Open Shortest Path First (OSPF)

Routing is central to the way TCP/IP works. OSPF is used by network devices to exchange 
routing information. Routing is also a major topic of this book.

Network Filesystem (NFS)

file:///C|/mynapster/Downloads/warez/tcpip/ch01_07.htm (1 of 2) [2001-10-15 09:18:15]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


[Chapter 1] 1.7 Application Layer

This protocol allows files to be shared by various hosts on the network.

Some protocols, such as telnet and FTP, can only be used if the user has some knowledge of the 
network. Other protocols, like OSPF, run without the user even knowing that they exist. As system 
administrator, you are aware of all these applications and all the protocols in the other TCP/IP layers. 
And you're responsible for configuring them!

Previous: 1.6 Transport 
Layer

TCP/IP Network 
Administration

Next: 1.8 Summary

1.6 Transport Layer Book Index 1.8 Summary

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/ch01_07.htm (2 of 2) [2001-10-15 09:18:15]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


file:///C|/mynapster/Downloads/warez/tcpip/ch01_06.htm

Previous: 1.5 Internet Layer Chapter 1
Overview of TCP/IP

Next: 1.7 Application Layer

 

1.6 Transport Layer

The protocol layer just above the Internet Layer is the Host-to-Host Transport Layer. This name is 
usually shortened to Transport Layer. The two most important protocols in the Transport Layer are 
Transmission Control Protocol (TCP) and User Datagram Protocol (UDP). TCP provides reliable 
data delivery service with end-to-end error detection and correction. UDP provides low-overhead, 
connectionless datagram delivery service. Both protocols deliver data between the Application Layer 
and the Internet Layer. Applications programmers can choose whichever service is more appropriate 
for their specific applications.

1.6.1 User Datagram Protocol

The User Datagram Protocol gives application programs direct access to a datagram delivery service, 
like the delivery service that IP provides. This allows applications to exchange messages over the 
network with a minimum of protocol overhead.

UDP is an unreliable, connectionless datagram protocol. As noted previously, "unreliable" merely 
means that there are no techniques in the protocol for verifying that the data reached the other end of 
the network correctly. Within your computer, UDP will deliver data correctly. UDP uses 16-bit 
Source Port and Destination Port numbers in word 1 of the message header, to deliver data to the 
correct applications process. Figure 1.8 shows the UDP message format.

Figure 1.8: UDP message format

Why do applications programmers choose UDP as a data transport service? There are a number of 

file:///C|/mynapster/Downloads/warez/tcpip/ch01_06.htm (1 of 5) [2001-10-15 09:18:16]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


file:///C|/mynapster/Downloads/warez/tcpip/ch01_06.htm

good reasons. If the amount of data being transmitted is small, the overhead of creating connections 
and ensuring reliable delivery may be greater than the work of re-transmitting the entire data set. In 
this case, UDP is the most efficient choice for a Transport Layer protocol. Applications that fit a 
query-response model are also excellent candidates for using UDP. The response can be used as a 
positive acknowledgment to the query. If a response isn't received within a certain time period, the 
application just sends another query. Still other applications provide their own techniques for reliable 
data delivery, and don't require that service from the transport layer protocol. Imposing another layer 
of acknowledgment on any of these types of applications is inefficient.

1.6.2 Transmission Control Protocol

Applications that require the transport protocol to provide reliable data delivery use TCP because it 
verifies that data is delivered across the network accurately and in the proper sequence. TCP is a 
reliable, connection-oriented, byte-stream protocol. Let's look at each of the terms - reliable, 
connection-oriented, and byte-stream - in more detail.

TCP provides reliability with a mechanism called Positive Acknowledgment with Re-transmission 
(PAR). Simply stated, a system using PAR sends the data again, unless it hears from the remote 
system that the data arrived okay. The unit of data exchanged between cooperating TCP modules is 
called a segment (see Figure 1.9 Each segment contains a checksum that the recipient uses to verify 
that the data is undamaged. If the data segment is received undamaged, the receiver sends a positive 
acknowledgment back to the sender. If the data segment is damaged, the receiver discards it. After an 
appropriate time-out period, the sending TCP module re-transmits any segment for which no positive 
acknowledgment has been received.

Figure 1.9: TCP segment format

TCP is connection-oriented. It establishes a logical end-to-end connection between the two 
communicating hosts. Control information, called a handshake, is exchanged between the two 

file:///C|/mynapster/Downloads/warez/tcpip/ch01_06.htm (2 of 5) [2001-10-15 09:18:16]



file:///C|/mynapster/Downloads/warez/tcpip/ch01_06.htm

endpoints to establish a dialogue before data is transmitted. TCP indicates the control function of a 
segment by setting the appropriate bit in the Flags field in word 4 of the segment header.

The type of handshake used by TCP is called a three-way handshake because three segments are 
exchanged. Figure 1.10 shows the simplest form of the three-way handshake. Host A begins the 
connection by sending host B a segment with the "Synchronize sequence numbers" (SYN) bit set. 
This segment tells host B that A wishes to set up a connection, and it tells B what sequence number 
host A will use as a starting number for its segments. (Sequence numbers are used to keep data in the 
proper order.) Host B responds to A with a segment that has the "Acknowledgment" (ACK) and SYN 
bits set. B's segment acknowledges the receipt of A's segment, and informs A which Sequence Number 
host B will start with. Finally, host A sends a segment that acknowledges receipt of B's segment, and 
transfers the first actual data.

Figure 1.10: Three-way handshake

After this exchange, host A's TCP has positive evidence that the remote TCP is alive and ready to 
receive data. As soon as the connection is established, data can be transferred. When the cooperating 
modules have concluded the data transfers, they will exchange a three-way handshake with segments 
containing the "No more data from sender" bit (called the FIN bit) to close the connection. It is the 
end-to-end exchange of data that provides the logical connection between the two systems.

TCP views the data it sends as a continuous stream of bytes, not as independent packets. Therefore, 
TCP takes care to maintain the sequence in which bytes are sent and received. The Sequence Number 
and Acknowledgment Number fields in the TCP segment header keep track of the bytes.

The TCP standard does not require that each system start numbering bytes with any specific number; 
each system chooses the number it will use as a starting point. To keep track of the data stream 
correctly, each end of the connection must know the other end's initial number. The two ends of the 
connection synchronize byte-numbering systems by exchanging SYN segments during the handshake. 
The Sequence Number field in the SYN segment contains the Initial Sequence Number (ISN), which 
is the starting point for the byte-numbering system. For security reasons the ISN should be a random 

file:///C|/mynapster/Downloads/warez/tcpip/ch01_06.htm (3 of 5) [2001-10-15 09:18:16]



file:///C|/mynapster/Downloads/warez/tcpip/ch01_06.htm

number, though it is often 0.

Each byte of data is numbered sequentially from the ISN, so the first real byte of data sent has a 
sequence number of ISN+1. The Sequence Number in the header of a data segment identifies the 
sequential position in the data stream of the first data byte in the segment. For example, if the first 
byte in the data stream was sequence number 1 (ISN=0) and 4000 bytes of data have already been 
transferred, then the first byte of data in the current segment is byte 4001, and the Sequence Number 
would be 4001.

The Acknowledgment Segment (ACK) performs two functions: positive acknowledgment and flow 
control. The acknowledgment tells the sender how much data has been received, and how much more 
the receiver can accept. The Acknowledgment Number is the sequence number of the next byte the 
receiver expects to receive. The standard does not require an individual acknowledgment for every 
packet. The acknowledgment number is a positive acknowledgment of all bytes up to that number. 
For example, if the first byte sent was numbered 1 and 2000 bytes have been successfully received, 
the Acknowledgment Number would be 2001.

The Window field contains the window, or the number of bytes the remote end is able to accept. If the 
receiver is capable of accepting 6000 more bytes, the window would be 6000. The window indicates 
to the sender that it can continue sending segments as long as the total number of bytes that it sends is 
smaller than the window of bytes that the receiver can accept. The receiver controls the flow of bytes 
from the sender by changing the size of the window. A zero window tells the sender to cease 
transmission until it receives a non-zero window value.

Figure 1.11 shows a TCP data stream that starts with an Initial Sequence Number of 0. The receiving 
system has received and acknowledged 2000 bytes, so the current Acknowledgment Number is 2001. 
The receiver also has enough buffer space for another 6000 bytes, so it has advertised a window of 
6000. The sender is currently sending a segment of 1000 bytes starting with Sequence Number 4001. 
The sender has received no acknowledgment for the bytes from 2001 on, but continues sending data 
as long as it is within the window. If the sender fills the window and receives no acknowledgment of 
the data previously sent, it will, after an appropriate time-out, send the data again starting from the 
first unacknowledged byte.

In Figure 1.11 re-transmission would start from byte 2001 if no further acknowledgments are 
received. This procedure ensures that data is reliably received at the far end of the network.

TCP is also responsible for delivering data received from IP to the correct application. The application 
that the data is bound for is identified by a 16-bit number called the port number. The Source Port and 
Destination Port are contained in the first word of the segment header. Correctly passing data to and 
from the Application Layer is an important part of what the Transport Layer services do.

Figure 1.11: TCP data stream

file:///C|/mynapster/Downloads/warez/tcpip/ch01_06.htm (4 of 5) [2001-10-15 09:18:16]



file:///C|/mynapster/Downloads/warez/tcpip/ch01_06.htm

Previous: 1.5 Internet Layer TCP/IP Network 
Administration

Next: 1.7 Application Layer

1.5 Internet Layer Book Index 1.7 Application Layer

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/ch01_06.htm (5 of 5) [2001-10-15 09:18:16]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Chapter 1] 1.5 Internet Layer

Previous: 1.4 Network 
Access Layer

Chapter 1
Overview of TCP/IP

Next: 1.6 Transport Layer

 

1.5 Internet Layer

The layer above the Network Access Layer in the protocol hierarchy is the Internet Layer. The 
Internet Protocol, RFC 791, is the heart of TCP/IP and the most important protocol in the Internet 
Layer. IP provides the basic packet delivery service on which TCP/IP networks are built. All 
protocols, in the layers above and below IP, use the Internet Protocol to deliver data. All TCP/IP data 
flows through IP, incoming and outgoing, regardless of its final destination.

1.5.1 Internet Protocol

The Internet Protocol is the building block of the Internet. Its functions include:

●     Defining the datagram, which is the basic unit of transmission in the Internet
●     Defining the Internet addressing scheme
●     Moving data between the Network Access Layer and the Host-to-Host Transport Layer
●     Routing datagrams to remote hosts
●     Performing fragmentation and re-assembly of datagrams

Before describing these functions in more detail, let's look at some of IP's characteristics. First, IP is a 
connectionless protocol. This means that IP does not exchange control information (called a 
"handshake") to establish an end-to-end connection before transmitting data. In contrast, a connection-
oriented protocol exchanges control information with the remote system to verify that it is ready to 
receive data before any data is sent. When the handshaking is successful, the systems are said to have 
established a connection. Internet Protocol relies on protocols in other layers to establish the 
connection if they require connection-oriented service.

IP also relies on protocols in the other layers to provide error detection and error recovery. The 
Internet Protocol is sometimes called an unreliable protocol because it contains no error detection and 
recovery code. This is not to say that the protocol cannot be relied on - quite the contrary. IP can be 
relied upon to accurately deliver your data to the connected network, but it doesn't check whether that 
data was correctly received. Protocols in other layers of the TCP/IP architecture provide this checking 
when it is required.

1.5.1.1 The datagram

file:///C|/mynapster/Downloads/warez/tcpip/ch01_05.htm (1 of 6) [2001-10-15 09:18:17]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


[Chapter 1] 1.5 Internet Layer

The TCP/IP protocols were built to transmit data over the ARPANET, which was a packet switching 
network. A packet is a block of data that carries with it the information necessary to deliver it - in a 
manner similar to a postal letter, which has an address written on its envelope. A packet switching 
network uses the addressing information in the packets to switch packets from one physical network 
to another, moving them toward their final destination. Each packet travels the network independently 
of any other packet.

The datagram is the packet format defined by Internet Protocol. Figure 1.5 is a pictorial representation 
of an IP datagram. The first five or six 32-bit words of the datagram are control information called the 
header. By default, the header is five words long; the sixth word is optional. Because the header's 
length is variable, it includes a field called Internet Header Length (IHL) that indicates the header's 
length in words. The header contains all the information necessary to deliver the packet.

Figure 1.5: IP datagram format

The Internet Protocol delivers the datagram by checking the Destination Address in word 5 of the 
header. The Destination Address is a standard 32-bit IP address that identifies the destination network 
and the specific host on that network. (The format of IP addresses is explained in Chapter 2, 
Delivering the Data.) If the Destination Address is the address of a host on the local network, the 
packet is delivered directly to the destination. If the Destination Address is not on the local network, 
the packet is passed to a gateway for delivery. Gateways are devices that switch packets between the 
different physical networks. Deciding which gateway to use is called routing. IP makes the routing 
decision for each individual packet.

1.5.1.2 Routing datagrams

Internet gateways are commonly (and perhaps more accurately) referred to as IP routers because they 

file:///C|/mynapster/Downloads/warez/tcpip/ch01_05.htm (2 of 6) [2001-10-15 09:18:17]



[Chapter 1] 1.5 Internet Layer

use Internet Protocol to route packets between networks. In traditional TCP/IP jargon, there are only 
two types of network devices - gateways and hosts. Gateways forward packets between networks, and 
hosts don't. However, if a host is connected to more than one network (called a multi-homed host), it 
can forward packets between the networks. When a multi-homed host forwards packets, it acts just 
like any other gateway and is considered to be a gateway. Current data communications terminology 
makes a distinction between gateways and routers, [4] but we'll use the terms gateway and IP router 
interchangeably.

[4] In current terminology, a gateway moves data between different protocols and a 
router moves data between different networks. So a system that moves mail between 
TCP/IP and OSI is a gateway, but a traditional IP gateway is a router.

Figure 1.6 shows the use of gateways to forward packets. The hosts (or end systems) process packets 
through all four protocol layers, while the gateways (or intermediate systems) process the packets only 
up to the Internet Layer where the routing decisions are made.

Figure 1.6: Routing through gateways

Systems can only deliver packets to other devices attached to the same physical network. Packets from 
A1 destined for host C1 are forwarded through gateways G1 and G2. Host A1 first delivers the packet 
to gateway G1, with which it shares network A. Gateway G1 delivers the packet to G2 over network 
B. Gateway G2 then delivers the packet directly to host C1, because they are both attached to network 
C. Host A1 has no knowledge of any gateways beyond gateway G1. It sends packets destined for both 
networks C and B to that local gateway, and then relies on that gateway to properly forward the 
packets along the path to their destinations. Likewise, host C1 would send its packets to G2, in order 
to reach a host on network A, as well as any host on network B.

Figure 1.7 shows another view of routing. This figure emphasizes that the underlying physical 
networks that a datagram travels through may be different and even incompatible. Host A1 on the 
token ring network routes the datagram through gateway G1, to reach host C1 on the Ethernet. 
Gateway G1 forwards the data through the X.25 network to gateway G2, for delivery to C1. The 

file:///C|/mynapster/Downloads/warez/tcpip/ch01_05.htm (3 of 6) [2001-10-15 09:18:17]



[Chapter 1] 1.5 Internet Layer

datagram traverses three physically different networks, but eventually arrives intact at C1.

Figure 1.7: Networks, gateways, and hosts

1.5.1.3 Fragmenting datagrams

As a datagram is routed through different networks, it may be necessary for the IP module in a 
gateway to divide the datagram into smaller pieces. A datagram received from one network may be 
too large to be transmitted in a single packet on a different network. This condition occurs only when 
a gateway interconnects dissimilar physical networks.

Each type of network has a maximum transmission unit (MTU), which is the largest packet that it can 
transfer. If the datagram received from one network is longer than the other network's MTU, it is 
necessary to divide the datagram into smaller fragments for transmission. This process is called 
fragmentation. Think of a train delivering a load of steel. Each railway car can carry more steel than 
the trucks that will take it along the highway; so each railway car is unloaded onto many different 
trucks. In the same way that a railroad is physically different from a highway, an Ethernet is 
physically different from an X.25 network; IP must break an Ethernet's relatively large packets into 
smaller packets before it can transmit them over an X.25 network.

The format of each fragment is the same as the format of any normal datagram. Header word 2 
contains information that identifies each datagram fragment and provides information about how to re-
assemble the fragments back into the original datagram. The Identification field identifies what 

file:///C|/mynapster/Downloads/warez/tcpip/ch01_05.htm (4 of 6) [2001-10-15 09:18:17]



[Chapter 1] 1.5 Internet Layer

datagram the fragment belongs to, and the Fragmentation Offset field tells what piece of the datagram 
this fragment is. The Flags field has a "More Fragments" bit that tells IP if it has assembled all of the 
datagram fragments.

1.5.1.4 Passing datagrams to the transport layer

When IP receives a datagram that is addressed to the local host, it must pass the data portion of the 
datagram to the correct Transport Layer protocol. This is done by using the protocol number from 
word 3 of the datagram header. Each Transport Layer protocol has a unique protocol number that 
identifies it to IP. Protocol numbers are discussed in Chapter 2.

You can see from this short overview that IP performs many important functions. Don't expect to fully 
understand datagrams, gateways, routing, IP addresses, and all the other things that IP does from this 
short description. Each chapter adds more details about these topics. So let's continue on with the 
other protocol in the TCP/IP Internet Layer.

1.5.2 Internet Control Message Protocol

An integral part of IP is the Internet Control Message Protocol (ICMP) defined in RFC 792. This 
protocol is part of the Internet Layer and uses the IP datagram delivery facility to send its messages. 
ICMP sends messages that perform the following control, error reporting, and informational functions 
for TCP/IP:

Flow control

When datagrams arrive too fast for processing, the destination host or an intermediate gateway 
sends an ICMP Source Quench Message back to the sender. This tells the source to stop 
sending datagrams temporarily.

Detecting unreachable destinations

When a destination is unreachable, the system detecting the problem sends a Destination 
Unreachable Message to the datagram's source. If the unreachable destination is a network or 
host, the message is sent by an intermediate gateway. But if the destination is an unreachable 
port, the destination host sends the message. (We discuss ports in Chapter 2.)

Redirecting routes

A gateway sends the ICMP Redirect Message to tell a host to use another gateway, presumably 
because the other gateway is a better choice. This message can be used only when the source 
host is on the same network as both gateways. To better understand this, refer to Figure 1.7 If a 
host on the X.25 network sent a datagram to G1, it would be possible for G1 to redirect that 
host to G2 because the host, G1, and G2 are all attached to the same network. On the other 
hand, if a host on the token ring network sent a datagram to G1, the host could not be 
redirected to use G2. This is because G2 is not attached to the token ring.

Checking remote hosts

file:///C|/mynapster/Downloads/warez/tcpip/ch01_05.htm (5 of 6) [2001-10-15 09:18:17]



[Chapter 1] 1.5 Internet Layer

A host can send the ICMP Echo Message to see if a remote system's Internet Protocol is up and 
operational. When a system receives an echo message, it replies and sends the data from the 
packet back to the source host. The ping command uses this message.

Previous: 1.4 Network 
Access Layer

TCP/IP Network 
Administration

Next: 1.6 Transport Layer

1.4 Network Access Layer Book Index 1.6 Transport Layer

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/ch01_05.htm (6 of 6) [2001-10-15 09:18:17]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Chapter 1] 1.4 Network Access Layer

Previous: 1.3 TCP/IP 
Protocol Architecture

Chapter 1
Overview of TCP/IP

Next: 1.5 Internet Layer

 

1.4 Network Access Layer

The Network Access Layer is the lowest layer of the TCP/IP protocol hierarchy. The protocols in this 
layer provide the means for the system to deliver data to the other devices on a directly attached 
network. It defines how to use the network to transmit an IP datagram. Unlike higher-level protocols, 
Network Access Layer protocols must know the details of the underlying network (its packet 
structure, addressing, etc.) to correctly format the data being transmitted to comply with the network 
constraints. The TCP/IP Network Access Layer can encompass the functions of all three lower layers 
of the OSI reference Model (Network, Data Link, and Physical).

The Network Access Layer is often ignored by users. The design of TCP/IP hides the function of the 
lower layers, and the better known protocols (IP, TCP, UDP, etc.) are all higher-level protocols. As 
new hardware technologies appear, new Network Access protocols must be developed so that TCP/IP 
networks can use the new hardware. Consequently, there are many access protocols - one for each 
physical network standard.

Functions performed at this level include encapsulation of IP datagrams into the frames transmitted by 
the network, and mapping of IP addresses to the physical addresses used by the network. One of 
TCP/IP's strengths is its universal addressing scheme. The IP address must be converted into an 
address that is appropriate for the physical network over which the datagram is transmitted.

Two examples of RFCs that define network access layer protocols are:

●     RFC 826, Address Resolution Protocol (ARP), which maps IP addresses to Ethernet addresses
●     RFC 894, A Standard for the Transmission of IP Datagrams over Ethernet Networks, which 

specifies how IP datagrams are encapsulated for transmission over Ethernet networks

As implemented in UNIX, protocols in this layer often appear as a combination of device drivers and 
related programs. The modules that are identified with network device names usually encapsulate and 
deliver the data to the network, while separate programs perform related functions such as address 
mapping.

file:///C|/mynapster/Downloads/warez/tcpip/ch01_04.htm (1 of 2) [2001-10-15 09:18:17]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


[Chapter 1] 1.4 Network Access Layer

Previous: 1.3 TCP/IP 
Protocol Architecture

TCP/IP Network 
Administration

Next: 1.5 Internet Layer

1.3 TCP/IP Protocol 
Architecture

Book Index 1.5 Internet Layer

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/ch01_04.htm (2 of 2) [2001-10-15 09:18:17]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Chapter 1] 1.3 TCP/IP Protocol Architecture

Previous: 1.2 A Data 
Communications Model

Chapter 1
Overview of TCP/IP

Next: 1.4 Network Access 
Layer

 

1.3 TCP/IP Protocol Architecture

While there is no universal agreement about how to describe TCP/IP with a layered model, it is 
generally viewed as being composed of fewer layers than the seven used in the OSI model. Most 
descriptions of TCP/IP define three to five functional levels in the protocol architecture. The four-
level model illustrated in Figure 1.2 is based on the three layers (Application, Host-to-Host, and 
Network Access) shown in the DOD Protocol Model in the DDN Protocol Handbook - Volume 1, 
with the addition of a separate Internet layer. This model provides a reasonable pictorial 
representation of the layers in the TCP/IP protocol hierarchy.

Figure 1.2: Layers in the TCP/IP protocol architecture

As in the OSI model, data is passed down the stack when it is being sent to the network, and up the 
stack when it is being received from the network. The four-layered structure of TCP/IP is seen in the 
way data is handled as it passes down the protocol stack from the Application Layer to the underlying 
physical network. Each layer in the stack adds control information to ensure proper delivery. This 
control information is called a header because it is placed in front of the data to be transmitted. Each 
layer treats all of the information it receives from the layer above as data and places its own header in 
front of that information. The addition of delivery information at every layer is called encapsulation. 

file:///C|/mynapster/Downloads/warez/tcpip/ch01_03.htm (1 of 3) [2001-10-15 09:18:18]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


[Chapter 1] 1.3 TCP/IP Protocol Architecture

(See Figure 1.3 for an illustration of this.) When data is received, the opposite happens. Each layer 
strips off its header before passing the data on to the layer above. As information flows back up the 
stack, information received from a lower layer is interpreted as both a header and data.

Figure 1.3: Data encapsulation

Each layer has its own independent data structures. Conceptually, a layer is unaware of the data 
structures used by the layers above and below it. In reality, the data structures of a layer are designed 
to be compatible with the structures used by the surrounding layers for the sake of more efficient data 
transmission. Still, each layer has its own data structure and its own terminology to describe that 
structure.

Figure 1.4 shows the terms used by different layers of TCP/IP to refer to the data being transmitted. 
Applications using TCP refer to data as a stream, while applications using the User Datagram 
Protocol (UDP) refer to data as a message. TCP calls data a segment, and UDP calls its data structure 
a packet. The Internet layer views all data as blocks called datagrams. TCP/IP uses many different 
types of underlying networks, each of which may have a different terminology for the data it 
transmits. Most networks refer to transmitted data as packets or frames. In Figure 1.4 we show a 
network that transmits pieces of data it calls frames.

Figure 1.4: Data structures

file:///C|/mynapster/Downloads/warez/tcpip/ch01_03.htm (2 of 3) [2001-10-15 09:18:18]



[Chapter 1] 1.3 TCP/IP Protocol Architecture

Let's look more closely at the function of each layer, working our way up from the Network Access 
Layer to the Application Layer.

Previous: 1.2 A Data 
Communications Model

TCP/IP Network 
Administration

Next: 1.4 Network Access 
Layer

1.2 A Data Communications 
Model

Book Index 1.4 Network Access Layer

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/ch01_03.htm (3 of 3) [2001-10-15 09:18:18]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Chapter 1] 1.2 A Data Communications Model

Previous: 1.1 TCP/IP and 
the Internet

Chapter 1
Overview of TCP/IP

Next: 1.3 TCP/IP Protocol 
Architecture

 

1.2 A Data Communications Model

To discuss computer networking, it is necessary to use terms that have special meaning. Even other 
computer professionals may not be familiar with all the terms in the networking alphabet soup. As is 
always the case, English and computer-speak are not equivalent (or even necessarily compatible) 
languages. Although descriptions and examples should make the meaning of the networking jargon 
more apparent, sometimes terms are ambiguous. A common frame of reference is necessary for 
understanding data communications terminology.

An architectural model developed by the International Standards Organization (ISO) is frequently 
used to describe the structure and function of data communications protocols. This architectural 
model, which is called the Open Systems Interconnect Reference Model (OSI), provides a common 
reference for discussing communications. The terms defined by this model are well understood and 
widely used in the data communications community - so widely used, in fact, that it is difficult to 
discuss data communications without using OSI's terminology.

The OSI Reference Model contains seven layers that define the functions of data communications 
protocols. Each layer of the OSI model represents a function performed when data is transferred 
between cooperating applications across an intervening network. Figure 1.1 identifies each layer by 
name and provides a short functional description for it. Looking at this figure, the protocols are like a 
pile of building blocks stacked one upon another. Because of this appearance, the structure is often 
called a stack or protocol stack.

Figure 1.1: The OSI Reference Model

file:///C|/mynapster/Downloads/warez/tcpip/ch01_02.htm (1 of 4) [2001-10-15 09:18:19]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


[Chapter 1] 1.2 A Data Communications Model

A layer does not define a single protocol - it defines a data communications function that may be 
performed by any number of protocols. Therefore, each layer may contain multiple protocols, each 
providing a service suitable to the function of that layer. For example, a file transfer protocol and an 
electronic mail protocol both provide user services, and both are part of the Application Layer.

Every protocol communicates with its peer. A peer is an implementation of the same protocol in the 
equivalent layer on a remote system; i.e., the local file transfer protocol is the peer of a remote file 
transfer protocol. Peer-level communications must be standardized for successful communications to 
take place. In the abstract, each protocol is concerned only with communicating to its peer; it does not 
care about the layer above or below it.

However, there must also be agreement on how to pass data between the layers on a single computer, 
because every layer is involved in sending data from a local application to an equivalent remote 
application. The upper layers rely on the lower layers to transfer the data over the underlying network. 
Data is passed down the stack from one layer to the next, until it is transmitted over the network by 
the Physical Layer protocols. At the remote end, the data is passed up the stack to the receiving 
application. The individual layers do not need to know how the layers above and below them 
function; they only need to know how to pass data to them. Isolating network communications 
functions in different layers minimizes the impact of technological change on the entire protocol suite. 
New applications can be added without changing the physical network, and new network hardware 
can be installed without rewriting the application software.

file:///C|/mynapster/Downloads/warez/tcpip/ch01_02.htm (2 of 4) [2001-10-15 09:18:19]



[Chapter 1] 1.2 A Data Communications Model

Although the OSI model is useful, the TCP/IP protocols don't match its structure exactly. Therefore, 
in our discussions of TCP/IP, we use the layers of the OSI model in the following way:

Application Layer

The Application Layer is the level of the protocol hierarchy where user-accessed network 
processes reside. In this text, a TCP/IP application is any network process that occurs above 
the Transport Layer. This includes all of the processes that users directly interact with, as well 
as other processes at this level that users are not necessarily aware of.

Presentation Layer

For cooperating applications to exchange data, they must agree about how data is represented. 
In OSI, this layer provides standard data presentation routines. This function is frequently 
handled within the applications in TCP/IP, though increasingly TCP/IP protocols such as XDR 
and MIME perform this function.

Session Layer

As with the Presentation Layer, the Session Layer is not identifiable as a separate layer in the 
TCP/IP protocol hierarchy. The OSI Session Layer manages the sessions (connection) between 
cooperating applications. In TCP/IP, this function largely occurs in the Transport Layer, and 
the term "session" is not used. For TCP/IP, the terms "socket" and "port" are used to describe 
the path over which cooperating applications communicate.

Transport Layer

Much of our discussion of TCP/IP is directed to the protocols that occur in the Transport 
Layer. The Transport Layer in the OSI reference model guarantees that the receiver gets the 
data exactly as it was sent. In TCP/IP this function is performed by the Transmission Control 
Protocol (TCP). However, TCP/IP offers a second Transport Layer service, User Datagram 
Protocol (UDP), that does not perform the end-to-end reliability checks.

Network Layer

The Network Layer manages connections across the network and isolates the upper layer 
protocols from the details of the underlying network. The Internet Protocol (IP), which isolates 
the upper layers from the underlying network and handles the addressing and delivery of data, 
is usually described as TCP/IP's Network Layer.

Data Link Layer

The reliable delivery of data across the underlying physical network is handled by the Data 
Link Layer. TCP/IP rarely creates protocols in the Data Link Layer. Most RFCs that relate to 
the Data Link Layer discuss how IP can make use of existing data link protocols.

Physical Layer

The Physical Layer defines the characteristics of the hardware needed to carry the data 
transmission signal. Features such as voltage levels, and the number and location of interface 

file:///C|/mynapster/Downloads/warez/tcpip/ch01_02.htm (3 of 4) [2001-10-15 09:18:19]



[Chapter 1] 1.2 A Data Communications Model

pins, are defined in this layer. Examples of standards at the Physical Layer are interface 
connectors such as RS232C and V.35, and standards for local area network wiring such as 
IEEE 802.3. TCP/IP does not define physical standards - it makes use of existing standards.

The terminology of the OSI reference model helps us describe TCP/IP, but to fully understand it, we 
must use an architectural model that more closely matches the structure of TCP/IP. The next section 
introduces the protocol model we'll use to describe TCP/IP.

Previous: 1.1 TCP/IP and 
the Internet

TCP/IP Network 
Administration

Next: 1.3 TCP/IP Protocol 
Architecture

1.1 TCP/IP and the Internet Book Index 1.3 TCP/IP Protocol 
Architecture

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/ch01_02.htm (4 of 4) [2001-10-15 09:18:19]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Chapter 1] Overview of TCP/IP

Previous: 
Acknowledgments

Chapter 1 Next: 1.2 A Data 
Communications Model

 

1. Overview of TCP/IP
Contents:
TCP/IP and the Internet
A Data Communications Model
TCP/IP Protocol Architecture
Network Access Layer
Internet Layer
Transport Layer
Application Layer
Summary

All of us who use a UNIX desktop system - engineers, educators, scientists, and business people - 
have second careers as UNIX system administrators. Networking these computers gives us new tasks 
as network administrators.

Network administration and system administration are two different jobs. System administration tasks 
such as adding users and doing backups are isolated to one independent computer system. Not so with 
network administration. Once you place your computer on a network, it interacts with many other 
systems. The way you do network administration tasks has effects, good and bad, not only on your 
system but on other systems on the network. A sound understanding of basic network administration 
benefits everyone.

Networking computers dramatically enhances their ability to communicate - and most computers are 
used more for communication than computation. Many mainframes and supercomputers are busy 
crunching the numbers for business and science, but the number of such systems pales in comparison 
to the millions of systems busy moving mail to a remote colleague or retrieving information from a 
remote repository. Further, when you think of the hundreds of millions of desktop systems that are 
used primarily for preparing documents to communicate ideas from one person to another, it is easy to 
see why most computers can be viewed as communications devices.

The positive impact of computer communications increases with the number and type of computers 
that participate in the network. One of the great benefits of TCP/IP is that it provides interoperable 
communications between all types of hardware and all kinds of operating systems.

file:///C|/mynapster/Downloads/warez/tcpip/ch01_01.htm (1 of 5) [2001-10-15 09:18:20]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


[Chapter 1] Overview of TCP/IP

This book is a practical, step-by-step guide to configuring and managing TCP/IP networking software 
on UNIX computer systems. TCP/IP is the software package that dominates UNIX data 
communications. It is the leading communications software for UNIX local area networks and 
enterprise intranets, and for the foundation of the worldwide Internet.

The name "TCP/IP" refers to an entire suite of data communications protocols. The suite gets its name 
from two of the protocols that belong to it: the Transmission Control Protocol and the Internet 
Protocol. Although there are many other protocols in the suite, TCP and IP are certainly two of the 
most important.

The first part of this book discusses the basics of TCP/IP and how it moves data across a network. The 
second part explains how to configure and run TCP/IP on a UNIX system. Let's start with a little 
history.

1.1 TCP/IP and the Internet

In 1969 the Advanced Research Projects Agency (ARPA) funded a research and development project 
to create an experimental packet-switching network. This network, called the ARPANET, was built to 
study techniques for providing robust, reliable, vendor-independent data communications. Many 
techniques of modern data communications were developed in the ARPANET.

The experimental ARPANET was so successful that many of the organizations attached to it began to 
use it for daily data communications. In 1975 the ARPANET was converted from an experimental 
network to an operational network, and the responsibility for administering the network was given to 
the Defense Communications Agency (DCA). [1] However, development of the ARPANET did not 
stop just because it was being used as an operational network; the basic TCP/IP protocols were 
developed after the ARPANET was operational.

[1] DCA has since changed its name to Defense Information Systems Agency (DISA).

The TCP/IP protocols were adopted as Military Standards (MIL STD) in 1983, and all hosts 
connected to the network were required to convert to the new protocols. To ease this conversion, 
DARPA [2] funded Bolt, Beranek, and Newman (BBN) to implement TCP/IP in Berkeley (BSD) 
UNIX. Thus began the marriage of UNIX and TCP/IP.

[2] During the 1980s and early 1990s, ARPA, which is part of the U.S. Department of 
Defense, was named Defense Advanced Research Projects Agency (DARPA). 
Currently known as ARPA, the agency is again preparing to change its name to 
DARPA. Whether it is known as ARPA or DARPA, the agency and its mission of 
funding advanced research has remained the same.

About the time that TCP/IP was adopted as a standard, the term Internet came into common usage. In 
1983, the old ARPANET was divided into MILNET, the unclassified part of the Defense Data 

file:///C|/mynapster/Downloads/warez/tcpip/ch01_01.htm (2 of 5) [2001-10-15 09:18:20]



[Chapter 1] Overview of TCP/IP

Network (DDN), and a new, smaller ARPANET. "Internet" was used to refer to the entire network: 
MILNET plus ARPANET.

In 1985 the National Science Foundation (NSF) created NSFNet and connected it to the then-existing 
Internet. The original NSFNet linked together the five NSF supercomputer centers. It was smaller than 
the ARPANET and no faster - 56Kbps. Nonetheless, the creation of the NSFNet was a significant 
event in the history of the Internet because NSF brought with it a new vision of the use of the Internet. 
NSF wanted to extend the network to every scientist and engineer in the United States. To accomplish 
this, in 1987 NSF created a new, faster backbone and a three-tiered network topology that included 
the backbone, regional networks, and local networks.

In 1990, the ARPANET formally passed out of existence, and the NSFNet ceased its role as a primary 
Internet backbone network in 1995. Still, today the Internet is larger than ever and encompasses more 
than 95,000 networks worldwide. This network of networks is linked together in the United States at 
several major interconnection points:

●     The three Network Access Points (NAPs) created by the NSF to ensure continued broad-based 
access to the Internet.

●     The Federal Information Exchanges (FIXs) interconnect U.S. government networks.
●     The Commercial Information Exchange (CIX) was the first interconnect specifically for 

commercial Internet Service Providers (ISPs).
●     The Metropolitan Area Exchanges (MAEs) were also created to interconnect commercial ISPs.

The Internet has grown far beyond its original scope. The original networks and agencies that built the 
Internet no longer play an essential role for the current network. The Internet has evolved from a 
simple backbone network, through a three-tiered hierarchical structure, to a huge network of 
interconnected, distributed network hubs. It has grown exponentially since 1983 - doubling in size 
every year. Through all of this incredible change one thing has remained constant: the Internet is built 
on the TCP/IP protocol suite.

A sign of the network's success is the confusion that surrounds the term internet. Originally it was 
used only as the name of the network built upon the Internet Protocol. Now internet is a generic term 
used to refer to an entire class of networks. An internet (lowercase "i") is any collection of separate 
physical networks, interconnected by a common protocol, to form a single logical network. The 
Internet (uppercase "I") is the worldwide collection of interconnected networks, which grew out of the 
original ARPANET, that uses Internet Protocol (IP) to link the various physical networks into a single 
logical network. In this book, both "internet" and "Internet" refer to networks that are interconnected 
by TCP/IP.

Because TCP/IP is required for Internet connection, the growth of the Internet has spurred interest in 
TCP/IP. As more organizations become familiar with TCP/IP, they see that its power can be applied 
in other network applications. The Internet protocols are often used for local area networking, even 
when the local network is not connected to the Internet. TCP/IP is also widely used to build enterprise 
networks. TCP/IP-based enterprise networks that use Internet techniques and World Wide Web tools 
to disseminate internal corporate information are called intranets. TCP/IP is the foundation of all of 

file:///C|/mynapster/Downloads/warez/tcpip/ch01_01.htm (3 of 5) [2001-10-15 09:18:20]



[Chapter 1] Overview of TCP/IP

these varied networks.

1.1.1 TCP/IP Features

The popularity of the TCP/IP protocols did not grow rapidly just because the protocols were there, or 
because connecting to the Internet mandated their use. They met an important need (worldwide data 
communication) at the right time, and they had several important features that allowed them to meet 
this need. These features are:

●     Open protocol standards, freely available and developed independently from any specific 
computer hardware or operating system. Because it is so widely supported, TCP/IP is ideal for 
uniting different hardware and software, even if you don't communicate over the Internet.

●     Independence from specific physical network hardware. This allows TCP/IP to integrate many 
different kinds of networks. TCP/IP can be run over an Ethernet, a token ring, a dial-up line, an 
FDDI net, and virtually any other kind of physical transmission medium.

●     A common addressing scheme that allows any TCP/IP device to uniquely address any other 
device in the entire network, even if the network is as large as the worldwide Internet.

●     Standardized high-level protocols for consistent, widely available user services.

1.1.2 Protocol Standards

Protocols are formal rules of behavior. In international relations, protocols minimize the problems 
caused by cultural differences when various nations work together. By agreeing to a common set of 
rules that are widely known and independent of any nation's customs, diplomatic protocols minimize 
misunderstandings; everyone knows how to act and how to interpret the actions of others. Similarly, 
when computers communicate, it is necessary to define a set of rules to govern their communications.

In data communications these sets of rules are also called protocols. In homogeneous networks, a 
single computer vendor specifies a set of communications rules designed to use the strengths of the 
vendor's operating system and hardware architecture. But homogeneous networks are like the culture 
of a single country - only the natives are truly at home in it. TCP/IP attempts to create a heterogeneous 
network with open protocols that are independent of operating system and architectural differences. 
TCP/IP protocols are available to everyone, and are developed and changed by consensus - not by the 
fiat of one manufacturer. Everyone is free to develop products to meet these open protocol 
specifications.

The open nature of TCP/IP protocols requires publicly available standards documents. All protocols in 
the TCP/IP protocol suite are defined in one of three Internet standards publications. A number of the 
protocols have been adopted as Military Standards (MIL STD). Others were published as Internet 
Engineering Notes (IEN) - though the IEN form of publication has now been abandoned. But most 
information about TCP/IP protocols is published as Requests for Comments (RFCs). RFCs contain the 
latest versions of the specifications of all standard TCP/IP protocols. [3] As the title "Request for 
Comments" implies, the style and content of these documents is much less rigid than most standards 
documents. RFCs contain a wide range of interesting and useful information, and are not limited to 
the formal specification of data communications protocols.

file:///C|/mynapster/Downloads/warez/tcpip/ch01_01.htm (4 of 5) [2001-10-15 09:18:20]



[Chapter 1] Overview of TCP/IP

[3] Interested in finding out how Internet standards are created? Read The Internet 
Standards Process, RFC 1310.

As a network system administrator, you will no doubt read many of the RFCs yourself. Some contain 
practical advice and guidance that is simple to understand. Other RFCs contain protocol 
implementation specifications defined in terminology that is unique to data communications.

Previous: 
Acknowledgments

TCP/IP Network 
Administration

Next: 1.2 A Data 
Communications Model

Acknowledgments Book Index 1.2 A Data Communications 
Model

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/ch01_01.htm (5 of 5) [2001-10-15 09:18:20]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Preface] Acknowledgments

Previous: We'd Like to Hear 
from You

Preface Next: 1. Overview of 
TCP/IP

 

Acknowledgments

I would like to thank the many people who helped in the preparation of this book. All of the people 
who contributed to the first edition - John Wack, Matt Bishop, Wietse Venema, Eric Allman, Jeff 
Honig, Scott Brim, and John Dorgan - deserve thanks because so much of their input lives on in this 
edition.

The second edition has benefited from many contributors. Bryan Costales and Eric Allman did their 
best to set me straight about sendmail V8. Cricket Liu and Paul Albitz provided many comments that 
improved the sections on Domain Name Service. Ted Lemon provided insights about the technical 
details of DHCP and dhcpd. Elizabeth Zwicky's and Brent Chapman's insights on security were very 
helpful. Simson Garfinkel also commented on the security chapter. (You can't be too careful about 
security!) Jeff Sedayao reviewed the entire book and provided improvements for almost every 
chapter. And finally Æleen Frisch showed me the gaps that needed to be filled in. All of these people 
helped me make this book better than the first edition. Thanks!

All the people at O'Reilly & Associates have been very helpful. Mike Loukides, my editor, deserves a 
special thanks. Mike keeps me pointed in the right direction when my enthusiasm fades. Gigi 
Estabrook handled the very hectic job of editing the second edition. Nicole Gipson Arigo was the 
production editor and project manager. Nancy Wolfe Kotary and Jane Ellin performed quality control 
checks. Elissa Haney provided production assistance. Bruce Tracy wrote the index. Edie Freedman 
designed the cover, and Nancy Priest designed the interior format of the book. Lenny Muellner 
implemented the format in troff. Chris Reilley's handiwork from the first edition has been updated by 
Robert Romano, who created the illustrations for this edition.

Finally, I want to thank my family - Kathy, Sara, David, and Rebecca. They keep my feet on the 
ground when the pressure to meet deadlines is driving me into orbit. They are the best.

Previous: We'd Like to Hear 
from You

TCP/IP Network 
Administration

Next: 1. Overview of 
TCP/IP

We'd Like to Hear from You Book Index 1. Overview of TCP/IP

file:///C|/mynapster/Downloads/warez/tcpip/prf1_07.htm (1 of 2) [2001-10-15 09:18:20]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


[Preface] Acknowledgments

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/prf1_07.htm (2 of 2) [2001-10-15 09:18:20]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Preface] We'd Like to Hear from You

Previous: Conventions Preface Next: Acknowledgments

 

We'd Like to Hear from You

We have tested and verified all of the information in this book to the best of our ability, but you may 
find that features have changed (or even that we have made mistakes!). Please let us know about any 
errors you find, as well as your suggestions for future editions, by writing:

O'Reilly & Associates, Inc. 
101 Morris Street 
Sebastopol, CA 95472 
1-800-998-9938 (in the U.S. or Canada) 

1-707-829-0515 (international/local) 
1-707-829-0104 (FAX) 

You can also send us messages electronically. To be put on our mailing list or to request a catalog, 
send email to:

info@ora.com (via the Internet) 

To ask technical questions or comment on the book, send email to:

bookquestions@ora.com (via the Internet)

Previous: Conventions TCP/IP Network 
Administration

Next: Acknowledgments

Conventions Book Index Acknowledgments

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/prf1_06.htm [2001-10-15 09:18:20]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm
mailto:info@ora.com
mailto:bookquestions@ora.com
file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Preface] Conventions

Previous: UNIX Versions Preface Next: We'd Like to Hear 
from You

 

Conventions

This book uses the following typographical conventions:

Italic

is used for the names of files, directories, hostnames, domain names, and to emphasize new 
terms when they are first introduced.

Bold

is used for command names.
Constant width

is used to show the contents of files or the output from commands. Keywords are also in 
constant width.

Constant bold

is used in examples to show commands or text that you would type.
Constant italic

is used in examples and text to show variables for which a context-specific substitution should 
be made. (The variable filename, for example, would be replaced by some actual filename.)

%, #

When we demonstrate commands that you would give interactively, we normally use the 
default C shell prompt (%). If the command must be executed as root, then we use the default 
superuser prompt (#). Because the examples may include multiple systems on a network, the 
prompt may be preceded by the name of the system on which the command was given.

[ option ]

When showing command syntax, we place optional parts of the command within brackets. For 
example, ls [ -l ] means that the -l option is not required.

file:///C|/mynapster/Downloads/warez/tcpip/prf1_05.htm (1 of 2) [2001-10-15 09:18:21]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


[Preface] Conventions

Previous: UNIX Versions TCP/IP Network 
Administration

Next: We'd Like to Hear 
from You

UNIX Versions Book Index We'd Like to Hear from You

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/prf1_05.htm (2 of 2) [2001-10-15 09:18:21]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Preface] UNIX Versions

Previous: Organization Preface Next: Conventions

 

UNIX Versions

Most of the examples in this book are taken from Linux 2.0.0, which is a freely available UNIX-like 
operating system, and from Solaris 2.5.1, which is the Sun operating system based on System V 
UNIX. Fortunately, TCP/IP software is remarkably standard from system to system. Because the 
TCP/IP software is so uniform, the examples should be applicable to any Linux, System V, or BSD-
based UNIX system. There are small variations in command output or command-line options, but 
these variations should not present a problem.

Some of the ancillary networking software is identified separately from the UNIX operating system 
by its own release number. Many such packages are discussed, and when appropriate are identified by 
their release numbers. The most important of these packages are:

BIND

Our discussion of the BIND software is based on version 4.9.5 running on a Slackware 96 
Linux system. This version of BIND supports all of the standard resource records and there are 
relatively few differences between it and the current releases of BIND provided by computer 
vendors.

sendmail

Our discussion of sendmail is based on release 8.8.5. This version should be compatible with 
other releases of sendmail v8. However, sendmail has been changing rapidly in recent years.

Previous: Organization TCP/IP Network 
Administration

Next: Conventions

Organization Book Index Conventions

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/prf1_04.htm [2001-10-15 09:18:21]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm
file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Preface] Organization

Previous: Audience Preface Next: UNIX Versions

 

Organization

Conceptually, this book is divided into three parts: fundamental concepts, tutorial, and reference. The 
first three chapters are a basic discussion of the TCP/IP protocols and services. This discussion 
provides the fundamental concepts necessary to understand the rest of the book. The remaining 
chapters provide a "how-to" tutorial. Chapters 4-7 discuss how to plan a network installation and 
configure the basic software necessary to get a network running. Chapters 8-10 discuss how to set up 
various important network services. The final chapters, 11-13, cover how to perform the ongoing 
tasks that are essential for a reliable network: troubleshooting, security, and keeping up with changing 
network information. The book concludes with a series of appendices that are technical references for 
important commands and programs.

This book contains the following chapters:

Chapter 1, Overview of TCP/IP, gives the history of TCP/IP, a description of the structure of the 
protocol architecture, and a basic explanation of how the protocols function.

Chapter 2, Delivering the Data, describes addressing and how data passes through a network to reach 
the proper destination.

Chapter 3, Network Services, discusses the relationship between clients and server systems, and the 
various services that are central to the function of a modern internet.

Chapter 4, Getting Started , begins the discussion of network setup and configuration. This chapter 
discusses the preliminary configuration planning needed before you configure the systems on your 
network.

Chapter 5, Basic Configuration , describes how to configure TCP/IP in the UNIX kernel, and how to 
configure the Internet daemon that starts most of the network services.

Chapter 6, Configuring the Interface , tells you how to identify a network interface to the network 
software. This chapter provides examples of Ethernet, SLIP, and PPP interface configurations.

Chapter 7, Configuring Routing , describes how to set up routing so that systems on your network can 
communicate properly with other networks. It covers the static routing table, commonly used routing 

file:///C|/mynapster/Downloads/warez/tcpip/prf1_03.htm (1 of 3) [2001-10-15 09:18:21]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


[Preface] Organization

protocols, and gated, a package that provides the latest implementations of several routing protocols.

Chapter 8, Configuring DNS Name Service , describes how to administer the name server program 
that converts system names to Internet addresses.

Chapter 9, Configuring Network Servers , describes how to configure the most common network 
servers. The chapter discusses the BOOTP and DHCP configuration servers, the LPD print server, the 
POP and IMAP mail servers, the Network Filesystem (NFS), and the Network Information System 
(NIS).

Chapter 10, sendmail , discusses how to configure sendmail, which is the daemon responsible for 
delivering electronic mail.

Chapter 11, Troubleshooting TCP/IP , tells you what to do when something goes wrong. It describes 
the techniques and tools used to troubleshoot TCP/IP problems, and gives examples of actual 
problems and their solutions.

Chapter 12, Network Security , discusses how to live on the Internet without excessive risk. This 
chapter covers the security threats brought by the network, and the plans and preparations you can 
make to meet those threats.

Chapter 13, Internet Information Resources , describes the information resources available on the 
Internet and how you can make use of them. It also describes how to set up an information server of 
your own.

Appendix A, PPP Tools, is a reference guide to the various programs used to configure a serial port 
for TCP/IP. The reference covers dip, pppd, and chat.

Appendix B, A gated Reference, is a complete reference guide to the configuration language of the 
gated routing package.

Appendix C, A named Reference, is a reference guide to the Berkeley Internet Name Domain (BIND) 
name server software.

Appendix D, A dhcpd Reference, is a reference guide to the Dynamic Host Configuration Protocol 
Daemon (dhcpd).

Appendix E, A sendmail Reference, is a detailed reference to sendmail syntax, options and flags. It 
also contains sections of the sendmail.cf configuration file developed in the step-by-step examples in 
Chapter 10.

Appendix F, Selected TCP/IP Headers, contains detailed protocol references, taken directly from the 
RFCs, that support the protocol troubleshooting examples in Chapter 11.

file:///C|/mynapster/Downloads/warez/tcpip/prf1_03.htm (2 of 3) [2001-10-15 09:18:21]



[Preface] Organization

Previous: Audience TCP/IP Network 
Administration

Next: UNIX Versions

Audience Book Index UNIX Versions

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/prf1_03.htm (3 of 3) [2001-10-15 09:18:21]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Preface] Audience

Previous: Foreword from 
the First Edition

Preface Next: Organization

 

Audience

This book is intended for everyone who has a UNIX computer connected to a TCP/IP network. [2] 
This obviously includes the network managers and the system administrators who are responsible for 
setting up and running computers and networks, but it also includes any user who wants to understand 
how his or her computer communicates with other systems. The distinction between a "system 
administrator" and an "end user" is a fuzzy one. You may think of yourself as an end user, but if you 
have a UNIX workstation on your desk, you're probably also involved in system administration tasks.

[2] Much of this text also applies to non-UNIX systems. Many of the file formats and 
commands, and all of the protocol descriptions apply equally well to Windows 95, 
Windows NT, and other operating systems. If you're an NT administrator, don't worry. 
I'm currently writing an NT version of this book.

In recent years there has been a rash of books for "dummies" and "idiots." If you really think of 
yourself as an "idiot" when it comes to UNIX, this book is not for you. Likewise, if you are a network 
administration "genius," this book is probably not suitable. If you fall anywhere between these two 
extremes, however, you'll find this book has a lot to offer.

We assume that you have a good understanding of computers and their operation, and that you're 
generally familiar with UNIX system administration. If you're not, the Nutshell Handbook Essential 
System Administration by Æleen Frisch (published by O'Reilly & Associates) will fill you in on the 
basics.

Previous: Foreword from 
the First Edition

TCP/IP Network 
Administration

Next: Organization

Foreword from the First 
Edition

Book Index Organization

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/prf1_02.htm [2001-10-15 09:18:22]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm
file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


Preface

 Preface Next: Audience

 

Preface
Contents:
Foreword from the First Edition
Audience
Organization
UNIX Versions
Conventions
We'd Like to Hear from You
Acknowledgments

The protocol wars are over and TCP/IP won. TCP/IP is now universally recognized as the pre-eminent 
communications protocol for linking together diverse computer systems. The importance of 
interoperable data communications and global computer networks is no longer debated. But that was 
not always the case. When I wrote the first edition of this book, IPX was far and away the leading PC 
communications protocol. Microsoft did not bundle communications protocols in their operating 
system. Corporate networks were so dependent on SNA that many corporate network administrators 
had not even heard of TCP/IP. Even UNIX, the mother of TCP/IP, nursed a large number of pure 
UUCP networks. Back then I felt compelled to tout the importance of TCP/IP by pointing out that it 
was used on thousands of networks and hundreds of thousands of computers. How times have 
changed! Today we count the hosts and users connected to the Internet in the tens of millions. And the 
Internet is only the tip of the TCP/IP iceberg. The largest market for TCP/IP is in the corporate 
"intranet." An intranet is a private TCP/IP network used to disseminate information within the 
enterprise. The competing network technologies have shrunk to niche markets where they fill special 
needs - while TCP/IP has grown to be the communications software that links the world.

The acceptance of TCP/IP as a worldwide standard and the size of its global user base are not the only 
things that have changed. In 1991 I lamented the lack of adequate documentation. At the time it was 
difficult for a network administrator to find the information he or she needed to do the job. Since that 
time there has been an explosion of books about TCP/IP and the Internet. However, there are still too 
few books that concentrate on what a system administrator really needs to know about TCP/IP 
administration and too many books that try to tell you how to surf the Web. In this book I strive to 
focus on TCP/IP and UNIX, and not to be distracted by the phenomenon of the Internet.

I am very proud of the first edition of TCP/IP Network Administration. In the second edition, I have 

file:///C|/mynapster/Downloads/warez/tcpip/prf1_01.htm (1 of 3) [2001-10-15 09:18:22]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


Preface

done everything I can to maintain the essential character of the book while making it better. The 
Domain Name Service material has been updated to cover the latest version of the BIND 4 software. 
The email configuration is now based on sendmail version 8, and the operating system examples are 
from the current versions of Solaris and Linux. The routing protocol coverage has been expanded to 
include Open Shortest Path First (OSPF) and Border Gateway Protocol (BGP). I have also added new 
topics such as one-time passwords and configuration servers based on Dynamic Host Configuration 
Protocol (DHCP) and Bootstrap Protocol (BOOTP). Despite the additional topics, the book has been 
kept to a reasonable length.

The bulk of this edition is derived directly from the first edition of the book. To emphasize both that 
times have changed and that my focus on practical information has not, I have left the introductory 
paragraphs from the first edition intact.

Foreword from the First Edition

The Internet, the world's largest network, grew from fewer than 6,000 computers at the end of 1986 to 
more than 600,000 computers five years later. [1] This explosive growth demonstrates the incredible 
demand for network services. This growth has taken place despite a lack of practical information for 
network administrators. Most administrators have been forced to content themselves with man pages, 
or protocol documents and scholarly texts written from the point of view of the protocol designer. For 
practical information, most of us have relied on the advice of friends who had already networked their 
computers. This book addresses the lack of information by providing practical, detailed network 
information for the UNIX system administrator.

[1] These figures are taken from page 4 of RFC 1296, Internet Growth (1981-1991), by 
M. Lottor, SRI International. Read this book and you'll learn what an RFC is, and how 
to get your own free copy!

Networks have grown so extravagantly because they provide an important service. It is in the nature 
of computers to generate and process information, but this information is frequently useless unless it 
can be shared with the people who need it. The network is the vehicle that enables data to be easily 
shared. Once you network your computer, you'll never want to be stuck on an isolated system again.

The common thread that ties the enormous Internet together is TCP/IP network software. TCP/IP is a 
set of communications protocols that define how different types of computers talk to each other. This 
is a book about building your own network based on TCP/IP. It is both a tutorial covering the "why" 
and "how" of TCP/IP networking, and a reference manual for the details about specific network 
programs.

 TCP/IP Network 
Administration

Next: Audience

 Book Index Audience

file:///C|/mynapster/Downloads/warez/tcpip/prf1_01.htm (2 of 3) [2001-10-15 09:18:22]



Preface

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/prf1_01.htm (3 of 3) [2001-10-15 09:18:22]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Chapter 8] 8.2 Configuring the Resolver 

Previous: 8.1 BIND: UNIX 
Name Service 

Chapter 8
Configuring DNS Name 

Service 

Next: 8.3 Configuring 
named 

 

8.2 Configuring the Resolver 

The resolver is configured in the /etc/resolv.conf file. The resolver is not a separate and distinct 
process; it is a library of routines called by network processes. The resolv.conf file is read when a 
process using the resolver starts, and is cached for the life of that process. If the configuration file is 
not found, the resolver attempts to connect to the named server running on the local host. While this 
may work, I don't recommend it. By allowing the resolver configuration to default, you give up 
control over your system and become vunerable to variations in the techniques used by different 
systems to determine the default configuration. For these reasons, the resolver configuration file 
should be created on every system running BIND.

8.2.1 The Resolver Configuration File 

The configuration file clearly documents the resolver configuration. It allows you to identify up to 
three nameservers, two of which provide backup if the first server doesn't respond. It defines the 
default domain and various other processing options. The resolv.conf file is an important part of 
configuring name service.

resolv.conf is a simple, human-readable file. There are system-specific variations in the commands 
used in the file, but the entries supported by most systems are:

nameserver address

The nameserver entries identify, by IP address, the servers that the resolver is to query for 
domain information. The nameservers are queried in the order that they appear in the file. If no 
response is received from a server, the next server in the list is tried until the maximum number 
of servers are tried. [3] If no nameserver entries are contained in the resolv.conf file or no 
resolv.conf file exists, all nameserver queries are sent to the local host. However, if there is a 
resolv.conf file and it contains nameserver entries, the local host is not queried unless one 
entry points to the local host. Specify the local host with its official IP address, not with the 
loopback address and not with 0.0.0.0. The official address avoids problems seen on some 
versions of UNIX. A resolver-only configuration never contains a nameserver entry that 
points to the local host.

file:///C|/mynapster/Downloads/warez/tcpip/ch08_02.htm (1 of 4) [2001-10-15 09:18:23]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


[Chapter 8] 8.2 Configuring the Resolver 

[3] Three is the maximum number of servers tried by most BIND implementations.

domain name

The domain entry defines the default domain name. The resolver appends the default domain 
name to any hostname that does not contain a dot. [4] It then uses the expanded hostname in 
the query it sends to the name server. For example, if the hostname almond (which does not 
contain a dot) is received by the resolver, the default domain name is appended to almond to 
construct the query. If the value for name in the domain entry is nuts.com, the resolver 
queries for almond.nuts.com. If the environment variable LOCALDOMAIN is set, it overrides 
the domain entry and the value of LOCALDOMAIN is used to expand hostname.

[4] This is the most common way that default domain names are used, but it is not the 
only way. See the section "Domain Names" in Chapter 3 for more details.

search domain ...

The search entry defines a series of domains that are searched when a hostname does not 
contain a dot. Assume the entry search essex.nuts.com butler.nuts.com. A query for the 
hostname roaster is first tried as roaster.essex.nuts.com. If that fails to provide a successful 
match, the resolver queries for roaster.butler.nuts.com. If that query fails, no other attempts are 
made to resolve the hostname. This is different from the action of the domain entry. Assume 
the entry domain butler.nuts.com. Now a query for roaster is first tried as 
roaster.butler.nuts.com and then as roaster.nuts.com if the first query fails. When a search 
statement is used, only the domains explicitly mentioned on the command line are searched. 
When a domain statement is used, the default domain and its parents are searched. A parent 
domain must be at least two fields long to be searched. The resolver would not search for 
roaster.com. Use either a search statement or a domain statement. Never use both in the same 
configuration. If the environment variable LOCALDOMAIN is set, it overrides the search 
entry.

sortlist network ...

Addresses from the networks listed on the sortlist command are preferred over other 
addresses. If the resolver receives multiple addresses in response to a query about a multi-
homed host or a router, it reorders the addresses so that an address from a network listed in the 
sortlist statement is placed in front of the other addresses. Normally addresses are returned to 
the application by the resolver in the order that they are received. The only exception to this is 
that, by default, addresses on a shared network are preferred over other addresses. So if the 
computer running the resolver is connected to network 172.16.0.0 and one of the addresses 
returned in a multiple address response is from that network, the address from 172.16.0.0 is 
placed in front of the other addresses.

The sortlist command is rarely used. To be of any use, it requires that a remote host has 
multiple addresses for the same name; that the path to one of those addresses is clearly superior 
to the others; and that you know enough about the remote configuration to know which address 

file:///C|/mynapster/Downloads/warez/tcpip/ch08_02.htm (2 of 4) [2001-10-15 09:18:23]



[Chapter 8] 8.2 Configuring the Resolver 

is preferable.
options option ...

The options entry is used to select optional settings for the resolver. At this writing there are 
two valid keywords for option: debug to turn on debugging; and ndots:n to set the 
number of dots in a hostname used to determine whether or not the default domain needs to be 
applied. The default is 1. Therefore a hostname with one dot in it does not have the default 
domain appended before it is passed to the nameserver. If options ndots:2 is specified, a 
hostname with one dot in it has the default domain added before the query is sent out, but an 
address with two or more dots does not have the default domain added.

The most common resolv.conf configuration defines the default domain name, the local host as the 
first nameserver, and two backup nameservers. An example of this configuration is:

# Domain name resolver configuration file
#
domain nuts.com
# try yourself first
nameserver 172.16.12.2
# try almond next
nameserver 172.16.12.1
# finally try filbert
nameserver 172.16.1.2

The example is based on our imaginary network, so the default domain name is nuts.com. The 
configuration is for peanut and it specifies itself as the first nameserver. The backup servers are 
almond and filbert. The configuration does not contain a sort list or any options, as these are 
infrequently used. This is an example of an average resolver configuration.

8.2.1.1 A resolver-only configuration 

The resolver-only configuration is very simple. It is identical to the average configuration shown 
above except that it does not contain a nameserver entry for the local system. A sample resolv.conf 
file for a resolver-only system is shown below:

# Domain name resolver configuration file
#
domain nuts.com
# try almond
nameserver 172.16.12.1
# next try filbert
nameserver 172.16.1.2

The configuration tells the resolver to pass all queries to almond; if that fails, try filbert. Queries are 
never resolved locally. This simple resolv.conf file is all that is required for a resolver-only 

file:///C|/mynapster/Downloads/warez/tcpip/ch08_02.htm (3 of 4) [2001-10-15 09:18:23]



[Chapter 8] 8.2 Configuring the Resolver 

configuration.

Previous: 8.1 BIND: UNIX 
Name Service 

TCP/IP Network 
Administration

Next: 8.3 Configuring 
named 

8.1 BIND: UNIX Name 
Service 

Book Index 8.3 Configuring named 

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/ch08_02.htm (4 of 4) [2001-10-15 09:18:23]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Chapter 8] 8.3 Configuring named 

Previous: 8.2 Configuring 
the Resolver 

Chapter 8
Configuring DNS Name 

Service 

Next: 8.4 Using nslookup 

 

8.3 Configuring named 

While the resolver configuration requires, at most, one configuration file, several files are used to configure 
named. The complete set of named configuration files are:

named.boot

Sets general named parameters and points to the sources of domain database information used by this 
server. These sources can be local disk files or remote servers.

named.ca

Points to the root domain servers
named.local

Used to locally resolve the loopback address
named.hosts

The zone file that maps hostnames to IP addresses
named.rev

The zone file for the reverse domain that maps IP addresses to hostnames

The filenames shown here are generic names. We use them to make it easier to discuss the files in this text. 
The files can have any names you wish. Use the filenames named.boot and named.local for the boot file and 
the loopback address file. Use the name named.ca or one of the well-known alternatives, named.root and 
root.ca, for the file that lists the root servers. However, don't use the names named.hosts and named.rev for 
your zone files. Use descriptive names. In the following sections, we'll look at how each of these files is 
used, starting with named.boot.

8.3.1 The named.boot File 

The named.boot file points named to sources of DNS information. Some of these sources are local files; 
others are remote servers. You only need to create the files referenced in the primary and cache statements. 
We'll look at an example of each type of file you may need to create.

Table 8.1 summarizes the named.boot configuration statements used in this chapter. It provides just enough 

file:///C|/mynapster/Downloads/warez/tcpip/ch08_03.htm (1 of 13) [2001-10-15 09:18:25]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


[Chapter 8] 8.3 Configuring named 

information to help you understand the examples. Not all of the named.boot configuration commands are 
used in the examples, and you probably won't use all of the commands in your configuration. The commands 
are designed to cover the full spectrum of configurations, even the configurations of root servers. If you 
want more details about all of the named.boot configuration statements, Appendix C contains a full 
explanation of each command.

Table 8.1: named.boot Configuration Commands

Command Function

directory Defines a directory for all subsequent file references

primary Declares this server as primary for the specified zone

secondary Declares this server as secondary for the specified zone

cache Points to the cache file

forwarders Lists servers to which queries are forwarded

options Enables optional BIND processing

xfrnets Limits zone transfers to specific addresses

The way in which you configure the named.boot file controls whether the nameserver acts as a primary 
server, a secondary server, or a caching-only server. The best way to understand these different 
configurations is to look at sample named.boot files. The next sections show examples of each type of 
configuration. 

8.3.1.1 Configuring a caching-only nameserver 

A caching-only server configuration is simple. A named.boot file and a named.ca file are all that you need, 
though the named.local file is usually also used. The most common named.boot file for a caching-only 
server is:

;
;  a caching-only server configuration
;
primary         0.0.127.IN-ADDR.ARPA    /etc/named.local
cache           .                       /etc/named.ca

The only line in this sample file required for a caching-only configuration is the cache statement. It tells 
named to maintain a cache of nameserver responses, and to initialize the cache with the list of root servers 
found in the file named.ca. The name of the file containing the root server list can be any name you wish, 
but root.cache, named.root, and named.ca are often used. The presence of a cache statement does not make 
this a caching-only configuration; a cache statement is used in every server configuration. It is the absence of 
primary and secondary statements that makes this a caching-only configuration.

However, there is one primary statement that is an exception to this rule. You'll see it in our sample 
named.boot file, and in almost every caching-only configuration. It defines the local server as the primary 
server for its own loopback domain, and it says that the information for the loopback domain is stored in the 
file named.local. The loopback domain is an in-addr.arpa domain [5] that maps the address 127.0.0.1 to the 
name localhost. The idea of resolving your own loopback address makes sense to most people, so most 
named.boot files contain this entry.

file:///C|/mynapster/Downloads/warez/tcpip/ch08_03.htm (2 of 13) [2001-10-15 09:18:25]



[Chapter 8] 8.3 Configuring named 

[5] See Chapter 4, Getting Started , for a description of in-addr.arpa domains.

These primary and cache statements are the only statements used in most caching-only server 
configurations, but other statements can be added. A forwarders statement, and even an options statement 
are sometimes used. The forwarders statement causes the caching-only server to send all of the queries that 
it cannot resolve from its own cache to specific servers. For example:

forwarders 172.16.12.1 172.16.1.2

This statement forwards every query that cannot be answered from the local cache to 172.16.12.1 and 
172.16.1.2. The forwarders command builds a rich DNS cache on selected servers located on the local 
network. This reduces the number of times that queries must be sent out on the wide area network, which is 
particularly useful if you have limited bandwidth to the wide area network or if you are charged for usage.

When network access to the outside world is severely limited, use the following statement to force the local 
server to always use the forwarder.

options forward-only

With this statement in the configuration file, the local server will not attempt to resolve a query itself even if 
it cannot get an answer to that query from the forwarders.

Adding forwarders or options statements does not change this from being a caching-only server 
configuration. Only the addition of primary and secondary commands will do that.

8.3.1.2 Primary and secondary server configurations 

The imaginary nuts.com domain is the basis for our sample primary and secondary server configurations. 
Here is the named.boot file to define almond as the primary server for the nuts.com domain:

;
;  nuts.com primary nameserver boot file.
;
directory                              /etc
primary   nuts.com                     named.hosts
primary   16.172.IN-ADDR.ARPA          named.rev
primary   0.0.127.IN-ADDR.ARPA         named.local
cache     .                            named.ca

The directory statement saves keystrokes on the subsequent filenames. It tells named that all relative 
filenames (i.e., filenames that don't begin with a /), no matter where they occur in the named configuration, 
are relative to the directory /etc.

The first primary statement declares that this is the primary server for the nuts.com domain, and that the data 
for that domain is loaded from the file named.hosts. In our examples, we'll use the filename named.hosts as 
the zone filename, but you should choose a more descriptive filename. For example, a better name for the 

file:///C|/mynapster/Downloads/warez/tcpip/ch08_03.htm (3 of 13) [2001-10-15 09:18:25]



[Chapter 8] 8.3 Configuring named 

nuts.com zone file is nuts.com.hosts.

The second primary statement points to the file that maps IP addresses from 172.16.0.0 to hostnames. This 
statement says that the local server is the primary server for the reverse domain 16.172.in-addr.arpa, and 
that the data for that domain is loaded from the file named.rev. Again, the filename named.rev is just an 
example; use descriptive names in your actual configuration.

The format of a primary statement is the keyword primary, the domain name, and the name of the zone 
file from which the domain information is read. All primary statements have this simple format.

The final two statements in the sample configuration are the primary statement for the loopback domain and 
the cache statement. These statements are discussed earlier in the section about caching-only configurations. 
They have the same function in every configuration and are found in almost every configuration.

A secondary server's configuration differs from a primary's by using secondary instead of primary 
statements. Secondary statements point to remote servers as the source of the domain information instead of 
local disk files. Secondary statements begin with the keyword secondary, followed by the name of the 
domain, the address of one or more authoritative servers for that domain, and finally the name of a local file 
where information received from the remote server will be stored. The following named.boot file configures 
filbert as a secondary server for the nuts.com domain:

;
;  nuts.com secondary nameserver boot file.
;
directory                                       /etc
secondary   nuts.com              172.16.12.1   nuts.com.hosts
secondary   16.172.IN-ADDR.ARPA   172.16.12.1   172.16.rev
primary     0.0.127.IN-ADDR.ARPA                named.local
cache       .                                   named.ca

The first secondary statement makes this a secondary server for the nuts.com domain. The statement tells 
named to download the data for the nuts.com domain from the server at IP address 172.16.12.1, and to store 
that data in the file /etc/nuts.com.hosts. If the nuts.com.hosts file does not exist, named creates it, gets the 
zone data from the remote server, and writes the data in the newly created file. If the file does exist, named 
checks with the remote server to see if the remote server's data is different from the data in the file. If the 
data has changed, named downloads the updated data and overwrites the file contents with the new data. If 
the data has not changed, named loads the contents of the disk file and doesn't bother with a zone transfer. 
[6] Keeping a copy of the database on a local disk file makes it unnecessary to transfer the zone file every 
time the local host is rebooted. It's only necessary to transfer the zone when the data changes.

[6] Appendix C (in the SOA record section) discusses how named determines if data has been 
updated.

The next line in this configuration says that the local server is also a secondary server for the reverse domain 
16.172.in-addr.arpa, and that the data for that domain should also be downloaded from 172.16.12.1. The 
reverse domain data is stored locally in a file named 172.16.rev, following the same rules discussed 
previously for creating and overwriting nuts.com.hosts.

file:///C|/mynapster/Downloads/warez/tcpip/ch08_03.htm (4 of 13) [2001-10-15 09:18:25]



[Chapter 8] 8.3 Configuring named 

8.3.2 Standard Resource Records 

The configuration commands discussed above and listed in Table 8.1 are used only in the named.boot file. 
All other files used to configure named (named.hosts, named.rev, named.local, and named.ca) store domain 
database information. These files all have the same basic format and use the same type of database records. 
They use standard resource records, called RRs. These are defined in RFC 1033, the Domain Administrators 
Operations Guide, and other RFCs. Table 8.2 summarizes all of the standard resource records used in this 
chapter. These records are covered in detail in Appendix C.

Table 8.2: Standard Resource Records

Resource Record Record Function

Text Name Type

Start of Authority SOA Marks the beginning of a zone's data, and defines parameters that affect the 
entire zone.

Nameserver NS Identifies a domain's nameserver.

Address A Converts a hostname to an address.

Pointer PTR Converts an address to a hostname.

Mail Exchange MX Identifies where to deliver mail for a given domain name.

Canonical Name CNAME Defines an alias hostname.

Host Information HINFO Describes a host's hardware and OS.

Well-Known Service WKS Advertises network services.

Text TXT Stores arbitrary text strings.

The resource record syntax is described in Appendix C, but a little understanding of the structure of these 
records is necessary to read the sample configuration files used in this chapter. 

The format of DNS resource records is:

   [name] [ttl] IN type data

name

This is the name of the domain object the resource record references. It can be an individual host or 
an entire domain. The string entered for the name field is relative to the current domain unless it ends 
with a dot. If the name field is blank, the record applies to the domain object that was named last. For 
example, if the A record for peanut is followed by an MX record with a blank name field, both the A 
record and the MX record apply to peanut.

ttl

Time-to-live defines the length of time, in seconds, that the information in this resource record should 
be kept in a remote system's cache. Usually this field is left blank and the default ttl, set for the 
entire zone in the SOA record, is used. [7]

[7] See the section on SOA records in Appendix C.

file:///C|/mynapster/Downloads/warez/tcpip/ch08_03.htm (5 of 13) [2001-10-15 09:18:25]



[Chapter 8] 8.3 Configuring named 

IN

Identifies the record as an Internet DNS resource record. There are other classes of records, but they 
are rarely used. Curious? See Appendix C for the other, non-Internet, classes.

type

Identifies the kind of resource record. Table 8.2 lists the record types under the heading "Record 
Type." Specify one of these values in the type field.

data

The information specific to this type of resource record. For example, in an A record this is the field 
that contains the actual IP address.

In the following sections we look at each of the remaining configuration files. As you look at the files, 
remember that all of the records in these files are standard resource records that follow the format described 
above.

8.3.3 The Cache Initialization File 

The cache statement in named.boot points to a cache initialization file. Each server that maintains a cache 
has such a file. It contains the information needed to begin building a cache of domain data when the 
nameserver starts. The root domain is indicated on the cache statement by a single dot, and the named.ca file 
contains the names and addresses of the root servers.

The named.ca file is sometimes called a "hints" file, because it contains hints named uses to initialize the 
cache. The hints it contains are the names and addresses of the root servers. It is used to help the local server 
locate a root server during startup. Once a root server is found, an authoritative list of root servers is 
downloaded from that server. The hints are not referred to again until the local server is forced to restart. The 
information in the named.ca file is not referred to often, but it is critical for booting a named server.

The basic named.ca file contains NS records that name the root servers, and A records that provide the 
addresses of the root servers. A sample named.ca file is shown below:

;
.                     3600000  IN  NS   A.ROOT-SERVERS.NET.
A.ROOT-SERVERS.NET.   3600000  IN  A    198.41.0.4
;
.                     3600000      NS   B.ROOT-SERVERS.NET.
B.ROOT-SERVERS.NET.   3600000  IN  A    128.9.0.107
;
.                     3600000      NS   C.ROOT-SERVERS.NET.
C.ROOT-SERVERS.NET.   3600000  IN  A    192.33.4.12
;
.                     3600000      NS   D.ROOT-SERVERS.NET.
D.ROOT-SERVERS.NET.   3600000  IN  A    128.8.10.90
;

file:///C|/mynapster/Downloads/warez/tcpip/ch08_03.htm (6 of 13) [2001-10-15 09:18:25]



[Chapter 8] 8.3 Configuring named 

.                     3600000      NS   E.ROOT-SERVERS.NET.
E.ROOT-SERVERS.NET.   3600000  IN  A    192.203.230.10
;
.                     3600000      NS   F.ROOT-SERVERS.NET.
F.ROOT-SERVERS.NET.   3600000  IN  A    192.5.5.241
;
.                     3600000      NS   G.ROOT-SERVERS.NET.
G.ROOT-SERVERS.NET.   3600000  IN  A    192.112.36.4
;
.                     3600000      NS   H.ROOT-SERVERS.NET.
H.ROOT-SERVERS.NET.   3600000  IN  A    128.63.2.53
;
.                     3600000      NS   I.ROOT-SERVERS.NET.
I.ROOT-SERVERS.NET.   3600000  IN  A    192.36.148.17

This file contains only nameserver and address records. Each NS record identifies a nameserver for the root 
(.) domain. The associated A record gives the address of each root server. The ttl value for all of these 
records is 3600000 - a very large value that is approximately 42 days.

Create the named.ca file by downloading the file domain/named.root from rs.internic.net (198.41.0.7) via 
anonymous ftp. The file stored at the InterNIC is in the correct format for a UNIX system. The example 
below shows the superuser downloading the named.root file directly into the local system's named.ca file. 
The file doesn't even need to be edited: it is ready to run.

# ftp rs.internic.net
Connected to rs.internic.net.
Name (rs.internic.net:craig): anonymous
331 Guest login ok, send your email address as password.
Password: craig@nuts.com
230 Guest login ok, access restrictions apply.
Remote system type is UNIX.
Using binary mode to transfer files.
ftp> get domain/named.root named.ca
200 PORT command successful.
150 Opening data connection for domain/named.root (2119 bytes).
226 Transfer complete.
2119 bytes received in 0.137 secs (15 Kbytes/sec)
ftp> quit
221 Goodbye.

Download the named.root file every few months to keep accurate root server information in your cache. A 
bogus root server entry could cause problems with your local server. The data given above is correct as of 
publication, but could change at any time.

If your system is not connected to the Internet, it won't be able to communicate with the root servers. 
Initializing your cache file with the servers listed above would be useless. In this case, initialize your cache 
with entries that point to the major nameservers on your local network. Those servers must also be 
configured to answer queries for the "root" domain. However, this root domain contains only NS records 

file:///C|/mynapster/Downloads/warez/tcpip/ch08_03.htm (7 of 13) [2001-10-15 09:18:25]



[Chapter 8] 8.3 Configuring named 

pointing to the domain servers on your local network. For example: assume that nuts.com is not connected to 
the Internet and that almond and pecan are going to act as root servers for this isolated domain. Both servers 
declare they are primary for the root domain in their named.boot files. They load the root from a zone file 
that contains NS records and A records, stating that they are authoritative for the root and delegating the 
nuts.com and 16.172.in-addr.arpa domains to the local nameservers that service those domains. (How 
domains are delegated is covered later in the chapter.) Details of this type of configuration are provided in 
DNS and BIND by Liu and Albitz (O'Reilly & Associates).

8.3.4 The named.local File 

The named.local file is used to convert the address 127.0.0.1 (the "loopback address") into the name 
localhost. It's the zone file for the reverse domain 0.0.127.IN-ADDR.ARPA. Because all systems use 
127.0.0.1 as the "loopback" address, this file is virtually identical on every server. Here's a sample 
named.local file:

@          IN  SOA      almond.nuts.com. jan.almond.nuts.com. (
                        1               ; serial

                        360000          ; refresh every 100 hours
                        3600            ; retry after 1 hour
                        3600000         ; expire after 1000 hours
                        360000          ; default ttl is 100 hours
                        )
           IN  NS       almond.nuts.com.
0          IN  PTR      loopback.
1          IN  PTR      localhost.

Neither the NS record nor the first PTR record is required. The first PTR record maps the network 127.0.0.0 
to the name loopback, which is an alternative to mapping the network name in the /etc/networks file. Only 
the SOA record and the second PTR record are needed. The required PTR record is the same on every host: 
host address 1 on network 127.0.0 is mapped to the name localhost.

The SOA record's data fields and the NS record that contains the computer's hostname vary from system to 
system. The sample SOA record identifies almond.nuts.com. as the server originating this zone, and the 
email address jan.almond.nuts.com. as the point of contact for any questions about the zone. (Note that in an 
SOA record the email address is written with a dot separating the recipient's name from the hostname: jan is 
the user and almond.nuts.com is the host.) Many systems do not include the NS record; but when it is used, 
it contains the computer's hostname. Change these three data fields and you can use this identical file on any 
host.

The files discussed so far, named.boot, named.ca, and named.local, are the only files required to configure 
caching-only servers and secondary servers. Most of your servers will use only these files, and the files used 
will contain almost identical information on every server.

The simplest way to create these three files is to copy a sample file and modify it for your system. Most 
systems come with sample files. If your system doesn't, sample configuration files are available in the 
conf/master directory [8] of the bind.tar.gz file. This compressed tar file can be obtained via anonymous ftp 
from the isc/bind/src directory on ftp.isc.org. The named.local file shown above was derived from the 

file:///C|/mynapster/Downloads/warez/tcpip/ch08_03.htm (8 of 13) [2001-10-15 09:18:25]



[Chapter 8] 8.3 Configuring named 

named.local sample that comes with BIND.

[8] The sample named.ca file in this directory is called root.cache.

The remaining named configuration files, named.hosts and named.rev, are more complex, but the relative 
number of systems that require these files is small. Only the primary server needs all of the configuration 
files, and there should be only one primary server per zone.

8.3.5 The Reverse Domain File 

The named.rev file is very similar in structure to the named.local file. Both of these files translate IP 
addresses into hostnames, so both files contain PTR records.

The named.rev file in our example is the zone file for the 16.172.in-addr.arpa domain. The domain 
administrator creates this file on almond, and every other host that needs this information gets it from there.

;
;        Address to hostname mappings.
;
@       IN      SOA     almond.nuts.com. jan.almond.nuts.com. (
                                10099   ;   Serial
                                43200   ;   Refresh
                                3600    ;   Retry
                                3600000 ;   Expire
                                2592000 ) ; Minimum
                IN      NS      almond.nuts.com.
                IN      NS      filbert.nuts.com.
                IN      NS      foo.army.mil.
1.12            IN      PTR     almond.nuts.com.
2.12            IN      PTR     peanut.nuts.com.
3.12            IN      PTR     pecan.nuts.com.
4.12            IN      PTR     walnut.nuts.com.
2.1             IN      PTR     filbert.nuts.com.
6               IN      NS      salt.plant.nuts.com.
                IN      NS      pecan.nuts.com.

Like all zone files, the named.rev file begins with an SOA record. The @ in the name field of the SOA record 
references the current domain. In this case it is the domain defined by the primary statement in our sample 
named.boot file:

primary   16.172.IN-ADDR.ARPA              named.rev

The @ in the SOA record allows the primary statement to define the zone file domain. This same SOA record 
is used on every zone; it always references the correct domain name because it references the domain 
defined for that particular zone file in named.boot. Change the hostname (almond.nuts.com.) and the 
manager's mail address (jan.almond.nuts.com.), and use this SOA record in any of your zone files.

file:///C|/mynapster/Downloads/warez/tcpip/ch08_03.htm (9 of 13) [2001-10-15 09:18:25]



[Chapter 8] 8.3 Configuring named 

The NS records that follow the SOA record define the nameservers for the domain. Generally the 
nameservers are listed immediately after the SOA, before any other record has the chance to modify the 
domain name. Recall that a blank name field means that the last domain name is still in force. The SOA's 
domain reference is still in force because the following NS records have blank name fields.

PTR records dominate the named.rev file because they are used to translate addresses to hostnames. The 
PTR records in our example provide address-to-name conversions for hosts 12.1, 12.2, 12.3, 12.4, and 2.1 on 
network 172.16. Because they don't end in dots, the values in the name fields of these PTR records are 
relative to the current domain. For example, the value 3.12 is interpreted as 3.12.16.172.in-addr.arpa. The 
host name in the data field of the PTR record is fully qualified to prevent it from being relative to the current 
domain name. Using the information in this PTR, named will translate 3.12.16.172.in-addr.arpa into 
pecan.nuts.com.

The last two lines of this file are additional NS records. As with any domain, subdomains can be created in 
an in-addr.arpa domain. This is what the last two NS records do. These NS records point to pecan and salt 
as nameservers for the subdomain 6.16.172.in-addr.arpa. Any query for information in the 6.16.172.in-
addr.arpa subdomain is referred to them. NS records that point to the servers for a subdomain must be 
placed in the higher-level domain before you can use that subdomain.

Subdomains in the in-addr.arpa domain are not as common or as useful as subdomains in the host 
namespace. Domain names and IP addresses are not the same thing, and do not have the same structure. 
When an IP address is turned into an in-addr.arpa domain name, the four bytes of the address are treated as 
four distinct pieces. In reality, the IP address is 32 contiguous bits. Subnets divide up the IP address space 
and subnet masks are bit-oriented, which does not limit them to byte boundaries. in-addr.arpa subdomains 
divide up the domain name space and can only occur at a full byte boundary because each byte of the 
address is treated as a distinct "name."

8.3.6 The named.hosts File 

The named.hosts file contains most of the domain information. This file converts hostnames to IP addresses, 
so A records predominate; but it also contains MX, CNAME, and other records. The named.hosts file, like 
the named.rev file, is only created on the primary server. All others servers get this information from the 
primary server.

;
;       Addresses and other host information.
;
@       IN      SOA     almond.nuts.com. jan.almond.nuts.com. (
                                10118      ; Serial
                                43200      ; Refresh
                                3600       ; Retry
                                3600000    ; Expire
                                2592000 )  ; Minimum
;       Define the nameservers and the mail servers
                IN      NS      almond.nuts.com.
                IN      NS      filbert.nuts.com.
                IN      NS      foo.army.mil.
                IN      MX      10 almond.nuts.com.

file:///C|/mynapster/Downloads/warez/tcpip/ch08_03.htm (10 of 13) [2001-10-15 09:18:25]



[Chapter 8] 8.3 Configuring named 

                IN      MX      20 pecan.nuts.com.
;
;       Define localhost
;
localhost       IN      A       127.0.0.1
;
;       Define the hosts in this zone
;
almond          IN      A       172.16.12.1
                IN      MX      5 almond.nuts.com.
loghost         IN      CNAME   almond.nuts.com.
peanut          IN      A       172.16.12.2
                IN      MX      5 almond.nuts.com.
goober          IN      CNAME   peanut.nuts.com.
pecan           IN      A       172.16.12.3
walnut          IN      A       172.16.12.4
filbert         IN      A       172.16.1.2
;       host table has BOTH host and gateway entries for 10.104.0.19
mil-gw          IN      A       10.104.0.19
;
;    Glue records for servers within this domain
;
pack.plant      IN      A       172.16.18.15
acorn.sales     IN      A       172.16.6.1
;
;       Define sub-domains
;
plant           IN      NS      pack.plant.nuts.com.
                IN      NS      pecan.nuts.com.
sales           IN      NS      acorn.sales.nuts.com.
                IN      NS      pack.plant.nuts.com.

Like the named.rev file, the named.hosts file begins with an SOA record and a few NS records that define 
the domain and its servers, but the named.hosts file contains a wider variety of resource records than a 
named.rev file does. We'll look at each of these records in the order in which they occur in the sample file, 
so that you can follow along using the sample file as your reference.

The first MX record identifies a mail server for the entire domain. This record says that almond is the mail 
server for nuts.com with a preference of 10. Mail addressed to user@nuts.com is redirected to almond for 
delivery. Of course for almond to successfully deliver the mail, it must be properly configured as a mail 
server. The MX record is only part of the story. We look at configuring sendmail in Chapter 10, sendmail .

The second MX record identifies pecan as a mail server for nuts.com with a preference of 20. Preference 
numbers let you define alternate mail servers. The lower the preference number, the more desirable the 
server. Therefore, our two sample MX records say "send mail for the nuts.com domain to almond first; if 
almond is unavailable, try sending the mail to pecan." Rather than relying on a single mail server, preference 
numbers allow you to create backup servers. If the main mail server is unreachable, the domain's mail is sent 
to one of the backups instead.

file:///C|/mynapster/Downloads/warez/tcpip/ch08_03.htm (11 of 13) [2001-10-15 09:18:25]



[Chapter 8] 8.3 Configuring named 

These sample MX records redirect mail addressed to nuts.com, but mail addressed to user@walnut.nuts.com 
will still be sent directly to walnut.nuts.com - not to almond or pecan. This configuration allows simplified 
mail addressing in the form user@nuts.com for those who want to take advantage of it, but it continues to 
allow direct mail delivery to individual hosts for those who wish to take advantage of that.

The first A record in this example defines the address for localhost. This is the opposite of the PTR entry in 
the named.local file. It allows users within the nuts.com domain to enter the name localhost and have it 
resolved to the address 127.0.0.1 by the local nameserver.

The next A record defines the IP address for almond. (Note that the records that relate to a single host are 
grouped together, which is the most common structure used in zone files.) The A record is followed by an 
MX record and a CNAME record that both relate to almond. The almond MX record points back to the host 
itself, and the CNAME record defines an alias for the host name.

This host-specific MX record is provided as a courtesy to remote mailers. Some mailer implementations 
look for an MX record first, and then query for the host's address. Providing an MX record saves these 
mailers one additional nameserver query. 

peanut's A record is also followed by an MX record and a CNAME record. However, peanut's MX record 
serves a different purpose. It directs all mail addressed to user@peanut.nuts.com to almond. This MX record 
is required because the MX records at the beginning of the zone file redirect mail only if it is addressed to 
user@nuts.com. If you also want to redirect mail addressed to peanut, you need a "peanut-specific" MX 
record.

The name field of the CNAME record contains an alias for the official hostname. The official name, called 
the canonical name, is provided in the data field of the record. Because of these records, almond can be 
referred to by the name loghost, and peanut can be referred to as goober. The loghost alias is a generic 
hostname used to direct syslogd output to almond. [9] Hostname aliases should not be used in other resource 
records. [10] For example, don't use an alias as the name of a mail server in an MX record. Use only the 
"canonical" (official) name that's defined in an A record.

[9] See Chapter 3 for a further discussion of generic hostnames.

[10] See Appendix C for additional information about using CNAME records in the 
named.hosts file.

Your named.hosts file will be much larger than the sample file we've discussed, but it will contain 
essentially the same records. If you know the names and addresses of the hosts in your domain, you have 
most of the information necessary to create the named configuration.

8.3.6.1 Starting named 

After you construct the named.boot file and the required zone files, start named. named is usually started at 
boot time from a startup script, but it can be started at the command prompt:

# named

file:///C|/mynapster/Downloads/warez/tcpip/ch08_03.htm (12 of 13) [2001-10-15 09:18:25]



[Chapter 8] 8.3 Configuring named 

The first time you run it, watch for error messages. named logs errors to the messages file. [11] Once 
named is running to your satisfaction, use nslookup to query the nameserver to make sure it is providing the 
correct information.

[11] This file if found at /usr/adm/messages on both our Linux and Solaris sample systems but 
it might be located somewhere else on your system. Check your system's documentation.

Previous: 8.2 Configuring 
the Resolver 

TCP/IP Network 
Administration

Next: 8.4 Using nslookup 

8.2 Configuring the Resolver Book Index 8.4 Using nslookup 

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/ch08_03.htm (13 of 13) [2001-10-15 09:18:25]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Chapter 8] 8.4 Using nslookup 

Previous: 8.3 Configuring 
named 

Chapter 8
Configuring DNS Name 

Service 

Next: 8.5 Summary 

 

8.4 Using nslookup 

nslookup is a debugging tool provided as part of the BIND software package. It allows anyone to directly 
query a nameserver and retrieve any of the information known to the DNS system. It is helpful for 
determining if the server is running correctly and is properly configured, or for querying for information 
provided by remote servers.

The nslookup program is used to resolve queries either interactively or directly from the command line. 
Below is a command-line example of using nslookup to query for the IP address of a host:

% nslookup almond.nuts.com
Server:  peanut.nuts.com
Address:  172.16.12.2

Name:    almond.nuts.com
Address:  172.16.12.1

Here, a user asks nslookup to provide the address of almond.nuts.com. nslookup displays the name and 
address of the server used to resolve the query, and then it displays the answer to the query. This is useful, 
but nslookup is more often used interactively.

The real power of nslookup is seen in interactive mode. To enter interactive mode, type nslookup on the 
command line without any arguments. Terminate an interactive session by entering CTRL-D (^D) or the 
exit command at the nslookup prompt. Redone in an interactive session, the previous query shown is:

% nslookup
Default Server:  peanut.nuts.com
Address:  172.16.12.2

> almond.nuts.com
Server:  peanut.nuts.com
Address:  172.16.12.2

Name:    almond.nuts.com
Address:  172.16.12.1

> ^D

file:///C|/mynapster/Downloads/warez/tcpip/ch08_04.htm (1 of 4) [2001-10-15 09:18:26]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


[Chapter 8] 8.4 Using nslookup 

By default, nslookup queries for A records, but you can use the set type command to change the query to 
another resource record type, or to the special query type "ANY." ANY is used to retrieve all available 
resource records for the specified host.

The following example checks MX records for almond and peanut. Note that once the query type is set to 
MX, it stays MX. It doesn't revert to the default A-type query. Another set type command is required to 
reset the query type.

% nslookup
Default Server:  peanut.nuts.com
Address:  172.16.12.2

> set type=MX
> almond.nuts.com
Server:  peanut.nuts.com
Address:  172.16.12.2

almond.nuts.com    preference = 5, mail exchanger = almond.nuts.com
almond.nuts.com    inet address = 172.16.12.1

> peanut.nuts.com
Server:  peanut.nuts.com
Address:  172.16.12.2

peanut.nuts.com    preference = 5, mail exchanger = peanut.nuts.com
peanut.nuts.com    inet address = 172.16.12.2
> exit

You can use the server command to control the server used to resolve queries. This is particularly useful 
for going directly to an authoritative server to check some information. The following example does just 
that. In fact, this example contains several interesting commands: 

●     First we set type=NS and get the NS records for the zoo.edu domain.
●     From the information returned by this query, we select a server and use the server command to 

direct nslookup to use that server.
●     Next, using the set domain command, we set the default domain to zoo.edu. nslookup uses this 

default domain name to expand the hostnames in its queries, in the same way that the resolver uses 
the default domain name defined in resolv.conf.

●     We reset the query type to ANY. If the query type is not reset, nslookup still queries for NS 
records.

●     Finally, we query for information about the host tiger.zoo.edu. Because the default domain is set to 
zoo.edu, we simply enter tiger at the prompt.

% nslookup
Default Server:  peanut.nuts.com
Address:  172.16.12.2

> set type=NS

file:///C|/mynapster/Downloads/warez/tcpip/ch08_04.htm (2 of 4) [2001-10-15 09:18:26]



[Chapter 8] 8.4 Using nslookup 

> zoo.edu
Server:  peanut.nuts.com
Address:  172.16.12.2

Non-authoritative answer:
zoo.edu nameserver = NOC.ZOO.EDU
zoo.edu nameserver = NI.ZOO.EDU
zoo.edu nameserver = NAMESERVER.AGENCY.GOV
Authoritative answers can be found from:
NOC.ZOO.EDU     inet address = 172.28.2.200
NI.ZOO.EDU      inet address = 172.28.2.240
NAMESERVER.AGENCY.GOV inet address = 172.21.18.31
> server NOC.ZOO.EDU
Default Server:  NOC.ZOO.EDU
Address:  172.28.2.200

> set domain=zoo.edu
> set type=any
> tiger
Server:  NOC.ZOO.EDU
Address:  172.28.2.200

tiger.zoo.edu   inet address = 172.28.172.8
tiger.zoo.edu   preference = 10, mail exchanger = tiger.ZOO.EDU
tiger.zoo.edu   CPU=ALPHA OS=UNIX
tiger.zoo.edu   inet address = 172.28.172.8, protocol = 6
         7 21 23 25 79
tiger.ZOO.EDU   inet address = 172.28.172.8
> exit

The final example shows how to download an entire domain from an authoritative server and examine it on 
your local system. The ls command requests a zone transfer and displays the contents of the zone it 
receives. [12] If the zone file is more than a few lines long, redirect the output to a file, and use the view 
command to examine the contents of the file. (view sorts a file and displays it using the UNIX more 
command.) The combination of ls and view are helpful when tracking down a remote hostname. In the 
example that follows, the ls command retrieves the big.com zone and stores the information in temp.file. 
Then view is used to examine temp.file.

[12] For security reasons, many nameservers do not respond to the ls command. See the 
xfrnets command in Appendix C for information on how to limit access to zone transfers.

peanut% nslookup
Default Server:  peanut.nuts.com
Address:  172.16.12.2

> server minerals.big.com
Default Server:  minerals.big.com
Address:  192.168.20.1

file:///C|/mynapster/Downloads/warez/tcpip/ch08_04.htm (3 of 4) [2001-10-15 09:18:26]



[Chapter 8] 8.4 Using nslookup 

> ls big.com > temp.file
[minerals.big.com]
########
Received 406 records.
> view temp.file
 acmite                         192.168.20.28
 adamite                        192.168.20.29
 adelite                        192.168.20.11
 agate                          192.168.20.30
 alabaster                      192.168.20.31
 albite                         192.168.20.32
 allanite                       192.168.20.20
 altaite                        192.168.20.33
 alum                           192.168.20.35
 aluminum                       192.168.20.8
 amaranth                       192.168.20.85
 amethyst                       192.168.20.36
 andorite                       192.168.20.37
 apatite                        192.168.20.38
 beryl                          192.168.20.23
--More-- q
> exit

These examples show that nslookup allows you to: 

●     Query for any specific type of standard resource record.
●     Directly query the authoritative servers for a domain.
●     Get the entire contents of a domain into a file so you can view it.

Use nslookup's help command to see its other features. Turn on debugging (with set debug) and examine 
the additional information this provides. As you play with this tool, you'll find many helpful features.

Previous: 8.3 Configuring 
named 

TCP/IP Network 
Administration

Next: 8.5 Summary 

8.3 Configuring named Book Index 8.5 Summary 

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/ch08_04.htm (4 of 4) [2001-10-15 09:18:26]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Chapter 8] 8.5 Summary 

Previous: 8.4 Using 
nslookup 

Chapter 8
Configuring DNS Name 

Service 

Next: 9. Configuring 
Network Servers 

 

8.5 Summary 

Domain Name Service (DNS) is an important user service that should be used on every system 
connected to the Internet. UNIX implementations of DNS are based on the Berkeley Internet Name 
Domain (BIND) software. BIND provides both a DNS client and a DNS server.

The BIND client issues name queries and is implemented as library routines. It is called the resolver. 
The resolver is configured in the resolv.conf file. All systems run the resolver.

The BIND server answers name queries and it runs as a daemon. It is called named. named is 
configured by the named.boot file, which defines where the server gets the domain database 
information and the type of server being configured. The server types are primary, secondary and 
caching servers. Because all servers are caching servers, a single configurtaion often encompasses 
more than one server type.

The original domain database source files are found on the primary server. The domain database file 
is called a zone file. The zone file is constructed from standard resources records (RR) that are defined 
in RFCs. The RRs share a common structure and are used to define all DNS database information.

The DNS server can be tested using nslookup. This test tool is included with the BIND release.

In this chapter we have seen how to configure and test domain name service. In the next chapter we 
configure several other services.

Previous: 8.4 Using 
nslookup 

TCP/IP Network 
Administration

Next: 9. Configuring 
Network Servers 

8.4 Using nslookup Book Index 9. Configuring Network 
Servers 

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/ch08_05.htm [2001-10-15 09:18:27]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm
file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


file:///C|/mynapster/Downloads/warez/tcpip/ch09_01.htm

Previous: 8.5 Summary Chapter 9 Next: 9.2 Line Printer 
Daemon 

 

9. Configuring Network Servers 
Contents:
The Network File System 
Line Printer Daemon 
Network Information Service 
A BOOTP Server 
DHCP 
Managing Distributed Servers 
Mail Servers 
Summary 

Now our attention turns to configuring network servers. As with name service, these servers are not strictly 
required for the network to operate, but they provide services that are central to the network's purpose.

There are many network services - many more than can be covered in this chapter. We concentrate on servers 
that provide "computer-to-computer" services. [1] The services covered in this chapter are:

[1] Notably absent is sendmail. It requires so much discussion, it has its own chapter (Chapter 10, 
sendmail )!

●     The Network File System (NFS)
●     The Line Printer Daemon (LPD)
●     The Network Information Service (NIS)
●     The Bootstrap Protocol (BOOTP)
●     Dynamic Host Configuration Protocol (DHCP)
●     The Post Office Protocol (POP)

We begin with NFS, which is the server that provides file sharing on UNIX networks.

9.1 The Network File System 

The Network File System (NFS) allows directories and files to be shared across a network. It was originally 
developed by Sun Microsystems, but is now supported by virtually all UNIX implementations and many non-
UNIX operating systems. Through NFS, users and programs can access files located on remote systems as if they 
were local files. In a perfect NFS environment, the user neither knows nor cares where files are actually stored.

file:///C|/mynapster/Downloads/warez/tcpip/ch09_01.htm (1 of 13) [2001-10-15 09:18:29]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


file:///C|/mynapster/Downloads/warez/tcpip/ch09_01.htm

NFS has several benefits:

●     It reduces local disk storage requirements because a network can store a single copy of a directory, while 
the directory continues to be fully accessible to everyone on the network.

●     NFS simplifies central support tasks - files can be updated centrally, yet available throughout the network.
●     NFS allows users to use familiar UNIX commands to manipulate remote files instead of learning new 

commands. There is no need to use ftp or rcp to copy a file between hosts on the network; cp works fine.

There are two sides to NFS - a client side and a server side. The client is the system that uses the remote 
directories as if they were part of its local filesystem. The server is the system that makes the directories 
available for use. Attaching a remote directory to the local filesystem (a client function) is called mounting a 
directory. Offering a directory for remote access (a server function) is called sharing a directory. [2] Frequently, 
a system runs both the client and the server NFS software. In this section we'll look at how to configure a system 
to share and mount directories using NFS.

[2] An older term for this function is exporting. Many systems still refer to file sharing as 
exporting.

If you're responsible for an NFS server for a large site, you should take care in planning and implementing the 
NFS environment. The discussion in this chapter tells how NFS is configured to run on a client and a server, but 
you may want more details to design an optimal NFS environment. For a comprehensive treatment, see 
Managing NFS and NIS, by Hal Stern (O'Reilly & Associates).

9.1.1 NFS Daemons 

The Network File System is run by several daemons, some performing client functions and some performing 
server functions. Before we discuss the NFS configuration, let's look at the function of the daemons that run 
NFS:

nfsd [nservers]

The NFS daemon, nfsd, runs on NFS servers. This daemon services the client's NFS requests. The 
nservers option is available on Solaris systems. It specifies how many daemons should be started.

mountd

The NFS mount daemon, mountd, processes the clients' mount requests. NFS servers run the mount 
daemon.

lockd

The lock daemon, lockd, handles file lock requests. Both clients and servers run the lock daemon. Clients 
request file locks, and servers grant them.

statd

The network status monitor daemon, statd, is required by lockd to provide monitoring services. In 
particular, it allows locks to be reset properly after a crash. Both clients and servers run statd.

The daemons necessary to run NFS are started from boot scripts. On a Solaris system, two scripts located in the 
/etc/init.d directory, nfs.client and nfs.server, handle this job. The nfs.client script starts the statd and lockd 
programs. [3] NFS server systems run those two daemons, plus the NFS server daemon, nfsd, and the mount 

file:///C|/mynapster/Downloads/warez/tcpip/ch09_01.htm (2 of 13) [2001-10-15 09:18:29]



file:///C|/mynapster/Downloads/warez/tcpip/ch09_01.htm

server daemon, mountd. On Solaris systems, the nfs.server script starts mountd and 16 copies of nfsd.

[3] On your system, the prefix "rpc." may be used on the daemon names. For example, the 
Slackware Linux system uses the filename rpc.nfsd for the NFS daemon. Check your system's 
documentation.

Each system has its own technique for starting these daemons. If some of the daemons aren't starting, make sure 
your startup scripts are correct.

9.1.2 Sharing Filesystems 

The first step in configuring a server is deciding which filesystems will be shared, and what restrictions will be 
placed on them. Only filesystems that provide a benefit to the client should be shared. Before you share a 
filesystem, think about what purpose it will serve. Some common reasons for sharing filesystems are:

●     To provide disk space to diskless clients
●     To prevent unnecessary duplication of the same data on multiple systems
●     To provide centrally supported programs and data
●     To share data among users in a group

Once you've selected the filesystems you'll share, you must configuring them for sharing using the appropriate 
commands for your system. In the following sections we emphasize the way this is done on Solaris systems. It is 
very different on Linux systems. Check your system's documentation to find out exactly how it implements NFS 
file sharing.

9.1.2.1 The share command 

On Solaris systems, directories are shared using the share command.

A simplified syntax for the share command is:

share -F nfs [-o options] pathname

where pathname is the path of the directory the server is offering to share with its clients, and options are 
the access controls for that directory. The commonly used options are:

rw

The rw option grants read and write access to the shared filesystem. It can be specified in the form 
rw=host:host... to identify the individual hosts that are granted this access. When used in this way, only 
the hosts identified in the list are given access to the filesystem. If the colon-separated list of hostnames is 
not provided with the rw option, all hosts are given read/write access to the filesystem. In fact, if no 
options are specified at all, the share command defaults to giving all clients read/write access. This 
default is acceptable if your systems are on an isolated network, but if they are on a connected network, 
this could open up a security hole. It is the best practice to restrict access to those hosts that you really 
trust.

ro

This option limits access to read-only. It also can be specified with a colon-separated host list, e.g., 

file:///C|/mynapster/Downloads/warez/tcpip/ch09_01.htm (3 of 13) [2001-10-15 09:18:29]



file:///C|/mynapster/Downloads/warez/tcpip/ch09_01.htm

ro=host:host.... When the host list is included, only the hosts on the list have access and that access is 
limited to read-only.

root=host

This option allows the root user on the specified host to have root access to the shared filesystem. 
Normally, the root user on a remote system is mapped to the userid nobody and given only normal user 
privileges. Granting root access is a big security risk.

The rw and ro options can be combined to grant different levels of access to different clients. For example:

share -F nfs -o rw=almond:pecan ro  /usr/man
share -F nfs -o rw=peanut:almond:pecan:walnut  /export/home/research

The first share command grants read and write access to almond and peanut and read-only access to all other 
clients. On the other hand, the second share command grants read/write access to peanut, almond, pecan, and 
walnut, and no access of any kind to any other client.

The share command does not survive a boot. Put the share commands in the /etc/dfs/dfstab file to make sure that 
the filesystems continue to be offered to your clients even if the system reboots. Here is a sample dfstab file 
containing our two share commands:

% cat /etc/dfs/dfstab
#   place share(1M) commands here for automatic execution
#   on entering init state 3.
#
#   share [-F fstype] [ -o options] [-d "<text>"] <pathname> [resource]
#   .e.g,
#   share  -F nfs  -o rw=engineering  -d "home dirs"  /export/home2
share -F nfs -o rw=almond:pecan ro  /usr/man
share -F nfs -o rw=peanut:almond:pecan:walnut  /export/home/research

The share command, the dfstab file, and even the terminology "share" are Solaris-specific. Most UNIX systems 
say that they are exporting files, instead of sharing files, when they are offering files to NFS clients. Furthermore, 
they do not use the share command or the dfstab file; instead, they offer filesystems through the /etc/exports file. 
Linux is an example of such a system.

9.1.2.2 The /etc/exports file 

The /etc/exports file is the NFS server configuration file for Linux systems. It controls which files and directories 
are shared (exported), which hosts can access them, and what kinds of access are allowed. A sample /etc/exports 
file might contain these entries:

/usr/man        almond(rw) pecan(rw)  (ro)
/usr/local      (ro)
/home/research  peanut(rw) almond(rw) pecan(rw) walnut(rw)

This sample file says that:

●     /usr/man can be mounted by any client, but it can be written to only by almond and pecan. Other clients 

file:///C|/mynapster/Downloads/warez/tcpip/ch09_01.htm (4 of 13) [2001-10-15 09:18:29]



file:///C|/mynapster/Downloads/warez/tcpip/ch09_01.htm

have read-only access. 
●     /usr/local can be mounted by any client, with read-only access.
●     /home/research can be mounted only by the hosts peanut, almond, pecan, and walnut. These four hosts 

have read-write access.

The options used in each of the entries in the /etc/exports file determine what kinds of access are allowed. The 
information derived from the sample file is based on the options specified on each line in the file. The general 
format of the entries is as follows:

directory [host(option)]...

directory names the directory or file that is available for export. The host is the name of the client granted 
access to the exported directory while the option specifies the type of access being granted. The options used 
in the sample file are:

ro

Read-only prevents NFS clients from writing to this directory. Attempts by clients to write to a read-only 
directory fail with the message: "Read-only filesystem" or "Permission denied." If ro is specified without 
a client hostname, all clients are granted read-only access.

rw

Read-write permits clients to read and write to this directory. When specified without hostname, as simply 
(rw), all clients are granted read-write access. If a hostname is specified, only the named host is given 
read-write permission.

9.1.3 Mounting Remote Filesystems 

You need some basic information before you can decide which NFS directories to mount on your system. You 
need to know which servers are connected to your network, and which directories are available from those 
servers. A directory cannot be mounted unless it is first exported by a server.

Your network administrator is a good source for this information. The administrator can tell you what systems 
are providing NFS service, what directories they are exporting, and what these directories contain. If you are the 
administrator of an NFS server, you should develop this type of information for your users. See Chapter 4, 
Getting Started .

On Solaris systems you can also obtain information about the shared directories directly from the servers by 
using the showmount command. The NFS servers are usually the same centrally supported systems that provide 
other services such as mail and domain name service. Select a likely server and query it with the command 
showmount -e hostname. In response to this command, the server lists the directories that it exports and the 
conditions applied to their export. 

For example, a showmount -e query to filbert produces the following output:

% showmount -e filbert
export list for filbert:
/usr/man           (everyone)
/home/research     peanut,almond,walnut,pecan

file:///C|/mynapster/Downloads/warez/tcpip/ch09_01.htm (5 of 13) [2001-10-15 09:18:29]



file:///C|/mynapster/Downloads/warez/tcpip/ch09_01.htm

/usr/local         (everyone)

The export list shows the NFS directories exported by filbert, as well as who is allowed to access those 
directories. From this list, peanut's administrator may decide to mount any of the directories offered by filbert. 
Our imaginary administrator decides to:

1.  Mount /usr/man from filbert instead of maintaining the man pages locally.
2.  Mount /home/research to more easily share files with other systems in the research group.
3.  Mount the centrally maintained programs in /usr/local.

These selections represent some of the most common motivations for mounting NFS directories. These are to:

●     Save disk space
●     Share files with other systems
●     Maintain common files centrally

The amount to which you use NFS is a personal choice. Some people prefer the greater personal control you get 
from keeping files locally, while others prefer the convenience offered by NFS. Your site may have guidelines 
for how NFS should be used, which directories should be mounted, and which files should be centrally 
maintained. Check with your network administrator if you're unsure about how NFS is used at your site.

9.1.3.1 The mount command 

A client must mount a shared directory before using it. "Mounting" the directory attaches it to the client's 
filesystem hierarchy. Only directories offered by the servers can be mounted, but any part of the offered 
directory, such as a subdirectory or a file, can be mounted.

NFS directories are mounted using the mount command. The general structure of the mount command is:

mount hostname:remote-directory local-directory

The hostname identifies an NFS server, and the remote-directory identifies all or part of a directory 
offered by that server. The mount command attaches that remote directory to the client's filesystem using the 
directory name provided for local-directory. The client's local directory, called the mount point, must be 
created before mount is executed. Once the mount is completed, files located in the remote directory can be 
accessed through the local directory exactly as if they were local files.

For example, assume that filbert.nuts.com is an NFS server and that it shares the files shown in the section above. 
Further assume that the administrator of peanut wants to access the /home/research directory. The administrator 
simply creates a local /home/research directory, and mounts the remote /home/research directory offered by 
filbert on this newly created mount point.

# mkdir /home/research
# mount filbert:/home/research /home/research

Once a remote directory is mounted, it stays attached to the local file system until it is explicitly dismounted or 
the local system reboots. To dismount a directory, use the umount command. On the umount command line, 
specify either the local or remote name of the directory that is to be dismounted. For example, the administrator 
of peanut can dismount the remote filbert:/home/research filesystem from the local /home/research mount point, 

file:///C|/mynapster/Downloads/warez/tcpip/ch09_01.htm (6 of 13) [2001-10-15 09:18:29]



file:///C|/mynapster/Downloads/warez/tcpip/ch09_01.htm

with either:

# umount /home/research

or:

# umount filbert:/home/research

Booting also dismounts NFS directories. Because systems frequently wish to mount the same filesystems every 
time they boot, UNIX provides a system for automatically remounting after a boot.

9.1.3.2 The vfstab and fstab files 

UNIX systems use the information provided in a special table to remount all types of filesystems, including NFS 
directories, after a system reboot. The table is a critical part of providing users consistent access to software and 
files, so care should be taken whenever it is modified. Two different files with two different formats are used for 
this purpose by the different flavors of UNIX. Linux and BSD systems use the /etc/fstab file and Solaris, our 
System V example, uses the /etc/vfstab file.

The format of the NFS entries in the Solaris vfstab file is:

filesystem  - mountpoint  nfs  -  yes  options

The various fields in the entry must appear in the order shown above and they must be separated by whitespace. 
The items in bold (both dashes and the words nfs and yes) are keywords that must appear exactly as shown 
above. filesystem is the name of the directory offered by the server. mountpoint is the pathname of the 
local mount point, and options are the mount options discussed below. A sample NFS vfstab entry is:

filbert:/home/research  -  /home/research  nfs  -  yes  rw,soft

This entry mounts the NFS filesystem filbert:/home/research on the local mount point /home/research. The 
filesystem is mounted with the rw and soft options set. The mount options available on Solaris systems are:

rw

If permitted, mount the filesystem read/write. If the filesystem is restricted by the server to read-only, a 
warning is issued and the filesystem is mounted read-only.

ro

Mount the filesystem read-only.
remount

If the filesystem is already mounted read-only, remount the filesystem as read/write.
soft

If the server fails to respond, return an error and don't retry the request.
hard

If the server fails to respond, retry until it does respond. This is the default.

file:///C|/mynapster/Downloads/warez/tcpip/ch09_01.htm (7 of 13) [2001-10-15 09:18:29]



file:///C|/mynapster/Downloads/warez/tcpip/ch09_01.htm

bg

Do the retries in background mode.
fg

Do the retries in foreground mode.
intr

Allow a keyboard interrupt to kill a process that is hung waiting for the server to respond. Hard-mounted 
filesystems can become hung because the client retries forever, even if the server is down. This is a 
default.

nointr

Don't allow keyboard interrupts. In general, this is a bad idea.
nosuid

Do not allow an executable stored on the mounted filesystem to run setuid. This improves security but 
may limit utility.

On the Solaris system, the NFS filesystems defined in the vfstab file are mounted by a mountall command 
located in a startup file. On the Linux system, the startup file contains a mount command with the -a flag set, 
which causes Linux to mount all filesystems listed in fstab. The format of NFS entries in the /etc/fstab file is:

filesystem  mountpoint  nfs  options

The fields must appear in the order shown and must be separated by whitespace. The keyword nfs is required for 
NFS filesystems. filesystem is the name of the directory being mounted. mountpoint is the pathname of 
the local mount point. options are any of the Linux mount options listed in Table 9.1

Table 9.1: Linux Mount Options

Option Purpose

async Use asynchronous file I/O.

auto Mount when -a option is used.

dev Allow character and block special devices on the filesystem.

exec Permit execution of files from the filesystem.

noauto Don't mount with the -a option.

nodev Don't allow character and block special devices on the filesystem.

noexec Don't allow execution of files from the filesystem.

nosuid Don't allow programs stored on the filesystem to run setuid or setgid.

nouser Only root can mount the filesystem.

remount Remount a mounted filesystem with new options.

ro Mount the filesystem read-only.

rw Mount the filesystem read-write.

suid Allow programs to run setuid or setgid.

sync Use synchronous filesystem I/O.

file:///C|/mynapster/Downloads/warez/tcpip/ch09_01.htm (8 of 13) [2001-10-15 09:18:29]



file:///C|/mynapster/Downloads/warez/tcpip/ch09_01.htm

user Permit ordinary users to mount the filesystem.

soft Allow the access to time out if the server doesn't respond.

timeo=time The length of time before an access times out. Must be used with soft.

A grep of fstab shows sample NFS entries. [4]

[4] grep is used because the fstab file contains other information not related to NFS.

% grep nfs /etc/fstab
filbert:/usr/spool/mail   /usr/spool/mail   nfs rw     0 0
filbert:/usr/man          /usr/man          nfs rw     0 0
filbert:/home/research    /home/research    nfs rw     0 0

The grep shows that there are three NFS filesystems contained in the /etc/fstab file. The mount -a command in 
the boot script remounts these three directories every time the system boots.

The vfstab and fstab files are the most common methods used for mounting filesystems at boot time. There is 
another technique that automatically mounts NFS filesystems, but only when they are actually needed. It is called 
automounter.

9.1.4 NFS Automounter 

Automounter is a feature available in some NFS implementations. The best example of automounter is the 
implementation that comes with Solaris, which is the implementation we use in this section.

The automounter configuration files are called maps. Three basic map types are used to define the automounter 
filesystem (autofs).

These map types are:

Master map

The configuration file read by automount. It lists all of the other maps that are used to define the autofs 
filesystem.

Direct map

A configuration file that lists the mount points, pathnames, and options of filesystems that are to be 
mounted by the automounter daemon (automountd). 

Indirect map

A configuration file that contains pathnames and "relative" mount points. The mount points are relative to 
a directory path declared in the master map. How indirect maps are used will become clear in the 
examples.

On Solaris systems the automounter daemon (automountd) and the automount command are started by the 
/etc/init.d/autofs script. The script is run with the start option to start automounter, i.e., autofs start. It is run 
with the stop option to shut down automounter. automount and automountd are two distinct, separate 
programs. automountd runs as a daemon and dynamically mounts filesystems when they are needed. 

file:///C|/mynapster/Downloads/warez/tcpip/ch09_01.htm (9 of 13) [2001-10-15 09:18:29]



file:///C|/mynapster/Downloads/warez/tcpip/ch09_01.htm

automount processes the auto_master file to determine the filesystems that can be dynamically mounted.

To use automounter, first configure the /etc/auto_master file. Entries in the auto_master file have this format:

mount-point     map-name        options

The Solaris system comes with a default auto_master file preconfigured. Customize the file for your 
configuration. Comment out the +auto_master entry. It is only used if you run NIS+ and your servers offer a 
centrally maintained auto_master map. Also ignore the /xfn entry. It does not apply to systems that use DNS. 
Add an entry for your direct map. In the example it is called auto_direct. Here is /etc/auto_master after our 
modifications:

# Master map for automounter
#
#+auto_master
#/xfn           -xfn
/net            -hosts          -nosuid
/home           auto_home
/-              auto_direct

All lines that begin with a sharp sign (#) are comments, including the +auto_master and /xfn lines we 
commented out. The first real entry in the file specifies that the shared filesystems offered by every NFS server 
listed in the /etc/hosts file are automatically mounted under the /net directory. A sub-directory is created for each 
server under /net using the server's hostname. For example: assume that filbert is listed in the hosts file and that it 
exports the /usr/local directory. This auto_master entry automatically makes that remote directory available 
on the local host as /net/filbert/usr/local.

The second entry automatically mounts the home directories listed in the /etc/auto_home map under the /home 
directory. A default /etc/auto_home file is provided with the Solaris system. Comment out the +auto_home 
entry found in the default file. It is used only if you run NIS+ and your servers offer a centrally maintained 
auto_home map. Add entries for individual user home directories or for all home directories from specific 
servers. Here is a modified auto_home map:

# Home directory map for automounter
#
#+auto_home
craig           almond:/export/home/craig
*               pecan:/export/home/&

The first entry mounts the /export/home/craig filesystem shared by almond on the local mount point /home/craig. 
The auto_home map is an indirect map, so the mount point specified in the map (craig) is relative to the /home 
mount point defined in the auto_master map. The second entry mounts every home directory found in the 
/export/home filesystem offered by pecan to a "like-named" mount point on the local host. For example: assume 
that pecan has two home directories, /export/home/daniel and /export/home/kristin. Automounter makes them 
both available on the local host as /home/daniel and /home/kristin. The asterisk (*) and the ampersand (&) are 
wildcard characters used specifically for this purpose in autofs maps.

That's it for the auto_home map. Refer back to the auto_master map. The third and final entry in the 
/etc/auto_master file is:

file:///C|/mynapster/Downloads/warez/tcpip/ch09_01.htm (10 of 13) [2001-10-15 09:18:29]



file:///C|/mynapster/Downloads/warez/tcpip/ch09_01.htm

/-              auto_direct

We added this entry for our direct map. The special mount point /- means that the map name refers to a direct 
map. Therefore the real mount points are found in the direct map file. We named our direct map file 
/etc/auto_direct. There is no default direct map file. You must create it from scratch. The file we created is:

# Direct map for automounter
#
/home/research  -rw       filbert:/home/research
/usr/man        -ro,soft  pecan,almond,filbert:/usr/share/man

The format of entries in a direct map file is:

mount-point     options   remote filesystem

Our sample file contains two typical entries. The first entry mounts the remote filesystem /home/research offered 
by the server filbert on the local mount point /home/research. It is mounted read-write. The second entry mounts 
the man pages read-only with a "soft" timeout. [5] Note that three servers are specified for the man pages in a 
comma-separated list. If a server is unavailable or fails to respond within the soft timeout period, the client asks 
the next server in the list. This is one of the nice features of automounter.

[5] See the description of NFS mount options earlier in this chapter.

Automounter has four key features: the -hosts map, wildcarding, automounting, and multiple servers. The -hosts 
map makes every exported filesystem from every server listed in the /etc/hosts file available to the local user. 
The wildcard characters make it very easy to mount every directory from a remote server to a like-named 
directory on the local system. Automounting goes hand-in-glove with these two features because only the 
filesystems that are actually used are mounted. While -hosts and wildcards make a very large number of 
filesystems available to the local host, automounting limits the filesystems that are actually mounted to those that 
are needed. The last feature, multiple servers, improves the reliability of NFS by removing the dependence on a 
single server.

9.1.5 NFS Authentication Server 

The PC NFS Authentication and Print Server (pcnfsd) is needed to support non-UNIX clients on an NFS 
network. The print services of this daemon are covered in the next section. The authentication services are the 
services needed by NFS.

The reason NFS needs an authentication server for some clients springs from the difference between trusted host 
security and password authenticated security. Trusted host security is discussed in Chapter 12, Network Security 
. Essentially, it works this way: we trust that a remote host has already authenticated its users, and we grant those 
users equivalent access to our local host. This is more or less how NFS treats its clients. The Solaris share 
command grants NFS access to hosts. A user is allowed to access files through NFS using standard UNIX user, 
group, and world file permissions based on the userid (UID) and groupid (GID) provided by the trusted host. 
Remember, unless a share command option is used to restrict access, all hosts are trusted to access the shared 
filesystem.

The trusted host model does not work for non-UNIX clients for a couple of reasons. First, some systems do not 
perform local user authentication; for example, anyone who sits at the keyboard of a DOS PC has complete 

file:///C|/mynapster/Downloads/warez/tcpip/ch09_01.htm (11 of 13) [2001-10-15 09:18:29]



file:///C|/mynapster/Downloads/warez/tcpip/ch09_01.htm

access to the system. Second, some systems do not employ user or group IDs and do not have any values that can 
be mapped to the UNIX user or group file permissions. At best, an unauthenticated user can be granted world 
permissions. [6] We need a server that authenticates usernames and passwords and assigns UIDs and GIDs to the 
authenticated users. That's what the PC NFS authentication server does.

[6] Users who have not been authenticated are assigned the user ID nobody and given world 
permissions.

The authentication server can run on any system on the network. It is not necessary to run it on the NFS server, 
but that is the most common configuration. The PC NFS authentication server is not included in the software of 
all UNIX systems. It is included with our Linux system but not with our Solaris system. If it doesn't come with 
your UNIX system, don't worry; the source code for pcnfsd is available from many anonymous FTP servers on 
the Internet. Download the source code. Compile the software with make. [7] If pcnfsd compiles without errors, 
copy the daemon into a system directory such as /usr/etc. Then add code to start pcnfsd from a boot script. On a 
Slackware Linux system, simply uncomment the lines in the /etc/rc.d/rc.inet2 file that start rpc.nfsd.

[7] See Networking Personal Computers with TCP/IP by Craig Hunt (O'Reilly & Associates) for a 
full example of downloading, compiling, and installing pcnfsd.

Normally starting a daemon from inetd is an alternative to starting it from a boot script. However, Sun cautions 
against starting pcnfsd from inetd because the slow startup of this daemon can cause time-out errors.

Once the pcnfsd daemon is installed and running, the server authenticates usernames and passwords for its 
clients. Here's how. When the user asks to mount a remote filesystem, the client software prompts him for a 
username and password. It sends them to the authentication server. The server validates them against its 
/etc/passwd file. A user that can successfully login to the server is consider to be a valid NFS user. The server 
sends the client the UID and GID that are assigned to the user in the passwd file. The client uses them for NFS 
access.

The authentication server must have an entry in the /etc/passwd file for every user who needs NFS access. It is 
common for a large UNIX server, such as the mail server that has an account for every mail user, to be used as 
the authentication server.

9.1.5.1 NFS print services 

NFS-based print services are easy to understand and simple to configure. The NFS server exports a printer spool 
directory to its clients, and the clients copy print files into that directory. pcnfsd sends files deposited in the 
directory to printers accessible to the server. Any printer defined by the server can be used.

To add NFS print service to an NFS server, first install pcnfsd. Next, make a print spool directory on the server 
for the print clients. Add the spool directory to the shared filesystems in the /etc/dfs/dfstab file or /etc/exports 
file, as appropriate for your system.

Finally tell pcnfsd what directory to use for spooling print jobs. Use the spool command in the /etc/pcnfsd.conf 
configuration file to define the directory name on most systems. On others, for example our Linux system, define 
the directory on the pcnfsd command line. See the pcnfsd manpage for details.

Finished! Running pcnfsd and exporting the printer spool directory are all that is required to configure an NFS 
print server, assuming that the printers are already properly configured. Check the printers by logging directly 
into the print server and issuing an lpr command for each printer you wish to test. See the following section on 

file:///C|/mynapster/Downloads/warez/tcpip/ch09_01.htm (12 of 13) [2001-10-15 09:18:29]



file:///C|/mynapster/Downloads/warez/tcpip/ch09_01.htm

lpr and lpd if a printer is not properly configured.

Previous: 8.5 Summary TCP/IP Network 
Administration

Next: 9.2 Line Printer 
Daemon 

8.5 Summary Book Index 9.2 Line Printer Daemon 

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/ch09_01.htm (13 of 13) [2001-10-15 09:18:29]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Chapter 9] 9.2 Line Printer Daemon 

Previous: 9.1 The Network 
File System 

Chapter 9
Configuring Network Servers 

Next: 9.3 Network 
Information Service 

 

9.2 Line Printer Daemon 

The Line Printer Daemon (lpd) provides printer services for local and remote users. lpd manages the printer 
spool area and the print queues. lpd is started at boot time from a startup script. It is generally included in the 
startup of Linux and BSD systems by default, so you might not need to add it to your startup script. For 
example, it is started by the /etc/rc.d/rc.inet2 script on a Slackware Linux system.

9.2.1 The printcap File 

When lpd starts, it reads the /etc/printcap file to find out about the printers available for its use. The printcap 
file defines the printers and their characteristics. Configuring a printcap file is the scariest part of setting up a 
UNIX print server. It scares system administrators because the parser that reads the file is very finicky, and 
the syntax of the parameters in the file is terse and arcane. Most parser problems can be avoided by following 
these rules:

●     Start each entry with a printer name that begins in the first column. No white-space should precede the 
first printer name. Multiple printer names can be used if they are separated by pipe characters (|). One 
entry must have the printer name lp. If you have more than one printer on the server, assign lp to the 
"default" printer.

●     Continue printer entries across multiple lines by escaping the newline character at the end of the line 
with a backslash (\), and by beginning the following line with a tab. Take care that no blank space 
comes after the backslash. The character after the backslash must be the newline character.

●     Every field, other than the printer name, begins and ends with a colon. The character before the 
backslash on a continued line is a colon and the first character after the tab on the continuation line is a 
colon.

●     Begin comments with a sharp sign (#).

The configuration parameters used in a printcap file describe the characteristics of the printer. These 
characteristics are called "capabilities" in the printcap documentation, but really they are the printer 
characteristics that lpd needs to know in order to communicate with the printer. Parameters are identified by 
names that are two characters long and are usually assigned a value. The syntax of the parameters varies 
slightly depending on the type of value they are assigned. Parameters come in three different flavors:

Boolean

All printcap Boolean values default to "false." Specifying a Boolean enables its function. Booleans are 
specified simply by entering the two-character parameter name in the file. For example, :rs: enables 
security for remote users.

file:///C|/mynapster/Downloads/warez/tcpip/ch09_02.htm (1 of 6) [2001-10-15 09:18:30]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


[Chapter 9] 9.2 Line Printer Daemon 

Numeric

Some parameters are assigned numeric values. For example, :br#9600: sets the baud rate for a serial 
printer.

String

Some parameters use string values. For example, :rp=laser: defines the name of a remote printer.

A glance at the manpage shows that there are many printcap parameters. Thankfully, you'll never need to use 
most of them. Most printer definitions are fairly simple, and most printcap files are small. Writing a printcap 
from scratch is often unnecessary. Ask the other system administrators on the newsgroup for your system. 
You'll be surprised how often others have already solved the problem and how willing they are to help.

Print servers usually have only one or two directly attached printers; any other printers defined in the printcap 
are probably remote printers. Most, if not all, of the printers defined in a client's printcap are remote printers. 

#
# Remote LaserWriter
#
lw:\
        :lf=/var/adm/lpd-errs:\
        :lp=:rm=pecan:rp=lw:\
        :sd=/var/spool/lpd-lw:

The lw printer in this sample printcap file is a remote printer. The remote machine to which the printer is 
attached is defined by the :rm=pecan: parameter and the name of the remote printer on that machine is 
defined by the :rp=lw: parameter. The lf parameter points to the log file used to log status and error messages. 
Multiple printers can use the same log file. The final parameter, sd, defines the spool directory. Each printer 
has its own unique spool directory. Defining the remote printer in the client's printcap file is all that is needed 
to configure an LPD client. 

9.2.1.1 LPD security 

The line printer daemon uses trusted host security, and it can use the same security file (hosts.equiv) as the r 
commands. [8] All of the users on a host listed in the server's hosts.equiv file are permitted to use the server's 
printers. To restrict access to only those remote users who have accounts on the server, include the :rs: 
Boolean in the printer description in the printcap file. When :rs: is specified, only users who are logged into 
"like-named" accounts on a trusted host are granted access to the printer. This parameter is applied on a 
printer-by-printer basis, so it is possible to restrict access to a special printer while permitting broader access 
to the other printers on the system.

[8] See Chapter 12 for more information about the r commands and trusted host security.

A problem with using the hosts.equiv file for printer access is that the file also grants "password-free" login 
access. It is common to want to share a printer without wanting to grant any other access to the print server. 
To accommodate this, lpd also uses the /etc/hosts.lpd file for security. A trusted host defined in that file is 
given access only to printers, and the :rs: parameter works with this host just as it does with a host defined in 
the hosts.equiv file.

file:///C|/mynapster/Downloads/warez/tcpip/ch09_02.htm (2 of 6) [2001-10-15 09:18:30]



[Chapter 9] 9.2 Line Printer Daemon 

The syntax of the hosts.lpd file is exactly the same as the syntax of the hosts.equiv file. A hosts.lpd file might 
contain:

brazil
acorn

This example shows a file that restricts printer access to the users who are logged into brazil and acorn.

9.2.1.2 Using LPD 

Print jobs are sent to the line printer daemon using the Line Printer Remote (lpr) program. The lpr program 
creates a control file and sends it and the print file to lpd. There are many possible lpr command-line 
arguments, but in general the command simply identifies the printer and the file to be printed, as in:

% lpr -Plj ch09

This command sends a file called ch09 to a printer called lj. The printer can be local or remote. It doesn't 
matter as long as the printer is defined in the printcap file and therefore known to lpd.

The client software provides commands to allow the user to check the status of the print job. Table 9.2 lists 
these commands, their syntax, and their meaning.

Table 9.2: Line Printer Commands

Command Usage

lpc restart [printer] Starts a new printer daemon.

lpc status [printer] Displays printer and queue status.

lpq -Pprinter [user] [job] Lists the jobs in the printer's queue.

lprm -Pprinter job Removes a print job from the queue.

In this syntax printer is the name of the printer as defined in the /etc/printcap file, user is the username of the 
owner of a print job, and job is the job number associated with the print job while it is waiting in the queue. 
The keyword all can be used in place of a printer name in any lpc command to refer to all printers.

While lpc is primarily for the system administrator, the status and restart commands can be used by anyone. 
All of the commands shown in Table 9.2 are available to users.

The lpq command displays a list of jobs queued for a printer. Command-line arguments permit the user to 
select which printer queue is displayed and to limit the display from that queue to a specific user's jobs or 
even to a specific job. Here's an example of displaying the queue for the printer laser:

% lpq -Plaser
Rank   Owner      Job  Files                              Total Size
1st    tyler      405   ...                                5876 bytes
2nd    daniel     401   ...                               12118 bytes
3rd    daniel     404   ...                               12118 bytes

file:///C|/mynapster/Downloads/warez/tcpip/ch09_02.htm (3 of 6) [2001-10-15 09:18:30]



[Chapter 9] 9.2 Line Printer Daemon 

A queued print job can be removed by the owner of the job with the lprm command. Assume that daniel 
wants to remove print job number 404 shown in the example above. He enters the following command:

% lprm -Plaser 404
dfA404acorn dequeued
cfA404acorn dequeued

Along with the r commands, lpd and lpr were among the first commands created for UNIX to exploit the 
power of TCP/IP networking. Managing printers is primarily a system administration task. Only those aspects 
of LPD related to remote printing and network security are covered here.

9.2.2 Solaris Line Printer Service 

The Solaris system uses the Line Printer (LP) print service that is used by most System V UNIX systems. LP 
offers the same type of service as LPD.

The LP configuration files are located in the /etc/lp directory. These files perform the same basic function as 
the /etc/printcap file does for LPD. However, the /etc/lp files are not directly edited by the system 
administrator. On a Solaris system, printers are configured through administrative commands or through the 
Printer Manager window of the admintool. Figure 9.1 shows the Printer Manager window.

Figure 9.1: Printer Manager

Clients select Add, the Access to Printer from the Add Printer sub-menu of the Edit menu, and enter the name 
of the remote printer and its server in the window that appears. Servers share printers simply by selecting Add 
Local Printer in the same menu and configuring a local printer. By default, Solaris shares all local printers.

Remote printer access is controlled by the /etc/lp/Systems file. It comes pre-configured with the following 
entry:

file:///C|/mynapster/Downloads/warez/tcpip/ch09_02.htm (4 of 6) [2001-10-15 09:18:30]



[Chapter 9] 9.2 Line Printer Daemon 

+:x:-:s5:-:n:10:-:-:Allow all connections

As the comment at its end makes clear, this entry grants all remote systems access to the local printers. The 
first field defines the name of the host being granted access. When a plus (+) is used in this field, it means all 
hosts.

The fields in an /etc/lp/Systems entry are separated by colons (:). The field containing an x and all of the fields 
containing a dash (-) can be ignored. These fields are unused.

The fourth field identifies the type of operating system used on the remote client. It contains either s5 for 
System V computers that use LP to print jobs, or bsd for BSD systems that use LPD.

The n in the sixth field indicates that this "connection" should never be timed out and removed from the 
system. A timeout period in minutes could be entered in this field, but this is not usually done. Keep the 
connection available as long as the local server is up. The 10 is a related value. It indicates that if a 
connection to a remote system fails, it should be retried after 10 minutes. This is a good value. It is long 
enough to give the remote system a chance to restart after a crash. Both n and 10 are the defaults and don't 
usually need to be changed.

Don't directly edit the /etc/lp/Systems file. Modify it with the lpsystem command. To remove a system from 
the Systems file, use lpsystem with the -r hostname command-line argument, where hostname is the value in 
the first field of the entry you wish to delete. For example, to remove the plus sign (+) entry from the default 
/etc/lp/Systems file, type:

# lpsystem -r +

To add an entry to the Systems file, use the lpsystem command without the -r option. For example, to add a 
BSD system named macadamia, enter:

# lpsystem -t bsd -y "Linux PC in room 820" macadamia

The command adds the following entry to the Systems file:

macadamia:x:-:bsd:-:n:10:-:-:Linux PC in room 820

The -t command-line option defines the operating system type. The -y option defines the comment; 
macadamia is, of course, the hostname. We accepted the default values for the timeout and the retry intervals. 
These could have been modified from the command line using the -T timeout and the -R retry options. See 
the manpage for lpsystem for more information.

All UNIX systems provide some technique for sharing printers. The network administrator's task is to ensure 
that the printers are accessible via the network and that they are properly secured.

Previous: 9.1 The Network 
File System 

TCP/IP Network 
Administration

Next: 9.3 Network 
Information Service 

file:///C|/mynapster/Downloads/warez/tcpip/ch09_02.htm (5 of 6) [2001-10-15 09:18:30]



[Chapter 9] 9.2 Line Printer Daemon 

9.1 The Network File System Book Index 9.3 Network Information 
Service 

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/ch09_02.htm (6 of 6) [2001-10-15 09:18:30]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Chapter 9] 9.3 Network Information Service 

Previous: 9.2 Line Printer 
Daemon 

Chapter 9
Configuring Network Servers 

Next: 9.4 A BOOTP Server 

 

9.3 Network Information Service 

The Network Information Service (NIS) [9] is an administrative database that provides central control 
and automatic dissemination of important administrative files. NIS converts several standard UNIX 
files into databases that can be queried over the network. The databases are called NIS maps. Some 
maps are created from files that you're familiar with from system administration, such as the password 
file (/etc/passwd) and the groups file (/etc/group). Others are derived from files related to network 
administration:

[9] NIS was formerly called the "Yellow Pages," or yp. Although the name has changed, 
the abbreviation yp is still used.

/etc/ethers

Creates the NIS maps ethers.byaddr and ethers.byname. The /etc/ethers file is used by RARP 
(see Chapter 2, Delivering the Data).

/etc/hosts

Produces the maps hosts.byname and hosts.byaddr (see Chapter 3, Network Services).
/etc/networks

Produces the maps networks.byname and networks.byaddr (see Chapter 3).
/etc/protocols

Creates the two maps protocols.byname and protocols.byaddr (see Chapter 2).
/etc/services

Produces a single map called services.byname (see Chapter 2).
/etc/aliases

Defines electronic mail aliases and produces the maps mail.aliases and mail.byaddr (see 
Chapter 10).

Check the maps available on your server with the ypcat -x command. This command produced the 

file:///C|/mynapster/Downloads/warez/tcpip/ch09_03.htm (1 of 5) [2001-10-15 09:18:31]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


[Chapter 9] 9.3 Network Information Service 

same map list on both our Solaris and Linux sample systems. Your server may display a longer list. 
Here is the list from my Solaris system:

% ypcat -x
Use "passwd"    for map "passwd.byname"
Use "group"     for map "group.byname"
Use "networks"  for map "networks.byaddr"
Use "hosts"     for map "hosts.byname"
Use "protocols" for map "protocols.bynumber"
Use "services"  for map "services.byname"
Use "aliases"   for map "mail.aliases"
Use "ethers"    for map "ethers.byname"

The advantage of using NIS is that these important administrative files can be maintained on a central 
server, and yet completely accessible to every workstation on the network. All of the maps are stored 
on a master server that runs the NIS server process ypserv. The maps are queried remotely by client 
systems. Clients run ypbind to locate the server.

The NIS server and its clients are a NIS domain - a term NIS shares with DNS. The NIS domain is 
identified by a NIS domain name. The only requirement for the name is that different NIS domains 
accessible through the same local network must have different names. Although NIS domains and 
DNS domains are distinct entities, Sun recommends using the DNS domain name as the NIS domain 
name to simplify administration and reduce confusion.

NIS uses its domain name to create a directory within /var/yp where the NIS maps are stored. For 
example, the DNS domain of our imaginary network is nuts.com, so we also use this as our NIS 
domain name. NIS creates a directory named /var/yp/nuts.com and stores the NIS maps in it.

While the NIS protocols and commands were originally defined by Sun Microsystems, the service is 
now widely implemented. To illustrate this, the majority of examples in this section come from Linux - 
not from Solaris. The syntax of the commands is very similar from system to system.

The command domainname checks or sets the NIS domain name. The superuser can make nuts.com 
the NIS domain name by entering:

# domainname nuts.com

The NIS domain name is normally configured at startup by placing the domainname command in one 
of the startup files. On Linux and Solaris systems, the value for the NIS domain name is taken from the 
/etc/defaultdomain file. This file is used as input to a domainname command in one of the startup 
files. As shown below, defaultdomain contains only the name of the NIS domain.

% cat /etc/defaultdomain
nuts.com

file:///C|/mynapster/Downloads/warez/tcpip/ch09_03.htm (2 of 5) [2001-10-15 09:18:31]



[Chapter 9] 9.3 Network Information Service 

Initialize the NIS server and build the initial maps with make. The /var/yp/Makefile contains the 
instructions needed to build the maps. As noted above, it creates a directory using the NIS domain 
name. The Makefile reads the files in the /etc directory and places maps created from them in the new 
directory. To initialize a Linux system as a NIS server:

# domainname nuts.com
# cd /var/yp 
# make
make[1]: Entering directory '/var/yp/nuts.com'
Updating hosts.byname...
Updating hosts.byaddr...
Updating networks.byaddr...
Updating networks.byname...
Updating protocols.bynumber...
Updating protocols.byname...
Updating rpc.byname...
Updating rpc.bynumber...
Updating services.byname...
Updating passwd.byname...
Updating passwd.byuid...
Updating group.byname...
Updating group.bygid...
Updating netid.byname...
make[1]: Leaving directory '/var/yp/nuts.com'

After initializing the maps, start the NIS server process ypserv and the NIS binder process ypbind.

# ypserv
# ypbind

Our system is now running as both a NIS server and a NIS client. A quick test with ypwhich shows 
that we are bound to the correct server. ypcat or ypmatch test that we can retrieve data from the 
server.

# ypwhich
localhost
# ypcat hosts
172.16.55.105            cow cow.nuts.com
172.16.55.106            pig pig.nuts.com
172.16.26.36             island.nuts.com island
127.0.0.1                localhost

The clients need only to define the correct domain name and to run the binder software ypbind:

# domainname nuts.com 

file:///C|/mynapster/Downloads/warez/tcpip/ch09_03.htm (3 of 5) [2001-10-15 09:18:31]



[Chapter 9] 9.3 Network Information Service 

# ypbind

Most NIS clients use ypbind to locate the server. Using the NIS domain name, ypbind broadcasts a 
request for a server for that domain. The first server that responds is the server to which the client 
"binds." The theory is that the server that responds quickest is the server with the least workload. 
Generally this works well. However, it is possible for the client to bind to an inappropriate system, 
e.g., a system that was accidentally configured to run ypserv or one that was maliciously configured to 
be a false server. Because of this possibility, some systems allow you to explicitly configure the server 
to which the client will bind. Linux provides the /etc/yp.conf file for this purpose. The syntax of the 
entries in different versions of this file varies, so see your system documentation before attempting to 
use it.

Place the NIS domain name in the /etc/defaultdomain file and the ypserv and ypbind commands in a 
startup file so that the NIS setup will survive the boot. These commands may already be in your startup 
file. On our Linux client all we needed to do was uncomment the appropriate lines in /etc/rc.d/rc.inet2. 
On the Linux NIS server it was a little more complicated. In addition to uncommenting the lines for 
domainname and ypbind we added lines to start ypserv.

NIS is a possible alternative to DNS but most systems use both NIS and DNS. Hostnames can be 
converted to IP addresses by DNS, NIS, and the host file. The order in which the various sources are 
queried is defined in the nsswitch.conf file.

9.3.1 The nsswitch.conf file 

The Name Service Switch file (nsswitch.conf) defines the order in which the sources of information are 
searched. Despite its name, it applies to more than just name service. All of the databases handled by 
NIS are covered by the nsswitch.conf file, as shown in this example:

hosts:      dns  nis  files
networks:   nis  [NOTFOUND=return]  files
services:   nis  files
protocols:  nis  files

The first entry in the file says that a hostname lookup is first passed to DNS for resolution; if DNS fails 
to find a match, the lookup is then passed to NIS and finally looked up in the hosts file. The second 
entry says that network names are looked up through NIS. The [NOTFOUND=return] string says to 
use the networks file only if NIS fails to respond, that is, if NIS is down. In this case, if NIS answers 
that it cannot find the requested network name, terminate the search. The last two entries search for 
services port and protocol numbers through NIS and then in the files in the /etc directory.

9.3.2 NIS+ 

Before leaving the topic of NIS, we should say a word about NIS+. It is just a short discussion, 
because I do not use NIS+ and I do not know much about it.

file:///C|/mynapster/Downloads/warez/tcpip/ch09_03.htm (4 of 5) [2001-10-15 09:18:31]



[Chapter 9] 9.3 Network Information Service 

NIS+ replaces NIS on Sun systems. It is not a new version of NIS, but a completely new software 
product that provides all of the functionality of NIS and some new features. The new features are:

●     Improved security. NIS does not authenticate servers, as we noted in the ypbind discussion 
above, or clients. NIS+ provides authentication of users with a secure DES-encrypted 
authentication scheme. NIS+ also provides various levels of access so that different users have 
authority to look at different levels of data. NIS can only provide the same access to everyone 
in the NIS domain.

●     A hierarchical, decentralized architecture. NIS+, like DNS, is a distributed, hierarchical 
database system. This allows for a very large namespace. It also allows distributed management 
of the information structure while maintaining consistent access to the data. NIS is a flat 
structure. All information about a NIS domain comes from a single master server and NIS 
domains are not interrelated.

●     Enhanced data structures. NIS converts ASCII files into simple keyed files that the NIS+ 
documentation calls "two-column maps." NIS+ builds multicolumn database tables. Tables can 
be searched in a variety of ways to retrieve information about an entry. In addition, NIS+ tables 
can be linked together to provide related information about an entry.

Clearly NIS+ has some excellent new features and advantages over NIS. So why don't I use it? Good 
question! The hierarchical architecture and enhanced data structures are important if you have a very 
large network and lots of data in your namespace. However, many sites evolved using NIS on local 
subnets and do not see the need to move the entire enterprise under NIS+. Improved security seems 
like a real winner, but sites with low security requirements don't see the need for additional security 
and sites with high security requirements may already be behind a firewall that blocks external NIS 
queries. Additionally, NIS+ is not available for as many operating systems as NIS. Taken together, 
these reasons have slowed the move to NIS+.

To learn more about NIS+ and how to install it on your system, read the NIS+ Transition Guide, the 
Name Service Configuration Guide, and the Name Service Administration Guide. All of these are 
available from Sun as part of the Solaris System and Network Administration manual set.

NIS and NIS+ provide a wide range of system configuration information to their clients. However, 
they cannot provide all of the information needed to configure a TCP/IP system. In the next two 
sections, we look at configuration servers that can do the entire job. 

Previous: 9.2 Line Printer 
Daemon 

TCP/IP Network 
Administration

Next: 9.4 A BOOTP Server 

9.2 Line Printer Daemon Book Index 9.4 A BOOTP Server 

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/ch09_03.htm (5 of 5) [2001-10-15 09:18:31]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Chapter 9] 9.4 A BOOTP Server 

Previous: 9.3 Network 
Information Service 

Chapter 9
Configuring Network Servers 

Next: 9.5 DHCP 

 

9.4 A BOOTP Server 

A UNIX system becomes a BOOTP server when it runs the BOOTP daemon (bootpd). Some systems, such as Linux, 
include the daemon with the operating system. Other systems, like Solaris, do not. Even systems that provide bootpd 
as part of the system software do not run the daemon by default.

There are two ways to run the BOOTP daemon: it can be started at boot time from a startup script or it can be started 
by the Internet daemon, inetd. If the server has a large number of clients that are frequently rebooted, run bootpd from 
a startup file. Starting bootpd in this manner reduces the amount of "startup" overhead because the daemon is only 
started once. Possible lines for starting bootpd from the rc.inet2 file on a Slackware Linux system are:

if [ -f /usr/sbin/bootpd -a -f /etc/bootptab ]; then
      echo -n " bootpd"
      /usr/sbin/bootpd -s
fi

The code checks to make sure that the daemon and its configuration file are available. bootpd is then started with the -
s switch. This switch tells bootpd to continue running and listening to the bootps port, and not to time out even if there 
is no activity on that port. The disadvantage of starting bootpd in this manner is that it continues to use system 
resources even when it is not needed. The preferred way to start bootpd is from inetd. To start it from inetd on a 
Slackware 96 Linux system, uncomment the bootps entry in the inetd.conf file and correct the path and daemon 
name. [10] The completed inetd.conf entry is: 

[10] The Slackware 96 inetd.conf file attempts to start in.bootpd instead of bootpd, which is the actual 
name of the daemon on that system. I'm sure this will be corrected in later releases of Slackware.

bootps    dgram     udp  wait root /usr/sbin/bootpd    bootpd

This entry tells inetd to listen to UDP port 67 identified as bootps in the /etc/services file and, if it hears data on that 
port, to run /usr/sbin/bootpd as user root. Once the line is added to the inetd.conf file, send a SIGHUP to inetd to force 
it to read the new configuration, as in this example:

# ps -acx | grep inetd
  93 ?  S    0:00 inetd
# kill -HUP 93

If your systems does not include BOOTP software, don't panic: bootpd is available from the Internet. The same 
software found in the Linux system can be downloaded in the bootp-DD2.4.3.tar file. Download and untar the source 
code. su to root and compile the server software with make. The Makefile has entry points for several different UNIX 
architectures. (For our sample Solaris system, we use the sunos5gcc entry point.) If the software compiles without 
errors do a make install to install the executable daemon in the /usr/sbin directory. Do a make install.man to install 
the manpages in /usr/local/man.

file:///C|/mynapster/Downloads/warez/tcpip/ch09_04.htm (1 of 7) [2001-10-15 09:18:32]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


[Chapter 9] 9.4 A BOOTP Server 

You should define all network services, including BOOTP, in the /etc/services file. Add the following lines to your 
/etc/service file when bootpd is installed:

bootps            67/udp                          # bootp server
bootpc            68/udp                          # bootp client

Finally, make sure that you include bootpd in the /etc/inetd.conf file as shown earlier in this section. Once it is 
included and inetd is reloaded with a SIGHUP signal, you are ready to run.

Installing the daemon is only the beginning. The real challenge of managing a BOOTP server is providing the 
configuration information that clients need. The package found on Linux systems and in the bootp-DD2.4.3.tar file is 
the BOOTP daemon from Carnegie Mellon University (CMU). It has its own unique configuration commands. Other 
BOOTP server implementations use other configuration commands. However, the type of information provided by 
BOOTP is the same regardless of the implementation.

The CMU server reads its configuration from the /etc/bootptab file. The syntax used in this file is very similar to the 
syntax of the /etc/termcap and the /etc/printcap files. Each bootpd configuration parameter is two characters long and 
is separated from the other parameters by a colon. The general format of a bootptab entry is:

hostname:pa=value:pa=value:pa=value...

Where hostname is the hostname of the client, pa is the two character parameter name, and value is the value assigned 
to that parameter for this client.

Newline characters separate each client's entry. If an entry spans multiple lines, the newline character at the end of 
each line must be escaped with a backslash (\). Comments in the bootptab file begin with a sharp sign (#). Table 9.3 
contains a list of the bootptab configuration parameters.

Table 9.3: bootptab Configuration Parameters

Parameter Description Example

bf Bootfile :bf=null

bs Bootfile size :bs=22050

cs Cookie servers list :cs=172.16.3.7

df Dump file :df=/var/tmp/bootp_db.dump

dn Domain name :dn=nuts.com

ds Domain name servers list :ds=172.16.35.5

ef Vendor extension file :ef=/usr/local/xyz.extensions

gw Gateways list :gw=128.2.13.1

ha Hardware address :ha=7FF8100000AF

hd Bootfile directory :hd=/usr/boot

hn Send hostname boolean :hn

ht Hardware type :ht=ethernet

im Impress servers list :im=172.16.8.12

ip Host IP address :ip=172.16.11.1

lg Log servers list :lg=172.16.12.1

lp LPR servers list :lp=172.16.6.6

ns IEN-116 name servers list :ns=172.16.12.6

file:///C|/mynapster/Downloads/warez/tcpip/ch09_04.htm (2 of 7) [2001-10-15 09:18:32]



[Chapter 9] 9.4 A BOOTP Server 

nt Network Time Protocol server list :nt=172.16.50.30

ra Reply address list :ra=172.16.12.255

rl Resource location servers :rl=172.16.99.35

sa TFTP server :sa=172.16.12.1

sm Subnet mask :sm=255.255.255.0

sw Swap server :sw=172.16.12.56

Tn Vendor extension n :T132="12345927AD3B"

tc Template continuation :tc=default1

td Secure TFTP directory :td=/tftpboot

to Time offset :to=18000

ts Time servers list :ts=172.16.12.1

vm Vendor magic cookie selector :vm=auto

yd NIS domain name :yd=nuts

ys NIS server :ys=172.16.12.1

Every parameter in Table 9.3 that has the word "list" in its description accepts a list of whitespace-separated values. 
For example, the name server list is defined using the ds parameter in this format: :ds=172.16.12.1 172.16.7.3:. One 
parameter in the table, hn, is a Boolean. If it is specified, the server sends the hostname from the bootptab entry to the 
client. As a Boolean hn does not take any values, but all the other parameters do.

Use these parameters to configure TCP/IP for each client on your network. The following sample bootptab file defines 
the domain name, name servers, the default routers, the Ethernet addresses, the hostnames, the IP addresses, the print 
servers, and the subnet masks for three different systems. (Don't worry about the details yet; each command will be 
explained later.)

#  /etc/bootptab file for nuts.com
acorn:\
     :hd=/usr/boot:bf=null:\
     :ds=172.16.12.1 172.16.3.5:\
     :sm=255.255.255.0:\
     :lp=172.16.12.1:\
     :gw=172.16.3.25:\
     :ht=1:ha=0080c7aaa804:\
     :dn=nuts.com:hn:ip=172.16.3.4:
peanut:\
     :hd=/usr/boot:bf=null:\
     :ds=172.16.12.1 172.16.3.5:\
     :sm=255.255.255.0:\
     :lp=172.16.12.1:\
     :gw=172.16.12.1:\
     :ht=1:ha=0800200159C3:\
     :dn=nuts.com:hn:ip=172.16.12.2:
hickory:\
     :hd=/usr/boot:bf=null:\
     :ds=172.16.12.1 172.16.3.5:\
     :sm=255.255.255.0:\
     :lp=172.16.12.1:\
     :gw=172.16.3.25:\
     :ht=1:ha=0000c0a15e10:\
     :dn=nuts.com:hn:ip=172.16.3.16

file:///C|/mynapster/Downloads/warez/tcpip/ch09_04.htm (3 of 7) [2001-10-15 09:18:32]



[Chapter 9] 9.4 A BOOTP Server 

Notice that much of the information is repetitive. All of the clients use the same domain name, name servers, subnet 
masks, and print servers. Systems on the same subnets also use the same default routers. It is possible to define 
repetitive information in templates that are then referenced in individual client configurations. The following example 
uses a global template that defines the domain name, name servers, subnet mask, and print servers. The template is 
then referenced in each of the subsequent configurations by using the tc parameter.

#  /etc/bootptab file for nuts.com
defaults:\
     :hd=/usr/boot:\
     :dn=nuts.com:ds=172.16.12.1 172.16.3.5:\
     :sm=255.255.255.0:\
     :lp=172.16.12.1:\
     :hn:
acorn:\
     :tc=defaults:\
     :bf=null:\
     :gw=172.16.3.25:\
     :ht=1:ha=0080c7aaa804:\
     :ip=172.16.3.4:
peanut:\
     :tc=defaults:\
     :bf=null:\
     :gw=172.16.12.1:\
     :ht=1:ha=0800200159C3:\
     :ip=172.16.12.2:
hickory:\
     :tc=defaults:\
     :bf=null:\
     :gw=172.16.3.25:\
     :ht=1:ha=0000c0a15e10:\
     :ip=172.16.3.16:

The first entry, defaults, is the template. The remaining entries are client entries. The template defines information used 
by all of the hosts and the specific client entries define information unique to those hosts. Looking at the template and 
at one of the host entries shows a full configuration. First, let's examine the meaning of each parameter in the defaults 
template:

defaults:\

The name by which this template is referenced is defaults. A template can be assigned any name as long as it 
doesn't conflict with any hostname in the bootptab file.

:hd=/usr/boot:\

The first line of the defaults template defines the boot directory (hd). BOOTP clients can be diskless systems 
that boot from the server. The value provided by hd is used by a diskless system to retrieve the boot image. This 
directory is not used by our clients, but could be needed if a terminal server, router, or other diskless device was 
added to the network.

:dn=nuts.com:ds=172.16.12.1 172.16.3.5:\

This line defines the domain name and the addresses of the domain name servers. The dn parameter defines the 
domain name as nuts.com. The ds parameter defines the IP addresses of the name servers used on this network.

:sm=255.255.255.0:\

file:///C|/mynapster/Downloads/warez/tcpip/ch09_04.htm (4 of 7) [2001-10-15 09:18:32]



[Chapter 9] 9.4 A BOOTP Server 

The sm parameter defines this network's subnet mask.
:lp=172.16.12.1:\

This parameter defines the IP address of an lpr server that is available to every system on the network.
:hn:

The hn parameter tells the server to send the hostname to the client. When this parameter is incorporated in the 
peanut entry as part of this template, the server sends the name peanut to the client. When it is incorporated in 
the entry for acorn, the name acorn is sent. Because this is the last line in the defaults template, it does not end 
with a backslash.

Now let's look at the parameters in a client entry:

acorn:\

The hostname associated with this client entry is acorn.
:tc=defaults:\

This tc parameter tells bootpd to incorporate all of the information defined in the defaults template into this 
client entry. To use multiple templates in a client entry, include multiple tc parameters. Exclude an individual 
parameter from a template by specifying the parameter preceded by an at-sign (@). For example, to exclude the 
lpr server parameter provided by the defaults template from inclusion in the acorn configuration, we could have 
added :@lp: to the acorn entry.

:bf=null:\

The bf parameter defines the name of the boot file for diskless systems. In the sample, the parameter 
intentionally points to a file that does not exist because the client has a disk and we want it to boot from its local 
disk. When a client has its own disk, a value is not required in this field. However, in this case, the value is 
commonly set to "null" to ensure that if the client accidently has a boot file value in its BOOTREQUEST 
packet, the value will be overwritten by the server.

:gw=172.16.3.25:\

The default gateway for this subnet is 172.16.3.25.
:ht=1:ha=0080c7aaa804:\

The ht parameter identifies the type of hardware used for the client's network interface. The hardware type is 
identified by a number or by a keyword. There are several possible values but only two are meaningful: ht will 
be either 1 for Ethernet or 6 for Token Ring. See the bootptab manpage if you're interested in the other, rarely 
used, values.

The ha parameter defines the physical hardware address associated with the client's network interface. The 
example shows an Ethernet address. The type of address provided must be consistent with the hardware type 
defined by the ht parameter. These two parameters always appear together in a bootptab file.

:ip=172.16.3.4:\

The IP address for this client is 172.16.3.4.

With only three clients in the example, the benefit of using templates may not be immediately clear. The benefits of 
saving time, reducing typing, and avoiding errors are clearer when a large number of systems are involved.

It is possible to configure a BOOTP server to handle a very large number of clients. However, if a large number of 

file:///C|/mynapster/Downloads/warez/tcpip/ch09_04.htm (5 of 7) [2001-10-15 09:18:32]



[Chapter 9] 9.4 A BOOTP Server 

clients rely on a single boot server and all of the clients attempt to boot at one time, the server can be overwhelmed. 
This might happen in the case of a power outage. There are two mitigating fators: Because most clients cache the 
configuration provided by the server in a local disk file, they are not completely dependent on the server; and the 
BOOTP protocol includes back-off algorithms that avoid contention problems. Still, it is possible for an overloaded 
server to cause a significant delay when booting its clients. One way to avoid problems is to have several boot servers. 
One server for each subnet is a good design because it eliminates the need to pass BOOTP information through a 
router, which requires a special configuration.

9.4.1 BOOTP gateway 

Normally a BOOTREQUEST packet is not forwarded between networks because it is transmitted from the client using 
the limited broadcast address - 255.255.255.255. According to the RFCs, the limited broadcast address should not be 
forwarded, though it is possible to configure some routers to do so. The CMU BOOTP software provides a BOOTP 
gateway program that eliminates the need to create a special router configuration and allows you to put the 
configuration server on a different subnet from the BOOTP clients. The BOOTP gateway is bootpgw.

If your system includes BOOTP software, you may already have bootpgw. Linux includes bootpgw. If your system 
doesn't have it, it will when you download and install the bootp-2.4.3.tar file.

bootpgw is run as an alternative to bootpd. Both of these programs listen to the same port. The inetd.conf entry for 
bootpgw is:

bootps  dgram  udp  wait  root  /usr/sbin/bootpgw bootpgw 172.16.12.1

inetd listens to the bootps port and starts the bootpgw program when data is received on that port. (Adding the bootps 
port to /etc/services is covered above in the bootpd installation.) When bootpgw starts, it reads the hostname or 
address of the BOOTP server from the command line. In the example, the remote BOOTP server is 172.16.12.1. If the 
data received on the bootps port is a BOOTREQUEST packet, bootpgw retransmits the BOOTREQUEST as a unicast 
packet addressed directly to the remote configuration server. 

At least one system on each subnet must run either bootpd or bootpgw to either reply to BOOTREQUEST packets or 
to forward them to a system that will. It is not possible to run both bootpd and bootpgw on one system and there is no 
reason to try. If the subnet has a local BOOTP server up and running, there is no need to forward BOOTREQUEST 
packets to another network. Use bootpgw on very small subnets that do not justify a local configuration server. On all 
other subnets, use a local BOOTP server.

9.4.2 BOOTP extensions 

As described in Chapter 3, Dynamic Host Configuration Protocol (DHCP) is based on the Bootstrap Protocol 
(BOOTP). As you might expect, the DHCP enhancements are included in the bootp-2.4.3.tar file. Set the -
DDYNAMIC option in the Makefile to compile the DHCP extensions into bootpd. The DHCP extensions add the 
following /etc/bootptab configuration parameters:

:T254=number

The number of addresses that can be dynamically assigned, written in hex.
:T253=mode

The mode in which dynamic addresses are written into the updated bootptab file. If the mode is 0, addresses are 
written as IP addresses. If the mode is 1, addresses must be written as hostnames. If a hostname can't be found 
for a dynamically assigned address, the address assignment is not made when the mode is set to 1. If the mode 

file:///C|/mynapster/Downloads/warez/tcpip/ch09_04.htm (6 of 7) [2001-10-15 09:18:32]



[Chapter 9] 9.4 A BOOTP Server 

is 2, the dynamic address is written to the bootptab file as a hostname if there is a valid hostname for the 
address. If there is not, the IP address is used. Mode 2 is the default and usually should not be changed.

:T250=string

The string contains any additional configuration settings that should be provided to the DHCP clients in the 
form of bootptab parameters.

:dl=time

The amount of time that the client can keep the address. The client must renew its request for the address 
before the amount of time specified with the dl parameter has elapsed. If the client does not renew its lease on 
the address, the server is free to assign the address to another client. If the dl parameter is not used, the address 
is permanently assigned.

To use these parameters in the bootptab file, create a special entry in the file that begins with the string .dynamic-n. n 
in this string is a number from 1 to 32767. An example should make this clear. Assume that we want to automatically 
assign the addresses from 172.16.12.64 to 172.16.12.192, and that we want to manually assign the other addresses. We 
might enter the following in the bootptab file:

  .dynamic-1:ip=172.16.12.64:T254=0x80:T250="gw=172.16.12.1:ds=172.16.12.3"

This defines a dynamic address group starting at 172.16.12.64. The group contains 128 (80 hex) available addresses. 
Tell clients assigned an address from this group to use 172.16.12.3 as a name server and to use 172.16.12.1 as a 
gateway.

When bootpd receives an address request from a client it creates an entry for the client using the information defined 
above, and physically appends that new entry to the end of the bootptab file. The first client request adds the following 
entry to the end of the bootptab file:

172.16.12.64:ha=0080c7aaa804:gw=172.16.12.1:ds=172.16.12.3

To assign the client a hostname instead of just an IP address, add hostnames to the domain server database for all of the 
addresses in the address group.

These extensions help bootpd provide services to DHCP clients. There are also software packages available that have 
been designed from the beginning to be DHCP servers.

Previous: 9.3 Network 
Information Service 

TCP/IP Network 
Administration

Next: 9.5 DHCP 

9.3 Network Information 
Service 

Book Index 9.5 DHCP 

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/ch09_04.htm (7 of 7) [2001-10-15 09:18:32]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


file:///C|/mynapster/Downloads/warez/tcpip/ch09_05.htm

Previous: 9.4 A BOOTP 
Server 

Chapter 9
Configuring Network Servers 

Next: 9.6 Managing 
Distributed Servers 

 

9.5 DHCP 

Dynamic Host Configuration Protocol provides three important features:

Backward compatibility with Bootstrap Protocol (BOOTP)

A DHCP server can support BOOTP clients. Properly configured, a DHCP server can support 
all of your clients.

Full configurations

A DHCP server provides a complete set of TCP/IP configuration parameters. (See Appendix 
D, A dhcpd Reference, for a full list.) The network administrator can handle the entire 
configuration for her users.

Dynamic address assignments

A DHCP server can provide permanent addresses manually, permanent addresses 
automatically, and temporary addresses dynamically. The network administrator can tailor the 
type of address to the needs of the network and the client system.

In this section we configure a DHCP server that supports BOOTP clients, performs dynamic address 
allocation, and provides a wide range of configuration parameters for its clients.

Several implementations of DHCP are available for UNIX systems. Some are commercial packages 
and some run on a specific version of UNIX. We use the Internet Software Consortium (ISC) 
Dynamic Host Configuration Protocol Daemon (dhcpd). It is freely available over the Internet and 
runs on a wide variety of UNIX systems, including both our Linux and Solaris sample systems. (See 
Appendix D for information on downloading and compiling dhcpd.) If you use different DHCP 
server software, it will have different configuration commands, but it probably performs the same 
basic functions.

9.5.1 dhcpd.conf 

dhcpd reads its configuration from the /etc/dhcpd.conf file. The configuration file contains the 
instructions that tell the server what subnets and hosts it services, and what configuration information 

file:///C|/mynapster/Downloads/warez/tcpip/ch09_05.htm (1 of 6) [2001-10-15 09:18:33]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


file:///C|/mynapster/Downloads/warez/tcpip/ch09_05.htm

it should provide them. dhcpd.conf is an ASCII text file that I find more readable than the bootptab 
file. The easiest way to learn about the dhcpd.conf file is to look at a sample.

# Define global values that apply to all systems.

default-lease-time 86400;
max-lease-time 604800;
get-lease-hostnames true;
option subnet-mask 255.255.255.0;
option domain "nuts.com";
option domain-name-servers 172.16.12.1, 172.16.3.5;
option lpr-servers 172.16.12.1;
option interface-mtu 1500;

# Identify the subnet served, the options related
# to the subnet, and the range of addresses that
# are available for dynamic allocation.

subnet 172.16.3.0 netmask 255.255.255.0 {
    option routers 172.16.3.25;
    option broadcast-address 172.16.3.255;
    range 172.16.3.50 172.16.3.250;
}

subnet 172.16.12.0 netmask 255.255.255.0 {
    option routers 172.16.12.1;
    option broadcast-address 172.16.12.255;
    range 172.16.12.64 172.16.12.192;
    range 172.16.12.200 172.16.12.250;
}

# Identify each BOOTP client with a host statement

group {
    use-host-decl-names true;
    host acorn {
        hardware ethernet 00:80:c7:aa:a8:04;
        fixed-address 172.16.3.4;
    }
    host peanut {
        hardware ethernet 08:80:20:01:59:c3;
        fixed-address 172.16.12.2;
    }
    host hickory {
        hardware ethernet 00:00:c0:a1:5e:10;
        fixed-address 172.16.3.16;
    }

file:///C|/mynapster/Downloads/warez/tcpip/ch09_05.htm (2 of 6) [2001-10-15 09:18:33]



file:///C|/mynapster/Downloads/warez/tcpip/ch09_05.htm

}

This sample configuration file is similar to the example used above for bootptab. It defines a server 
that is connecting to, and serving, two separate subnets. It assigns IP addresses dynamically to the 
DHCP clients on each subnet and supports a few BOOTP clients. All of the lines that begin with a 
sharp sign (#) are comments. The first real configuration line defines a parameter for the server.

We begin the dhcpd.conf file with a set of parameters and options that apply to all of the subnets and 
clients served. The first three lines are parameters, which provide direction to the server. All three of 
the sample parameters define some aspect of how dhcpd should handle dynamic address assignments.

default-lease-time

Tells the server how many seconds long a default address lease should be. The client can 
request that the address be leased for a specific period of time. If it does, it is assigned the 
address for that period of time, given some restrictions. Frequently, clients do not request a 
specific lifetime for an address lease. When that happens, the default-lease-time is used. In the 
example, the default lease is set to one day (86400 seconds).

max-lease-time

Sets the upper limit for how long an address can be leased. Regardless of the length of time 
requested by the client, this is the longest address lease that dhcpd will grant. The life of the 
lease is specified in seconds. In the example, it is one week.

get-lease-hostname

Directs dhcpd to provide a hostname to each client that is assigned a dynamic address. Further, 
the hostname is to be obtained from DNS. This parameter is a Boolean. If it is set to false, 
which is the default, the client receives an address but no hostname. Looking up the hostname 
for every possible dynamic address adds substantial time to the startup. Set this to "false". Only 
set this to true if the server handles a very small number of dynamic addresses.

We will use a few more parameters in this configuration. All of the parameters are documented in 
Appendix D.

The next four lines are options. The options all start with the keyword option. The keyword is 
followed by the name of the option and the value assigned to the option. Options define configuration 
values that are used by the client.

The meaning of the sample options is easy to deduce. The option names are very descriptive. We are 
providing the clients with the subnet mask, domain name, domain server addresses, and print server 
address. These values parallel those in the bootptab example shown earlier in this chapter.

DHCP, however, can do more than BOOTP. For sake of illustration we also define the maximum 
transmission unit (MTU). The sample interface-mtu option tells the client that the MTU is 1500 
bytes. In this case the option is not needed because 1500 bytes is the default for Ethernet. However, it 

file:///C|/mynapster/Downloads/warez/tcpip/ch09_05.htm (3 of 6) [2001-10-15 09:18:33]



file:///C|/mynapster/Downloads/warez/tcpip/ch09_05.htm

illustrates the point that DHCP can provide a very complete set of configuration information.

The subnet statements define the networks that dhcpd will serve. The identity of each network is 
determined from the address and the address mask, both of which are required by the subnet 
statement. dhcpd provides configuration services only to clients that are attached to one of these 
networks. There must be a subnet statement for every subnet to which the server physically connects - 
even if some subnets do not contain any clients. dhcpd requires the subnet information to complete its 
startup.

The options and parameters defined in a subnet statement apply only to the subnet and its clients. The 
meaning of the sample options is clear. They tell the clients what router to use and what broadcast 
address to use. The range parameter is more interesting, as it goes to the heart of one of DHCP's key 
features.

The range parameter defines the scope of addresses that are available for dynamic address allocation. 
It always occurs in association with a subnet statement, and the range of addresses must fall within the 
address space of the subnet. The scope of the range parameter is defined by the two addresses it 
contains. The first address is the lowest address that can be automatically assigned and the second 
address is the highest address that can be assigned. The first range parameter in the example identifies 
a contiguous group of addresses from 172.16.12.50 to 172.16.12.250 that are available for dynamic 
assignment. Notice that the second subnet statement has two range parameters. This creates two 
separate groups of dynamic addresses. The reason for this might be that some addresses were already 
manually assigned before the DHCP server was installed. Regardless of the reason, the point is that 
we define a noncontiguous dynamic address space with multiple range statements.

If a range parameter is defined in a subnet statement, any DHCP client on the subnet that requests an 
address is granted one as long as addresses are available. If a range parameter is not defined, dynamic 
addressing is not enabled.

To provide automatic address assignment for BOOTP clients, add the dynamic-bootp argument to the 
range parameter. For example:

range dynamic-bootp 172.16.8.10 172.16.8.50;

By default, BOOTP clients are assigned permanent addresses. It is possible to override this default 
behavior with either the dynamic-bootp-lease-cutoff or the dynamic-bootp-lease-length parameter. 
However, BOOTP clients do not understand address leases and they do not know that they should 
renew an address. Therefore the dynamic-bootp-lease-cutoff and the dynamic-bootp-lease-length 
parameters are only used in special circumstances. If you're interested in these parameters, see 
Appendix D.

Each BOOTP client should have an associated host statement that is used to assign the client 
configuration parameters and options. It can be used to manually assign the client a permanent, fixed 
address. The sample configuration file ends with three host statements: one for acorn, one for peanut, 
and one for hickory. Each host statement contains a hardware parameter that defines the type of 

file:///C|/mynapster/Downloads/warez/tcpip/ch09_05.htm (4 of 6) [2001-10-15 09:18:33]



file:///C|/mynapster/Downloads/warez/tcpip/ch09_05.htm

network hardware (ethernet) and the physical network address (e.g., 08:80:20:01:59:c3) 
used by the client. The hardware parameter is required in host statements for BOOTP clients. The 
Ethernet address is used by dhcpd to identify the BOOTP client. DHCP clients can also have 
associated host statements. For DHCP clients, the hardware parameter is optional because a DHCP 
client can be identified by the dhcp-client-identifier option. However, it is simpler for a DHCP client 
connected via Ethernet to be identified by its Ethernet address.

A wide variety of parameters and options can be defined in the host statement. For example, adding to 
each host statement an option similar to the following one assigns each client a hostname:

option host-name acorn;

It is often easier, however, to define options and parameters at a higher level. Global options apply to 
all systems. Subnet options apply to every client on the subnet, but the options defined inside of a host 
statement only apply to a single host. The host-name option shown above would need to be repeated 
with a different hostname in every host statement. An easier way to define a parameter or option for a 
group of hosts is to use a group statement.

A group statement groups together any other statements. The sole purpose of the group statement is 
to apply parameters and options to all members of the group. That is exactly what we do in the 
example. The group statement in the sample configuration groups all of the host statements together. 
The use-host-decl-names parameter in the group statement applies to every host in the group. This 
particular parameter tells dhcpd to assign each client the hostname that is declared on the host 
statement associated with that client, which makes the hostname option unnecessary for this 
configuration.

Given the sample dhcpd.conf file shown earlier, when dhcpd receives a BOOTREQUEST packet 
from a client with the Ethernet address 08:80:20:01:59:c3, it sends that client: 

●     The address 172.16.12.2
●     The hostname peanut
●     The default router address 172.16.12.1
●     The broadcast address 172.16.12.255
●     The subnet mask 255.255.255.0
●     The domain name nuts.com
●     The domain name server addresses 172.16.12.1 and 172.16.3.5
●     The print server address 172.16.12.1
●     The MTU for an Ethernet interface

The client receives all global values, all subnet values and all host values that are appropriate. Clearly 
DHCP can provide a complete configuration.

Your DHCP configuration, though larger in the number of systems supported, probably is simpler 
than the example. Some commands appear in the sample primarily for the purpose of illustration. The 
biggest difference is that most sites do not serve more than one subnet with a single configuration 

file:///C|/mynapster/Downloads/warez/tcpip/ch09_05.htm (5 of 6) [2001-10-15 09:18:33]



file:///C|/mynapster/Downloads/warez/tcpip/ch09_05.htm

server. Servers are normally placed on each subnet. This reduces the burden on the server, particularly 
the burden that can be caused by a network-wide power outage. It eliminates the need to move boot 
packets through routers. Also, the fact that addresses are assigned at the subnet level makes placing 
the system that does that assignment at the subnet level seem somehow more logical. In the next 
section we look at how to keep distributed servers updated.

Previous: 9.4 A BOOTP 
Server 

TCP/IP Network 
Administration

Next: 9.6 Managing 
Distributed Servers 

9.4 A BOOTP Server Book Index 9.6 Managing Distributed 
Servers 

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/ch09_05.htm (6 of 6) [2001-10-15 09:18:33]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Chapter 9] 9.6 Managing Distributed Servers 

Previous: 9.5 DHCP Chapter 9
Configuring Network Servers 

Next: 9.7 Mail Servers 

 

9.6 Managing Distributed Servers 

Large networks have multiple servers. As noted earlier, the servers are often distributed around the 
network with a server on every subnet. This improves booting efficiency, but it conflicts with the goal 
of central configuration control. The more servers, the more dispersed the control, and the more likely 
that a configuration error will occur. Implementing distributed servers requires a technique for 
maintaining central control and coordinating configuration information among the servers. TCP/IP 
offers several techniques for doing this.

Any file transfer protocol can be used to move configuration data, or any other kind of data, from a 
central system to a group of distributed systems. Either FTP or TFTP will work, but both of these 
protocols present difficulties when used in this way. FTP and TFTP are interactive protocols; both 
require multiple commands to retrieve a file, making them difficult to script. Additionally, FTP 
requires password authentication before it grants access to a file and most security experts frown on 
storing passwords inside of scripts. For these reasons we don't concentrate on using these protocols to 
distribute the configuration file. Besides, if you know how to use FTP (and you should!), you know 
how to use it to send a configuration file.

Another possibility is to use Network File System (NFS) to distribute the information. NFS allows 
files on the server to be used by clients as if they are local files. It is a powerful tool, but it does have 
limitations when used to distribute configuration information to boot servers. The same power outage 
that affects the distributed servers can cause the central server to crash. The distributed servers and 
their clients can be delayed in booting waiting for the central server to come back online. Sharing a 
single copy of the configuration file conflicts with the effort to distribute boot services because it puts 
too much reliance on the central server.

One way to avoid this problem is for the distributed servers to periodically copy the configuration file 
from the mounted filesystem to a local disk. This is very simple to script, but it creates the possibility 
that the servers will be "out of sync" at certain times - the distributed servers copy the configuration 
file on a periodic schedule without knowing if, in the interim, the master file has been updated. Of 
course, it is possible for all of the remote servers to export filesystems that the central server mounts. 
It is then possible for the central server to copy the configuration file directly to the remote 
filesystems whenever the master file is updated. However, there are easier ways to do this.

The UNIX r-commands rcp and rdist provide the most popular methods for distributing the 
configuration file. 

file:///C|/mynapster/Downloads/warez/tcpip/ch09_06.htm (1 of 4) [2001-10-15 09:18:34]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


[Chapter 9] 9.6 Managing Distributed Servers 

Remote copy (rcp) is simply a file transfer protocol. It has two advantages over FTP for this particular 
application: it is easy to script and it does not require a password. rcp is easy to script because only a 
single line is needed to complete a transfer. An example of transferring the file bootptab from the 
master server to a remote server named pistachio.nuts.com is:

# rcp /etc/bootptab pistachio.nuts.com:/etc/bootptab

For every remote server that the file is sent to, add a line like the one shown above to the procedure 
that updates the master configuration file.

rcp is only one choice for distributing the central configuration file. rdist, while a little harder to use, 
is often a better choice because it has several features that make it particularly well suited for this 
application.

9.6.1 rdist 

The Remote File Distribution Program (rdist) is designed to maintain identical copies of files on 
multiple hosts. A single rdist command can distribute several different files to many different hosts. It 
does this by following the instructions stored in an rdist configuration files called a Distfile.

The function of a Distfile is similar to that of the Makefile used by the make command, and it has a 
similar syntax and structure. Now, don't panic! It's not that bad. The initial configuration of an rdist 
command is more difficult than the straightforward syntax of an rcp command, but the rdist 
command provides much more control and is much easier to maintain in the long run.

A Distfile is composed of macros and primitives. Macros can be assigned a single value or a list of 
values. If a list of values is used, the list is enclosed in parentheses, e.g., macro = ( value value ). 
Once assigned a value, the macro is referenced using the syntax ${macro}, where macro is the name 
of the macro. The other components of a Distfile, the primitives, are explained in Table 9.4 [11]

[11] For more details, see the rdist manpage.

Table 9.4: rdist Primitives

Primitive Description

install Recursively updates files and directories.

notify address Sends error/status mail messages to address.

except file Omits file from the update.

except_pat pattern Omits filenames that match the pattern.

special "command" Executes command after each file update.

The simplest way to understand how the primitives and macros are combined to make a functioning 

file:///C|/mynapster/Downloads/warez/tcpip/ch09_06.htm (2 of 4) [2001-10-15 09:18:34]



[Chapter 9] 9.6 Managing Distributed Servers 

Distfile is to look at a sample. The following configuration file distributes the current version of 
bootpd and the latest bootptab configuration file to the remote boot servers pecan, pistachio, and 
cashew:

HOSTS = ( pecan root@cashew pistachio )
FILES = ( /usr/etc/bootpd /etc/bootptab )

${FILES} -> ${HOSTS}
       install ;
       notify craig@almond.nuts.com

Let's look at each line of the file:

HOSTS = ( pecan root@cashew pistachio )

This line defines HOSTS, a macro that contains the hostname of each of the remote servers. 
Notice the entry for cashew. It tells rdist to login as root on cashew to perform the update. On 
pecan and pistachio, rdist will run under the same username it has on the local host.

FILES = ( /usr/etc/bootpd /etc/bootptab )

This macro, FILES, defines the two files that will be sent.
${FILES} -> ${HOSTS}

The -> symbol has a special meaning to rdist. It tells rdist to copy the files named at the left 
of the symbol to the hosts named at the right. In this case FILES is a macro that contains the 
file names /usr/etc/bootpd and /etc/bootptab, and HOSTS is a macro that contains the 
hostnames pecan, cashew, and pistachio. Therefore this command tells rdist to copy two files 
to three different hosts. Any primitives that follow apply to this file-to-host mapping.

install ;

The install primitive explicitly tells rdist to copy the specified files to the specified hosts if the 
corresponding file is out-of-date on the remote host. A file is considered "out-of-date" if the 
creation date or the size is not the same as the master file. The semicolon at the end of this line 
indicates that another primitive follows.

notify craig@almond.nuts.com

Status and error messages are to be mailed to craig@almond.nuts.com.

Additional files and hosts can be easily added to this file. In the long run most people find rdist the 
simplest way to distribute multiple files to multiple hosts.

One final note: the configuration file does not have to be called Distfile. Any file name can be 
specified on the rdist command line using the -f option. For example, the Distfile shown above could 
be saved under the name bootp.dist and invoked with the following command:

file:///C|/mynapster/Downloads/warez/tcpip/ch09_06.htm (3 of 4) [2001-10-15 09:18:34]



[Chapter 9] 9.6 Managing Distributed Servers 

% rdist -f bootp.dist

Previous: 9.5 DHCP TCP/IP Network 
Administration

Next: 9.7 Mail Servers 

9.5 DHCP Book Index 9.7 Mail Servers 

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/ch09_06.htm (4 of 4) [2001-10-15 09:18:34]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Chapter 9] 9.7 Mail Servers 

Previous: 9.6 Managing 
Distributed Servers 

Chapter 9
Configuring Network Servers 

Next: 9.8 Summary 

 

9.7 Mail Servers 

In this section we configure a system to act as a post office server. A post office server, or mailbox server, is 
a computer that holds mail for a client computer until the client is ready to download it for the mail reader. 
This service is essential to support mobile users and to support small systems that are frequently offline and 
thus not able to receive mail in real time. We look at two techniques for creating a mailbox server: Post 
Office Protocol (POP), which is the most popular protocol for this purpose, and Internet Message Access 
Protocol (IMAP), which is growing in popularity. We start with POP.

9.7.1 POP Server 

A UNIX host turns into a POP mail server when it runs a POP daemon. Check your system's documentation 
to see if a POP daemon is included in the system software. If it isn't clear from the documentation, check the 
inetd.conf file, or try the simple telnet test from Chapter 4. If the server responds to the telnet test, not only 
is the daemon available on your system, it is installed and ready to run.

% telnet localhost 110
Trying 127.0.0.1 ...
Connected to localhost.
Escape character is ']'.
+OK POP3 almond Server (Version 1.004) ready
quit
+OK POP3 almond Server (Version 1.001) shutdown
Connection closed by foreign host.

This example is from a Linux system, which comes with POP3 ready to run. The Solaris system, on the 
other hand, does not ship with POP2 or POP3. Don't worry if your system doesn't include this software. 
POP3 software is available from several sites on the Internet where it is stored in both the popper17.tar and 
the pop3d.tar files. I have used them both and they both work fine.

If you don't have POP3 on your system, download the source code. Extract it using the UNIX tar command. 
pop3d.tar creates a directory called pop3d under the current directory, but popper17.tar does not. If you 
decide to use popper, create a new directory before extracting it with tar. Edit the Makefile to configure it 
for your system and do a make to compile the POP3 daemon. If it compiles without errors, install the 
daemon in a system directory.

Most network daemons are started by the Internet daemon, inetd. POP3 is no exception. Start POP3 from 

file:///C|/mynapster/Downloads/warez/tcpip/ch09_07.htm (1 of 3) [2001-10-15 09:18:34]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


[Chapter 9] 9.7 Mail Servers 

inetd by placing the following in the inetd.conf file:

pop3   stream  tcp     nowait  root    /etc/pop3d              pop3d

This entry assumes you are using pop3d, that you placed the executable in the /etc directory, and that the 
port for this daemon is identified in the /etc/services file by the name pop3. If these things aren't true, adjust 
the entry accordingly.

Make sure that POP3 is actually defined in /etc/services. If it isn't, add the following line to that file:

pop3         110/tcp              # Post Office Version 3

Once the lines are added to the services file and the inetd.conf file, send a SIGHUP to inetd to force it to 
read the new configuration, as in this example:

# ps -ef | grep inetd
  root  109  1  0   Jun 09 ?   0:01 /usr/sbin/inetd -s
# kill -HUP 109

Now that POP3 is installed, rerun the test using telnet localhost pop-3. If the POP3 daemon answers, you're 
in business. All users who have a valid user account on the system are now able to download mail via POP3 
or read the mail directly on the server.

9.7.2 IMAP Server 

Internet Message Access Protocol (IMAP) is an alternative to POP. It provides the same basic service as 
POP and adds features to support mailbox synchronization. Mailbox synchronization is the ability to read 
mail on a client or directly on the server while keeping the mailboxes on both systems completely up-to-
date. On an average POP server, the entire contents of the mailbox are moved to the client and either deleted 
from the server or retained as if never read. Deletion of individual messages on the client is not reflected on 
the server because all of the messages are treated as a single unit that is either deleted or retained after the 
initial transfer of data to the client. IMAP provides the ability to manipulate individual messages on either 
the client or the server and to have those changes reflected in the mailboxes of both systems.

IMAP is not a new protocol - it is about as old as POP3. Nor is IMAP completely standardized. There have 
been four distinct versions of IMAP: IMAP, IMAP2, IMAP3, and the current version IMAP4. New RFCs 
about IMAP are still being issued. There are currently more than 10. The fear that IMAP is still in flux and 
that it is difficult to implement has discouraged some vendors, so it is not as widely implemented as POP. 
This is changing, however. The growing importance of email as a means of communicating, even when 
people are out of the office, increases the need for a mailbox that can be read and maintained from 
anywhere. The number of IMAP implementations is rising. Sun sells one for Solaris, another comes with 
Slackware 96 Linux in the /usr/sbin/imapd file, and IMAP source code can be obtained via anonymous FTP 
from ftp.cac.washington.edu. We use the University of Washington source code to update IMAP on our 
Linux system for the examples in this section.

Download /mail/imap.tar.Z from ftp.cac.washington.edu as a binary image. Uncompress and untar the file. 
This creates a directory containing the source code and Makefile needed to build IMAP. [12] Read the 

file:///C|/mynapster/Downloads/warez/tcpip/ch09_07.htm (2 of 3) [2001-10-15 09:18:34]



[Chapter 9] 9.7 Mail Servers 

Makefile carefully. It supports many versions of UNIX. If you find yours listed in the Makefile, use the three-
character operating system type listed there. For our Linux system we entered: 

[12] The name of the directory tells you the current release level of the software. At this 
writing it is imap-4.1.BETA.

# make lnx

If it compiles without error, as it does on our Linux system, it produces three daemons: ipop2d, ipop3d, and 
imapd. We are familiar with installing POP2 and POP3. The new one is imapd. Install it in /etc/services:

imap      143/tcp       # IMAP version 4

Also add it to /etc/inetd:

imap  stream  tcp  nowait  root  /usr/sbin/imapd  imapd

Now basic IMAP service is available to every user with an account on the server.

A nice feature of the University of Washington package is that it provides implementations of POP2 and 
POP3 as well as IMAP. This is important because most email clients run POP3. [13] The IMAP server can 
only be accessed by an IMAP client. Installing POP2 and POP3 along with IMAP gives you the chance to 
evaluate IMAP and to provide it for your adventurous users while still supporting the majority of users.

[13] The pine mail client supports IMAP.

POP and IMAP are mail access servers. There is a great deal more to configuring a complete email system, 
as we will see in the next chapter.

Previous: 9.6 Managing 
Distributed Servers 

TCP/IP Network 
Administration

Next: 9.8 Summary 

9.6 Managing Distributed 
Servers 

Book Index 9.8 Summary 

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/ch09_07.htm (3 of 3) [2001-10-15 09:18:34]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


file:///C|/mynapster/Downloads/warez/tcpip/ch09_08.htm

Previous: 9.7 Mail Servers Chapter 9
Configuring Network Servers 

Next: 10. sendmail 

 

9.8 Summary 

This chapter covers several important TCP/IP network services.

Network File System (NFS) is the leading TCP/IP file-sharing protocol. It allows server systems to 
share directories with clients that are then used by the clients as if they were local disk drives. NFS 
uses trusted hosts and UNIX UIDs and GIDs for authentication and authorization. pcnfsd provides 
password-based user authentication and NFS-based printer sharing for non-UNIX clients.

NFS-based printer sharing is not the only type of printer sharing available on a TCP/IP network. It is 
also possible to use the Line Printer Daemon (LPD). This software is originally from BSD UNIX but 
is widely available. The lpd program reads the printer definitions from the printcap file.

Network Information Service (NIS) is a server that distributes several system administrations 
databases. It allows central control of and automatic distribution of important system configuration 
information.

Bootstrap Protocol provides a wide range of configuration values to its client. Each implementation 
of BOOTP has a different configuration file and command syntax. The CMU BOOTP server stores 
configuration parameters in the /etc/bootptab file and uses a syntax very similar to the /etc/printcap 
syntax.

Dynamic Host Configuration Protocol (DHCP) extends BOOTP to provide the full set of 
configuration parameters defined in the Requirements for Internet Hosts RFC. It also provides for 
dynamic address allocation, which allows a network to make maximum use of a limited set of 
addresses.

Large networks use distributed boot servers to avoid overloading a single server and to avoid sending 
boot parameters through IP routers. The configuration files on distributed boot servers are kept 
synchronized through file transfer, NFS file sharing, or the Remote File Distribution Program (rdist).

Post Office Protocol (POP) and Internet Message Access Protocol (IMAP) servers allow email to be 
stored on the mail server until the user is ready to read it. In the next chapter, we take a closer look at 
configuring an electronic mail system as we explore sendmail.

file:///C|/mynapster/Downloads/warez/tcpip/ch09_08.htm (1 of 2) [2001-10-15 09:18:35]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


file:///C|/mynapster/Downloads/warez/tcpip/ch09_08.htm

Previous: 9.7 Mail Servers TCP/IP Network 
Administration

Next: 10. sendmail 

9.7 Mail Servers Book Index 10. sendmail 

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/ch09_08.htm (2 of 2) [2001-10-15 09:18:35]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Chapter 10] sendmail 

Previous: 9.8 Summary Chapter 10 Next: 10.2 Running 
sendmail as a Daemon 

 

10. sendmail 
Contents:
sendmail's Function 
Running sendmail as a Daemon 
sendmail Aliases 
The sendmail.cf File 
sendmail Configuration 
Rewriting the Mail Address 
Modifying a sendmail.cf File 
Testing sendmail.cf 
Summary 

Users have a love-hate relationship with email; they love to use it, and hate when it doesn't work. It's 
the system administrator's job to make sure it does work. That is the job we tackle in this chapter.

sendmail is not the only mail transport program. MMDF (Multichannel Memorandum Distribution 
Facility) predates sendmail and is still used today. There are also variations of basic sendmail, such as 
IDA sendmail, that are widely used. But plain sendmail is the most widely used mail transport 
program, and it's the one we cover.

This entire chapter is devoted to sendmail, and an entire book is easily devoted to the subject. [1] In 
part this is because of email's importance, but it is also because sendmail has a complex configuration.

[1] See sendmail, by Costales and Allman (O'Reilly & Associates), for a book-length 
treatment of sendmail.

The variety of programs and protocols used for email complicates configuration and support. SMTP 
sends email over TCP/IP networks. Another program sends mail between users on the same system. 
Still another sends mail between systems on UUCP networks. Each of these mail systems - SMTP, 
UUCP, and local mail - has its own delivery program and its own mail addressing scheme. All of this 
can cause confusion for mail users and for system administrators.

file:///C|/mynapster/Downloads/warez/tcpip/ch10_01.htm (1 of 3) [2001-10-15 09:18:35]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


[Chapter 10] sendmail 

10.1 sendmail's Function 

sendmail eliminates some of the confusion caused by multiple mail delivery programs. It does this by 
routing mail for the user to the proper delivery program based on the email address. It accepts mail 
from a user's mail program, interprets the mail address, rewrites the address into the proper form for 
the delivery program, and routes the mail to the correct delivery program. sendmail insulates the end 
user from these details. If the mail is properly addressed, sendmail will see that it is properly passed 
on for delivery. Likewise, for incoming mail, sendmail interprets the address and either delivers the 
mail to a user's mail program or forwards it to another system.

Figure 10.1 illustrates sendmail's special role in routing mail between the various mail programs 
found on UNIX systems.

Figure 10.1: Mail is routed through sendmail

In addition to routing mail between user programs and delivery programs, sendmail:

●     Receives and delivers SMTP (internet) mail
●     Provides system-wide mail aliases, which allow mailing lists

Configuring a system to perform all of these functions properly is a complex task. In this chapter we 
discuss each of these functions, look at how they are configured, and examine ways to simplify the 
task. First, we'll see how sendmail is run to receive SMTP mail. Then we'll see how mail aliases are 
used, and how sendmail is configured to route mail based on the mail's address.

file:///C|/mynapster/Downloads/warez/tcpip/ch10_01.htm (2 of 3) [2001-10-15 09:18:35]



[Chapter 10] sendmail 

Previous: 9.8 Summary TCP/IP Network 
Administration

Next: 10.2 Running 
sendmail as a Daemon 

9.8 Summary Book Index 10.2 Running sendmail as a 
Daemon 

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/ch10_01.htm (3 of 3) [2001-10-15 09:18:35]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Chapter 10] 10.2 Running sendmail as a Daemon 

Previous: 10.1 sendmail's 
Function 

Chapter 10
sendmail 

Next: 10.3 sendmail Aliases 

 

10.2 Running sendmail as a Daemon 

To receive SMTP mail from the network, run sendmail as a daemon during system startup. The sendmail 
daemon listens to TCP port 25 and processes incoming mail. In most cases the code to start sendmail is 
already in one of your boot scripts. If it isn't, add it. The following code is from the Slackware Linux 
/etc/rc.d/rc.M startup script:

# Start the sendmail daemon:
if [ -x /usr/sbin/sendmail ]; then
  echo "Starting sendmail daemon (/usr/sbin/sendmail -bd -q 15m)..."
  /usr/sbin/sendmail -bd -q 15m
fi

First, this code checks for the existence of the sendmail program. If the program is found, the code displays 
a startup message on the console and runs sendmail with two command-line options. One option, the -q 
option, tells sendmail how often to process the mail queue. In the sample code, the queue is processed every 
15 minutes (-q15m), which is a good setting to process the queue frequently. Don't set this time too low. 
Processing the queue too often can cause problems if the queue grows very large, due to a delivery problem 
such as a network outage. For the average desktop system, every hour (-q1h) or half hour (-q30m) is an 
adequate setting.

The other option relates directly to receiving SMTP mail. The option (-bd) tells sendmail to run as a daemon 
and to listen to TCP port 25 for incoming mail. Use this option if you want your system to accept incoming 
TCP/IP mail.

The Linux example is a simple one. Some systems have a more complex startup script. Solaris 2.5, which 
dedicates the entire /etc/init.d/sendmail script to starting sendmail, is a notable example. The mail queue 
directory holds mail that has not yet been delivered. It is possible that the system went down while the mail 
queue was being processed. Versions of sendmail prior to sendmail V8, such as the version that comes with 
Solaris 2.5, create lock files when processing the queue. Therefore lock files may have been left behind 
inadvertently and should be removed during the boot. Solaris checks for the existence of the mail queue 
directory and removes any lock files found there. If a mail queue directory doesn't exist, it creates one. The 
additional code found in some startup scripts is not required when running sendmail V8. All you really need 
is the sendmail command with the -bd option.

file:///C|/mynapster/Downloads/warez/tcpip/ch10_02.htm (1 of 2) [2001-10-15 09:18:36]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


[Chapter 10] 10.2 Running sendmail as a Daemon 

Previous: 10.1 sendmail's 
Function 

TCP/IP Network 
Administration

Next: 10.3 sendmail Aliases 

10.1 sendmail's Function Book Index 10.3 sendmail Aliases 

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/ch10_02.htm (2 of 2) [2001-10-15 09:18:36]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Chapter 10] 10.3 sendmail Aliases 

Previous: 10.2 Running 
sendmail as a Daemon 

Chapter 10
sendmail 

Next: 10.4 The sendmail.cf 
File 

 

10.3 sendmail Aliases 

It is almost impossible to exaggerate the importance of mail aliases. Without them, a sendmail system 
could not act as a central mail server. Mail aliases provide for:

●     Alternate names (nicknames) for individual users
●     Forwarding of mail to other hosts
●     Mailing lists

sendmail mail aliases are defined in the aliases file. [2] The basic format of entries in the aliases file 
is:

[2] The location of the file is defined in the "Options" section of the sendmail 
configuration file.

alias: recipient[, recipient,...]

alias is the name to which the mail is addressed, and recipient is the name to which the mail is 
delivered. recipient can be a username, the name of another alias, or a full email address 
containing both a username and a hostname. Including a hostname allows mail to be forwarded to a 
remote host. Additionally, there can be multiple recipients for a single alias. Mail addressed to that 
alias is delivered to all of the recipients, thus creating a mailing list.

Aliases that define nicknames for individual users can be used to handle frequently misspelled names. 
You can also use aliases to deliver mail addressed to special names, such as postmaster or root, to the 
real users that do those jobs. Aliases can also be used to implement simplified mail addressing, 
especially when used in conjunction with MX records. [3] This aliases file from almond shows all of 
these uses:

[3] Chapter 8, Configuring DNS Name Service , discusses MX records.

# special names
postmaster: clark
root: norman

file:///C|/mynapster/Downloads/warez/tcpip/ch10_03.htm (1 of 3) [2001-10-15 09:18:36]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


[Chapter 10] 10.3 sendmail Aliases 

# accept firstname.lastname@nuts.com
rebecca.hunt: becky@peanut
jessie.mccafferty: jessie@walnut
anthony.resnick: anthony@pecan
andy.wright: andy@filbert
# a mailing list
admin: kathy, david@peanut, sara@pecan, becky@peanut, craig,
       anna@peanut, jane@peanut, christy@filbert
owner-admin: admin-request
admin-request: craig

The first two aliases are special names. Using these aliases, mail addressed to postmaster is delivered 
to the local user clark, and mail addressed to root is delivered to norman.

The second set of aliases is in the form of firstname and lastname. The first alias in this group is 
rebecca.hunt. Mail addressed to rebecca.hunt is forwarded from almond and delivered to 
becky@peanut. Combine this alias with an MX record that names almond as the mail server for 
nuts.com, and mail addressed to rebecca.hunt@nuts.com is delivered to becky@peanut.nuts.com. This 
type of addressing scheme allows each user to advertise a consistent mailing address that does not 
change just because the user's account moves to another host. Additionally, if a remote user knows 
that this firstname.lastname addressing scheme is used at nuts.com, he can address mail to Rebecca 
Hunt as rebecca.hunt@nuts.com without knowing her real email address.

The last two aliases are for a mailing list. The alias admin defines the list itself. If mail is sent to 
admin, a copy of the mail is sent to each of the recipients (kathy, david, sara, becky, craig, anna, jane, 
and christy). Note that the mailing list continues across multiple lines. A line that starts with a blank 
or a tab is a continuation line.

The owner-admin alias is a special form used by sendmail. The format of this special alias is owner-
listname where listname is the name of a mailing list. The person specified on this alias line is 
responsible for the list identified by listname. If sendmail has problems delivering mail to any of the 
recipients in the admin list, an error message is sent to owner-admin. The owner-admin alias points to 
admin-request as the person responsible for maintaining the mailing list admin. Aliases in the form of 
listname-request are commonly used for administrative requests, such as subscribing to a list, for 
manually maintained mailing lists. Notice that we point an alias to another alias, which is perfectly 
legal. The admin-request alias resolves to craig.

sendmail does not use the aliases file directly. The aliases file must first be processed by the 
newaliases command. newaliases is equivalent to sendmail with the -bi option, which causes 
sendmail to build the aliases database. newaliases creates the database files that are used by sendmail 
when it is searching for aliases. Invoke newaliases after updating the aliases file to make sure that 
sendmail is able to use the new aliases. [4]

[4] If the D option is used (see Appendix E, A sendmail Reference), sendmail 
automatically rebuilds the aliases database - even if newaliases is not run.

file:///C|/mynapster/Downloads/warez/tcpip/ch10_03.htm (2 of 3) [2001-10-15 09:18:36]



[Chapter 10] 10.3 sendmail Aliases 

10.3.1 Personal mail forwarding 

In addition to the mail forwarding provided by aliases, sendmail allows individual users to define 
their own forwarding. The user defines her personal forwarding in the .forward file in her home 
directory. sendmail checks for this file after using the aliases file and before making final delivery to 
the user. If the .forward file exists, sendmail delivers the mail as directed by that file. For example, 
say that user kathy has a .forward file in her home directory that contains kathy@podunk.edu. The 
mail that sendmail would normally deliver to the local user kathy is forwarded to kathy's account at 
podunk.edu.

Use the .forward file for temporary forwarding. Modifying aliases and rebuilding the database takes 
more effort than modifying a .forward file, particularly if the forwarding change will be short-lived. 
Additionally, the .forward file puts the user in charge of his own mail forwarding.

Mail aliases and mail forwarding are handled by the aliases file and the .forward file. Everything else 
about the sendmail configuration is handled in the sendmail.cf file.

Previous: 10.2 Running 
sendmail as a Daemon 

TCP/IP Network 
Administration

Next: 10.4 The sendmail.cf 
File 

10.2 Running sendmail as a 
Daemon 

Book Index 10.4 The sendmail.cf File 

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/ch10_03.htm (3 of 3) [2001-10-15 09:18:36]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Chapter 10] 10.4 The sendmail.cf File 

Previous: 10.3 sendmail 
Aliases 

Chapter 10
sendmail 

Next: 10.5 sendmail 
Configuration 

 

10.4 The sendmail.cf File 

The sendmail configuration file is sendmail.cf. [5] It contains most of the sendmail configuration, 
including the information required to route mail between the user mail programs and the mail delivery 
programs. The sendmail.cf file has three main functions:

[5] The default location for the configuration file is the /etc directory, but it is often 
placed in other directories, such as /etc/mail and /usr/lib.

●     It defines the sendmail environment.
●     It rewrites addresses into the appropriate syntax for the receiving mailer.
●     It maps addresses into the instructions necessary to deliver the mail.

Several commands are necessary to perform all of these functions. Macro definitions and option 
commands define the environment. Rewrite rules rewrite email addresses. Mailer definitions define 
the instructions necessary to deliver the mail. The terse syntax of these commands makes most system 
administrators reluctant to read a sendmail.cf file, let alone write one! Fortunately, you can avoid 
writing your own sendmail.cf file, and we'll show you how.

10.4.1 Locating a Sample sendmail.cf File 

There is rarely any good reason to write a sendmail.cf file from scratch. Locate an existing file with a 
configuration similar to your system's and modify it. That's how you configure sendmail, and that's 
what we discuss in this section.

Sample configuration files are delivered with most systems' software. Some system administrators use 
the configuration file that comes with the system and make small modifications to it to handle site-
specific configuration requirements. We cover this approach to sendmail configuration later in this 
chapter.

Other system administrators prefer to use the latest version of sendmail. They download the 
sendmail.tar file and use the m4 source files it contains to build a sendmail.cf file. The samples that 
come with your system are adequate only if you also use the sendmail executable that comes with 
your system. If you update sendmail, use the m4 source files that are compatible with the updated 

file:///C|/mynapster/Downloads/warez/tcpip/ch10_04.htm (1 of 7) [2001-10-15 09:18:37]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


[Chapter 10] 10.4 The sendmail.cf File 

version of sendmail.

The tar file can be downloaded via anonymous ftp from ftp.sendmail.org. [6] Login and change to the 
pub/sendmail directory. This displays a list of the available versions of sendmail. See Appendix E, for 
an example of downloading and installing the sendmail distribution.

[6] Even if your UNIX system comes with its own version of sendmail, obtain the tar 
file for the useful documentation it contains, e.g., the Sendmail Installation and 
Operation Guide, by Eric Allman.

The sendmail cf/cf directory contains several sample configuration files. Several of these are generic 
files preconfigured for different operating systems. The cf/cf directory on my system contains generic 
configurations for BSD, Solaris, SunOS, HP Unix, Ultrix, OSF1, and Next Step. The directory also 
contains a few prototype files designed to be easily modified and used for other operating systems. 
We will modify the tcpproto.mc file, which is for systems that have direct TCP/IP network 
connections and no direct UUCP connections, to run on our Linux system.

10.4.1.1 Building a sendmail.cf with m4 macros 

The prototype files that come with the sendmail tar are not "ready to run." They must be edited and 
then processed by the m4 macro processor to produce the actual configuration files. For example, the 
tcpproto.mc file contains the following macros:

divert(0)dnl
VERSIONID(`@(#)tcpproto.mc      8.5 (Berkeley) 3/23/96')
OSTYPE(unknown)
FEATURE(nouucp)
MAILER(local)
MAILER(smtp)

These macros are not sendmail commands; they are input for the m4 macro processor. The few lines 
shown above are the important lines in the tcpproto.mc file. They are preceded by a section of 
comments, not shown here, that is discarded by m4 because it follows a divert(-1) command, which 
diverts the output to the "bit bucket." This section of the file begins with a divert(0) command that 
means these commands should be processed and that the results should be directed to standard output. 
[7]

[7] The dnl option is used to prevent excessive blank lines from appearing in the output 
file. It affects the appearance, but not the function, of the output file. dnl can appear at 
the end of any macro command.

The VERSIONID macro is used for version control. Usually the value passed in the macro call is a 
version number in RCS (Release Control System) or SCCS (Source Code Control System) format. 
This macro is optional and we just ignore it.

file:///C|/mynapster/Downloads/warez/tcpip/ch10_04.htm (2 of 7) [2001-10-15 09:18:37]



[Chapter 10] 10.4 The sendmail.cf File 

The OSTYPE macro defines operating system-specific information for the sendmail.cf file. The 
cf/ostype directory contains more than 30 pre-defined operating system macro files. The OSTYPE 
macro is required and the value passed in the OSTYPE macro call must match the name of one of the 
files in the directory. Examples of values are: bsd4.4, solaris2, and linux.

The FEATURE macro defines optional features to be included in the sendmail.cf file. The nouucp 
feature in the sample shown above says that no special UUCP address processing is to be included in 
the output file. Recall that in the previous section we identified tcpproto.mc as the prototype file for 
systems that have no UUCP connections. Another prototype file would have different FEATURE 
values.

The prototype file ends with the mailer macros. These must be the last macros in the input file. The 
sample shown above specifies the local mailer macro, which adds the local mailer and the prog mailer 
to the output, and the smtp mailer macro, which adds mailers for SMTP, Extended SMTP, 8-bit 
SMTP and relayed mail. All of these mailers are described later in this chapter.

To create a sample sendmail.cf for a Linux system from the tcpproto.mc prototype file, copy the 
prototype file to a work file. Edit the work file by changing the OSTYPE line from unknown to 
linux to specify the correct operating system. In the example we use sed to change unknown to 
linux. We store the result in a file we call linux.mc:

# sed 's/unknown/linux/' < tcpproto.mc > linux.mc

Then enter the m4 command:

# m4 ../m4/cf.m4 linux.mc > sendmail.cf

The sendmail.cf file output by the m4 command is in the correct format to be read by the sendmail 
program. [8] In fact, the output file produced above is almost identical to the sample linux.smtp.cf 
configuration file delivered with Linux.

[8] New syntax and functions in the latest version of the sendmail.cf file may not be 
supported by older versions of the sendmail program.

OSTYPE is not the only thing in the macro file that can be modified to create a custom configuration. 
There are a large number of configuration options, all of which are explained in Appendix E. As an 
example we modify a few options to create a custom configuration that converts user@host email 
addresses originating from our computer into firstname.lastname@domain. To do this, we create two 
new configuration files: a macro file with specific values for the domain that we name nuts.com.m4 
and a modified macro control file, linux.mc, that calls the new nuts.com.m4 file.

We create the new macro file nuts.com.m4 and place it in the cf/domain directory. The new file 
contains the following:

MASQUERADE_AS(nuts.com)

file:///C|/mynapster/Downloads/warez/tcpip/ch10_04.htm (3 of 7) [2001-10-15 09:18:37]



[Chapter 10] 10.4 The sendmail.cf File 

FEATURE(masquerade_envelope)
FEATURE(genericstable)

These lines say that we want to hide the real hostname and display the name nuts.com in its place in 
outbound email addresses. Also, we want to do this on "envelope" addresses as well as message 
header addresses. The last line says that we will use the generic address conversion database, which 
converts login usernames to any value we wish. We must build the database by creating a text file 
with the data we want and processing that file through the makemap command that comes with 
sendmail V8.

The format of the database can be very simple:

dan Dan.Scribner@nuts.com
tyler Tyler.McCafferty@nuts.com
pat Pat.Stover@nuts.com
willy Bill.Wright@nuts.com
craig Craig.Hunt@nuts.com

Each line in the file has two fields: the first field is the key, which is the login name, and the second 
field is an email address containing the user's real first and last names separated by a dot. Fields are 
separated by spaces. Using this database, a query for dan will return the value 
Dan.Scribner@nuts.com. A small database such as this one can be easily built by hand. On a 
system with a large number of existing user accounts, you may want to automate this process by 
extracting the user's login name, and first and last names from the /etc/passwd file. The gcos field of 
the /etc/passwd file often contains the user's real name. [9] Once the data is in a text file convert it to a 
database with the makemap command. The makemap command is included in the sendmail V8 tar 
file. It requires the ndbm library. The syntax of the makemap command is:

[9] See Appendix E for a sample script that builds the realnames database from 
/etc/passwd.

makemap type name

makemap reads the standard input and writes the database out to a file it creates using the value 
provided by name as the filename. The type field identifies the database type. The most commonly 
supported database types for sendmail V8 are dbm, btree, and hash. [10] All of these types can be 
made with the makemap command.

[10] On Sun OS and Solaris systems, NIS maps and NIS+ tables are built with standard 
commands that come with those operating systems. The syntax for using those maps 
within sendmail is different (see Table 10-4). Networking Personal Computers with 
TCP/IP, by Craig Hunt (O'Reilly & Associates) provides an example of using a NIS 
map inside of sendmail.

Assume that the data shown above has been put in a file named realnames. The following command 

file:///C|/mynapster/Downloads/warez/tcpip/ch10_04.htm (4 of 7) [2001-10-15 09:18:37]



[Chapter 10] 10.4 The sendmail.cf File 

converts that file to a database:

# makemap hash genericstable < realnames

makemap reads the text file and produces a database file called genericstable. The database maps 
login names to real names, e.g., the key willy returns the value Bill.Wright@nuts.com.

Now that we have created the database, we create a new sendmail configuration file to use it. All of 
the m4 macros related to using the database are in the nuts.com.m4 file. We need to include that file in 
the configuration. To do that, add a DOMAIN(nuts.com) line to the macro control file (linux.mc) 
and then process the linux.mc through m4. The following grep command shows what the macros in 
the file look like after the change:

# grep '^[A-Z]' linux.mc
VERSIONID(`@(#)tcpproto.mc      8.5 (Berkeley) 3/23/96')
OSTYPE(linux)
DOMAIN(nuts.com)
FEATURE(nouucp)
MAILER(local)
MAILER(smtp)
# m4 ../m4/cf.m4 linux.mc > sendmail.cf

Use the prototype mc files as the starting point of your configuration if you install sendmail from the 
tar file. To use the latest version of sendmail you must build a compatible sendmail.cf file using the 
m4 macros. Don't attempt to use an old sendmail.cf file with a new version of sendmail. You'll just 
cause yourself grief. As you can see from the sample above, m4 configuration files are very short and 
can be constructed from only a few macros. Use m4 to build a fresh configuration every time you 
upgrade sendmail.

Conversely, you should not use a sendmail.cf file created from the prototype files found in the 
sendmail distribution with an old version of sendmail. Features in these files require that you run a 
compatible version of sendmail, which means it is necessary to recompile sendmail to use the new 
configuration file. [11] This is not something every system administrator will choose to do, because 
some systems don't have the correct libraries; others don't even have a C compiler! If you choose not 
to recompile sendmail, you can use the sample sendmail.cf file provided with your system as a starting 
point. However, if you have major changes planned for your configuration, it is probably easier to 
recompile sendmail and build a new configuration with m4 than it is to make major changes directly 
to the sendmail.cf.

[11] See Appendix E for information about compiling sendmail.

In the next part of this chapter, we use one of the sample sendmail.cf files provided with Linux. The 
specific file we start with is linux.smtp.cf found in the /usr/src/sendmail directory on the Slackware 96 
version of Linux. All of the things that we discuss in the remainder of the chapter apply equally well 
to sendmail.cf files that are produced by m4. The structure of a sendmail.cf file, the commands that it 

file:///C|/mynapster/Downloads/warez/tcpip/ch10_04.htm (5 of 7) [2001-10-15 09:18:37]



[Chapter 10] 10.4 The sendmail.cf File 

contains, and the tools used to debug it are universal.

10.4.2 General sendmail.cf Structure 

Many sendmail.cf files have more or less the same structure because most are descendants of a few 
original files. Therefore, the files provided with your system probably are similar to the ones used in 
our examples. Some systems use a different structure, but the functions of the sections described here 
will be found somewhere in most sendmail.cf files.

The Linux file, linux.smtp.cf, is our example of sendmail.cf file structure. The section labels from the 
sample file are used here to provide an overview of the sendmail.cf structure. These sections will be 
described in greater detail when we modify a sample configuration. The sections are:

Local Information

Defines the information that is specific to the individual host. In the linux.smtp.cf file, Local 
Information defines the host name, the names of any mail relay hosts, and the mail domain. It 
also contains the name that sendmail uses to identify itself when it returns error messages, the 
message that sendmail displays during an SMTP login, and the version number of the 
sendmail.cf file. (Increase the version number each time you modify the configuration.) This 
section is usually customized during configuration.

Options

Defines the sendmail options. This section usually requires no modifications.
Message Precedence

Defines the various message precedence values used by sendmail. This section is not modified.
Trusted Users

Defines the users who are trusted to override the sender address when they are sending mail. 
This section is not modified. Adding users to this list is a potential security problem.

Format of Headers

Defines the format of the headers that sendmail inserts into mail. This section is not modified.
Rewriting Rules

Defines the rules used to rewrite mail addresses. Rewriting Rules contains the general rules 
called by sendmail or other rewrite rules. This section is not modified during the initial 
sendmail configuration. Rewrite rules are usually only modified to correct a problem or to add 
a new service.

Mailers

Defines the instructions used by sendmail to invoke the mail delivery programs. The specific 
rewrite rules associated with each individual mailer are also defined in this section. The mailer 

file:///C|/mynapster/Downloads/warez/tcpip/ch10_04.htm (6 of 7) [2001-10-15 09:18:37]



[Chapter 10] 10.4 The sendmail.cf File 

definitions are usually not modified. However, the rewrite rules associated with the mailers are 
sometimes modified to correct a problem or to add a new service.

The section labels in the sample file delivered with your system are probably different from these. 
However, the structure of your sample file is probably similar to the structure discussed above in these 
ways:

●     The information that is customized for each host is probably at the beginning of the file.
●     Similar types of commands, e.g., option commands, header commands, etc., are usually 

grouped together.
●     The bulk of the file consists of rewrite rules.
●     The last part of the file probably contains mailer definitions intermixed with the rewrite rules 

that are associated with the individual mailers.

Look at the comments in your sendmail.cf file. Sometimes these comments provide valuable insight 
into the file structure and the things that are necessary to configure a system.

It's important to realize how little of sendmail.cf needs to be modified for a typical system. If you pick 
the right sample file to work from, you may only need to modify a few lines in the first section. From 
this perspective, sendmail configuration appears to be a trivial task. So why are system administrators 
intimidated by it? In large part it is because of the difficult syntax of the sendmail.cf configuration 
language.

Previous: 10.3 sendmail 
Aliases 

TCP/IP Network 
Administration

Next: 10.5 sendmail 
Configuration 

10.3 sendmail Aliases Book Index 10.5 sendmail Configuration 

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/ch10_04.htm (7 of 7) [2001-10-15 09:18:37]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


file:///C|/mynapster/Downloads/warez/tcpip/ch10_05.htm

Previous: 10.4 The 
sendmail.cf File 

Chapter 10
sendmail 

Next: 10.6 Rewriting the 
Mail Address 

 

10.5 sendmail Configuration 

Every time sendmail starts up, it reads sendmail.cf. For this reason, the syntax of the sendmail.cf 
commands is designed to be easy for sendmail to parse - not necessarily easy for humans to read. As a 
consequence, sendmail commands are very terse, even by UNIX standards.

The configuration command is not separated from its variable or value by any spaces. This "run 
together" format makes the commands hard to read. Figure 10.2 illustrates the format of a command. In 
the figure, a define macro command assigns the value nuts.com to the macro D.

Figure 10.2: A sendmail.cf configuration command

Starting with version 8 of sendmail, variable names are no longer restricted to a single character. Long 
variable names, enclosed in braces, are now acceptable. For example, the define macro shown in Figure 
10.2 could be written:

D{Domain}nuts.com

However, a quick check of the sendmail.cf delivered with my Linux system shows that not a single long 
variable name was used. The traditional, short variable names are still the most common. This terse 
syntax can be very hard to decipher, but it helps to remember that the first character on the line is 
always the command. From this single character you can determine what the command is and therefore 
its structure. Table 10.1 lists the sendmail.cf commands and their syntax.

Table 10.1: sendmail Configuration Commands

file:///C|/mynapster/Downloads/warez/tcpip/ch10_05.htm (1 of 13) [2001-10-15 09:18:39]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


file:///C|/mynapster/Downloads/warez/tcpip/ch10_05.htm

Command Syntax Meaning

Version Level Vlevel[/vendor] Specify version level.

Define Macro Dxvalue Set macro x to value.

Define Class Ccword1[ word2]... Set class c to word1 word2....

Define Class Fcfile Load class c from file.

Set Option Ooption=value Set option to value.

Trusted Users Tuser1[ user2...] Trusted users are user1 user2....

Set Precedence Pname=number Set name to precedence number.

Define Mailer Mname, {field=value} Define mailer name.

Define Header H[?mflag?]name:format Set header format.

Set Ruleset Sn Start ruleset number n.

Define Rule Rlhs rhs comment Rewrite lhs patterns to rhs format.

Key File Kname type [argument] Define database name.

The following sections describe each configuration command in more detail.

10.5.1 The Version Level Command 

The version level command is an optional command not found in all sendmail.cf files. You don't add a 
V command to the sendmail.cf file or change one if it is already there. The V command is inserted into 
the configuration file when it is first built from m4 macros or by the vendor.

The level number on the V command line indicates the version level of the configuration syntax. V1 
is the oldest configuration syntax and V7 is the version supported by sendmail V8.8.5. Every level in 
between adds some feature extensions. The vendor part of the V command identifies if any vendor 
specific syntax is supported. The default vendor value for the sendmail distribution is "Berkeley".

The V command tells the sendmail executable the level of syntax and commands required to support 
this configuration. If the sendmail program cannot support the requested commands and syntax, it 
displays the following error message:

# /usr/lib/sendmail -Ctest.cf
test.cf: line 63: Bad V line: Only V1/sun syntax is supported in
     this release

The error message shown above indicates that this sendmail program supports level 1 configuration files 
with Sun syntax extensions. [12] The example was produced on a Solaris 2.5.1 running the sendmail 
program that came with the operating system. In the example we attempted to read a sendmail.cf that 
was created by the m4 macros that came with sendmail 8.8.5. The syntax and functions needed by the 
sendmail.cf file are not available in the sendmail program. To use this configuration file, we would have 
to compile a newer version of the sendmail program. See Appendix E for an example of compiling 
sendmail.

file:///C|/mynapster/Downloads/warez/tcpip/ch10_05.htm (2 of 13) [2001-10-15 09:18:39]



file:///C|/mynapster/Downloads/warez/tcpip/ch10_05.htm

[12] See Table 10-4 for Sun-specific syntax.

You will never change the values on a V command. You might, however, need to customize some D 
commands.

10.5.2 The Define Macro Command 

The define macro command (D) defines a macro and stores a value in it. Once the macro is defined, it is 
used to provide the stored value to other sendmail.cf commands and directly to sendmail itself. This 
allows sendmail configurations to be shared by many systems, simply by modifying a few system-
specific macros.

A macro name can be any single ASCII character or, as of sendmail V8, a word enclosed in curly 
braces. User-created macros use uppercase letters as names. sendmail's own internal macros use 
lowercase letters and special characters as names. This does not mean that you won't be called upon to 
define a value for a macro with a lowercase name. A few of these internal macros are sometimes 
defined in the sendmail.cf file. Table 10.2 provides a complete list of sendmail's internal macros.

Table 10.2: sendmail's Internal Macros

Name Function

a Origination date in RFC 822 format

b Current date in RFC 822 format

c Hop count

d Date in UNIX (ctime) format

e SMTP entry message

f Sender \(lqfrom\(rq address

g Sender address relative to the recipient

h Recipient host

i Queue id

j Fully qualified domain name (host plus domain)

k UUCP node name

l Format of the UNIX from line

m Name of this domain (domain only)

n Name of the daemon (for error messages)

o Set of "operators" in addresses[13]

p Sendmail's pid

q Default format of sender address[13]

r Protocol used

s Sender's hostname

t Numeric representation of the current time

file:///C|/mynapster/Downloads/warez/tcpip/ch10_05.htm (3 of 13) [2001-10-15 09:18:39]



file:///C|/mynapster/Downloads/warez/tcpip/ch10_05.htm

u Recipient user

v Version number of sendmail

w Hostname of this site (host only)

x Full name of the sender

z Home directory of the recipient

- Validated sender address

[13] Obsolete in sendmail V8.

To retrieve the value stored in a macro, reference it as $x, where x is the macro name. Macros are 
expanded when the sendmail.cf file is read. A special syntax, $&x, is used to expand macros when they 
are referenced. The $&x syntax is only used with certain internal macros that change at runtime.

The code below defines the macros R, M, and Q. After this code executes, $R returns almond, $M 
returns nuts.com, and $Q returns almond.nuts.com. This sample code defines Q as containing the value 
of R ($R), plus a literal dot, plus the value of M ($M).

DRalmond
DMnuts.com
DQ$R.$M

If you customize your sendmail.cf file, it will probably be necessary to modify some macro definitions. 
The macros that usually require modification define site-specific information, such as hostnames and 
domain names.

10.5.2.1 Conditionals 

A macro definition can contain a conditional. Here's a conditional:

DX$g$?x ($x)$.

The D is the define macro command; X is the macro being defined; and $g says to use the value stored 
in macro g. But what does "$?x ($x)$." mean? The construct $?x is a conditional. It tests whether 
macro x has a value set. If the macro has been set, the text following the conditional is interpreted. The 
$. construct ends the conditional.

Given this, the assignment of macro X is interpreted as follows: X is assigned the value of g; and if x is 
set, it is also assigned a literal blank, a literal left parenthesis, the value of x, and a literal right 
parenthesis. 

So if g contains chunt@nuts.com and x contains Craig Hunt, X will contain:

chunt@nuts.com (Craig Hunt)

file:///C|/mynapster/Downloads/warez/tcpip/ch10_05.htm (4 of 13) [2001-10-15 09:18:39]



file:///C|/mynapster/Downloads/warez/tcpip/ch10_05.htm

The conditional can be used with an "else" construct, which is $|. The full syntax of the conditional is:

$?x text1 $| text2 $.

This is interpreted as:

●     if ($?) x is set;
●     use text1;
●     else ($|);
●     use text2;
●     end if ($.).

10.5.3 The Define Class Command 

Two commands, C and F, define sendmail classes. A class is similar to an array of values. Classes are 
used for anything with multiple values that are handled in the same way, such as multiple names for the 
local host or a list of uucp hostnames. Classes allow sendmail to compare against a list of values, 
instead of against a single value. Special pattern matching symbols are used with classes. The $= 
symbol matches any value in a class, and the $~ symbol matches any value not in a class. (More on 
pattern matching later.)

Like macros, classes usually have single-character names, and user-created classes use uppercase letters 
for names. Class values can be defined on a single line, on multiple lines, or loaded from a file. For 
example, class w is used to define all of the hostnames by which the local host is known. To assign class 
w the values goober and pea, you can enter the values on a single line:

Cwgoober pea

Or you can enter the values on multiple lines:

Cwgoober
Cwpea

You can also use the F command to load the class values from a file. The F command reads a file and 
stores the words found there in a class variable. For example, to define class w and assign it all of the 
strings found in /etc/sendmail.cw, use:

Fw/etc/sendmail.cw

You may need to modify a few class definitions when creating your sendmail.cf file. Frequently 
information relating to uucp, to alias hostnames, and to special domains for mail routing is defined in 
class statements. If your system has a uucp connection as well as a TCP/IP connection, pay particular 
attention to the class definitions. But in any case, check the class definitions carefully and make sure 
they apply to your configuration.

file:///C|/mynapster/Downloads/warez/tcpip/ch10_05.htm (5 of 13) [2001-10-15 09:18:39]



file:///C|/mynapster/Downloads/warez/tcpip/ch10_05.htm

Here we grep the Linux sample configuration file for lines beginning with C or F:

% grep '^[CF]' linux.smtp.cf
Cwlocalhost
CP.
CO @ % 
C..
CE root

This grep shows that linux.smtp.cf defines classes w, P, O, ., and E. w contains the host's alias 
hostnames. P holds pseudo-domains used for mail routing. O stores operators that cannot be part of a 
valid username. The class . (dot) is primarily of interest because it shows that variable names do not 
have to be alphabetic characters. E lists the usernames that should always be associated with the local 
host's fully qualified domain name, even if simplified email addresses are being used for all other users. 
(More on simplified addresses later.) In our sample file, the variables are all assigned default values.

Remember that your system will be different. The uppercase letters used for some of these class names 
mean that they are user-created classes. These same class names may be used for other purposes on your 
system, and are only presented here as an example. Carefully read the comments in your sendmail.cf file 
for guidance as to how classes and macros are used in your configuration.

The class names that are lowercase letters or special characters are reserved for internal sendmail use. 
All internal classes defined in sendmail versions after 8.8 are shown in Appendix E. Most of these can 
be ignored. Only class w, which defines all of the hostnames the system will accept as its own, is 
commonly modified in the sendmail.cf file.

10.5.4 The Set Option Command 

The set option commands (O) command is used to define the sendmail environment. Use the O 
command to set values appropriate for your installation. The value assigned to an option is a string, an 
integer, a Boolean, or a time interval, as appropriate for the individual option. All options define values 
used directly by sendmail.

There are no user-created options. The meaning of each sendmail option is defined within sendmail 
itself. Appendix E lists the meaning and use of each option, and there are plenty of them.

A few sample options from the linux.smtp.cf file are shown below. The AliasFile option defines the 
name of the sendmail aliases file as /etc/aliases. If you want to put the aliases file elsewhere, change 
this option. The TempFileMode option defines the default file mode as 0600 for temporary files created 
by sendmail in /var/spool/mqueue. The Timeout.queuereturn option sets the timeout interval for 
undeliverable mail, here set to five days (5d). These options show the kind of general configuration 
parameters set by the option command.

# location of alias file
O AliasFile=/etc/aliases

file:///C|/mynapster/Downloads/warez/tcpip/ch10_05.htm (6 of 13) [2001-10-15 09:18:39]



file:///C|/mynapster/Downloads/warez/tcpip/ch10_05.htm

# temporary file mode
O TempFileMode=0600
# default timeout interval
O Timeout.queuereturn=5d

The syntax of the option command shown in this example and in Table 10.1 was introduced in sendmail 
version 8.7.5. Prior to that the option command used a syntax more like the other sendmail commands. 
The old syntax is: Oovalue, where O is the command, o is the single character option name, and value is 
the value assigned to the option. The options shown in the previous discussion, if written in the old 
syntax, would be:

# location of alias file
OA/etc/aliases
# temporary file mode
OF0600
# default timeout interval
OT5d

Appendix E contains a full listing of the old options as well as the new options.

Most of the options defined in a sample file don't require modification. People change options settings 
because they want to change the sendmail environment, not because they have to. The options in your 
configuration file are almost certainly correct for your system.

10.5.5 Defining Trusted Users 

The T command defines a list of users who are trusted to override the sender address using the mailer -f 
flag. [14] Normally the trusted users are defined as root, uucp, and daemon. Trusted users can be 
specified as a list of usernames on a single command line, or on multiple command lines. The users 
must be valid usernames from the /etc/passwd file. 

[14] Mailer flags are listed in Appendix E.

The most commonly defined trusted users are:

Troot
Tdaemon
Tuucp

Most sites do not need to modify this list.

10.5.6 Defining Mail Precedence 

Precedence is one of the factors used by sendmail to assign priority to messages entering its queue. The 

file:///C|/mynapster/Downloads/warez/tcpip/ch10_05.htm (7 of 13) [2001-10-15 09:18:39]



file:///C|/mynapster/Downloads/warez/tcpip/ch10_05.htm

P command defines the message precedence values available to sendmail users. The higher the 
precedence number, the greater the precedence of the message. The default precedence of a message is 
0. Negative precedence numbers indicate especially low-priority mail. Error messages are not generated 
for mail with a negative precedence number, making low priorities attractive for mass mailings. Some 
commonly used precedence values are:

Pfirst-class=0
Pspecial-delivery=100
Plist=-30
Pbulk=-60
Pjunk=-100

To specify the precedence he desires, a user adds a Precedence header to his message. He uses the text 
name from the P command in the Precedence header to set the specific precedence of the message. 
Given the precedence definitions shown above, a user who wanted to avoid receiving error messages for 
a large mailing could select a message precedence of -60 by including the following header line in his 
mail:

Precedence: bulk

The five precedence values shown above are probably more than you'll ever need.

10.5.7 Defining Mail Headers 

The H command defines the format of header lines that sendmail inserts into messages. The format of 
the header command is the H command, optional header flags enclosed in question marks, a header 
name, a colon, and a header template. The header template is a combination of literals and macros that 
are included in the header line. Macros in the header template are expanded before the header is inserted 
in a message. The same conditional syntax used in macro definitions can be used in header templates, 
and it functions in exactly the same way: it allows you to test whether a macro is set and to use another 
value if it is not set.

The header flags often arouse more questions than they merit. The function of the flags is very simple. 
The header flags control whether or not the header is inserted into mail bound for a specific mailer. If no 
flags are specified, the header is used for all mailers. If a flag is specified, the header is used only for a 
mailer that has the same flag set in the mailer's definition. (Mailer flags are listed in Appendix E.) 
Header flags only control header insertion. If a header is received in the input, it is passed to the output, 
regardless of the flag settings.

Some sample header definitions from the linux.smtp.cf sample file are:

H?P?Return-Path: $g
H?D?Date: $a
H?F?From: $?x$x <$g>$|$g$.
H?x?Full-Name: $x

file:///C|/mynapster/Downloads/warez/tcpip/ch10_05.htm (8 of 13) [2001-10-15 09:18:39]



file:///C|/mynapster/Downloads/warez/tcpip/ch10_05.htm

HSubject:
H?M?Message-Id: <$t.$i@$j>

The headers provided in your system's sendmail.cf are sufficient for most installations. It's unlikely 
you'll ever need to change them.

10.5.8 Defining Mailers 

The M commands define the mail delivery programs used by sendmail. The syntax of the command is:

Mname, {field=value}

name is an arbitrary name used internally by sendmail to refer to this mailer. The name doesn't matter 
as long as it is used consistently within the sendmail.cf file to refer to this mailer. For example, the 
mailer used to deliver SMTP mail within the local domain might be called smtp on one system, and it 
might be called ether on another system. The function of both mailers is the same, only the names are 
different.

There are a few exceptions to this freedom of choice. The mailer that delivers local mail to users on the 
same machine must be called local, and a mailer named local must be defined in the sendmail.cf file. 
Three other special mailer names are:

prog

Delivers mail to programs.
*file*

Sends mail to files.
*include*

Directs mail to :include: lists.

Of these, only the prog mailer must be defined in the sendmail.cf file. The other two are defined 
internally by sendmail.

The mailer name is followed by a comma-separated list of field=value pairs that define the 
characteristics of the mailer. Table 10.3 shows the single character field identifiers and the contents of 
the value field associated with each of them. Most mailers don't require all of these fields.

Table 10.3: Mailer Definition Fields

Field Meaning Contents Example

P Path Path of the mailer P=/bin/mail

F Flags sendmail flags for this mailer F=lsDFMe

file:///C|/mynapster/Downloads/warez/tcpip/ch10_05.htm (9 of 13) [2001-10-15 09:18:39]



file:///C|/mynapster/Downloads/warez/tcpip/ch10_05.htm

S Sender Rulesets for sender addresses S=10

R Recipient Rulesets for recipient addresses R=20

A Argv The mailer's argument vector A=sh -c $u

E Eol End-of-line string for the mailer E=\r\n

M Maxsize Maximum message length M=100000

L Linelimit Maximum line length L=990

D Directory prog mailer's execution directory D=$z:/

U Userid User and group ID used to run mailer U=uucp:wheel

N Nice nice value used to run mailer N=10

C Charset Content-type for 8-bit MIME characters C=iso8859-1

T Type Type information for MIME errors T=dns/rfc822/smtp

The Path (P) fields contain either the path to the mail delivery program or the literal string [IPC]. Mailer 
definitions that specify P=[IPC] use sendmail to deliver mail via SMTP. [15] The path to a mail delivery 
program varies from system to system depending on where the systems store the programs. Make sure 
you know where the programs are stored before you modify the Path field. If you use a sample 
configuration from another computer, such as the samples we use in this chapter, make sure that the 
mailer paths are valid for your system.

[15] Sun systems use [TCP] as well as [IPC].

The Flags (F) field contains the sendmail flags used for this mailer. These are the mailer flags 
referenced earlier in this chapter under "Defining Mail Headers," but mailer flags do more than just 
control header insertion. There are a large number of flags. Appendix E describes all of them and their 
functions.

The Sender (S) and the Recipient (R) fields identify the rulesets used to rewrite the sender and recipient 
addresses for this mailer. Each ruleset is identified by its number. We'll have more to say about rulesets 
later in this chapter, and we will refer to the S and R values when troubleshooting the sendmail 
configuration.

The Argv (A) field defines the argument vector passed to the mailer. It contains, among other things, 
macro expansions that provide the recipient username (which is $u), [16] the recipient hostname ($h), 
and the sender's from address ($f). These macros are expanded before the argument vector is passed to 
the mailer.

[16] In the prog mailer definition, $u actually passes a program name in the argument 
vector.

The End-of-line (E) field defines the characters used to mark the end of a line. A carriage return and a 
line feed (CRLF) is the default for SMTP mailers.

Maxsize (M) defines, in bytes, the longest message that this mailer will handle. This field is used most 

file:///C|/mynapster/Downloads/warez/tcpip/ch10_05.htm (10 of 13) [2001-10-15 09:18:39]



file:///C|/mynapster/Downloads/warez/tcpip/ch10_05.htm

frequently in definitions of UUCP mailers.

Linelimit (L) defines, in bytes, the maximum length of a line that can be contained in a message handled 
by this mailer. This mailer field was introduced in sendmail V8. Previous versions of sendmail limited 
lines to 80 characters because this was the limit for SMTP mail before MIME mail was introduced.

The Directory (D) field specifies the working directory for the prog mailer. More than one directory can 
be specified for the directory field by separating the directory paths with colons. The example in Table 
10.3 tells prog to use the recipient's home directory, which is the value returned by the internal macro 
$z. If that directory is not available, it should use the root (/) directory.

Specify the default user and the group ID used to execute the mailer with the Userid (U) field. The 
example U=uucp:wheel says that the mailer should be run under the user ID uucp and the group ID 
wheel. If no value is specified for the Userid field, the value defined by the DefaultUser option is used.

Use Nice (N) to change the nice value for the execution of the mailer. This allows you to change the 
scheduling priority of the mailer. This is rarely used. If you're interested, see the nice manpage for 
appropriate values.

The last two fields are used only for MIME mail. Charset (C) defines the character set used in the 
Content-type header when an 8-bit message is converted to MIME. If Charset is not defined, the value 
defined in the DefaultCharset option is used. If that option is not defined, unknown-8bit is used as the 
default value.

The Type (T) field defines the type information used in MIME error messages. MIME-type information 
defines the mailer transfer agent type, the mail address type, and the error code type. The default is 
dns/rfc822/smtp.

10.5.8.1 Some common mailer definitions 

The following mailer definitions are from linux.smtp.cf:

Mlocal, P=/usr/bin/procmail, F=lsDFMAw5:/|@ShP, S=10/30, R=20/40,
        T=DNS/RFC822/X-Unix, A=procmail -a $h -d $u
Mprog,  P=/bin/sh, F=lsDFMoeu, S=10/30, R=20/40, D=$z:/,
        T=X-Unix, A=sh -c $u
Msmtp,  P=[IPC], F=mDFMuX, S=11/31, R=21, E=\r\n, L=990,
        T=DNS/RFC822/SMTP, A=IPC $h
Mesmtp, P=[IPC], F=mDFMuXa, S=11/31, R=21, E=\r\n, L=990,
        T=DNS/RFC822/SMTP, A=IPC $h
Msmtp8, P=[IPC], F=mDFMuX8, S=11/31, R=21, E=\r\n, L=990,
        T=DNS/RFC822/SMTP, A=IPC $h
Mrelay, P=[IPC], F=mDFMuXa8, S=11/31, R=61, E=\r\n, L=2040,
        T=DNS/RFC822/SMTP, A=IPC $h

file:///C|/mynapster/Downloads/warez/tcpip/ch10_05.htm (11 of 13) [2001-10-15 09:18:39]



file:///C|/mynapster/Downloads/warez/tcpip/ch10_05.htm

This example contains the following mailer definitions:

●     A definition for local mail delivery, always called local. This definition is required by sendmail.
●     A definition for delivering mail to programs, always called prog. This definition is found in most 

configurations.
●     A definition for TCP/IP mail delivery, here called smtp.
●     A definition for an Extended SMTP mailer, here called esmtp.
●     A definition for an SMTP mailer that handles unencoded 8-bit data, here called smtp8.
●     A definition for a mailer that relays TCP/IP mail through an external mail relay host, here called 

relay.

A close examination of the fields in one of these mailer entries, for example the entry for the smtp 
mailer, shows the following:

Msmtp

A mailer, arbitrarily named smtp, is being defined.
P=[IPC]

The path to the program used for this mailer is [IPC], which means deliver of this mail is handled 
internally by sendmail.

F=mDFMuX

The sendmail flags for this mailer say that this mailer can send to multiple recipients at once; that 
Date, From, and Message-Id headers are needed; that uppercase should be preserved in 
hostnames and user names; and that lines beginning with a dot have an extra dot prepended. 
Refer to Appendix E for more details.

S=11/31

The sender address in the mail "envelope" is processed through ruleset 11 and the sender address 
in the message is processed through ruleset 31. More on this later.

R=21

All recipient addresses are processed through ruleset 21.
E=\r\n

Lines are terminated with a carriage return and a line feed. 
L=990

This mailer will handle lines up to 990 bytes long.
T=DNS/RFC822/SMTP

The MIME-type information for this mailer says that DNS is used for hostnames, RFC 822 email 
addresses are used, and SMTP error codes are used.

A=IPC $h

file:///C|/mynapster/Downloads/warez/tcpip/ch10_05.htm (12 of 13) [2001-10-15 09:18:39]



file:///C|/mynapster/Downloads/warez/tcpip/ch10_05.htm

The meaning of each option in an argument vector is exactly as defined on the manpage for the 
command; see the local mailer as an example. In the case of the smtp mailer, however, the 
argument refers to an internal sendmail process. The macro $h is expanded to provide the 
recipient host ($h) address.

Despite this long discussion, don't worry about mailer definitions. The sample configuration file that 
comes with your operating system contains the correct mailer definitions to run sendmail in a TCP/IP 
network environment. You shouldn't need to modify any mailer definitions.

Previous: 10.4 The 
sendmail.cf File 

TCP/IP Network 
Administration

Next: 10.6 Rewriting the 
Mail Address 

10.4 The sendmail.cf File Book Index 10.6 Rewriting the Mail 
Address 

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/ch10_05.htm (13 of 13) [2001-10-15 09:18:39]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Chapter 10] 10.6 Rewriting the Mail Address 

Previous: 10.5 sendmail 
Configuration 

Chapter 10
sendmail 

Next: 10.7 Modifying a 
sendmail.cf File 

 

10.6 Rewriting the Mail Address 

Rewrite rules are the heart of the sendmail.cf file. Rulesets are groups of individual rewrite rules used 
to parse email addresses from user mail programs and rewrite them into the form required by the mail 
delivery programs. Each rewrite rule is defined by an R command. The syntax of the R command is:

Rpattern    transformation    comment

The fields in an R command are separated by tab characters. The comment field is ignored by the 
system, but good comments are vital if you want to have any hope of understanding what's going on. 
The pattern and transformation fields are the heart of this command.

10.6.1 Pattern Matching 

Rewrite rules match the input address against the pattern, and if a match is found, rewrite the address 
in a new format using the rules defined in the transformation. A rewrite rule may process the same 
address several times because, after being rewritten, the address is again compared against the pattern. 
If it still matches, it is rewritten again. The cycle of pattern matching and rewriting continues until the 
address no longer matches the pattern.

The pattern is defined using macros, classes, literals, and special metasymbols. The macros, classes, 
and literals provide the values against which the input is compared, and the metasymbols define the 
rules used in matching the pattern. Table 10.4 shows the metasymbols used for pattern matching.

Table 10.4: Pattern Matching Symbols

Symbol Meaning

$@ Match exactly zero tokens.

$* Match zero or more tokens.

$+ Match one or more tokens.

$- Match exactly one token.

$=x Match any token in class x.

$~x Match any token not in class x.

file:///C|/mynapster/Downloads/warez/tcpip/ch10_06.htm (1 of 9) [2001-10-15 09:18:41]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


[Chapter 10] 10.6 Rewriting the Mail Address 

$x Match all tokens in macro x.

$%x Match any token in the NIS map named in macro x. [17]

$!x Match any token not in the NIS map named in macro x.[17]

$%y Match any token in the NIS hosts.byname map.[17]

[17] This symbol is specific to Sun operating systems.

All of the metasymbols request a match for some number of tokens. A token is a string of characters 
in an email address delimited by an operator. The operators are the characters defined in the 
OperatorChars option. [18] Operators are also counted as tokens when an address is parsed. For 
example:

[18] On older systems, they are defined in the o macro. See Appendix E.

becky@peanut.nuts.com

This email address contains seven tokens: becky, @, peanut, ., nuts, ., and com. This address would 
match the pattern:

$-@$+

The address matches the pattern because:

●     It has exactly one token before the @ that matches the requirement of the $- symbol.
●     It has an @ that matches the pattern's literal @.
●     It has one or more tokens after the @ that match the requirement of the $+ symbol.

Many addresses, hostmaster@rs.internic.net, craigh@ora.com, etc., match this pattern, but other 
addresses do not. For example, rebecca.hunt@nuts.com does not match because it has three tokens: 
rebecca, ., and hunt, before the @. Therefore, it fails to meet the requirement of exactly one token 
specified by the $- symbol. Using the metasymbols, macros, and literals, patterns can be constructed 
to match any type of email address.

When an address matches a pattern, the strings from the address that match the metasymbols are 
assigned to indefinite tokens. The matching strings are called indefinite tokens because they may 
contain more than one token value. The indefinite tokens are identified numerically according to the 
relative position in the pattern of the metasymbol that the string matched. In other words, the 
indefinite token produced by the match of the first metasymbol is called $1; the match of the second 
symbol is called $2; the third is $3; and so on. When the address becky@peanut.nuts.com matched the 
pattern $-@$+, two indefinite tokens were created. The first is identified as $1 and contains the single 
token, becky, that matched the $- symbol. The second indefinite token is $2 and contains the five 
tokens - peanut, ., nuts, ., and com - that matched the $+ symbol. The indefinite tokens created by the 
pattern matching can then be referenced by name ($1, $2, etc.) when rewriting the address.

file:///C|/mynapster/Downloads/warez/tcpip/ch10_06.htm (2 of 9) [2001-10-15 09:18:41]

mailto:hostmaster@rs.internic.net
mailto:craigh@ora.com


[Chapter 10] 10.6 Rewriting the Mail Address 

A few of the symbols in Table 10.4 are used only in special cases. The $@ symbol is normally used 
by itself to test for an empty, or null, address. The symbols that test against NIS maps, can only be 
used on Sun systems that run the sendmail program that Sun provides with the operating system. We'll 
see in the next section that systems running sendmail V8 can use NIS maps, but only for 
transformation - not for pattern matching.

10.6.2 Transforming the Address 

The transformation field, from the righthand side of the rewrite rule, defines the format used for 
rewriting the address. It is defined with the same things used to define the pattern: literals, macros, 
and special metasymbols. Literals in the transformation are written into the new address exactly as 
shown. Macros are expanded and then written. The metasymbols perform special functions. The 
transformation metasymbols and their functions are shown in Table 10.5

Table 10.5: Transformation Metasymbols

Symbol Meaning

$n Substitute indefinite token n.

$[name$] Substitute the canonical form of name.

$(map key $@argument $:default$) Substitute a value from database map indexed by key.

$>n Call ruleset n.

$@ Terminate ruleset.

$: Terminate rewrite rule.

The $n symbol, where n is a number, is used for the indefinite token substitution discussed above. 
The indefinite token is expanded and written to the "new" address. Indefinite token substitution is 
essential for flexible address rewriting. Without it, values could not be easily moved from the input 
address to the rewritten address. The following example demonstrates this.

Addresses are always processed by several rewrite rules. No one rule tries to do everything. Assume 
the input address mccafferty@peanut has been through some preliminary processing and now is:

kathy.mccafferty<@peanut>

Assume the current rewrite rule is:

R$+<@$->    $1<@$2.$D>   user@host -> user@host.domain

The address matches the pattern because it contains one or more tokens before the literal <@, exactly 
one token after the <@, and then the literal >. The pattern match produces two indefinite tokens that 
are used in the transformation to rewrite the address.

The transformation contains the indefinite token $1, a literal <@, indefinite token $2, a literal dot (.), 

file:///C|/mynapster/Downloads/warez/tcpip/ch10_06.htm (3 of 9) [2001-10-15 09:18:41]



[Chapter 10] 10.6 Rewriting the Mail Address 

the macro D, and the literal >. After the pattern matching, $1 contains kathy.mccafferty and $2 
contains peanut. Assume that the macro D was defined elsewhere in the sendmail.cf file as nuts.com. 
In this case the input address is rewritten as:

kathy.mccafferty<@peanut.nuts.com>

Figure 10.3 illustrates this specific address rewrite. It shows the tokens derived from the input address, 
and how those tokens are matched against the pattern. It also shows the indefinite tokens produced by 
the pattern matching, and how the indefinite tokens, and other values from the transformation, are 
used to produce the rewritten address. After rewriting, the address is again compared to the pattern. 
This time it fails to match the pattern because it no longer contains exactly one token between the 
literal <@ and the literal >. So, no further processing is done by this rewrite rule and the address is 
passed to the next rule in line. Rules in a ruleset are processed sequentially, though a few 
metasymbols can be used to modify this flow.

Figure 10.3: Rewriting an address

The $>n symbol calls ruleset n and passes the address defined by the remainder of the transformation 
to ruleset n for processing. For example:

$>9 $1 % $2

This transformation calls ruleset 9 ($>9), and passes the contents of $1, a literal %, and the contents of 
$2 to ruleset 9 for processing. When ruleset 9 finishes processing, it returns a rewritten address to the 
calling rule. The returned email address is then compared again to the pattern in the calling rule. If it 
still matches, ruleset 9 is called again. 

The recursion built into rewrite rules creates the possibility for infinite loops. sendmail does its best to 
detect possible loops, but you should take responsibility for writing rules that don't loop. The $@ and 

file:///C|/mynapster/Downloads/warez/tcpip/ch10_06.htm (4 of 9) [2001-10-15 09:18:41]



[Chapter 10] 10.6 Rewriting the Mail Address 

the $: symbols are used to control processing and to prevent loops. If the transformation begins with 
the $@ symbol, the entire ruleset is terminated and the remainder of the transformation is the value 
returned by the ruleset. If the transformation begins with the $: symbol, the individual rule is executed 
only once. Use $: to prevent recursion and to prevent loops when calling other rulesets. Use $@ to 
exit a ruleset at a specific rule.

The $[name$] symbol converts a host's nickname or its IP address to its canonical name by passing 
the value name to the name server for resolution. For example, using the nuts.com name servers, 
$[goober$] returns peanut.nuts.com and $[[172.16.12.1]$] returns almond.nuts.com.

In the same way that a hostname or address is used to look up a canonical name in the name server 
database, the $(map key$) syntax uses the key to retrieve information from the database identified by 
map. This is a more generalized database retrieval syntax than is the one that returns canonical 
hostnames, and it is more complex to use. Before we get into the details of setting up and using 
databases from within sendmail, let's finish describing the rest of the syntax of rewrite rules.

There is a special rewrite rule syntax that is used in ruleset 0. Ruleset 0 defines the triple (mailer, host, 
user) that specifies the mail delivery program, the recipient host, and the recipient user. 

The special transformation syntax used to do this is:

$#mailer$@host$:user

An example of this syntax taken from the linux.smtp.cf sample file is:

R$*<@$*>$*    $#smtp$@$2$:$1<@$2>$3     user@host.domain

Assume the email address david<@filbert.nuts.com> is processed by this rule. The address matches 
the pattern $*<@$+>$* because:

●     The address has zero or more tokens (the token david) that match the first $* symbol.
●     The address has a literal <@.
●     The address has zero or more tokens (the five tokens filbert.nuts.com) that match the 

requirement of the second $* symbol.
●     The address has a literal >.
●     The address has zero or more, in this case zero, tokens that match the requirement of the last $* 

symbol.

This pattern match produces two indefinite tokens. Indefinite token $1 contains david and $2 contains 
filbert.nuts.com. No other matches occurred, so $3 is null. These indefinite tokens are used to rewrite 
the address into the following triple:

$#smtp$@filbert.nuts.com$:david<@filbert.nuts.com>

The components of this triple are:

file:///C|/mynapster/Downloads/warez/tcpip/ch10_06.htm (5 of 9) [2001-10-15 09:18:41]



[Chapter 10] 10.6 Rewriting the Mail Address 

$#smtp

smtp is the internal name of the mailer that delivers the message.
$@filbert.nuts.com

filbert.nuts.com is the recipient host.
$:david<@filbert.nuts.com>

david<@filbert.nuts.com> is the recipient user.

There is one special variant of this syntax, also used only in ruleset 0, that passes error messages to 
the user:

$#error$@comment$:message

The comment field is ignored by sendmail. message is the text of an error message returned to the 
user, for example:

R<@$+>     $#error$@5.1.1$:"user address required"

This rule returns the message "user address required" if the address matches the pattern.

10.6.2.1 Transforming with a database 

External databases can be used to transform addresses in rewrite rules. The database is included in the 
transformation part of a rule by using the following syntax:

$(map key [$@argument...] [$:default] $)

map is the name assigned to the database within the sendmail.cf file. The name assigned to map is not 
limited by the rules that govern macro names. Like mailer names, map names are only used inside of 
the sendmail.cf file and can be any name you choose. Select a simple descriptive name, such as 
"users" or "mailboxes." The map name is assigned with a K command. (More on the K command in a 
moment.)

key is the value used to index into the database. The value returned from the database for this key is 
used to rewrite the input address. If no value is returned, the input address is not changed unless a 
default value is provided.

An argument is an additional value passed to the database procedure along with the key. Multiple 
arguments can be used, but each argument must start with $@. The argument can be used by the 
database procedure to modify the value it returns to sendmail. It is referenced inside the database as 
%n, where n is a digit that indicates the order in which the argument appears in the rewrite rule - %1, 

file:///C|/mynapster/Downloads/warez/tcpip/ch10_06.htm (6 of 9) [2001-10-15 09:18:41]



[Chapter 10] 10.6 Rewriting the Mail Address 

%2, and so on - when multiple arguments are used. (Argument %0 is the key.)

An example will make the use of arguments clear. Assume the following input address:

tom.martin<@sugar>

Further, assume the following database with the internal sendmail name of "relays":

oil     %1<@relay.fats.com>
sugar   %1<@relay.calories.com>
salt    %1<@server.sodium.org>

Finally, assume the following rewrite rule:

R$+<@$->     $(relays $2 $@ $1 $:$1<@$2> $)

The input address tom.martin<@sugar> matches the pattern because it has one or more tokens 
(tom.martin) before the literal <@ and exactly one token (sugar) after it. The pattern matching creates 
two indefinite tokens and passes them to the transformation. The transformation calls the database 
(relays) and passes it token $2 (sugar) as the key and token $1 (tom.martin) as the argument. If the 
key is not found in the database the default ($1<@$2>) is used. In this case, the key is found in the 
database. The database program uses the key to retrieve "%1@relay.calories.com", expands the %1 
argument, and returns "tom.martin@relay.calories.com" to sendmail, which uses the returned value to 
replace the input address.

Before a database can be used within sendmail, it must be defined. This is done with the K command. 
The syntax of the K command is:

Kname type [arguments]

name is the name used to reference this database within sendmail. In the example above, the name is 
"relays".

type is the class of database. The type specified in the K command must match the database 
support complied into your sendmail. Most sendmail programs do not support all database types, but a 
few basic types are widely supported. Common types are dbm, hash, btree, and nis. There are many 
more, all of which are described in Appendix E.

arguments are optional. Generally, the only argument is the path of the database file. Occasionally 
the arguments include flags that are interpreted by the database program. The full list of K command 
flags that can be passed in the argument field are listed in Appendix E.

To define the "relays" database file used in the example above, we might enter the following 
command in the sendmail.cf file:

file:///C|/mynapster/Downloads/warez/tcpip/ch10_06.htm (7 of 9) [2001-10-15 09:18:41]



[Chapter 10] 10.6 Rewriting the Mail Address 

Krelays dbm /usr/local/relays

The name relays is simply a name you chose because it is descriptive. The database type dbm is a type 
supported by your version of sendmail and was used by you when you built the database file. Finally, 
the argument /usr/local/relays is the location of the database file you created.

Don't worry if you're confused about how to build and use database files within sendmail. We will 
revisit this topic later in the chapter and the examples will make the practical use of database files 
clear.

10.6.3 The Set Ruleset Command 

Rulesets are groups of associated rewrite rules that can be referenced by a number. The S command 
marks the beginning of a ruleset and identifies it with a number. In the Sn command syntax, n is the 
number that identifies the ruleset. Numbers in the range of 0 to 99 are used.

Rulesets can be thought of as subroutines, or functions, designed to process email addresses. They are 
called from mailer definitions, from individual rewrite rules, or directly by sendmail. Six rulesets have 
special functions and are called directly by sendmail. These are:

●     Ruleset 3 is the first ruleset applied to addresses. It converts an address to the canonical form: 
local-part@host.domain.

In specific circumstances the @host.domain part is added by sendmail after ruleset 3 
terminates. This happens only if the mail has been received from a mailer with the C flag set. 
[19] In our sample configuration file, none of the mailers use this flag. If the C flag is set, the 
sender's @host.domain is added to all addresses that have only a local-part. This processing is 
done after ruleset 3 and before rulesets 1 and 2. (This function is represented in Figure 10.4 by 
the box marked "D.")

[19] See Appendix E for the full set of mailer flags.

●     Ruleset 0 is applied to the addresses used to deliver the mail. Ruleset 0 is applied after ruleset 
3, and only to the recipient addresses actually used for mail delivery. It resolves the address to 
the triple (mailer, host, user) composed of the name of the mailer that will deliver the mail, the 
recipient hostname, and the recipient username.

●     Ruleset 1 is applied to all sender addresses in the message.
●     Ruleset 2 is applied to all recipient addresses in the message.
●     Ruleset 4 is applied to all addresses in the message and is used to translate internal address 

formats into external address formats.
●     Ruleset 5 is applied to local addresses after sendmail processes the address against the aliases 

file. Ruleset 5 is only applied to local addresses that do not have an alias.

file:///C|/mynapster/Downloads/warez/tcpip/ch10_06.htm (8 of 9) [2001-10-15 09:18:41]



[Chapter 10] 10.6 Rewriting the Mail Address 

Figure 10.4 shows the flow of the message and addresses through these rulesets. The D box does not 
symbolize a ruleset. It is the internal sendmail process described above. The S and R symbols do stand 
for rulesets. They have numeric names just like all normal rulesets, but the numbers are not fixed as is 
the case with rulesets 0, 1, 2, 3, 4, and 5. The S and R ruleset numbers are defined in the S and R 
fields of the mailer definition. Each mailer may specify its own S and R rulesets for mailer-specific 
cleanup of the sender and recipient addresses just before the message is delivered.

Figure 10.4: Sequence of rulesets

There are, of course, many more rulesets in most sendmail.cf files. The other rulesets provide 
additional address processing and are called by existing rulesets using the $>n construct. [20] The 
rulesets provided in any sample sendmail.cf file will be adequate for delivering SMTP mail. It's 
unlikely you'll have to add to these rulesets, unless you want to add new features to your mailer.

[20] See Table 10-5.

Previous: 10.5 sendmail 
Configuration 

TCP/IP Network 
Administration

Next: 10.7 Modifying a 
sendmail.cf File 

10.5 sendmail Configuration Book Index 10.7 Modifying a sendmail.cf 
File 

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/ch10_06.htm (9 of 9) [2001-10-15 09:18:41]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Chapter 10] 10.7 Modifying a sendmail.cf File 

Previous: 10.6 Rewriting 
the Mail Address 

Chapter 10
sendmail 

Next: 10.8 Testing 
sendmail.cf 

 

10.7 Modifying a sendmail.cf File 

In this section we put into practice everything we discussed about sample configuration files - their 
structure and the commands used to build them. We'll modify the prototype configuration file, 
linux.smtp.cf, for use on peanut.nuts.com. We've chosen to modify this file because its configuration is 
closest to the configuration we need for peanut.nuts.com. peanut is a Linux workstation on a TCP/IP 
Ethernet, and it uses SMTP mail and domain name service (DNS).

The following sections are titled according to the sections of the file, and they describe the modifications 
we'll make to the file, section by section. Remember that other sendmail.cf files will probably use different 
section titles, but the basic information provided in the configuration will be the same.

10.7.1 Modifying Local Information 

The first line in the local information section of the sendmail.cf file defines class w. [21] Class w is the full 
set of host names for which this system accepts mail. Use the class w command to add hostnames to this 
set. sendmail initializes this class to the value in macro w ($w), which is the hostname of this computer. On 
most systems that is enough; sendmail is able to correctly identify most of the other hostnames for which it 
should accept mail by querying DNS. The w class needs only to identify systems that expect this host to 
accept mail for them and that do not have CNAME or MX entries in the DNS that point to this host. You'll 
need to add a hostname to class w, or an MX record to DNS, if you see the following mail error:

[21] The full text of the local information section is shown in Appendix E.

mil-gw.nuts.com. config error: mail loops back to me (MX problem?)

In our sample, we accept the Cw command as written, and let sendmail define the value for w internally. 
This is the most common method for desktop systems like peanut. On the system almond, which is also 
known by the name mil-gw, we would add values to class w as follows:

Cwlocalhost mil-gw mil-gw.nuts.com

Now mail addressed to user@mil-gw.nuts.com would be accepted by almond and not rejected as being 
addressed to the wrong host.

Some mail servers might need to be configured to accept mail for many different hostnames. In that case 

file:///C|/mynapster/Downloads/warez/tcpip/ch10_07.htm (1 of 5) [2001-10-15 09:18:42]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


[Chapter 10] 10.7 Modifying a sendmail.cf File 

you may want to load class w from a file containing all of the hostnames. Do that with the F command.

No modification is necessary for the j macro definition because, on this system, sendmail obtains a fully 
qualified domain name for the j macro from DNS. On some systems this is the case; on other systems 
sendmail obtains the hostname without the domain extension. If j doesn't contain the full name, initialize j 
with the hostname ($w) and the domain name. In the sample file we would do this by "uncommenting" the 
Dj command and editing the domain string to be nuts.com. However, there is no need to do this because j 
has the correct value.

To test if j is set to the correct value on your system, run sendmail with the -bt option and the debug level 
set to 0.4. In response to this, sendmail displays several lines of information, including the value of j. In the 
example below, sendmail displays the value peanut.nuts.com for j. If it displayed only peanut, we would 
edit sendmail.cf to correct the value for j.

# sendmail -bt -d0.4
Version 8.8.5
 Compiled with: LOG MATCHGECOS MIME8TO7 NAMED_BIND NDBM
                NETINET NETUNIX NEWDB SCANF USERDB XDEBUG
canonical name: peanut.nuts.com
 UUCP nodename: peanut
        a.k.a.: peanut.nuts.com
        a.k.a.: [172.16.12.2]

============ SYSTEM IDENTITY (after readcf) ============
      (short domain name) $w = peanut
  (canonical domain name) $j = peanut.nuts.com

         (subdomain name) $m = nuts.com
              (node name) $k = peanut
========================================================

ADDRESS TEST MODE (ruleset 3 NOT automatically invoked)
Enter <ruleset> <address>
> ^D

The next line in the local information section defines class P. In our sample configuration file, class P 
stores the names of some special mail routing domains. These pseudo-domain names allow us to address 
users who are not on the Internet with Internet style email addresses. For example, mail can be addressed 
using the normal UUCP "bang" syntax, e.g., ora!los!craig, or it can be addressed in a pseudo-Internet 
format, e.g., craig@los.ora.uucp. These mail routing domains simplify the address that the user enters, and 
route the mail to the correct mail relay host. However, pseudo-domains are rarely needed because most 
mailers now support standard Internet-style addresses. The class P definition in linux.smtp.cf does not 
require any modification. The only value assigned as a pseudo-domain is a dot (.), which is used in this 
sendmail.cf file to identify canonical domain names.

The configuration file has macro definitions for several mail relays. None of these are assigned a value in 
our sample file. You only need a relay host if your system cannot deliver the mail because it lacks 
capability or connectivity. UNIX systems do not lack capability, but a firewall might limit connectivity. 

file:///C|/mynapster/Downloads/warez/tcpip/ch10_07.htm (2 of 5) [2001-10-15 09:18:42]



[Chapter 10] 10.7 Modifying a sendmail.cf File 

Some sites use a mail relay so that only one systems needs a full sendmail.cf configuration. The other hosts 
at the site simply forward their mail to the smart host for delivery. If this is the configuration policy of your 
site, enter the name of the mail relay as the "smart" relay. For example:

DSrelay.nuts.com

We don't enter anything in any of the relay settings on peanut. This desktop system will handle all its own 
mail. Hey, that's why we run UNIX!

The local information section in the sample file also includes four key file definitions. Three of these K 
commands are commented out, and all four of them can be ignored. The one key file definition that is not 
commented out defines the dequote database, which is an internal sendmail database used to remove quotes 
from within email addresses. The user key file, which is commented out, is also an internal database. It is 
used to check if a username exists. The last two databases exist only if you create them. The domaintable is 
used to rewrite domain names and the mailertable database is used to send mail addressed to a specific 
domain through a particular mailer to a specific remote host.

The version number doesn't require modification - but it's a good idea to keep track of the changes you 
make to your sendmail configuration, and this is the place to do it. Each time you modify the configuration, 
change the version number by adding your own revision number. At the same time, enter a comment in the 
file describing the changes you made. Usually, this is the last change made to the files so the comments 
reflect all changes. For example, the original version number section in the linux.smtp.cf file is:

######################
#   Version Number   #
######################

DZ8.7.3

After we have finished all of our modifications, it will contain:

######################
#   Version Number   #
######################
#  R1.0 - modified for peanut by Craig
#       - cleaned up the comments in the local info section
#  R1.1 - modified macro M to use nuts.com instead of the
#         hostname in outgoing mail
#  R2.0 - added rule a to S11 & S31 to rewrite to first.last format

DZ8.7.3R2.0

Finally, we need to understand the purpose of a few other classes and macros found in this section. The M 
macro is used to rewrite the sender host address. Define a value for M to hide the name of the local host in 
outbound mail. Classes E and M are both related to macro M. Class E defines the usernames for which the 
hostname is not rewritten even if the M macro is defined. For example, root@peanut.nuts.com is not 
rewritten to root@nuts.com even if M is defined as DMnuts.com. Class M is defines other hostnames, not 
just the local hostname, that should be rewritten to the value of macro M. This is used on mail servers that 

file:///C|/mynapster/Downloads/warez/tcpip/ch10_07.htm (3 of 5) [2001-10-15 09:18:42]



[Chapter 10] 10.7 Modifying a sendmail.cf File 

might need to rewrite sender addresses for their clients. For example:

# who I masquerade as (null for no masquerading) (see also $=M)
DMnuts.com

# class M: domains that should be converted to $M
CMacorn.nuts.com brazil.nuts.com filbert.nuts.com

Given the macro M and class M definitions shown above. This host would rewrite mail from 
user@brazil.nuts.com or user@acorn.nuts.com to user@nuts.com. peanut is not a server so we won't use 
class M. But we will use macro M later in the configuration.

We spent lots of time looking at the local information section because almost everything you will need to 
do to configure a system can be done here. We will quickly discuss the other section before getting into the 
really challenging task of working with rewrite rules.

10.7.2 Modifying Options 

The section, "Options," defines the sendmail environment. For example, some of the options specify the 
file paths used by sendmail, as in these lines from the linux.smtp.cf file:

# location of alias file
O AliasFile=/etc/aliases
# location of help file
O HelpFile=/usr/lib/sendmail.hf
# status file
O StatusFile=/etc/sendmail.st
# queue directory
O QueueDirectory=/var/spool/mqueue

If these paths are correct for your system, don't modify them. On peanut we want to keep the files just 
where they are, which is generally the case when you use a sendmail.cf file that was designed for your 
operating system. In fact, you will probably not need to change any of the options if you use a 
configuration file designed for your operating system. If you're really curious about sendmail options, see 
Appendix E.

The next few sections of the linux.smtp.cf file define the messages' precedences, the trusted users, and the 
headers. None of these sections are modified. Following these sections are the rewrite rules and the 
mailers. This material is the bulk of the file and the heart of the configuration. The sample configuration 
file is designed to allow SMTP mail delivery on a Linux system running DNS, so we assume no 
modifications are required. We want to test the configuration before copying it into sendmail.cf. We'll save 
it in a temporary configuration file, test.cf, and use the troubleshooting features of sendmail to test it. 

Previous: 10.6 Rewriting 
the Mail Address 

TCP/IP Network 
Administration

Next: 10.8 Testing 
sendmail.cf 

file:///C|/mynapster/Downloads/warez/tcpip/ch10_07.htm (4 of 5) [2001-10-15 09:18:42]



[Chapter 10] 10.7 Modifying a sendmail.cf File 

10.6 Rewriting the Mail 
Address 

Book Index 10.8 Testing sendmail.cf 

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/ch10_07.htm (5 of 5) [2001-10-15 09:18:42]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


file:///C|/mynapster/Downloads/warez/tcpip/ch10_08.htm

Previous: 10.7 Modifying a 
sendmail.cf File 

Chapter 10
sendmail 

Next: 10.9 Summary 

 

10.8 Testing sendmail.cf 

sendmail provides powerful tools for configuration testing and debugging. These test tools are invoked on 
the sendmail command line using some of the many sendmail command-line arguments. Appendix E lists 
all of the command-line arguments; Table 10.6 summarizes those that relate to testing and debugging. 

Table 10.6: sendmail Arguments for Testing and Debugging

Argument Function

-t Send to everyone listed in To:, Cc:, and Bcc:.

-bt Run in test mode.

-bv Verify addresses; don't collect or deliver mail.

-bp Print the mail queue.

-Cfile Use file as the configuration file.

-dlevel Set debugging level.

-Ooption=value Set option to the specified value.

-e Defines how errors are returned.

-v Run in verbose mode.

Some command-line arguments are used to verify address processing and to gain confidence in the new 
configuration. Once you think your configuration will work, choose friends at various sites and send them 
mail. Use the -C argument to read the test configuration file and the -v argument to display the details of 
the mail delivery. -v displays the complete SMTP exchange between the two hosts.

By observing if your mailer properly connects to the remote mailer and formats the addresses correctly, 
you'll get a good idea of how the configuration is working. The following example is a test from peanut 
using the test.cf configuration file we just created:

peanut# /usr/lib/sendmail -Ctest.cf -t -v
To: craigh@ora.com
From: craig
Subject: Sendmail Test
Ignore this test.      
^D
craigh@ora.com... Connecting to ora.com. via smtp...

file:///C|/mynapster/Downloads/warez/tcpip/ch10_08.htm (1 of 10) [2001-10-15 09:18:44]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


file:///C|/mynapster/Downloads/warez/tcpip/ch10_08.htm

220-ruby.ora.com Sendmail 8.6.13/8.6.11 ready at Sat, 16 Nov 1996
220 ESMTP spoken here
>>> EHLO peanut.nuts.com
250-ruby.ora.com Hello craig@peanut.nuts.com [172.16.12.2], pleased
     to meet you
250-EXPN
250-SIZE
250 HELP
>>> MAIL From:<craig@peanut.nuts.com> SIZE=64
250 <craig@peanut.nuts.com>... Sender ok
>>> RCPT To:<craigh@ora.com>
250 <craigh@ora.com>... Recipient ok
>>> DATA
354 Enter mail, end with "." on a line by itself
>>> .
250 SAA27399 Message accepted for delivery
craigh@ora.com... Sent (SAA27399 Message accepted for delivery)
Closing connection to ora.com.
>>> QUIT
221 ruby.ora.com closing connection

We entered everything before the CTRL-D (^D). Everything after the ^D was displayed by sendmail. 
Figure 10.5 highlights some of the important information in this display, and notes the sendmail macros 
that relate to the highlighted material.

Figure 10.5: Verbose mail output

file:///C|/mynapster/Downloads/warez/tcpip/ch10_08.htm (2 of 10) [2001-10-15 09:18:44]



file:///C|/mynapster/Downloads/warez/tcpip/ch10_08.htm

This test successfully transfers mail to a remote Internet site. The sendmail output shows that peanut sent 
the mail to ora.com via the smtp mail delivery program. The sendmail greeting shows that the remote host 
handling this SMTP connection is ruby.ora.com. Therefore, ruby must be the mail server for the ora.com 
domain; i.e., the MX record for ora.com points to ruby.ora.com.

The ESMTP and EHLO messages indicate that both peanut and ruby use Extended Simple Mail Transfer 
Protocol (ESMTP).

Everything worked just fine! We could quit right now and use this configuration. But like most computer 
people, we cannot stop ourselves from tinkering in order to make things "better."

The From: address, craig@peanut.nuts.com, is clearly a valid address but it is not quite what we want. 
What we want is to have people address us as firstname.lastname@domain - not as user@host.domain, 
which is exactly the configuration we created earlier in this chapter with a few lines of m4 code. We will 
create the same configuration here to provide an example of how to use the various troubleshooting tools 
that come with sendmail. However, if you really want to make major sendmail configuration changes, you 
should use m4 to build your configuration.

Most changes to sendmail.cf are small and are made near the beginning of the file in the Local Information 

file:///C|/mynapster/Downloads/warez/tcpip/ch10_08.htm (3 of 10) [2001-10-15 09:18:44]



file:///C|/mynapster/Downloads/warez/tcpip/ch10_08.htm

section. Looking closely at that section provides the clues we need to solve part of our configuration 
problem.

Without knowing what "masquerading" means, the comments for class E, class M, and macro M lead us to 
guess that the value set for macro M will be used to rewrite the hostname. [22] In particular, the comment 
"names that should be exposed as from this host, even if we masquerade" led me to believe that 
masquerading hides the hostname. Based on this guess, we set a value for macro M as follows:

[22] In the m4 source file we configured masquerading with the 
MASQUERADE_AS(nuts.com) command.

# who I masquerade as (null for no masquerading) (see also $=M)
DMnuts.com

Are we sure that setting a value for the M macro will hide the hostname? No, but changing the value in 
test.cf and running another test will do no harm. Running the test program with the test configuration has 
no affect on the running sendmail daemon that was started by the sendmail -bd -q1h command in the boot 
script. Only an instantiation of sendmail with the -Ctest.cf argument will use the test.cf test configuration.

10.8.1 Testing Rewrite Rules 

In the initial test, the From: address went into sendmail as craig, and it came out as 
craig@peanut.nuts.com. Obviously it has been rewritten. This time we test whether the change we made to 
the macro M in the configuration files modifies the rewrite process by directly testing the rewrite rulesets. 
First, we need to find out what rules were used to rewrite this address. To get more information, we run 
sendmail with the -bt option.

When sendmail is invoked with the -bt option, it prompts for input using the greater than symbol (>). At 
the prompt, enter one of the test commands shown in Table 10.7

Table 10.7: sendmail Testing Commands

Command Function

ruleset[,ruleset]... address Process address through ruleset(s).

.Dmvalue Assign value to macro m.

.Ccvalue Add value to class c.

=Sruleset Display the rules in ruleset.

=M Display the mailer definitions.

-dvalue Set the debug flag to value.

$m Display the value of macro m.

$=c Display the contents of class c.

/mx host Display the MX records for host.

/parse address Return the mailer/host/user triple for address.

/try mailer address Process address for mailer.

file:///C|/mynapster/Downloads/warez/tcpip/ch10_08.htm (4 of 10) [2001-10-15 09:18:44]



file:///C|/mynapster/Downloads/warez/tcpip/ch10_08.htm

/tryflags flags Set the address processed by /parse or /try to H (Header), E 
(Envelope), S (Sender), or R (Recipient).

/canon hostname Canonify hostname.

/map mapname key Display the value for key found in mapname.

The most basic test is a ruleset number followed by an email address. The address is the test data, and the 
ruleset number is the ruleset to be tested. The address is easy to select; it is the one that was improperly 
rewritten. But how do you know which ruleset to specify?

Use Figure 10.4 to determine which rulesets to enter. Ruleset 3 is applied to all addresses. It is followed by 
different rulesets depending on whether the address is a delivery address, a sender address, or a recipient 
address. Furthermore, the rulesets used for sender and recipient addresses vary depending on the mailer 
that is used to deliver the mail. All addresses are then processed by ruleset 4.

There are two variables in determining the rulesets used to process an address: the type of address and the 
mailer through which it is processed. The three address types are delivery address, recipient address, and 
sender address. You know the address type because you select the address being tested. In our test mail we 
were concerned about the sender address. Which mailer is used is determined by the delivery address. To 
find out which mailer delivered the test mail, run sendmail with the -bv argument and the delivery address:

# sendmail -bv craigh@ora.com
craigh@ora.com... deliverable: mailer smtp, host ora.com.,
     user craigh@ora.com

Knowing the mailer, we can use sendmail with the -bt option to process the sender From: address. There 
are two types of sender addresses: the sender address in the "envelope" and the sender address in the 
message header. The message header address is the one on the From: line sent with the message during 
the SMTP DATA transfer. You probably see it in the mail headers when you view the message with your 
mail reader. The "envelope" address is the address used during the SMTP protocol interactions. sendmail 
allows us to view the processing of both of these addresses:

# /usr/lib/sendmail -bt -Ctest.cf
ADDRESS TEST MODE (ruleset 3 NOT automatically invoked)
Enter <ruleset> <address>
> /tryflags HS
> /try smtp craig
Trying header sender address craig for mailer smtp
rewrite: ruleset  3   input: craig
rewrite: ruleset 96   input: craig
rewrite: ruleset 96 returns: craig
rewrite: ruleset  3 returns: craig
rewrite: ruleset  1   input: craig
rewrite: ruleset  1 returns: craig
rewrite: ruleset 31   input: craig
rewrite: ruleset 51   input: craig
rewrite: ruleset 51 returns: craig
rewrite: ruleset 61   input: craig

file:///C|/mynapster/Downloads/warez/tcpip/ch10_08.htm (5 of 10) [2001-10-15 09:18:44]



file:///C|/mynapster/Downloads/warez/tcpip/ch10_08.htm

rewrite: ruleset 61 returns: craig < @ *LOCAL* >
rewrite: ruleset 93   input: craig < @ *LOCAL* >
rewrite: ruleset 93 returns: craig < @ nuts . com . >
rewrite: ruleset 31 returns: craig < @ nuts . com . >
rewrite: ruleset  4   input: craig < @ nuts . com . >
rewrite: ruleset  4 returns: craig @ nuts . com
Rcode = 0, addr = craig@nuts.com
> /tryflags ES
> /try smtp craig
Trying envelope sender address craig for mailer smtp
rewrite: ruleset  3   input: craig
rewrite: ruleset 96   input: craig
rewrite: ruleset 96 returns: craig
rewrite: ruleset  3 returns: craig
rewrite: ruleset  1   input: craig
rewrite: ruleset  1 returns: craig
rewrite: ruleset 11   input: craig
rewrite: ruleset 51   input: craig
rewrite: ruleset 51 returns: craig
rewrite: ruleset 61   input: craig
rewrite: ruleset 61 returns: craig < @ *LOCAL* >
rewrite: ruleset 94   input: craig < @ *LOCAL* >
rewrite: ruleset 94 returns: craig < @ peanut . nuts . com . >
rewrite: ruleset 11 returns: craig < @ peanut . nuts . com . >
rewrite: ruleset  4   input: craig < @ peanut . nuts . com . >
rewrite: ruleset  4 returns: craig @ peanut . nuts . com
Rcode = 0, addr = craig@peanut.nuts.com
> ^D

The /tryflags command defines the type of address to be processed by a /try or a /parse command. Four 
flags are available for the /tryflags command: S for sender, R for recipient, H for header, and E for 
envelope. By combining two of these flags, the first /tryflags command says we will process a header 
sender (HS) address. The /try command tells sendmail to process the address through a specific mailer. In 
the example, we process the email address craig through the mailer smtp. First, we process it as the header 
sender address, and then as the envelope sender address. From this test, we can tell that the value that we 
entered in the M macro is used to rewrite the sender address in the message header but it is not used to 
rewrite the sender address in the envelope.

Unfortunately, older versions of sendmail, such as the version that comes with Solaris 2.5.1, don't support 
/try and /tryflags. Testing these older systems requires a little more effort. Knowing the mailer is still the 
key to determining the rulesets called to process the sender From: address. A grep of the test.cf file 
displays the rulesets that the smtp mailer uses for sender addresses.

% grep ^Msmtp /etc/sendmail.cf
Msmtp,     P=[IPC], F=mDFMuX, S=11/31, R=21, E=\r\n, L=990,
Msmtp8,    P=[IPC], F=mDFMuX8, S=11/31, R=21, E=\r\n, L=990,

Again, refer to Figure 10.4 It shows that the sender address goes through ruleset 3, ruleset 1, the ruleset 

file:///C|/mynapster/Downloads/warez/tcpip/ch10_08.htm (6 of 10) [2001-10-15 09:18:44]



file:///C|/mynapster/Downloads/warez/tcpip/ch10_08.htm

specified by S, and ruleset 4. The mailer definition for smtp in our sample configuration defines two 
rulesets for S - 11 and 31. [23] The first ruleset is used for rewriting the sender address in the "envelope" 
and the second is used to rewrite the sender address in the message header.

[23] Many versions of sendmail define only one ruleset each for S and R.

Based on the information in Figure 10.4 and in the S field of the smtp mailer, we know that the rulesets that 
process the message header sender address are 3, 1, 31 and 4. So we run sendmail with the -bt option and 
enter 3,1,31,4 craig at the command prompt. This command processes the sender address through each of 
these rulesets in succession. We also know that the envelope sender address is processed by rulesets 3, 1, 
11, and 4. To test that, we enter 3,1,11,4 craig.

The results of these tests are exactly the same as those shown in the example above. The value of the M 
macro rewrites the hostname in the message sender address just as we wanted. The hostname in the 
envelope sender address is not rewritten. Usually this is acceptable. However, we want to create exactly the 
same configuration as in the m4 example. The FEATURE(masquerade_envelope) command used in the 
m4 example causes the envelope sender address to be rewritten. Therefore, we want this configuration to 
also rewrite it.

The only difference between how the message and envelope addresses are processed is that one goes 
through ruleset 31 and the other goes through ruleset 11. The tests show that both rulesets call ruleset 51 
and then ruleset 61. They diverge at that point because ruleset 31 calls ruleset 93 and ruleset 11 calls 
ruleset 94. The tests also show that ruleset 93 provides the address rewrite that we want for the message 
sender address, while the envelope sender address is not processed in the manner we desire by ruleset 94. 
The test.cf code for rulesets 94, 11, and 31 is shown below:

###################################################################
###  Ruleset 94 -- convert envelope names to masquerade form    ###
###################################################################
S94
#R$+                    $@ $>93 $1
R$* < @ *LOCAL* > $*    $: $1 < @ $j . > $2

#
#  envelope sender rewriting
#
S11
R$+             $: $>51 $1      sender/recipient common
R$* :; <@>      $@              list:; special case
R$*             $: $>61 $1      qualify unqual'ed names
R$+             $: $>94 $1      do masquerading

#
#  header sender and masquerading header recipient rewriting
#
S31
R$+             $: $>51 $1      sender/recipient common
R:; <@>         $@              list:; special case

file:///C|/mynapster/Downloads/warez/tcpip/ch10_08.htm (7 of 10) [2001-10-15 09:18:44]



file:///C|/mynapster/Downloads/warez/tcpip/ch10_08.htm

R$* <@> $*      $@ $1 <@> $2    pass null host through
R< @ $* > $*    $@ < @ $1 > $2  pass route-addr through
R$*             $: $>61 $1      qualify unqual'ed names
R$+             $: $>93 $1      do masquerading

Clearly, ruleset 94 does not do what we want and ruleset 93 does. A quick inspection of ruleset 94 shows 
that it does not contain a single reference to macro M. Yet the comment on the line in ruleset 11 that calls it 
indicates that ruleset 94 should "do masquerading." The first line of ruleset 94 calls ruleset 93, but it is 
commented out. Our solution is to uncomment the first line of ruleset 94 so that it now calls ruleset 93, 
which is the ruleset that really does the masquerade processing.

Debugging a sendmail.cf file is more of an art than a science. Deciding to edit the first line of ruleset 94 to 
call ruleset 93 is little more than a hunch. The only way to verify the hunch is through testing. We run 
sendmail -bt -Ctest.cf again to test the addresses craig, craig@peanut, and craig@localhost through 
rulesets 3, 1, 11, and 4. All tests run successfully, rewriting the various input addresses into 
craig@nuts.com. We then retest by sending mail via sendmail -v -t -Ctest.cf. Only when all of these tests 
run successfully do we really believe in our hunch and move on to the next task, which is to rewrite the 
user part of the email address into the user's first and last names.

10.8.2 Using Key Files in sendmail 

The last feature we added to the m4 source file was FEATURE(genericstable), which adds a database 
process to the configuration that we use to convert the user portion of the email address from the user's 
login name to the user's first and last names. To do the same thing here, create a text file of login names 
and first and last names and build a database with makemap. [24]

[24] See the m4 section for more information about makemap.

# cat realnames
dan Dan.Scribner
tyler Tyler.McCafferty
pat Pat.Stover
willy Bill.Wright
craig Craig.Hunt
# makemap dbm realnames < realnames

Once the database is created, define it for sendmail. Use the K command to do this. To use the database 
that we have just built, insert the following lines into the Local Information section of the sendmail.cf file:

# define a database to map login names to firstname.lastname
Krealnames dbm /etc/realnames

The K command defines realnames as the internal sendmail name of this database. Further, it identifies 
that this is a database of type dbm and that the path to the database is /etc/realnames. sendmail adds the 
correct filename extensions to the pathname depending on the type of the database, so you don't need to 
worry about it.

file:///C|/mynapster/Downloads/warez/tcpip/ch10_08.htm (8 of 10) [2001-10-15 09:18:44]



file:///C|/mynapster/Downloads/warez/tcpip/ch10_08.htm

Finally, we add a new rule that uses the database to rewrite addresses. We add it to ruleset 11 and ruleset 
31 immediately after the lines in those rulesets that call ruleset 93. This way, our new rule gets the address 
as soon as ruleset 93 finishes processing it.

# when masquerading convert login name to firstname.lastname
R$-<@$M.>$*    $:$(realnames $1 $)<@$2.>$3    user=>first.last

This rule is designed to process the output of ruleset 93, which rewrites the hostname portion of the 
address. Addresses that meet the criteria to have the hostname part rewritten are also the addresses for 
which we want to rewrite the user part. Look at the output of ruleset 93 from the earlier test. That address, 
craig<@nuts.com.>, matches the pattern $-<@$M.>$*. The address has exactly one token (craig) before 
the literal <@, followed by the value of M (nuts.com), the literal .> and zero tokens.

The transformation part of this rule takes the first token ($1) from the input address and uses it as the key 
to the realnames database, as indicated by the $:$(realnames $1 $) syntax. For the sample address 
craig<@nuts.com>, $1 is craig. When used as an index into the database realnames shown at the 
beginning of this section, it returns Craig.Hunt. This returned value is prepended to the literal <@, the 
value of indefinite token $2, the literal .>, and the value of $3, as indicated by the <@$2.>$3 part of the 
transformation. The effect of this new rule is to convert the username to the user's real first and last names.

After adding the new rule to rulesets 11 and 31, a test yields the following results:

# sendmail -bt -Ctest.cf
ADDRESS TEST MODE (ruleset 3 NOT automatically invoked)
Enter <ruleset> <address>
> 3,1,11,4 craig
rewrite: ruleset  3   input: craig
rewrite: ruleset 96   input: craig
rewrite: ruleset 96 returns: craig
rewrite: ruleset  3 returns: craig
rewrite: ruleset  1   input: craig
rewrite: ruleset  1 returns: craig
rewrite: ruleset 11   input: craig
rewrite: ruleset 51   input: craig
rewrite: ruleset 51 returns: craig
rewrite: ruleset 61   input: craig
rewrite: ruleset 61 returns: craig < @ *LOCAL* >
rewrite: ruleset 93   input: craig < @ *LOCAL* >
rewrite: ruleset 93 returns: craig < @ nuts . com . >
rewrite: ruleset 11 returns: Craig . Hunt < @ nuts . com . >
rewrite: ruleset  4   input: Craig . Hunt < @ nuts . com . >
rewrite: ruleset  4 returns: Craig . Hunt @ nuts . com
> 3,1,31,4 craig
rewrite: ruleset  3   input: craig
rewrite: ruleset 96   input: craig
rewrite: ruleset 96 returns: craig
rewrite: ruleset  3 returns: craig
rewrite: ruleset  1   input: craig

file:///C|/mynapster/Downloads/warez/tcpip/ch10_08.htm (9 of 10) [2001-10-15 09:18:44]



file:///C|/mynapster/Downloads/warez/tcpip/ch10_08.htm

rewrite: ruleset  1 returns: craig
rewrite: ruleset 31   input: craig
rewrite: ruleset 51   input: craig
rewrite: ruleset 51 returns: craig
rewrite: ruleset 61   input: craig
rewrite: ruleset 61 returns: craig < @ *LOCAL* >
rewrite: ruleset 93   input: craig < @ *LOCAL* >
rewrite: ruleset 93 returns: craig < @ nuts . com . >
rewrite: ruleset 31 returns: Craig . Hunt < @ nuts . com . >
rewrite: ruleset  4   input: Craig . Hunt < @ nuts . com . >
rewrite: ruleset  4 returns: Craig . Hunt @ nuts . com
> ^D

If the tests do not give the results you want, make sure that you have correctly entered the new rewrite 
rules and that you have correctly built the database. If sendmail complains that it can't lock the database 
file, you need to download a more recent release of sendmail V8. The following error message could also 
be displayed:

test.cf: line 116: readcf: map realnames: class dbm not available

This indicates that your system does not support dbm databases. Change the database type on the K 
command line to hash and rerun sendmail -bt. If it complains again, try it with btree. When you find a type 
of database that your sendmail likes, rerun makemap using that database type. If your sendmail doesn't 
support any database type, see Appendix E for information on re-compiling sendmail with database 
support.

Note that all of the changes made directly to the sendmail.cf file in the second half of this chapter 
(masquerading the sender address, masquerading the envelope address and converting usernames) were 
handled by just three lines in the m4 source file. These examples were used to demonstrate how to use the 
sendmail test tools. If you really need to make a new, custom configuration, use m4. It is easiest to 
maintain and enhance the sendmail configuration through the m4 source file.

Previous: 10.7 Modifying a 
sendmail.cf File 

TCP/IP Network 
Administration

Next: 10.9 Summary 

10.7 Modifying a sendmail.cf 
File 

Book Index 10.9 Summary 

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/ch10_08.htm (10 of 10) [2001-10-15 09:18:44]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Chapter 10] 10.9 Summary 

Previous: 10.8 Testing 
sendmail.cf 

Chapter 10
sendmail 

Next: 11. Troubleshooting 
TCP/IP 

 

10.9 Summary 

sendmail sends and receives SMTP mail, processes mail aliases, and interfaces between user mail 
agents and mail delivery agents. sendmail is started as a daemon at boot time to process incoming 
SMTP mail. sendmail aliases are defined in the /etc/aliases file. The rules for interfacing between user 
agents and mail delivery agents can be complex. sendmail uses the sendmail.cf file to define these 
rules.

Configuring the sendmail.cf file is the most difficult part of setting up a sendmail server. The file uses 
a very terse command syntax that is hard to read. Sample sendmail.cf files are available to simplify 
this task. Most systems come with a sample file and others are available with the sendmail V8 
software distribution. The sendmail V.8 sample files must first be processed by the m4 macro 
processor. Once the proper sample file is available very little of it needs to be changed. Almost all of 
the changes needed to complete the configuration occur at the beginning of the file and are used to 
define information about the local system, such as the hostname and the name of the mail relay host. 
sendmail provides an interactive testing tool that is used to check the configuration before it is 
installed.

This chapter concludes our study of TCP/IP servers configuration, our last configuration task. In the 
next chapter we begin to look at the ongoing tasks that are part of running a network once it has been 
installed and configured. We begin this discussion with troubleshooting.

Previous: 10.8 Testing 
sendmail.cf 

TCP/IP Network 
Administration

Next: 11. Troubleshooting 
TCP/IP 

10.8 Testing sendmail.cf Book Index 11. Troubleshooting TCP/IP 

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/ch10_09.htm [2001-10-15 09:18:44]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm
file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Chapter 11] Troubleshooting TCP/IP 

Previous: 10.9 Summary Chapter 11 Next: 11.2 Diagnostic Tools 

 

11. Troubleshooting TCP/IP 
Contents:
Approaching a Problem 
Diagnostic Tools 
Testing Basic Connectivity 
Troubleshooting Network Access 
Checking Routing 
Checking Name Service 
Analyzing Protocol Problems 
Protocol Case Study 
Simple Network Management Protocol 
Summary 

Network administration tasks fall into two very different categories: configuration and 
troubleshooting. Configuration tasks prepare for the expected; they require detailed knowledge of 
command syntax, but are usually simple and predictable. Once a system is properly configured, there 
is rarely any reason to change it. The configuration process is repeated each time a new operating 
system release is installed, but with very few changes.

In contrast, network troubleshooting deals with the unexpected. Troubleshooting frequently requires 
knowledge that is conceptual rather than detailed. Network problems are usually unique and 
sometimes difficult to resolve. Troubleshooting is an important part of maintaining a stable, reliable 
network service.

In this chapter, we discuss the tools you will use to ensure that the network is in good running 
condition. However, good tools are not enough. No troubleshooting tool is effective if applied 
haphazardly. Effective troubleshooting requires a methodical approach to the problem, and a basic 
understanding of how the network works. We'll start our discussion by looking at ways to approach a 
network problem.

11.1 Approaching a Problem 

To approach a problem properly, you need a basic understanding of TCP/IP. The first few chapters of 

file:///C|/mynapster/Downloads/warez/tcpip/ch11_01.htm (1 of 4) [2001-10-15 09:18:45]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


[Chapter 11] Troubleshooting TCP/IP 

this book discuss the basics of TCP/IP and provide enough background information to troubleshoot 
most network problems. Knowledge of how TCP/IP routes data through the network, between 
individual hosts, and between the layers in the protocol stack, is important for understanding a 
network problem. But detailed knowledge of each protocol usually isn't necessary. When you need 
these details, look them up in a definitive reference - don't try to recall them from memory.

Not all TCP/IP problems are alike, and not all problems can be approached in the same manner. But 
the key to solving any problem is understanding what the problem is. This is not as easy as it may 
seem. The "surface" problem is sometimes misleading, and the "real" problem is frequently obscured 
by many layers of software. Once you understand the true nature of the problem, the solution to the 
problem is often obvious.

First, gather detailed information about exactly what's happening. When a user reports a problem, talk 
to her. Find out which application failed. What is the remote host's name and IP address? What is the 
user's hostname and address? What error message was displayed? If possible, verify the problem by 
having the user run the application while you talk her through it. If possible, duplicate the problem on 
your own system.

Testing from the user's system, and other systems, find out:

●     Does the problem occur in other applications on the user's host, or is only one application 
having trouble? If only one application is involved, the application may be misconfigured or 
disabled on the remote host. Because of security concerns, many systems disable some 
services.

●     Does the problem occur with only one remote host, all remote hosts, or only certain "groups" 
of remote hosts? If only one remote host is involved, the problem could easily be with that 
host. If all remote hosts are involved, the problem is probably with the user's system 
(particularly if no other hosts on your local network are experiencing the same problem). If 
only hosts on certain subnets or external networks are involved, the problem may be related to 
routing.

●     Does the problem occur on other local systems? Make sure you check other systems on the 
same subnet. If the problem only occurs on the user's host, concentrate testing on that system. 
If the problem affects every system on a subnet, concentrate on the router for that subnet.

Once you know the symptoms of the problem, visualize each protocol and device that handles the 
data. Visualizing the problem will help you avoid oversimplification, and keep you from assuming 
that you know the cause even before you start testing. Using your TCP/IP knowledge, narrow your 
attack to the most likely causes of the problem, but keep an open mind.

11.1.1 Troubleshooting Hints 

Below we offer several useful troubleshooting hints. They are not part of a troubleshooting 
methodology - just good ideas to keep in mind.

●     Approach problems methodically. Allow the information gathered from each test to guide your 

file:///C|/mynapster/Downloads/warez/tcpip/ch11_01.htm (2 of 4) [2001-10-15 09:18:45]



[Chapter 11] Troubleshooting TCP/IP 

testing. Don't jump on a hunch into another test scenario without ensuring that you can pick up 
your original scenario where you left off.

●     Work carefully through the problem, dividing it into manageable pieces. Test each piece before 
moving on to the next. For example, when testing a network connection, test each part of the 
network until you find the problem.

●     Keep good records of the tests you have completed and their results. Keep a historical record 
of the problem in case it reappears.

●     Keep an open mind. Don't assume too much about the cause of the problem. Some people 
believe their network is always at fault, while others assume the remote end is always the 
problem. Some are so sure they know the cause of a problem that they ignore the evidence of 
the tests. Don't fall into these traps. Test each possibility and base your actions on the evidence 
of the tests.

●     Be aware of security barriers. Security firewalls sometimes block ping, traceroute, and even 
ICMP error messages. If problems seem to cluster around a specific remote site, find out if 
they have a firewall.

●     Pay attention to error messages. Error messages are often vague, but they frequently contain 
important hints for solving the problem.

●     Duplicate the reported problem yourself. Don't rely too heavily on the user's problem report. 
The user has probably only seen this problem from the application level. If necessary, obtain 
the user's data files to duplicate the problem. Even if you cannot duplicate the problem, log the 
details of the reported problem for your records.

●     Most problems are caused by human error. You can prevent some of these errors by providing 
information and training on network configuration and usage.

●     Keep your users informed. This reduces the number of duplicated trouble reports, and the 
duplication of effort when several system administrators work on the same problem without 
knowing others are already working on it. If you're lucky, someone may have seen the problem 
before and have a helpful suggestion about how to resolve it.

●     Don't speculate about the cause of the problem while talking to the user. Save your 
speculations for discussions with your networking colleagues. Your speculations may be 
accepted by the user as gospel, and become rumors. These rumors can cause users to avoid 
using legitimate network services and may undermine confidence in your network. Users want 
solutions to their problems; they're not interested in speculative techno-babble.

●     Stick to a few simple troubleshooting tools. For most TCP/IP software problems, the tools 
discussed in this chapter are sufficient. Just learning how to use a new tool is often more time-
consuming than solving the problem with an old familiar tool.

●     Thoroughly test the problem at your end of the network before locating the owner of the 
remote system to coordinate testing with him. The greatest difficulty of network 
troubleshooting is that you do not always control the systems at both ends of the network. In 
many cases, you may not even know who does control the remote system. [1] The more 
information you have about your end, the simpler the job will be when you have to contact the 
remote administrator.

[1] Chapter 13, Internet Information Resources explains how to find out who is 
responsible for a remote network

●     Don't neglect the obvious. A loose or damaged cable is always a possible problem. Check 

file:///C|/mynapster/Downloads/warez/tcpip/ch11_01.htm (3 of 4) [2001-10-15 09:18:45]



[Chapter 11] Troubleshooting TCP/IP 

plugs, connectors, cables, and switches. Small things can cause big problems.

Previous: 10.9 Summary TCP/IP Network 
Administration

Next: 11.2 Diagnostic Tools 

10.9 Summary Book Index 11.2 Diagnostic Tools 

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/ch11_01.htm (4 of 4) [2001-10-15 09:18:45]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Chapter 11] 11.2 Diagnostic Tools 

Previous: 11.1 Approaching 
a Problem 

Chapter 11
Troubleshooting TCP/IP 

Next: 11.3 Testing Basic 
Connectivity 

 

11.2 Diagnostic Tools 

Because most problems have a simple cause, developing a clear idea of the problem often provides 
the solution. Unfortunately, this is not always true, so in this section we begin to discuss the tools that 
can help you attack the most intractable problems. Many diagnostic tools are available, ranging from 
commercial systems with specialized hardware and software that may cost thousands of dollars, to 
free software that is available from the Internet. Many software tools are provided with your UNIX 
system. You should also keep some hardware tools handy.

To maintain the network's equipment and wiring you need some simple hand tools. A pair of needle-
nose pliers and a few screwdrivers may be sufficient, but you may also need specialized tools. For 
example, attaching RJ45 connectors to Unshielded Twisted Pair (UTP) cable requires special 
crimping tools. It is usually easiest to buy a ready-made network maintenance toolkit from your cable 
vendor.

A full-featured cable tester is also useful. Modern cable testers are small hand-held units with a 
keypad and LCD display that test both thinnet or UTP cable. Tests are selected from the keyboard and 
results are displayed on the LCD screen. It is not necessary to interpret the results because the unit 
does that for you and displays the error condition in a simple text message. For example, a cable test 
might produce the message "Short at 74 feet." This tells you that the cable is shorted 74 feet away 
from the tester. What could be simpler? The proper test tools make it easier to locate, and therefore 
fix, cable problems.

A laptop computer can be a most useful piece of test equipment when properly configured. Install 
TCP/IP software on the laptop. Take it to the location where the user reports a network problem. 
Disconnect the Ethernet cable from the back of the user's system and attach it to the laptop. Configure 
the laptop with an appropriate address for the user's subnet and reboot it. Then ping various systems 
on the network and attach to one of the user's servers. If everything works, the fault is probably in the 
user's computer. The user trusts this test because it demonstrates something she does every day. She 
will have more confidence in the laptop than an unidentifiable piece of test equipment displaying the 
message "No faults found." If the test fails, the fault is probably in the network equipment or wiring. 
That's the time to bring out the cable tester.

Another advantage of using a laptop as a piece of test equipment is its inherent versatility. It runs a 
wide variety of test, diagnostic, and management software. Install UNIX on the laptop and run the 

file:///C|/mynapster/Downloads/warez/tcpip/ch11_02.htm (1 of 3) [2001-10-15 09:18:46]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


[Chapter 11] 11.2 Diagnostic Tools 

software discussed in the rest of this chapter from your desktop or your laptop.

This book emphasizes free or "built-in" software diagnostic tools that run on UNIX systems. The 
software tools used in this chapter, and many more, are described in RFC 1470, FYI on a Network 
Management Tool Catalog: Tools for Monitoring and Debugging TCP/IP Internets and 
Interconnected Devices. A catchy title, and a very useful RFC! The tools listed in that catalog and 
discussed in this book are:

ifconfig

Provides information about the basic configuration of the interface. It is useful for detecting 
bad IP addresses, incorrect subnet masks, and improper broadcast addresses. Chapter 6, 
Configuring the Interface , covers ifconfig in detail. This tool is provided with the UNIX 
operating system.

arp

Provides information about Ethernet/IP address translation. It can be used to detect systems on 
the local network that are configured with the wrong IP address. arp is covered in this chapter, 
and is used in an example in Chapter 2, Delivering the Data. arp is delivered as part of UNIX.

netstat

Provides a variety of information. It is commonly used to display detailed statistics about each 
network interface, network sockets, and the network routing table. netstat is used repeatedly in 
this book, most extensively in Chapters 2, 6, and 7. netstat is delivered as part of UNIX.

ping

Indicates whether a remote host can be reached. ping also displays statistics about packet loss 
and delivery time. ping is discussed in Chapter 1, Overview of TCP/IP and used in Chapter 7. 
ping also comes as part of UNIX.

nslookup

Provides information about the DNS name service. nslookup is covered in detail in Chapter 8, 
Configuring DNS Name Service . It comes as part of the BIND software package.

dig

Also provides information about name service, and is similar to nslookup.
ripquery

Provides information about the contents of the RIP update packets being sent or received by 
your system. It is provided as part of the gated software package, but it does not require that 
you run gated. It will work with any system running RIP.

traceroute

Prints information about each routing hop that packets take going from your system to a 

file:///C|/mynapster/Downloads/warez/tcpip/ch11_02.htm (2 of 3) [2001-10-15 09:18:46]



[Chapter 11] 11.2 Diagnostic Tools 

remote system.
snoop

Analyzes the individual packets exchanged between hosts on a network. snoop is a TCP/IP 
protocol analyzer that examines the contents of packets, including their headers. It is most 
useful for analyzing protocol problems. tcpdump is a tool similar to snoop that is available via 
anonymous FTP from the Internet.

This chapter discusses each of these tools, even those covered earlier in the text. We start with ping, 
which is used in more troubleshooting situations than any other diagnostic tool.

Previous: 11.1 Approaching 
a Problem 

TCP/IP Network 
Administration

Next: 11.3 Testing Basic 
Connectivity 

11.1 Approaching a Problem Book Index 11.3 Testing Basic 
Connectivity 

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/ch11_02.htm (3 of 3) [2001-10-15 09:18:46]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Chapter 11] 11.3 Testing Basic Connectivity 

Previous: 11.2 Diagnostic 
Tools 

Chapter 11
Troubleshooting TCP/IP 

Next: 11.4 Troubleshooting 
Network Access 

 

11.3 Testing Basic Connectivity 

The ping command tests whether a remote host can be reached from your computer. This simple 
function is extremely useful for testing the network connection, independent of the application in 
which the original problem was detected. ping allows you to determine whether further testing should 
be directed toward the network connection (the lower layers) or the application (the upper layers). If 
ping shows that packets can travel to the remote system and back, the user's problem is probably in 
the upper layers. If packets can't make the round trip, lower protocol layers are probably at fault.

Frequently a user reports a network problem by stating that he can't telnet (or ftp, or send email, or 
whatever) to some remote host. He then immediately qualifies this statement with the announcement 
that it worked before. In cases like this, where the ability to connect to the remote host is in question, 
ping is a very useful tool.

Using the hostname provided by the user, ping the remote host. If your ping is successful, have the 
user ping the host. If the user's ping is also successful, concentrate your further analysis on the 
specific application that the user is having trouble with. Perhaps the user is attempting to telnet to a 
host that only provides anonymous ftp. Perhaps the host was down when the user tried his application. 
Have the user try it again, while you watch or listen to every detail of what he is doing. If he is doing 
everything right and the application still fails, detailed analysis of the application with snoop and 
coordination with the remote system administrator may be needed.

If your ping is successful and the user's ping fails, concentrate testing on the user's system 
configuration, and on those things that are different about the user's path to the remote host, when 
compared to your path to the remote host.

If your ping fails, or the user's ping fails, pay close attention to any error messages. The error 
messages displayed by ping are helpful guides for planning further testing. The details of the 
messages may vary from implementation to implementation, but there are only a few basic types of 
errors:

Unknown host

The remote host's name cannot be resolved by name service into an IP address. The name 
servers could be at fault (either your local server or the remote system's server), the name could 

file:///C|/mynapster/Downloads/warez/tcpip/ch11_03.htm (1 of 4) [2001-10-15 09:18:46]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


[Chapter 11] 11.3 Testing Basic Connectivity 

be incorrect, or something could be wrong with the network between your system and the 
remote server. If you know the remote host's IP address, try to ping that. If you can reach the 
host using its IP address, the problem is with name service. Use nslookup or dig to test the 
local and remote servers, and to check the accuracy of the host name the user gave you.

Network unreachable

The local system does not have a route to the remote system. If the numeric IP address was 
used on the ping command line, re-enter the ping command using the hostname. This 
eliminates the possibility that the IP address was entered incorrectly, or that you were given the 
wrong address. If a routing protocol is being used, make sure it is running and check the 
routing table with netstat. If RIP is being used, ripquery will check the contents of the RIP 
updates being received. If a static default route is being used, re-install it. If everything seems 
fine on the host, check its default gateway for routing problems.

No answer

The remote system did not respond. Most network utilities have some version of this message. 
Some ping implementations print the message "100% packet loss." telnet prints the message 
"Connection timed out" and sendmail returns the error "cannot connect." All of these errors 
mean the same thing. The local system has a route to the remote system, but it receives no 
response from the remote system to any of the packets it sends.

There are many possible causes of this problem. The remote host may be down. Either the 
local or the remote host may be configured incorrectly. A gateway or circuit between the local 
host and the remote host may be down. The remote host may have routing problems. Only 
additional testing can isolate the cause of the problem. Carefully check the local configuration 
using netstat and ifconfig. Check the route to the remote system with traceroute. Contact the 
administrator of the remote system and report the problem.

All of the tools mentioned here will be discussed later in this chapter. However, before leaving ping, 
let's look more closely at the command and the statistics it displays.

11.3.1 The ping Command 

The basic format of the ping command on a Solaris system is: [2]

[2] Check your system's documentation. ping varies slightly from system to system. On 
Linux, the format shown above would be: ping [-c count] [-s packetsize] host

ping host [packetsize] [count]

host

The hostname or IP address of the remote host being tested. Use the hostname or address 
provided by the user in the trouble report.

file:///C|/mynapster/Downloads/warez/tcpip/ch11_03.htm (2 of 4) [2001-10-15 09:18:46]



[Chapter 11] 11.3 Testing Basic Connectivity 

packetsize

Defines the size in bytes of the test packets. This field is required only if the count field is 
going to be used. Use the default packetsize of 56 bytes.

count

The number of packets to be sent in the test. Use the count field, and set the value low. 
Otherwise, the ping command may continue to send test packets until you interrupt it, usually 
by pressing CTRL-C (^C). Sending excessive numbers of test packets is not a good use of 
network bandwidth and system resources. Usually five packets are sufficient for a test.

To check that ns.uu.net can be reached from almond, we send five 56-byte packets with the following 
command:

% ping -s ns.uu.net 56 5
PING ns.uu.net: 56 data bytes
64 bytes from ns.uu.net (137.39.1.3): icmp_seq=0. time=32.8 ms
64 bytes from ns.uu.net (137.39.1.3): icmp_seq=1. time=15.3 ms
64 bytes from ns.uu.net (137.39.1.3): icmp_seq=2. time=13.1 ms
64 bytes from ns.uu.net (137.39.1.3): icmp_seq=3. time=32.4 ms
64 bytes from ns.uu.net (137.39.1.3): icmp_seq=4. time=28.1 ms

----ns.uu.net PING Statistics----
5 packets transmitted, 5 packets received, 0% packet loss
round-trip (ms)  min/avg/max = 13.1/24.3/32.8

The -s option is included because almond is a Solaris workstation, and we want packet-by-packet 
statistics. Without the -s option, Sun's ping command only prints a summary line saying "ns.uu.net is 
alive." Other ping implementations do not require the -s option; they display the statistics by default.

This test shows an extremely good wide area network link to ns.uu.net with no packet loss and a fast 
response. The round-trip between peanut and ns.uu.net took an average of only 24.3 milliseconds. A 
small packet loss, and a round-trip time an order of magnitude higher, would not be abnormal for a 
connection made across a wide area network. The statistics displayed by the ping command can 
indicate low-level network problems. The key statistics are:

●     The sequence in which the packets are arriving, as shown by the ICMP sequence number 
(icmp_seq) displayed for each packet.

●     How long it takes a packet to make the round trip, displayed in milliseconds after the string 
time=.

●     The percentage of packets lost, displayed in a summary line at the end of the ping output.

If the packet loss is high, the response time is very slow, or packets are arriving out of order, there 
could be a network hardware problem. If you see these conditions when communicating over great 
distances on a wide area network, there is nothing to worry about. TCP/IP was designed to deal with 

file:///C|/mynapster/Downloads/warez/tcpip/ch11_03.htm (3 of 4) [2001-10-15 09:18:46]



[Chapter 11] 11.3 Testing Basic Connectivity 

unreliable networks, and some wide area networks suffer a lot of packet loss. But if these problems 
are seen on a local area network, they indicate trouble.

On a local network cable segment, the round-trip time should be near 0, there should be little or no 
packet loss, and the packets should arrive in order. If these things are not true, there is a problem with 
the network hardware. On an Ethernet the problem could be improper cable termination, a bad cable 
segment, or a bad piece of "active" hardware, such as a hub, switch, or transceiver. Check the cable 
with a cable tester as described earlier. Good hubs and switches often have built-in diagnostic 
software that can be checked. Cheap hubs and transceivers may require the "brute force" method of 
disconnecting individual pieces of hardware until the problem goes away.

The results of a simple ping test, even if the ping is successful, can help you direct further testing 
toward the most likely causes of the problem. But other diagnostic tools are needed to examine the 
problem more closely and find the underlying cause.

Previous: 11.2 Diagnostic 
Tools 

TCP/IP Network 
Administration

Next: 11.4 Troubleshooting 
Network Access 

11.2 Diagnostic Tools Book Index 11.4 Troubleshooting 
Network Access 

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/ch11_03.htm (4 of 4) [2001-10-15 09:18:46]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Chapter 11] 11.4 Troubleshooting Network Access 

Previous: 11.3 Testing 
Basic Connectivity 

Chapter 11
Troubleshooting TCP/IP 

Next: 11.5 Checking 
Routing 

 

11.4 Troubleshooting Network Access 

The "no answer" and "cannot connect" errors indicate a problem in the lower layers of the network 
protocols. If the preliminary tests point to this type of problem, concentrate your testing on routing and on 
the network interface. Use the ifconfig, netstat, and arp commands to test the Network Access Layer.

11.4.1 Troubleshooting with the ifconfig Command 

ifconfig checks the network interface configuration. Use this command to verify the user's configuration if 
the user's system has been recently configured, or if the user's system cannot reach the remote host while 
other systems on the same network can.

When ifconfig is entered with an interface name and no other arguments, it displays the current values 
assigned to that interface. For example, checking interface le0 on a Solaris system gives this report:

% ifconfig le0
le0: flags=863<UP,BROADCAST,NOTRAILERS,RUNNING,MULTICAST> mtu 1500
        inet 172.16.55.105 netmask ffffff00 broadcast 172.16.55.255

The ifconfig command displays two lines of output. The first line of the display shows the interface's name 
and its characteristics. Check for these characteristics:

UP

The interface is enabled for use. If the interface is "down," have the system's superuser bring the 
interface "up" with the ifconfig command (e.g., ifconfig le0 up). If the interface won't come up, 
replace the interface cable and try again. If it still fails, have the interface hardware checked.

RUNNING

This interface is operational. If the interface is not "running," the driver for this interface may not be 
properly installed. The system administrator should review all of the steps necessary to install this 
interface, looking for errors or missed steps.

The second line of ifconfig output shows the IP address, the subnet mask (written in hexadecimal), and the 
broadcast address. Check these three fields to make sure the network interface is properly configured.

file:///C|/mynapster/Downloads/warez/tcpip/ch11_04.htm (1 of 7) [2001-10-15 09:18:48]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


[Chapter 11] 11.4 Troubleshooting Network Access 

Two common interface configuration problems are misconfigured subnet masks and incorrect IP addresses. 
A bad subnet mask is indicated when the host can reach other hosts on its local subnet and remote hosts on 
distant networks, but it cannot reach hosts on other local subnets. ifconfig quickly reveals if a bad subnet 
mask is set.

An incorrectly set IP address can be a subtle problem. If the network part of the address is incorrect, every 
ping will fail with the "no answer" error. In this case, using ifconfig will reveal the incorrect address. 
However, if the host part of the address is wrong, the problem can be more difficult to detect. A small 
system, such as a PC that only connects out to other systems and never accepts incoming connections, can 
run for a long time with the wrong address without its user noticing the problem. Additionally, the system 
that suffers the ill effects may not be the one that is misconfigured. It is possible for someone to 
accidentally use your IP address on his system, and for his mistake to cause your system intermittent 
communications problems. An example of this problem is discussed later. This type of configuration error 
cannot be discovered by ifconfig, because the error is on a remote host. The arp command is used for this 
type of problem.

11.4.2 Troubleshooting with the arp Command 

The arp command is used to analyze problems with IP to Ethernet address translation. The arp command 
has three useful options for troubleshooting:

-a

Display all ARP entries in the table.
-d hostname

Delete an entry from the ARP table.
-s hostname ether-address

Add a new entry to the table.

With these three options you can view the contents of the ARP table, delete a problem entry, and install a 
corrected entry. The ability to install a corrected entry is useful in "buying time" while you look for the 
permanent fix.

Use arp if you suspect that incorrect entries are getting into the address resolution table. One clear 
indication of problems with the ARP table is a report that the "wrong" host responded to some command, 
like ftp or telnet. Intermittent problems that affect only certain hosts can also indicate that the ARP table 
has been corrupted. ARP table problems are usually caused by two systems using the same IP address. The 
problems appear intermittent, because the entry that appears in the table is the address of the host that 
responded quickest to the last ARP request. Sometimes the "correct" host responds first, and sometimes the 
"wrong" host responds first.

If you suspect that two systems are using the same IP address, display the address resolution table with the 
arp -a command. Here's an example from a Solaris system: [3]

[3] The format in which the ARP table is displayed may vary slightly between systems.

file:///C|/mynapster/Downloads/warez/tcpip/ch11_04.htm (2 of 7) [2001-10-15 09:18:48]



[Chapter 11] 11.4 Troubleshooting Network Access 

% arp -a
Net to Media Table
Device   IP Address               Mask      Flags   Phys Addr 
------ -------------------- --------------- ----- ---------------
le0    peanut.nuts.com      255.255.255.255       08:00:20:05:21:33
le0    pecan.nuts.com       255.255.255.255       00:00:0c:e0:80:b1
le0    almond.nuts.com      255.255.255.255  SP   08:00:20:22:fd:51
le0    BASE-ADDRESS.MCAST.NET 240.0.0.0      SM   01:00:5e:00:00:00

It is easiest to verify that the IP and Ethernet address pairs are correct if you have a record of each host's 
correct Ethernet address. For this reason you should record each host's Ethernet and IP address when it is 
added to your network. If you have such a record, you'll quickly see if anything is wrong with the table.

If you don't have this type of record, the first three bytes of the Ethernet address can help you to detect a 
problem. The first three bytes of the address identify the equipment manufacturer. A list of these 
identifying prefixes is found in the Assigned Numbers RFC, in the section entitled "Ethernet Vendor 
Address Components." This information is also available at ftp://ftp.isi.edu/in-
notes/iana/assignments/ethernet-numbers.

From the vendor prefixes we see that two of the ARP entries displayed in our example are Sun systems 
(8:0:20). If pecan is also supposed to be a Sun, the 0:0:0c Cisco prefix indicates that a Cisco router has 
been mistakenly configured with pecan's IP address.

If neither checking a record of correct assignments nor checking the manufacturer prefix helps you identify 
the source of the errant ARP, try using telnet to connect to the IP address shown in the ARP entry. If the 
device supports telnet, the login banner might help you identify the incorrectly configured host.

11.4.2.1 ARP problem case study 

A user called in asking if the server was down, and reported the following problem. The user's workstation, 
called cashew, appeared to "lock up" for minutes at a time when certain commands were used, while other 
commands worked with no problems. The network commands that involved the NIS name server all 
caused the lock-up problem, but some unrelated commands also caused the problem. The user reported 
seeing the error message:

NFS getattr failed for server almond: RPC: Timed out

The server almond was providing cashew with NIS and NFS services. The commands that failed on 
cashew were commands that required NIS service, or that were stored in the centrally maintained /usr/local 
directory exported from almond. The commands that ran correctly were installed locally on the user's 
workstation. No one else reported a problem with the server, and we were able to ping cashew from 
almond and get good responses.

We had the user check the /usr/adm/messages file for recent error messages, and she discovered this:

Mar  6 13:38:23 cashew vmunix: duplicate IP address!!

file:///C|/mynapster/Downloads/warez/tcpip/ch11_04.htm (3 of 7) [2001-10-15 09:18:48]

ftp://ftp.isi.edu/in%E2%80%93notes/iana/assignments/ethernet%E2%80%93numbers
ftp://ftp.isi.edu/in%E2%80%93notes/iana/assignments/ethernet%E2%80%93numbers


[Chapter 11] 11.4 Troubleshooting Network Access 

         sent from ethernet address: 0:0:c0:4:38:1a

This message indicates that the workstation detected another host on the Ethernet responding to its IP 
address. The "imposter" used the Ethernet address 0:0:c0:4:38:1a in its ARP response. The correct Ethernet 
address for cashew is 8:0:20:e:12:37.

We checked almond's ARP table and found that it had the incorrect ARP entry for cashew. We deleted the 
bad cashew entry with the arp -d command, and installed the correct entry with the -s option, as shown 
below:

# arp -d cashew
cashew (172.16.180.130) deleted
# arp -s cashew 8:0:20:e:12:37

ARP entries received via the ARP protocol are temporary. The values are held in the table for a finite 
lifetime and are deleted when that lifetime expires. New values are then obtained via the ARP protocol. 
Therefore, if some remote interfaces change, the local table adjusts and communications continue. Usually 
this is a good idea, but if someone is using the wrong IP address, that bad address can keep reappearing in 
the ARP table even if it is deleted. However, manually entered values are permanent; they stay in the table 
and can only be deleted manually. This allowed us to install a correct entry in the table, without worrying 
about it being overwritten by a bad address.

This quick fix resolved cashew's immediate problem, but we still needed to find the culprit. We checked 
the /etc/ethers file to see if we had an entry for Ethernet address 0:0:c0:4:38:1a, but we didn't. From the 
first three bytes of this address, 0:0:c0, we knew that the device was a Western Digital card. Since our 
network has only UNIX workstations and PCs, we assumed the Western Digital card was installed in a PC. 
We also guessed that the problem address was recently installed because the user had never had the 
problem before. We sent out an urgent announcement to all users asking if anyone had recently installed a 
new PC, reconfigured a PC, or installed TCP/IP software on a PC. We got one response. When we checked 
his system, we found out that he had entered the address 172.16.180.130 when he should have entered 
172.16.180.138. The address was corrected and the problem did not recur.

Nothing fancy was needed to solve this problem. Once we checked the error messages, we knew what the 
problem was and how to solve it. Involving the entire network user community allowed us to quickly 
locate the problem system and to avoid a room-to-room search for the PC. Reluctance to involve users and 
make them part of the solution is one of the costliest, and most common, mistakes made by network 
administrators.

11.4.3 Checking the Interface with netstat 

If the preliminary tests lead you to suspect that the connection to the local area network is unreliable, the 
netstat -i command can provide useful information. The example below shows the output from the netstat -
i command:

% netstat -i
Name Mtu  Net/Dest Address   Ipkts Ierrs Opkts Oerrs Collis Queue
le0  1500 nuts.com almond    442697  2    633424  2    50679  0

file:///C|/mynapster/Downloads/warez/tcpip/ch11_04.htm (4 of 7) [2001-10-15 09:18:48]



[Chapter 11] 11.4 Troubleshooting Network Access 

lo0  1536 loopback localhost  53040  0    53040   0    0      0

The line for the loopback interface, lo0, can be ignored. Only the line for the real network interface is 
significant, and only the last five fields on that line provide significant troubleshooting information.

Let's look at the last field first. There should be no packets queued (Queue) that cannot be transmitted. If 
the interface is up and running, and the system cannot deliver packets to the network, suspect a bad drop 
cable or a bad interface. Replace the cable and see if the problem goes away. If it doesn't, call the vendor 
for interface hardware repairs.

The input errors (Ierrs) and the output errors (Oerrs) should be close to 0. Regardless of how much traffic 
has passed through this interface, 100 errors in either of these fields is high. High output errors could 
indicate a saturated local network or a bad physical connection between the host and the network. High 
input errors could indicate that the network is saturated, the local host is overloaded, or there is a physical 
network problem. Tools, such as ping statistics or a cable tester, can help you determine if it is a physical 
network problem. Evaluating the collision rate can help you determine if the local Ethernet is saturated.

A high value in the collision field (Collis) is normal, but if the percentage of output packets that result in a 
collision is too high, it indicates that the network is saturated. Collision rates greater than 5% bear 
watching. If high collision rates are seen consistently, and are seen among a broad sampling of systems on 
the network, you may need to subdivide the network to reduce traffic load.

Collision rates are a percentage of output packets. Don't use the total number of packets sent and received; 
use the values in the Opkts and Collis fields when determining the collision rate. For example, the output in 
the netstat sample above shows 50679 collisions out of 633424 outgoing packets. That's a collision rate of 
8%. This sample network could be overworked; check the statistics on other hosts on this network. If the 
other systems also show a high collision rate, consider subdividing this network.

11.4.4 Subdividing an Ethernet 

To reduce the collision rate, you must reduce the amount of traffic on the network segment. A simple way 
to do this is to create multiple segments out of the single segment. Each new segment will have fewer hosts 
and, therefore, less traffic. We'll see, however, that it's not quite this simple.

The most effective way to subdivide an Ethernet is to install an Ethernet switch. Each port on the switch is 
essentially a separate Ethernet. So a 16-port switch gives you 16 Ethernets to work with when balancing 
the load. On most switches the ports can be used in a variety of ways (see Figure 11.1 Lightly used systems 
can be attached to a hub that is then attached to one of the switch ports to allow the systems to share a 
single segment. Servers and demanding systems can be given dedicated ports so that they don't need to 
share a segment with anyone. Additionally, some switches provide a few Fast Ethernet 100 Mbps ports. 
These are called asymmetric switches because different ports operate at different speeds. Use the Fast 
Ethernet ports to connect heavily used servers. If you're buying a new switch, buy a 10/100 switch with 
auto-sensing ports. This allows every port to be used at either 100 Mbps or at 10 Mbps, which give you the 
maximum configuration flexibility.

Figure 11.1 shows an 8-port 10/100 Ethernet switch. Ports 1 and 2 are wired to Ethernet hubs. A few 
systems are connected to each hub. When new systems are added they are distributed evenly among the 

file:///C|/mynapster/Downloads/warez/tcpip/ch11_04.htm (5 of 7) [2001-10-15 09:18:48]



[Chapter 11] 11.4 Troubleshooting Network Access 

hubs to prevent any one segment from becoming overloaded. Additional hubs can be added to the available 
switch ports for future expansion. Port 4 attaches a demanding system with its own private segment. Port 6 
operates at 100 Mbps and attaches a heavily used server. A port can be reserved for a future 100 Mbps 
connection to a second 10/100 Ethernet switch for even more expansion.

Figure 11.1: Subdividing an Ethernet with switches

Before allocating the ports on your switch, evaluate what services are in demand, and who talks to whom. 
Then develop a plan that reduces the amount of traffic flowing over any segment. For example, if the 
demanding system on Port 4 uses lots of bandwidth because it is constantly talking to one of the systems 
on Port 1, all of the systems on Port 1 will suffer because of this traffic. The computer that the demanding 
system communicates with should be moved to one of the vacant ports or to the same port (4) as the 
demanding system. Use your switch to the greatest advantage by balancing the load.

Should you segment an old coaxial cable Ethernet by cutting the cable and joining it back together through 
a router or a bridge? No. If you have an old network that is finally reaching saturation, it is time to install a 
new network built on a more robust technology. A shared media network, a network where everyone is on 
the same cable (in this example, a coaxial cable Ethernet) is an accident waiting to happen. Design a 
network that a user cannot bring down by merely disconnecting his system, or even by accidentally cutting 
a wire in his office. Use Unshielded Twisted Pair (UTP) cable, ideally Category 5 cable, to create a 
10BaseT Ethernet or 100BaseT Fast Ethernet that wires equipment located in the user's office to a hub 
securely stored in a wire closet. The network components in the user's office should be sufficiently isolated 
from the network so that damage to those components does not damage the entire network. The new 
network will solve your collision problem and reduce the amount of hardware troubleshooting you are 
called upon to do.

file:///C|/mynapster/Downloads/warez/tcpip/ch11_04.htm (6 of 7) [2001-10-15 09:18:48]



[Chapter 11] 11.4 Troubleshooting Network Access 

11.4.4.1 Network hardware problems 

Some of the tests discussed in this section can show a network hardware problem. If a hardware problem is 
indicated, contact the people responsible for the hardware. If the problem appears to be in a leased 
telephone line, contact the telephone company. If the problem appears to be in a wide area network, contact 
the management of that network. Don't sit on a problem expecting it to go away. It could easily get worse.

If the problem is in your local area network, you will have to handle it yourself. Some tools, such as the 
cable tester described above, can help. But frequently the only way to approach a hardware problem is by 
brute force - disconnecting pieces of hardware until you find the one causing the problem. It is most 
convenient to do this at the switch or hub. If you identify a device causing the problem, repair or replace it. 
Remember that the problem can be the cable itself, rather than any particular device.

Previous: 11.3 Testing 
Basic Connectivity 

TCP/IP Network 
Administration

Next: 11.5 Checking 
Routing 

11.3 Testing Basic 
Connectivity 

Book Index 11.5 Checking Routing 

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/ch11_04.htm (7 of 7) [2001-10-15 09:18:48]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Chapter 11] 11.5 Checking Routing 

Previous: 11.4 
Troubleshooting Network 
Access 

Chapter 11
Troubleshooting TCP/IP 

Next: 11.6 Checking Name 
Service 

 

11.5 Checking Routing 

The "network unreachable" error message clearly indicates a routing problem. If the problem is in the local host's 
routing table, it is easy to detect and resolve. First, use netstat -nr and grep to see whether or not a valid route to 
your destination is installed in the routing table. This example checks for a specific route to network 128.8.0.0:

% netstat -nr | grep '128\.8\.0'
128.8.0.0     26.20.0.16     UG     0    37    std0

This same test, run on a system that did not have this route in its routing table, would return no response at all. For 
example, a user reports that the "network is down" because he cannot ftp to sunsite.unc.edu, and a ping test returns 
the following results:

% ping -s sunsite.unc.edu 56 2
PING sunsite.unc.edu: 56 data bytes
sendto: Network is unreachable
ping: wrote sunsite.unc.edu 64 chars, ret=-1
sendto: Network is unreachable
ping: wrote sunsite.unc.edu 64 chars, ret=-1

----sunsite.unc.edu PING Statistics----
2 packets transmitted, 0 packets received, 100% packet loss

Based on the "network unreachable" error message, check the user's routing table. In our example, we're looking for a 
route to sunsite.unc.edu. The IP address [4] of sunsite.unc.edu is 152.2.254.81, which is a class B address. Remember 
that routes are network-oriented. So we check for a route to network 152.2.0.0:

[4] Use nslookup to find the IP address if you don't know it. nslookup is discussed later in this chapter.

% netstat -nr | grep '152\.2\.0\.0'
%

This test shows that there is no specific route to 152.2.0.0. If a route was found, grep would display it. Since there's 
no specific route to the destination, remember to look for a default route. This example shows a successful check for 
a default route:

% netstat -nr | grep def
default       172.16.12.1     UG    0   101277   le0

If netstat shows the correct specific route, or a valid default route, the problem is not in the routing table. In that case, 

file:///C|/mynapster/Downloads/warez/tcpip/ch11_05.htm (1 of 6) [2001-10-15 09:18:49]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


[Chapter 11] 11.5 Checking Routing 

use traceroute, as described later in this chapter, to trace the route all the way to its destination.

If netstat doesn't return the expected route, it's a local routing problem. There are two ways to approach local routing 
problems, depending on whether the system uses static or dynamic routing. If you're using static routing, install the 
missing route using the route add command. Remember, most systems that use static routing rely on a default route, 
so the missing route could be the default route. Make sure that the startup files add the needed route to the table 
whenever the system reboots. See Chapter 7, Configuring Routing , for details about the route add command.

If you're using dynamic routing, make sure that the routing program is running. For example, the command below 
makes sure that gated is running:

% ps `cat /etc/gated.pid`
  PID TT STAT  TIME COMMAND
27711 ?  S   304:59 gated -tep /etc/log/gated.log

If the correct routing daemon is not running, restart it and specify tracing. Tracing allows you to check for problems 
that might be causing the daemon to terminate abnormally.

11.5.1 Checking RIP Updates 

If the routing daemon is running and the local system receives routing updates via Routing Information Protocol 
(RIP), use ripquery to check the updates received from your RIP suppliers. For example, to check the RIP updates 
being received from almond and pecan, the peanut administrator enters the following command:

% ripquery -1 -n -r almond pecan
44 bytes from almond.nuts.com(172.16.12.1):
        0.0.0.0, metric 3
        10.0.0.0, metric 0
264 bytes from pecan.nuts.com(172.16.12.3):
        172.16.5.0, metric 2
        172.16.3.0, metric 2
                .
                .
                .
        172.16.12.0, metric 2
        172.16.13.0, metric 2

After an initial line identifying the gateway, ripquery shows the contents of the incoming RIP packets, one line per 
route. The first line of the report above indicates that ripquery received a response from almond. That line is 
followed by two lines for the two routes advertised by almond. almond advertises the default route (destination 
0.0.0.0) with a metric of 3, and its direct route to Milnet (destination 10.0.0.0) with a metric of 0. Next, ripquery 
shows the routes advertised by pecan. These are the routes to the other nuts-net subnets.

The three ripquery options used in this example are:

-1

Sends the query as a RIP version 1 packet. By default, queries are sent as RIP version 2 packets. Older 
systems may only support RIP version 1.

-n

file:///C|/mynapster/Downloads/warez/tcpip/ch11_05.htm (2 of 6) [2001-10-15 09:18:49]



[Chapter 11] 11.5 Checking Routing 

Causes ripquery to display all output in numeric form. ripquery attempts to resolve all IP addresses to names 
if the -n option is not specified. It's a good idea to use the -n option; it produces a cleaner display, and you 
don't waste time resolving names.

-r

Directs ripquery to use the RIP REQUEST command, instead of the RIP POLL command, to query the RIP 
supplier. RIP POLL is not universally supported. You are more likely to get a successful response if you 
specify -r on the ripquery command line.

The routes returned in these updates should be the routes you expect. If they are not, or if no routes are returned, 
check the configuration of the RIP suppliers. Routing configuration problems cause RIP suppliers to advertise routes 
that they shouldn't, or to fail to advertise the routes that they should. You can detect these problems only by applying 
your knowledge of your network configuration. You must know what is right to detect what is wrong. Don't expect to 
see error messages or strange garbled routes. For example, assume that in the previous test pecan returned the 
following update:

264 bytes from pecan.nuts.com(172.16.12.3):
        0.0.0.0, metric 2
        172.16.3.0, metric 2
                .
                .
                .
        172.16.12.0, metric 2
        172.16.13.0, metric 2

This update shows that pecan is advertising itself as a default gateway with a lower cost (2 versus 3) than almond. 
This would cause every host on this subnet to use pecan as its default gateway. If this is not what you wanted, the 
routing configuration of pecan should be corrected. [5]

[5] Correct routing configuration is discussed in Chapter 7.

11.5.2 Tracing Routes 

If the local routing table and RIP suppliers are correct, the problem may be occurring some distance away from the 
local host. Remote routing problems can cause the "no answer" error message, as well as the "network unreachable" 
error message. But the "network unreachable" message does not always signify a routing problem. It can mean that 
the remote network cannot be reached because something is down between the local host and the remote destination. 
traceroute is the program that can help you locate these problems.

traceroute traces the route of UDP packets from the local host to a remote host. It prints the name (if it can be 
determined) and IP address of each gateway along the route to the remote host.

traceroute uses two techniques, small ttl (time-to-live) values and an invalid port number, to trace packets to their 
destination. traceroute sends out UDP packets with small ttl values to detect the intermediate gateways. The ttl 
values start at 1 and increase in increments of 1 for each group of three UDP packets sent. When a gateway receives a 
packet, it decrements the ttl. If the ttl is then 0, the packet is not forwarded and an ICMP "Time Exceeded" message is 
returned to the source of the packet. traceroute displays one line of output for each gateway from which it receives a 
"Time Exceeded" message. Figure 11.2 shows a sample of the single line of output that is displayed for a gateway, 
and it shows the meaning of each field in the line.

Figure 11.2: traceroute output

file:///C|/mynapster/Downloads/warez/tcpip/ch11_05.htm (3 of 6) [2001-10-15 09:18:49]



[Chapter 11] 11.5 Checking Routing 

When the destination host receives a packet from traceroute, it returns an ICMP "Unreachable Port" message. This 
happens because traceroute intentionally uses an invalid port number (33434) to force this error. When traceroute 
receives the "Unreachable Port" message, it knows that it has reached the destination host, and it terminates the trace. 
So, traceroute is able to develop a list of the gateways, starting at one hop away and increasing one hop at a time 
until the remote host is reached. Figure 11.3 illustrates the flow of packets tracing to a host three hops away. The 
following shows a traceroute to ds.internic.net from a Linux system hanging off BBN PlaNET. traceroute sends out 
three packets at each ttl value. If no response is received to a packet, traceroute prints an asterisk (*). If a response is 
received, traceroute displays the name and address of the gateway that responded, and the packet's round-trip time in 
milliseconds.

Figure 11.3: Flow of traceroute packets

% traceroute ds.internic.net
traceroute to ds.internic.net (198.49.45.10), 30 hops max, 40 byte packets
 1  gw-55.nuts.com (172.16.55.200)  0.95 ms  0.91 ms  0.91 ms

file:///C|/mynapster/Downloads/warez/tcpip/ch11_05.htm (4 of 6) [2001-10-15 09:18:49]



[Chapter 11] 11.5 Checking Routing 

 2  172.16.230.254 (172.16.230.254)  1.51 ms  1.33 ms  1.29 ms
 3  gw225.nuts.com (172.16.2.252)  4.13 ms  1.94 ms  2.20 ms
 4  192.221.253.2 (192.221.253.2)  52.90 ms  81.19 ms  58.09 ms
 5  washdc1-br2.bbnplanet.net (4.0.36.17)  6.5 ms  5.8 ms  5.88 ms
 6  nyc1-br1.bbnplanet.net (4.0.1.114)  13.24 ms  12.71 ms  12.96 ms
 7  nyc1-br2.bbnplanet.net (4.0.1.178)  14.64 ms  13.32 ms  12.21 ms
 8  cambridge1-br1.bbnplanet.net (4.0.2.86)  28.84 ms  27.78 ms  23.56 ms
 9  cambridge1-cr14.bbnplanet.net (199.94.205.14) 19.9 ms  24.7 ms 22.3 ms
10  attbcstoll.bbnplanet.net (206.34.99.38)  34.31 ms  36.63 ms  32.21 ms
11  ds0.internic.net (198.49.45.10)  33.19 ms  33.34 ms *

This trace shows that 10 intermediate gateways are involved, that packets are making the trip, and that round-trip 
travel time for packets from this host to ds.internic.net is about 33 ms.

Variations and bugs in the implementation of ICMP on different types of gateways, and the unpredictable nature of 
the path a datagram can take through a network, can cause some odd displays. For this reason, you shouldn't examine 
the output of traceroute too closely. The most important things in the traceroute output are: 

●     Did the packet get to its remote destination?
●     If not, where did it stop?

In the code below we show another trace of the path to ds.internic.net. This time the trace does not go all the way 
through to the InterNIC.

% traceroute ds.internic.net
traceroute to ds.internic.net (198.49.45.10), 30 hops max,
     40 byte packets
 1  gw-55.nuts.com (172.16.55.200)  0.959 ms  0.917 ms  0.913 ms
 2  172.16.230.254 (172.16.230.254)  1.518 ms  1.337 ms  1.296 ms
 3  gw225.nuts.com (172.16.2.252)  4.137 ms  1.945 ms  2.209 ms
 4  192.221.253.2 (192.221.253.2)  52.903 ms  81.19 ms  58.097 ms
 5  washdc1-br2.bbnplanet.net (4.0.36.17)  6.5 ms  5.8 ms  5.888 ms
 6  nyc1-br1.bbnplanet.net (4.0.1.114)  13.244 ms  12.717 ms  12.968 ms
 7  nyc1-br2.bbnplanet.net (4.0.1.178)  14.649 ms  13.323 ms  12.212 ms
 8  cambridge1-br1.bbnplanet.net (4.0.2.86)  28.842 ms  27.784 ms 
     23.561 ms
 9  * * *
10  * * *
        .
        .
        .
29  * * *
30  * * *

When traceroute fails to get packets through to the remote end system, the trace trails off, displaying a series of three 
asterisks at each hop count until the count reaches 30. If this happens, contact the administrator of the remote host 
you're trying to reach, and the administrator of the last gateway displayed in the trace. Describe the problem to them; 
they may be able to help. [6] In our example, the last gateway that responded to our packets was cambridge1-
br1.bbnplanet.net. We would contact this system administrator, and the administrator of ds.internic.net.

[6] Chapter 13, explains how to find out who is responsible for a specific computer.

file:///C|/mynapster/Downloads/warez/tcpip/ch11_05.htm (5 of 6) [2001-10-15 09:18:49]



[Chapter 11] 11.5 Checking Routing 

Previous: 11.4 
Troubleshooting Network 
Access 

TCP/IP Network 
Administration

Next: 11.6 Checking Name 
Service 

11.4 Troubleshooting 
Network Access 

Book Index 11.6 Checking Name Service 

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/ch11_05.htm (6 of 6) [2001-10-15 09:18:49]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Chapter 11] 11.6 Checking Name Service 

Previous: 11.5 Checking 
Routing 

Chapter 11
Troubleshooting TCP/IP 

Next: 11.7 Analyzing 
Protocol Problems 

 

11.6 Checking Name Service 

Name server problems are indicated when the "unknown host" error message is returned by the user's 
application. Name server problems can usually be diagnosed with nslookup or dig. nslookup is discussed in 
detail in Chapter 8. dig is an alternative tool with similar functionality that is discussed in this chapter. Before 
looking at dig, let's take another look at nslookup and see how it is used to troubleshoot name service.

The three features of nslookup covered in Chapter 8 are particularly important for troubleshooting remote name 
server problems. These features are its ability to:

●     Locate the authoritative servers for the remote domain using the NS query
●     Obtain all records about the remote host using the ANY query
●     Browse all entries in the remote zone using nslookup's ls and view commands

When troubleshooting a remote server problem, directly query the authoritative servers returned by the NS 
query. Don't rely on information returned by non-authoritative servers. If the problems that have been reported 
are intermittent, query all of the authoritative servers in turn and compare their answers. Intermittent name server 
problems are sometimes caused by the remote servers returning different answers to the same query.

The ANY query returns all records about a host, thus giving the broadest range of troubleshooting information. 
Simply knowing what information is (and isn't) available can solve a lot of problems. For example, if the query 
returns an MX record but no A record, it is easy to understand why the user couldn't telnet to that host! Many 
hosts are accessible to mail that are not accessible by other network services. In this case, the user is confused 
and is trying to use the remote host in an inappropriate manner.

If you are unable to locate any information about the hostname that the user gave you, perhaps the hostname is 
incorrect. Given that the hostname you have is wrong, looking for the correct name is like trying to find a needle 
in a haystack. However, nslookup can help. Use nslookup's ls command to dump the remote zone file, and 
redirect the listing to a file. Then use nslookup's view command to browse through the file, looking for names 
similar to the one the user supplied. Many problems are caused by a mistaken hostname.

All of the nslookup features and commands mentioned here are used in Chapter 8. However, some examples 
using these commands to solve real name server problems will be helpful. The three examples that follow are 
based on actual trouble reports. [7]

[7] The host and server names are fictitious, but the problems were real.

11.6.1 Some systems work, others don't 

file:///C|/mynapster/Downloads/warez/tcpip/ch11_06.htm (1 of 8) [2001-10-15 09:18:50]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


[Chapter 11] 11.6 Checking Name Service 

A user reported that she could resolve a certain hostname from her workstation, but could not resolve the same 
hostname from the central system. However, the central system could resolve other hostnames. We ran several 
tests and found that we could resolve the hostname on some systems and not on others. There seemed to be no 
predictable pattern to the failure. So we used nslookup to check the remote servers.

% nslookup
Default Server:  almond.nuts.com
Address:  172.16.12.1

> set type=NS
> foo.edu.
Server:  almond.nuts.com
Address:  172.16.12.1

foo.edu        nameserver = gerbil.foo.edu
foo.edu        nameserver = red.big.com
foo.edu        nameserver = shrew.foo.edu
gerbil.foo.edu   inet address = 198.97.99.2
red.big.com   inet address = 184.6.16.2
shrew.foo.edu    inet address = 198.97.99.1
> set type=ANY
> server gerbil.foo.edu
Default Server:  gerbil.foo.edu
Address:  198.97.99.2

> hamster.foo.edu
Server:  gerbil.foo.edu
Address:  198.97.99.2

hamster.foo.edu        inet address = 198.97.99.8
> server red.big.com
Default Server:  red.big.com
Address:  184.6.16.2
> hamster.foo.edu
Server:  red.big.com
Address:  184.6.16.2

* red.big.com can't find hamster.foo.edu: Non-existent domain

This sample nslookup session contains several steps. The first step is to locate the authoritative servers for the 
host name in question (hamster.foo.edu). We set the query type to NS to get the name server records, and query 
for the domain (foo.edu) in which the hostname is found. This returns three names of authoritative servers: 
gerbil.foo.edu, red.big.com, and shrew.foo.edu.

Next, we set the query type to ANY to look for any records related to the hostname in question. Then we set the 
server to the first server in the list, gerbil.foo.edu, and query for hamster.foo.edu. This returns an address record. 
So server gerbil.foo.edu works fine. We repeat the test using red.big.com as the server, and it fails. No records 
are returned.

The next step is to get SOA records from each server and see if they are the same:

file:///C|/mynapster/Downloads/warez/tcpip/ch11_06.htm (2 of 8) [2001-10-15 09:18:50]



[Chapter 11] 11.6 Checking Name Service 

> set type=SOA
> foo.edu.
Server:  red.big.com
Address:  184.6.16.2

foo.edu        origin = gerbil.foo.edu
        mail addr = amanda.gerbil.foo.edu
        serial=10164, refresh=43200, retry=3600, expire=3600000,
        min=2592000
> server gerbil.foo.edu
Default Server:  gerbil.foo.edu
Address:  198.97.99.2

> foo.edu.
Server:  gerbil.foo.edu
Address:  198.97.99.2

foo.edu        origin = gerbil.foo.edu
        mail addr = amanda.gerbil.foo.edu
        serial=10164, refresh=43200, retry=3600, expire=3600000,
        min=2592000

> exit

If the SOA records have different serial numbers, perhaps the zone file, and therefore the hostname, has not yet 
been downloaded to the secondary server. If the serial numbers are the same and the data is different, as in this 
case, there is a definite problem. Contact the remote domain administrator and notify her of the problem. The 
administrator's mailing address is shown in the "mail addr" field of the SOA record. In our example, we would 
send mail to amanda@gerbil.foo.edu reporting the problem.

11.6.2 The data is here and the server can't find it! 

This problem was reported by the administrator of one of our secondary name servers. The administrator 
reported that his server could not resolve a certain hostname in a domain for which his server was a secondary 
server. The primary server was, however, able to resolve the name. The administrator dumped his cache (more 
on dumping the server cache in the next section), and he could see in the dump that his server had the correct 
entry for the host. But his server still would not resolve that hostname to an IP address!

The problem was replicated on several other secondary servers. The primary server would resolve the name; the 
secondary servers wouldn't. All servers had the same SOA serial number, and a dump of the cache on each server 
showed that they all had the correct address records for the hostname in question. So why wouldn't they resolve 
the hostname to an address?

Visualizing the difference between the way primary and secondary servers load their data made us suspicious of 
the zone file transfer. Primary servers load the data directly from local disk files. Secondary servers transfer the 
data from the primary server via a zone file transfer. Perhaps the zone files were getting corrupted. We displayed 
the zone file on one of the secondary servers, and it showed the following data:

% cat /usr/etc/sales.nuts.com.hosts
PCpma      IN   A   172.16.64.159
      IN   HINFO   "pc" "n3/800salesnutscom"

file:///C|/mynapster/Downloads/warez/tcpip/ch11_06.htm (3 of 8) [2001-10-15 09:18:50]



[Chapter 11] 11.6 Checking Name Service 

PCrkc      IN   A   172.16.64.155
      IN   HINFO   "pc" "n3/800salesnutscom"
PCafc      IN   A   172.16.64.189
      IN   HINFO   "pc" "n3/800salesnutscom"
accu      IN   A   172.16.65.27
cmgds1   IN   A   172.16.130.40
cmg      IN   A   172.16.130.30
PCgns      IN   A   172.16.64.167
      IN   HINFO   "pc" "(3/800salesnutscom"
gw      IN   A   172.16.65.254
zephyr   IN   A   172.16.64.188
      IN   HINFO   "Sun" "sparcstation"
ejw      IN   A   172.16.65.17
PCecp      IN   A   172.16.64.193
      IN   HINFO   "pc" "nLsparcstationstcom"

Notice the odd display in the last field of the HINFO statement for each PC. [8] This data might have been 
corrupted in the transfer or it might be bad on the primary server. We used nslookup to check that.

[8] See Appendix D, A dhcpd Reference, for a detailed description of the HINFO statement.

% nslookup
Default Server:  almond.nuts.com
Address:  172.16.12.1

> server acorn.sales.nuts.com
Default Server:  acorn.sales.nuts.com
Address:  172.16.6.1

> set query=HINFO
> PCwlg.sales.nuts.com
Server:  acorn.sales.nuts.com
Address:  172.16.6.1

PCwlg.sales.nuts.com     CPU=pc  OS=ov
packet size error (0xf7fff590 != 0xf7fff528)
> exit

In this nslookup example, we set the server to acorn.sales.nuts.com, which is the primary server for 
sales.nuts.com. Next we queried for the HINFO record for one of the hosts that appeared to have a corrupted 
record. The "packet size error" message clearly indicates that nslookup was even having trouble retrieving the 
HINFO record directly from the primary server. We contacted the administrator of the primary server and told 
him about the problem, pointing out the records that appeared to be in error. He discovered that he had forgotten 
to put an operating system entry on some of the HINFO records. He corrected this, and it fixed the problem.

11.6.3 Cache corruption 

The problem described above was caused by having the name server cache corrupted by bad data. Cache 
corruption can occur even if your system is not a secondary server. Sometimes the root server entries in the cache 
become corrupted. Dumping the cache can help diagnose these types of problems.

file:///C|/mynapster/Downloads/warez/tcpip/ch11_06.htm (4 of 8) [2001-10-15 09:18:50]



[Chapter 11] 11.6 Checking Name Service 

For example, a user reported intermittent name server failures. She had no trouble with any hostnames within the 
local domain, or with some names outside the local domain, but names in several different remote domains 
would not resolve. nslookup tests produced no solid clues, so the name server cache was dumped and examined 
for problems. The root server entries were corrupted, so named was reloaded to clear the cache and reread the 
named.ca file. Here's how it was done.

The SIGINT signal causes named to dump the name server cache to the file /var/tmp/named_dump.db. The 
following command passes named this signal:

# kill -INT `cat /etc/named.pid`

The process ID of named can be obtained from /etc/named.pid, as in the example above, because named writes 
its process ID in that file during startup. [9]

[9] On our Linux system the process ID is written to /var/run/named.pid.

Once SIGINT causes named to snapshot its cache to the file, we can then examine the first part of the file to see 
if the names and addresses of the root servers are correct. For example:

# head -10 /var/tmp/named_dump.db
; Dumped at Wed Sep 18 08:45:58 1991
; --- Cache & Data ---
$ORIGIN .
.       80805   IN      SOA     NS.NIC.DDN.MIL. HOSTMASTER.NIC.DDN.MIL.
                ( 910909 10800 900 604800 86400 )
        479912  IN      NS      NS.NIC.DDN.MIL.
        479912  IN      NS      AOS.BRL.MIL.
        479912  IN      NS      A.ISI.EDU.
        479912  IN      NS      C.NYSER.NET.
        479912  IN      NS      TERP.UMD.EDU.

The cache shown above is clean. If intermittent name server problems lead you to suspect a cache corruption 
problem, examine the cache and check the names and addresses of all the root servers. The following symptoms 
might indicate a problem with the root server cache:

●     Incorrect root server names. The section on /etc/named.ca in Chapter 8 explains how you can locate the 
correct root server names. The easiest way to do this is to get the file domain/named.root from the 
InterNIC.

●     No address or an incorrect address for any of the servers. Again, the correct addresses are in 
domain/named.root.

●     A name other than root (.) in the name field of the first root server NS record, or the wildcard character 
(*) occurring in the name field of a root or top-level name server. The structure of NS records is described 
in Appendix D.

A "bad cache" with multiple errors might look like this:

# head -10 /var/tmp/named_dump.db
; Dumped at Wed Sep 18 08:45:58 1991
; --- Cache & Data ---

file:///C|/mynapster/Downloads/warez/tcpip/ch11_06.htm (5 of 8) [2001-10-15 09:18:50]



[Chapter 11] 11.6 Checking Name Service 

$ORIGIN .
arpa   80805   IN     SOA    SRI-NIC.ARPA.  HOSTMASTER.SRI-NIC.ARPA.
                ( 910909 10800 900 604800 86400 )
       479912  IN     NS     NS.NIC.DDN.MIL.
       479912  IN     NS     AOS.BRL.MIL.
       479912  IN     NS     A.ISI.EDU.
       479912  IN     NS     C.NYSER.NET.
       479912  IN     NS     TERP.UMD.EDU.
*      479912  IN     NS     NS.FOO.MIL.

This contrived example has three glaring errors. The "arpa" entry in the first field of the SOA record is invalid, 
and is the most infamous form of cache corruption. The last NS record is also invalid. NS.FOO.MIL. is not a 
valid root server, and an asterisk (*) in the first field of a root server record is not normal.

If you see problems like these, force named to reload its cache with the SIGHUP signal as shown below:

# kill -HUP `cat /etc/named.pid`

This clears the cache and reloads the valid root server entries from your named.ca file.

If you know which system is corrupting your cache, instruct your system to ignore updates from the culprit by 
using the bogusns statement in the /etc/named.boot file. The bogusns statement lists the IP addresses of name 
servers whose information cannot be trusted. For example, in the previous section we described a problem where 
acorn.sales.nuts.com (172.16.16.1) was causing cache corruption with improperly formatted HINFO records. 
The following entry in the named.boot file blocks queries to acorn.sales.nuts.com and thus blocks the cache 
corruption:

bogusns 172.16.16.1

The bogusns entry is only a temporary measure. It is designed to keep things running while the remote domain 
administrator has a chance to diagnose and repair the problem. Once the remote system is fixed, remove the 
bogusns entry from named.boot.

11.6.4 dig: An Alternative to nslookup 

An alternative to nslookup for making name service queries is dig. dig queries are usually entered as single-line 
commands, while nslookup is usually run as an interactive session. But the dig command performs essentially 
the same function as nslookup. Which you use is mostly a matter of personal choice. They both work well.

As an example, we'll use dig to ask the root server terp.umd.edu for the NS records for the mit.edu domain. To 
do this, enter the following command:

% dig @terp.umd.edu mit.edu ns

In this example, @terp.umd.edu is the server that is being queried. The server can be identified by name or IP 
address. If you're troubleshooting a problem in a remote domain, specify an authoritative server for that domain. 
In this example we're asking for the names of servers for a top-level domain (mit.edu), so we ask a root server.

If you don't specify a server explicitly, dig uses the local name server, or the name server defined in the 

file:///C|/mynapster/Downloads/warez/tcpip/ch11_06.htm (6 of 8) [2001-10-15 09:18:50]



[Chapter 11] 11.6 Checking Name Service 

/etc/resolv.conf file. (Chapter 8 describes resolv.conf.) Optionally, you can set the environment variable 
LOCALRES to the name of an alternate resolv.conf file. This alternate file will then be used in place of 
/etc/resolv.conf for dig queries. Setting the LOCALRES variable will only affect dig. Other programs that use 
name service will continue to use /etc/resolv.conf.

The last item on our sample command line is ns. This is the query type. A query type is a value that requests a 
specific type of DNS information. It is similar to the value used in nslookup's set type command. Table 11.1 
shows the possible dig query types and their meanings.

Table 11.1: dig Query Types

Query Type DNS Record Requested

a Address records

any Any type of record

mx Mail Exchange records

ns Name Server records

soa Start of Authority records

hinfo Host Info records

axfr All records in the zone

txt Text records

Notice that the function of nslookup's ls command is performed by the dig query type axfr.

dig also has an option that is useful for locating a hostname when you have only an IP address. If you only have 
the IP address of a host, you may want to find out the hostname because numeric addresses are more prone to 
typos. Having the hostname can reduce the user's problems. The in-addr.arpa domain converts addresses to 
hostnames, and dig provides a simple way to enter in-addr.arpa domain queries. Using the -x option, you can 
query for a number to name conversion without having to manually reverse the numbers and add "in-addr.arpa." 
For example, to query for the hostname of IP address 18.72.0.3, simply enter:

% dig -x 18.72.0.3

; <<>> DiG 2.1 <<>> -x 
;; res options: init recurs defnam dnsrch
;; got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 6
;; flags: qr aa rd ra; Ques: 1, Ans: 1, Auth: 0, Addit: 0
;; QUESTIONS:
;;      3.0.72.18.in-addr.arpa, type = ANY, class = IN

;; ANSWERS:
3.0.72.18.in-addr.arpa. 21600   PTR     BITSY.MIT.EDU.

;; Total query time: 74 msec
;; FROM: peanut to SERVER: default -- 172.16.12.1
;; WHEN: Sat Jul 12 11:12:55 1997
;; MSG SIZE  sent: 40  rcvd: 67

The answer to our query is BITSY.MIT.EDU, but dig displays lots of other output. The first five lines and the 

file:///C|/mynapster/Downloads/warez/tcpip/ch11_06.htm (7 of 8) [2001-10-15 09:18:50]



[Chapter 11] 11.6 Checking Name Service 

last four lines provide information and statistics about the query. For our purposes, the only important 
information is the answer. [10]

[10] To see a single-line answer to this query, pipe dig's output to grep; e.g., dig -x 18.72.0.3 | 
grep PTR.

Previous: 11.5 Checking 
Routing 

TCP/IP Network 
Administration

Next: 11.7 Analyzing 
Protocol Problems 

11.5 Checking Routing Book Index 11.7 Analyzing Protocol 
Problems 

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/ch11_06.htm (8 of 8) [2001-10-15 09:18:50]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Chapter 11] 11.7 Analyzing Protocol Problems 

Previous: 11.6 Checking 
Name Service 

Chapter 11
Troubleshooting TCP/IP 

Next: 11.8 Protocol Case 
Study 

 

11.7 Analyzing Protocol Problems 

Problems caused by bad TCP/IP configurations are much more common than problems caused by bad 
TCP/IP protocol implementations. Most of the problems you encounter will succumb to analysis using 
the simple tools we have already discussed. But on occasion, you may need to analyze the protocol 
interaction between two systems. In the worst case, you may need to analyze the packets in the data 
stream bit by bit. Protocol analyzers help you do this.

snoop is the tool we'll use. It is provided with the Solaris operating system. [11] Although we use 
snoop in all of our examples, the concepts introduced in this section should be applicable to the 
analyzer that you use, because most protocol analyzers function in basically the same way. Protocol 
analyzers allow you to select, or filter, the packets you want to examine, and to examine those packets 
byte by byte. We'll discuss both of these functions.

[11] If you don't use Solaris, try tcpdump. It is available via anonymous FTP on the 
Internet and is similar to snoop.

Protocol analyzers watch all the packets on the network. Therefore, you only need one system that 
runs analyzer software on the affected part of the network. One Solaris system with snoop can 
monitor the network traffic and tell you what the other hosts are (or aren't) doing. This, of course, 
assumes a shared media network. If you use an Ethernet switch, only the traffic on an individual 
segment can be seen. Some switches provide a monitor port. For others you may need to take your 
monitor to the location of the problem.

11.7.1 Packet Filters 

snoop reads all the packets on an Ethernet. It does this by placing the Ethernet interface into 
promiscuous mode. Normally, an Ethernet interface only passes packets up to the higher layer 
protocols that are destined for the local host. In promiscuous mode, all packets are accepted and 
passed to the higher layer. This allows snoop to view all packets and to select packets for analysis, 
based on a filter you define. Filters can be defined to capture packets from, or to, specific hosts, 
protocols, and ports, or combinations of all these. As an example, let's look at a very simple snoop 
filter. The following snoop command displays all packets sent between the hosts almond and peanut:

file:///C|/mynapster/Downloads/warez/tcpip/ch11_07.htm (1 of 4) [2001-10-15 09:18:51]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


[Chapter 11] 11.7 Analyzing Protocol Problems 

# snoop host almond and host peanut
Using device /dev/le (promiscuous mode)
peanut.nuts.com -> almond.nuts.com ICMP Echo request
almond.nuts.com -> peanut.nuts.com ICMP Echo reply
peanut.nuts.com -> almond.nuts.com RLOGIN C port=1023
almond.nuts.com -> peanut.nuts.com RLOGIN R port=1023
^C

The filter "host almond and host peanut" selects only those packets that are from peanut to almond, or 
from almond to peanut. The filter is constructed from a set of primitives, and associated hostnames, 
protocol names, and port numbers. The primitives can be modified and combined with the operators 
and, or, and not. The filter may be omitted; this causes snoop to display all packets from the network.

Table 11.2 shows the primitives used to build snoop filters. There are a few additional primitives and 
some variations that perform the same functions, but these are the essential primitive. See the snoop 
manpage for additional details.

Table 11.2: Expression Primitives

Primitive Matches Packets

dst host | net | port destination To destination host, net, or port

src host | net | port source From source host, net, or port

host destination To or from destination host

net destination To or from destination network

port destination To or from destination port

ether address To or from Ethernet address

protocol Of protocol type (icmp, udp, or tcp)

Using these primitives with the operators and and or, complex filters can be constructed. However, 
filters are usually simple. Capturing the traffic between two hosts is probably the most common filter. 
You may further limit the data captured to a specific protocol, but often you're not sure which protocol 
will reveal the problem. Just because the user sees the problem in ftp or telnet does not mean that is 
where the problem actually occurs. Analysis must often start by capturing all packets, and can only be 
narrowed after test evidence points to some specific problem.

11.7.1.1 Modifying analyzer output 

The example in the previous section shows that snoop displays a single line of summary information 
for each packet received. All lines show the source and destination addresses, and the protocol being 
used (ICMP and RLOGIN in the example). The lines that summarize the ICMP packets identify the 
packet types (Echo request and Echo reply in the example). The lines that summarize the application 
protocol packets display the source port and the first 20 characters of the packet data.

This summary information is sufficient to gain insight into how packets flow between two hosts and 

file:///C|/mynapster/Downloads/warez/tcpip/ch11_07.htm (2 of 4) [2001-10-15 09:18:51]



[Chapter 11] 11.7 Analyzing Protocol Problems 

into potential problems. However, troubleshooting protocol problems requires more detailed 
information about each packet. snoop has options that give you control over what information is 
displayed. To display the data contained in a packet, use the -x option. It causes the entire contents of 
the packet to be dumped in hex and ASCII. In most cases, you don't need to see the entire packet; 
usually, the headers are sufficient to troubleshoot a protocol problem. The -v option displays the 
headers in a well-formatted and very detailed manner. Because of the large number of lines displayed 
for each packet, only use -v when you need it.

The following example shows an ICMP Echo Request packet displayed with the -v option. The same 
type of packet was summarized in the first line of the previous example.

# snoop -v host almond and host macadamia
Using device /dev/le (promiscuous mode)
ETHER:  ----- Ether Header -----
ETHER:  
ETHER:  Packet 3 arrived at 16:56:57.90
ETHER:  Packet size = 98 bytes
ETHER:  Destination = 8:0:20:22:fd:51, Sun
ETHER:  Source      = 0:0:c0:9a:d0:db, Western Digital
ETHER:  Ethertype = 0800 (IP)
ETHER:  
IP:   ----- IP Header -----
IP:   
IP:   Version = 4
IP:   Header length = 20 bytes
IP:   Type of service = 0x00
IP:         xxx. .... = 0 (precedence)
IP:         ...0 .... = normal delay
IP:         .... 0... = normal throughput
IP:         .... .0.. = normal reliability
IP:   Total length = 84 bytes
IP:   Identification = 3049
IP:   Flags = 0x0
IP:         .0.. .... = may fragment
IP:         ..0. .... = last fragment
IP:   Fragment offset = 0 bytes
IP:   Time to live = 64 seconds/hops
IP:   Protocol = 1 (ICMP)
IP:   Header checksum = fde0
IP:   Source address = 172.16.55.106, macadamia.nuts.com
IP:   Destination address = 172.16.12.1, almond.nuts.com
IP:   No options
IP:   
ICMP:  ----- ICMP Header -----
ICMP:  
ICMP:  Type = 8 (Echo request)

file:///C|/mynapster/Downloads/warez/tcpip/ch11_07.htm (3 of 4) [2001-10-15 09:18:51]



[Chapter 11] 11.7 Analyzing Protocol Problems 

ICMP:  Code = 0
ICMP:  Checksum = ac54
ICMP:

The detailed formatting done by snoop maps the bytes received from the network to the header 
structure. Look at the description of the various header fields in Chapter 1, and Appendix F, Selected 
TCP/IP Headers, for more information.

Previous: 11.6 Checking 
Name Service 

TCP/IP Network 
Administration

Next: 11.8 Protocol Case 
Study 

11.6 Checking Name Service Book Index 11.8 Protocol Case Study 

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/ch11_07.htm (4 of 4) [2001-10-15 09:18:51]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Chapter 11] 11.8 Protocol Case Study 

Previous: 11.7 Analyzing 
Protocol Problems 

Chapter 11
Troubleshooting TCP/IP 

Next: 11.9 Simple Network 
Management Protocol 

 

11.8 Protocol Case Study 

This example is an actual case that was solved by protocol analysis. The problem was reported as an 
occasional ftp failure with the error message:

netout: Option not supported by protocol
421 Service not available, remote server has closed connection

Only one user reported the problem, and it occurred only when transferring large files from a 
workstation to the central computer, via our FDDI backbone network.

We obtained the user's data file and were able to duplicate the problem from other workstations, but 
only when we transferred the file to the same central system via the backbone network. Figure 11.4 
graphically summarizes the tests we ran to duplicate the problem.

Figure 11.4: FTP test summary

file:///C|/mynapster/Downloads/warez/tcpip/ch11_08.htm (1 of 6) [2001-10-15 09:18:52]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


[Chapter 11] 11.8 Protocol Case Study 

We notified all users of the problem. In response, we received reports that others had also experienced 
it, but again only when transferring to the central system, and only when transferring via the 
backbone. They had not reported it, because they rarely saw it. But the additional reports gave us 
some evidence that the problem did not relate to any recent network changes.

Because the problem had been duplicated on other systems, it probably was not a configuration 
problem on the user's system. The ftp failure could also be avoided if the backbone routers and the 
central system did not interact. So we concentrated our attention on those systems. We checked the 
routing tables and ARP tables, and ran ping tests on the central system and the routers. No problems 
were observed.

Based on this preliminary analysis, the ftp failure appeared to be a possible protocol interaction 
problem between a certain brand of routers and a central computer. We made that assessment because 
the transfer routinely failed when these two brands of systems were involved, but never failed in any 
other circumstance. If the router or the central system were misconfigured, they should fail when 
transferring data to other hosts. If the problem was an intermittent physical problem, it should occur 
randomly regardless of the hosts involved. Instead, this problem occurred predictably, and only 
between two specific brands of computers. Perhaps there was something incompatible in the way 

file:///C|/mynapster/Downloads/warez/tcpip/ch11_08.htm (2 of 6) [2001-10-15 09:18:52]



[Chapter 11] 11.8 Protocol Case Study 

these two systems implemented TCP/IP.

Therefore, we used snoop to capture the TCP/IP headers during several ftp test runs. Reviewing the 
dumps showed that all transfers that failed with the "netout" error message had an ICMP Parameter 
Error packet near the end of the session, usually about 50 packets before the final close. No successful 
transfer had this ICMP packet. Note that the error did not occur in the last packet in the data stream, as 
you might expect. It is common for an error to be detected, and for the data stream to continue for 
some time before the connection is actually shut down. Don't assume that an error will always be at 
the end of a data stream.

Here are the headers from the key packets. First, the IP header of the packet from the backbone router 
that caused the central system to send the error:

ETHER:  ----- Ether Header -----
ETHER:  
ETHER:  Packet 1 arrived at 16:56:36.39
ETHER:  Packet size = 60 bytes
ETHER:  Destination = 8:0:25:30:6:51, CDC
ETHER:  Source      = 0:0:93:e0:a0:bf, Proteon
ETHER:  Ethertype = 0800 (IP)
ETHER:  
IP:   ----- IP Header -----
IP:   
IP:   Version = 4
IP:   Header length = 20 bytes
IP:   Type of service = 0x00
IP:         xxx. .... = 0 (precedence)
IP:         ...0 .... = normal delay
IP:         .... 0... = normal throughput
IP:         .... .0.. = normal reliability
IP:   Total length = 552 bytes
IP:   Identification = 8a22
IP:   Flags = 0x0
IP:         .0.. .... = may fragment
IP:         ..0. .... = last fragment
IP:   Fragment offset = 0 bytes
IP:   Time to live = 57 seconds/hops
IP:   Protocol = 6 (TCP)
IP:   Header checksum = ffff
IP:   Source address = 172.16.55.106, fs.nuts.com
IP:   Destination address = 172.16.51.252, bnos.nuts.com
IP:   No options
IP:

And this is the ICMP Parameter Error packet sent from the central system in response to that packet:

file:///C|/mynapster/Downloads/warez/tcpip/ch11_08.htm (3 of 6) [2001-10-15 09:18:52]



[Chapter 11] 11.8 Protocol Case Study 

ETHER:  ----- Ether Header -----
ETHER:  
ETHER:  Packet 3 arrived at 16:56:57.90
ETHER:  Packet size = 98 bytes
ETHER:  Destination = 0:0:93:e0:a0:bf, Proteon
ETHER:  Source      = 8:0:25:30:6:51, CDC
ETHER:  Ethertype = 0800 (IP)
ETHER:  
IP:   ----- IP Header -----
IP:   
IP:   Version = 4
IP:   Header length = 20 bytes
IP:   Type of service = 0x00
IP:         xxx. .... = 0 (precedence)
IP:         ...0 .... = normal delay
IP:         .... 0... = normal throughput
IP:         .... .0.. = normal reliability
IP:   Total length = 56 bytes
IP:   Identification = 000c
IP:   Flags = 0x0
IP:         .0.. .... = may fragment
IP:         ..0. .... = last fragment
IP:   Fragment offset = 0 bytes
IP:   Time to live = 59 seconds/hops
IP:   Protocol = 1 (ICMP)
IP:   Header checksum = 8a0b
IP:   Source address = 172.16.51.252, bnos.nuts.com
IP:   Destination address = 172.16.55.106, fs.nuts.com
IP:   No options
IP:   
ICMP:  ----- ICMP Header -----
ICMP:  
ICMP:  Type = 12 (Parameter problem)
ICMP:  Code = 0
ICMP:  Checksum = 0d9f
ICMP:  Pointer = 10

Each packet header is broken out bit-by-bit and mapped to the appropriate TCP/IP header fields. From 
this detailed analysis of each packet, we see that the router issued an IP Header Checksum of 0xffff, 
and that the central system objected to this checksum. We know that the central system objected to the 
checksum because it returned an ICMP Parameter Error with a Pointer of 10. The Parameter Error 
indicates that there is something wrong with the data the system has just received, and the Pointer 
identifies the specific data that the system thinks is in error. The tenth byte of the router's IP header is 
the IP Header Checksum. The data field of the ICMP error message returns the header that it believes 
is in error. When we displayed that data we noticed that when the central system returned the header, 
the checksum field was "corrected" to 0000. Clearly the central system disagreed with the router's 

file:///C|/mynapster/Downloads/warez/tcpip/ch11_08.htm (4 of 6) [2001-10-15 09:18:52]



[Chapter 11] 11.8 Protocol Case Study 

checksum calculation.

Occasional checksum errors will occur. They can be caused by transmission problems, and are 
intended to detect these types of problems. Every protocol suite has a mechanism for recovering from 
checksum errors. So how should they be handled in TCP/IP?

To determine the correct protocol action in this situation, we turned to the authoritative sources - the 
RFCs. RFC 791, Internet Protocol, provided information about the checksum calculation, but the best 
source for this particular problem was RFC 1122, Requirements for Internet Hosts - Communication 
Layers, by R. Braden. This RFC provided two specific references that define the action to be taken. 
These excerpts are from page 29 of RFC 1122:

In the following, the action specified in certain cases is to "silently
discard" a received datagram. This means that the datagram will be
discarded without further processing and that the host will not send
any ICMP error message (see Section 3.2.2) as a result....
...
A host MUST verify the IP header checksum on every received datagram
and silently discard every datagram that has a bad checksum.

Therefore, when a system receives a packet with a bad checksum, it is not supposed to do anything 
with it. The packet should be discarded, and the system should wait for the next packet to arrive. The 
system should not respond with an error message. A system cannot respond to a bad IP header 
checksum, because it cannot really know where the packet came from. If the header checksum is in 
doubt, how do you know if the addresses in the header are correct? And if you don't know for sure 
where the packet came from, how can you respond to it?

IP relies on the upper-layer protocols to recover from these problems. If TCP is used (as it was in this 
case), the sending TCP eventually notices that the recipient has never acknowledged the segment, and 
it sends the segment again. If UDP is used, the sending application is responsible for recovering from 
the error. In neither case does recovery rely on an error message returned from the recipient.

Therefore, for an incorrect checksum, the central system should have simply discarded the bad packet. 
The vendor was informed of this problem and, much to their credit, they sent us a fix for the software 
within two weeks. Not only that, the fix worked perfectly!

Not all problems are resolved so cleanly. But the technique of analysis is the same no matter what the 
problem.

Previous: 11.7 Analyzing 
Protocol Problems 

TCP/IP Network 
Administration

Next: 11.9 Simple Network 
Management Protocol 

11.7 Analyzing Protocol 
Problems 

Book Index 11.9 Simple Network 
Management Protocol 

file:///C|/mynapster/Downloads/warez/tcpip/ch11_08.htm (5 of 6) [2001-10-15 09:18:52]



[Chapter 11] 11.8 Protocol Case Study 

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/ch11_08.htm (6 of 6) [2001-10-15 09:18:52]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Chapter 11] 11.9 Simple Network Management Protocol 

Previous: 11.8 Protocol 
Case Study 

Chapter 11
Troubleshooting TCP/IP 

Next: 11.10 Summary 

 

11.9 Simple Network Management Protocol 

Troubleshooting is necessary to recover from problems, but the ultimate goal of the network 
administrator is to avoid problems. That is also the goal of network management software. The 
network management software used on TCP/IP networks is based on the Simple Network 
Management Protocol (SNMP).

SNMP is a client/server protocol. In SNMP terminology, it is described as a manager/agent protocol. 
The agent (the server) runs on the device being managed, which is called the Managed Network 
Entity. The agent monitors the status of the device and reports that status to the manager.

The manager (the client) runs on the Network Management Station (NMS). The NMS collects 
information from all of the different devices that are being managed, consolidates it, and presents it to 
the network administrator. This design places all of the data manipulation tools and most of the 
human interaction on the NMS. Concentrating the bulk of the work on the manager means that the 
agent software is small and easy to implement. Correspondingly, most TCP/IP network equipment 
comes with an SNMP management agent.

SNMP is a request/response protocol. UDP port 161 is its well-known port. SNMP uses UDP as its 
transport protocol because it has no need for the overhead of TCP. "Reliability" is not required 
because each request generates a response. If the SNMP application does not receive a response, it 
simply re-issues the request. "Sequencing" is not needed because each request and each response 
travels as a single datagram.

The request and response messages that SNMP sends in the datagrams are called Protocol Data Units 
(PDU). The five PDUs used by SNMP are listed in Table 11.3 These message types allow the 
manager to request management information, and when appropriate, to modify that information. The 
messages also allow the agent to respond to manager requests and to notify the manager of unusual 
situations.

Table 11.3: SNMP Protocol Data Units

PDU Use

GetRequest Manager requests an update.

file:///C|/mynapster/Downloads/warez/tcpip/ch11_09.htm (1 of 5) [2001-10-15 09:18:52]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


[Chapter 11] 11.9 Simple Network Management Protocol 

GetNextRequest Manager requests the next entry in a table.

GetResponse Agent answers a manager request.

SetRequest Manager modifies data on the managed device.

Trap Agent alerts manager of an unusual event.

The NMS periodically requests the status of each managed device (GetRequest) and each agent 
responds with the status of its device (GetResponse). Making periodic requests is called polling. 
Polling reduces the burden on the agent because the NMS decides when polls are needed, and the 
agent simply responds. Polling also reduces the burden on the network because the polls originate 
from a single system at a predictable rate. The shortcoming of polling is that it does not allow for real-
time updates. If a problem occurs on a managed device, the manager does not find out until the agent 
is polled. To handle this, SNMP uses a modified polling system called trap-directed polling.

A trap is an interrupt signaled by a predefined event. When a trap event occurs, the SNMP agent does 
not wait for the manager to poll; instead it immediately sends information to the manager. Traps allow 
the agent to inform the manager of unusual events while allowing the manager to maintain control of 
polling. SNMP traps are sent on UDP port 162. The manager sends polls on port 161 and listens for 
traps on port 162. Table 11.4 lists the trap events defined in the RFCs.

Table 11.4: Generic Traps Defined in the RFCs

Trap Meaning

coldStart Agent restarted; possible configuration changes

warmStart Agent reinitialized without configuration changes

enterpriseSpecific An event significant to this hardware or software

authenticationFailure Agent received an unauthenticated message

linkDown Agent detected a network link failure

linkUp Agent detected a network link coming up

egpNeighborLoss The device's EGP neighbor is down

The last three entries in this table show the roots of SNMP in Simple Gateway Management Protocol 
(SGMP), which was a tool for tracking the status of network routers. Routers are generally the only 
devices that have multiple network links to keep track of and are the only devices that run Exterior 
Gateway Protocol (EGP). [12] These traps are not significant for most systems.

[12] EGP is covered in Chapter 7.

The most important trap may be the enterpriseSpecific trap. The events that signal this trap are 
defined differently by every vendor's SNMP agent software. Therefore it is possible for the trap to be 
tuned to events that are significant for that system. SNMP uses the term "enterprise" to refer to 
something that is privately defined by a vendor or organization as opposed to something that is 
globally defined by an RFC.

file:///C|/mynapster/Downloads/warez/tcpip/ch11_09.htm (2 of 5) [2001-10-15 09:18:52]



[Chapter 11] 11.9 Simple Network Management Protocol 

SNMP has twice as much jargon as the rest of networking - and that's saying something! Managed 
Network Entity, NMS, PDU, trap, polling, enterprise - that's just the beginning! We also need to 
mention (below) what SMI is, what a MIB is, and what ANS.1 is used for. Why this bewildering array 
of acronyms and buzzwords? I think there are two main reasons:

●     Network management covers a wide range of different devices, from repeaters to mainframe 
computers. A "vendor-neutral" language is needed to define terms for the manufacturers of all 
of this different equipment.

●     SNMP is based on the Common Management Information Protocol (CMIP) that was created 
by the International Standards Organization (ISO). Formal international standards always 
spend a lot of time defining terms because it is important to make terms clear when they are 
used by people from many different cultures who speak many different languages.

Now that you know why you have to suffer through all of this jargon, let's define a few more 
important terms.

The Structure of Management Information (SMI) defines how data should be presented in an SNMP 
environment. The SMI is documented in RFC 1155 and RFC 1065, Structure and Identification of 
Management Information for TCP/IP-based Internets. The SMI defines how managed objects are 
named, the syntax in which they are defined, and how they are encoded for transmission over the 
network. The SMI is based on previous ISO work.

Each managed object is given a globally unique name called an object identifier. The object identifier 
is part of a hierarchical name space that is managed by the ISO. The hierarchical name structure is 
used, just like it is in DNS, to guarantee that each name is globally unique. In an object identifier, 
each level of the hierarchy is identified by a number.

Objects are defined just as formally as they are named. The syntax used to define managed objects is 
Abstract Syntax Notation One (ASN.1). ASN.1 is ISO Standard 8824, Specification of Abstract Syntax 
Notation One (ASN.1). It is a very formal set of language rules for defining data. It makes the data 
definition independent of incompatibilities between systems and character sets. ASN.1 also includes a 
set of rules for encoding data for transfer over a network. These rules are defined in ISO Standard 
8825, Specification of Basic Encoding Rules for Abstract Syntax Notation One (ASN.1). The Basic 
Encoding Rules (BER) define that bit 8 of an octet is sent first, that 2's complement is used for signed 
integers, and other nitty-gritty details of data transmission.

Every object managed by SNMP has a unique object identifier defined by the ASN.1 syntax and 
encoding defined by BER. When all of these unique objects are grouped together, they are called the 
Management Information Base (MIB). The MIB refers to all information that is managed by SNMP. 
However, we usually refer to "a MIB" or "the MIBs" (plural), meaning the individual databases of 
management information formally defined by an RFC or privately defined by a vendor.

MIBI and MIBII are standards defined by RFCs. MIBII is a superset of MIBI, and is the standard 
MIB for monitoring TCP/IP. It provides such information as the number of packets transmitted into 
and out of an interface, and the number of errors that occurred sending and receiving those packets - 

file:///C|/mynapster/Downloads/warez/tcpip/ch11_09.htm (3 of 5) [2001-10-15 09:18:52]



[Chapter 11] 11.9 Simple Network Management Protocol 

useful information for spotting usage trends and potential trouble spots. Every agent supports MIBI or 
MIBII.

Some systems also provide a private MIB in addition to the standard MIBII. Private MIBs add to the 
monitoring capability by providing system-specific information. Most UNIX systems do not provide 
private MIBs. Private MIBs are most common on network hardware like routers, hubs, and switches.

No matter what MIBs are provided by the agents, it is the monitoring software that displays the 
information for the system administrator. A private MIB won't do you any good unless your network 
monitoring software also supports that MIB. For this reason, most administrators prefer to purchase a 
monitor from the vendor that supplies the bulk of their network equipment. Another possibility is to 
select a monitor that includes a MIB compiler, which gives you the most flexibility. A MIB compiler 
reads in the ASN.1 description of a MIB and adds the MIB to the monitor. A MIB compiler makes the 
monitor extensible because if you can get the ASN.1 source from the network equipment vendor, you 
can add the vendor's private MIB to your monitor.

MIB compilers are only part of the advanced features offered by some monitors. Some of the features 
offered are:

Network maps

Some monitors automatically draw a map of the network. Colors are used to indicate the state 
(up, down, etc.) of the devices on the network. At a glance, the network manager sees the 
overall state of the network.

Tabular data displays

Data displayed in tables or rendered into charts is used to make comparisons between different 
devices. Some monitors output data that can then be read into a standard spreadsheet or 
graphing program.

Filters

Filters sift the data coming in from the agents in order to detect certain conditions.
Alarms

Alarms indicate when "thresholds" are exceeded or special events occur. For example, you 
may want an alarm to trigger when your server exceeds some specified number of transmit 
errors.

Don't be put off by the jargon. All of this detail is necessary to formally define a network management 
scheme that is independent of the managed systems, but you don't need to memorize it. You need to 
know that a MIB is a collection of management information, that an NMS is the network management 
station, and that an agent runs in each managed device in order to make intelligent decisions when 
selecting an SNMP monitor. This information provides that necessary background. The features 
available in network monitors vary widely; so does the price. Select an SNMP monitor that is suitable 
for the complexity of your network and the size of your budget.

file:///C|/mynapster/Downloads/warez/tcpip/ch11_09.htm (4 of 5) [2001-10-15 09:18:52]



[Chapter 11] 11.9 Simple Network Management Protocol 

Previous: 11.8 Protocol 
Case Study 

TCP/IP Network 
Administration

Next: 11.10 Summary 

11.8 Protocol Case Study Book Index 11.10 Summary 

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/ch11_09.htm (5 of 5) [2001-10-15 09:18:52]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


file:///C|/mynapster/Downloads/warez/tcpip/ch11_10.htm

Previous: 11.9 Simple 
Network Management 
Protocol 

Chapter 11
Troubleshooting TCP/IP 

Next: 12. Network Security 

 

11.10 Summary 

Every network will have problems. This chapter discusses the tools and techniques that can help you 
recover from these problems, and the planning and monitoring that can help avoid them. A solution is 
sometimes obvious if you can just gain enough information about the problem. UNIX provides 
several built-in software tools that can help you gather information about system configuration, 
addressing, routing, name service and other vital network components. Gather your tools and learn 
how to use them before a breakdown occurs.

In the next chapter, we talk about another task that is important to the maintenance of a reliable 
network: keeping your network secure.

Previous: 11.9 Simple 
Network Management 
Protocol 

TCP/IP Network 
Administration

Next: 12. Network Security 

11.9 Simple Network 
Management Protocol 

Book Index 12. Network Security 

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/ch11_10.htm [2001-10-15 09:18:53]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm
file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Chapter 12] Network Security 

Previous: 11.10 Summary Chapter 12 Next: 12.2 User 
Authentication 

 

12. Network Security 
Contents:
Security Planning 
User Authentication 
Application Security 
Security Monitoring 
Access Control 
Encryption 
Firewalls 
Words to the Wise 
Summary 

Hosts attached to a network - particularly the worldwide Internet - are exposed to a wider range of 
security threats than are unconnected hosts. Network security reduces the risks of connecting to a 
network. But by nature, network access and computer security work at cross-purposes. A network is a 
data highway designed to increase access to computer systems, while security is designed to control 
access. Providing network security is a balancing act between open access and security.

The highway analogy is very appropriate. Like a highway, the network provides equal access for all - 
welcome visitors as well as unwelcome intruders. At home, you provide security for your possessions 
by locking your house, not by blocking the streets. Likewise, network security generally means 
providing adequate security on individual host computers, not providing security directly on the 
network.

In very small towns, where people know each other, doors are often left unlocked. But in big cities, 
doors have deadbolts and chains. In the last decade, the Internet has grown from a small town of a few 
thousand users to a big city of millions of users. Just as the anonymity of a big city turns neighbors 
into strangers, the growth of the Internet has reduced the level of trust between network neighbors. 
The ever-increasing need for computer security is an unfortunate side effect. Growth, however, is not 
all bad. In the same way that a big city offers more choices and more services, the expanded network 
provides increased services. For most of us, security consciousness is a small price to pay for network 
access.

file:///C|/mynapster/Downloads/warez/tcpip/ch12_01.htm (1 of 7) [2001-10-15 09:18:54]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


[Chapter 12] Network Security 

Network break-ins have increased as the network has grown and become more impersonal, but it is 
easy to exaggerate the extent of these security breaches. Over-reacting to the threat of break-ins may 
hinder the way you use the network. Don't make the cure worse than the disease. The best advice 
about network security is to use common sense. RFC 1244, Site Security Handbook, by Holbrook, 
Reynold, et al., states this principle very well: 

Common sense is the most appropriate tool that can be used to establish your security 
policy. Elaborate security schemes and mechanisms are impressive, and they do have 
their place, yet there is little point in investing money and time on an elaborate 
implementation scheme if the simple controls are forgotten.

This chapter emphasizes the simple controls that can be used to increase your network's security. A 
reasonable approach to security, based on the level of security required by your system, is the most 
cost-effective - both in terms of actual expense and in terms of productivity.

12.1 Security Planning 

One of the most important network security tasks, and probably one of the least enjoyable, is 
developing a network security policy. Most computer people want a technical solution to every 
problem. We want to find a program that "fixes" the network security problem. Few of us want to 
write a paper on network security policies and procedures. However, a well-thought-out security plan 
will help you decide what needs to be protected, how much you are willing to invest in protecting it, 
and who will be responsible for carrying out the steps to protect it.

12.1.1 Assessing the Threat 

The first step toward developing an effective network security plan is to assess the threat that 
connection presents to your systems. RFC 1244 identifies three distinct types of security threats 
usually associated with network connectivity:

Unauthorized access

A break-in by an unauthorized person.
Disclosure of information

Any problem that causes the disclosure of valuable or sensitive information to people who 
should not have access to the information.

Denial of service

Any problem that makes it difficult or impossible for the system to continue to perform 
productive work.

Assess these threats in relation to the number of users who would be affected, as well as to the 

file:///C|/mynapster/Downloads/warez/tcpip/ch12_01.htm (2 of 7) [2001-10-15 09:18:54]



[Chapter 12] Network Security 

sensitivity of the information that might be compromised. For some organizations, break-ins are an 
embarrassment that can undermine the confidence that others have in the organization. Intruders tend 
to target government and academic organizations that will be embarrassed by the break-in. But for 
most organizations, unauthorized access is not a major problem unless it involves one of the other 
threats: disclosure of information or denial of service.

Assessing the threat of information disclosure depends on the type of information that could be 
compromised. While no system with highly classified information should ever be directly connected 
to the Internet, systems with other types of sensitive information might be connected without undue 
hazard. In most cases, files such as personnel and medical records, corporate plans, and credit reports 
can be adequately protected by standard UNIX file security procedures. However, if the risk of 
liability in case of disclosure is great, the host may choose not to be connected to the Internet.

Denial of service can be a severe problem if it impacts many users or a major mission of your 
organization. Some systems can be connected to the network with little concern. The benefit of 
connecting individual workstations and small servers to the Internet generally outweighs the chance of 
having service interrupted for the individuals and small groups served by these systems. Other 
systems may be vital to the survival of your organization. The threat of losing the services of a 
mission-critical system must be evaluated seriously before connecting such a system to the network.

In his class on computer security, Brent Chapman classifies information security threats into three 
categories: threats to the secrecy, availability, and integrity of data. Secrecy is the need to prevent the 
disclosure of sensitive information. Availability means that you want information and information 
processing resources available when they are needed; a denial-of-service attack disrupts availability. 
The need for the integrity of information is equally obvious, but its link to computer security is more 
subtle. Once someone has gained unauthorized access to a system, the integrity of the information on 
that system is in doubt. Furthermore, some intruders just want to compromise the integrity of data. We 
are all familiar with cases where intruders gain access to a Web server and change the data on the 
server in order to embarrass the organization that runs the Web site. Thinking about the impact 
network threats have on your data can make it easier to assess the threat.

Network threats are not, of course, the only threats to computer security, or the only reasons for denial 
of service. Natural disasters and internal threats (threats from people who have legitimate access to a 
system) are also serious. Network security has had a lot of publicity, so it's a fashionable thing to 
worry about; but more computer time has probably been lost because of fires than has ever been lost 
because of network security problems. Similarly, more data has probably been improperly disclosed 
by authorized users than by unauthorized break-ins. This book naturally emphasizes network security, 
but network security is only part of a larger security plan that includes physical security and disaster 
recovery plans.

Many traditional (non-network) security threats are handled, in part, by physical security. Don't forget 
to provide an adequate level of physical security for your network equipment and cables. Again, the 
investment in physical security should be based on your realistic assessment of the threat.

12.1.2 Distributed Control 

file:///C|/mynapster/Downloads/warez/tcpip/ch12_01.htm (3 of 7) [2001-10-15 09:18:54]



[Chapter 12] Network Security 

One approach to network security is to distribute responsibility for, and control over, segments of a 
large network to small groups within the organization. This approach involves a large number of 
people in security, and runs counter to the school of thought that seeks to increase security by 
centralizing control. However, distributing responsibility and control to small groups can create an 
environment of small networks composed of trusted hosts. Using the analogy of small towns and big 
cities, it is similar to creating a neighborhood watch to reduce risks by giving people connection with 
their neighbors, mutual responsibility for one another, and control over their own fates.

Additionally, distributing security responsibilities formally recognizes one of the realities of network 
security - most security actions take place on individual systems. The managers of these systems must 
know that they are responsible for security, and that their contribution to network security is 
recognized and appreciated. If people are expected to do a job, they must be empowered to do it.

12.1.2.1 Use subnets to distribute control 

Subnets are a possible tool for distributing network control. A subnet administrator should be 
appointed when a subnet is created. She is then responsible for the security of the network and for 
assigning IP addresses to the devices connected to the networks. Assigning IP addresses gives the 
subnet administrator some control over who connects to the subnet. It also helps to ensure that she 
knows each system connected and who is responsible for that system. When the subnet administrator 
gives a system an IP address, she also delegates certain security responsibilities to the system's 
administrator. Likewise, when the system administrator grants a user an account, the user takes on 
certain security responsibilities.

The hierarchy of responsibility flows from the network administrator, to the subnet administrator, to 
the system administrator, and finally to the user. At each point in this hierarchy the individuals are 
given responsibilities and the power to carry them out. To support this structure, it is important for 
users to know what they are responsible for and how to carry out that responsibility. The network 
security policy described in the next section provides this information.

12.1.2.2 Use mailing lists to distribute information 

If your site adopts distributed control, you must develop a system for disseminating security 
information to each group. Mailing lists for each administrative level can be used for this purpose. 
The network administrator receives security information from outside authorities, filters out irrelevant 
material, and forwards the relevant material to the subnet administrators. Subnet administrators 
forward the relevant parts to their system administrators, who in turn forward what they consider 
important to the individual users. The filtering of information at each level ensures that individuals get 
the information they need, without receiving too much. If too much unnecessary material is 
distributed, users begin to ignore everything they receive.

At the top of this information structure is the information that the network administrator receives from 
outside authorities. In order to receive this, the network administrator should join the appropriate 
mailing lists and newsgroups and browse the appropriate Web sites. A few places to start looking for 

file:///C|/mynapster/Downloads/warez/tcpip/ch12_01.htm (4 of 7) [2001-10-15 09:18:54]



[Chapter 12] Network Security 

computer security information are the following:

Your UNIX Vendor

Many vendors have their own security information mailing lists.
Security Newsgroups

The comp.security newsgroups - comp.security.unix, comp.security.firewalls, 
comp.security.announce, and comp.security.misc - contain some useful information. Like most 
newsgroups, they contain lots of unimportant and uninteresting material. But they also contain 
an occasional gem.

FIRST Mailing List

The Forum of Incident Response and Security Teams (FIRST) is a worldwide organization of 
computer security response teams. FIRST provides a public mailing list, first-info@first.org, 
for computer security information. To subscribe to this list, send email to first-
majordomo@first.org that contains the line:

subscribe first-info YOUR-EMAIL-ADDRESS

where YOUR-EMAIL-ADDRESS is literally your email address.
NIST Computer Security Alerts

The National Institute of Standards and Technology's Computer Security Division maintains a 
Web site with pointers to security-related Web pages all over the world. As a single source for 
security alerts from several different organizations, the site http://csrc.nist.gov/secalert/ can't be 
beat.

Computer Emergency Response Team (CERT) Advisories

The CERT advisories provide information about known security problems, and the fixes to 
these problems. You can retrieve these advisories from ftp://info.cert.org/pub/cert_advisories. 
The CERT Web site is also worth a visit: http://www.cert.org.

DDN Security Bulletins

These bulletins are very similar in content to the CERT advisories, though DDN bulletins do 
occasionally add information. DDN bulletins and CERT advisories deal primarily with 
network security threats. DDN bulletins can be viewed online with your Web browser at 
http://nic.ddn.mil/SCC/bulletins.html.

Risks Forum

The risks forum discusses the full range of computer security risks. The forum is available on 
the Web at http://catless.ncl.ac.uk/Risks.

Computer Virus Information

file:///C|/mynapster/Downloads/warez/tcpip/ch12_01.htm (5 of 7) [2001-10-15 09:18:54]

http://csrc.nist.gov/secalert/
ftp://info.cert.org/pub/cert_advisories
http://www.cert.org/
http://nic.ddn.mil/SCC/bulletins.html
http://catless.ncl.ac.uk/Risks


[Chapter 12] Network Security 

The VIRUS-L list deals primarily with computer viruses - a threat usually associated with PCs. 
You can retrieve the VIRUS-L archive from ftp://ftp.infospace.com/pub/virus-l. An equally 
important document, at http://ciac.llnl.gov/ciac/CIACHoaxes.html, provides information about 
computer virus hoaxes. False rumors about computer viruses can waste as much time as 
tracking down real viruses.

12.1.3 Writing a Security Policy 

Security is largely a "people problem." People, not computers, are responsible for implementing 
security procedures, and people are responsible when security is breached. Therefore, network 
security is ineffective unless people know their responsibilities. It is important to write a security 
policy that clearly states what is expected and who it is expected from. A network security policy 
should define:

The network user's security responsibilities

The policy may require users to change their passwords at certain intervals, to use passwords 
that meet certain guidelines, or to perform certain checks to see if their accounts have been 
accessed by someone else. Whatever is expected from users, it is important that it be clearly 
defined.

The system administrator's security responsibilities

The policy may require that every host use specific security measures, login banner messages, 
and monitoring and accounting procedures. It might list applications that should not be run on 
any host attached to the network.

The proper use of network resources

Define who can use network resources, what things they can do, and what things they should 
not do. If your organization takes the position that email, files, and histories of computer 
activity are subject to security monitoring, tell the users very clearly that this is the policy.

The actions taken when a security problem is detected

What should be done when a security problem is detected? Who should be notified? It is easy 
to overlook things during a crisis, so you should have a detailed list of the exact steps that a 
system administrator, or user, should take when a security breach has been detected. This could 
be as simple as telling the users to "touch nothing, and call the network security officer." But 
even these simple actions should be in the policy so that they are readily available.

Connecting to the Internet brings with it certain security responsibilities. RFC 1281, A Guideline for 
the Secure Operation of the Internet, provides guidance for users and network administrators on how 
to use the Internet in a secure and responsible manner. Reading this RFC will provide insight into the 
information that should be in your security policy.

A great deal of thought is necessary to produce a complete network security policy. The outline 

file:///C|/mynapster/Downloads/warez/tcpip/ch12_01.htm (6 of 7) [2001-10-15 09:18:54]

ftp://ftp.infospace.com/pub/virus%E2%80%93l
http://ciac.llnl.gov/ciac/CIACHoaxes.html


[Chapter 12] Network Security 

shown above describes the contents of a network policy document, but if you are personally 
responsible for writing a policy, you may want more detailed guidance. I also recommend that you 
read RFC 1244. It is a very good guide for developing a security plan.

Security planning (assessing the threat, assigning security responsibilities, and writing a security 
policy) is the basic building block of network security, but a plan must be implemented before it can 
have any effect. In the remainder of this chapter, we'll turn our attention to implementing basic 
security procedures.

Previous: 11.10 Summary TCP/IP Network 
Administration

Next: 12.2 User 
Authentication 

11.10 Summary Book Index 12.2 User Authentication 

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/ch12_01.htm (7 of 7) [2001-10-15 09:18:54]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Chapter 12] 12.2 User Authentication 

Previous: 12.1 Security 
Planning 

Chapter 12
Network Security 

Next: 12.3 Application 
Security 

 

12.2 User Authentication 

Good passwords are one of the simplest parts of good network security. Passwords are used to log in to systems 
that use password authentication. Popular mythology says that network security breaches are caused by 
sophisticated security crackers who discover software security holes to break into computer systems. In reality, 
many intruders enter systems simply by guessing or stealing passwords, or by exploiting well-known security 
problems in outdated software. Later in this chapter we look at guidelines for keeping software up-to-date, and at 
ways to prevent a thief from stealing your password. First, let's see what we can do to prevent it from being 
guessed.

These are a few things that make it easy to guess passwords:

●     Accounts that use the account name as the password. Accounts with this type of trivial password are called 
joe accounts.

●     Guest or demonstration accounts that require no password, or use a well-publicized password.
●     System accounts with default passwords.
●     User who tell their passwords to others.

Guessing these kinds of passwords requires no skill, just lots of spare time! Changing your password frequently is 
a deterrent to password guessing. However, if you choose good passwords, don't change them so often that it is 
hard to remember them. Many security experts recommend that passwords should be changed about every 3 to 6 
months.

A more sophisticated form of password guessing is dictionary guessing. Dictionary guessing uses a program that 
encrypts each word in a dictionary (e.g., /usr/dict/words) and compares each encrypted word to the encrypted 
password in the /etc/passwd file. Dictionary guessing is not limited to words from a dictionary. Things known 
about you (your name, initials, telephone number, etc.) are also run through the guessing program when trying to 
guess the password for your account. Because of dictionary guessing, you must protect the /etc/passwd file.

Some systems provide a shadow password file to hide the encrypted passwords from potential intruders. If your 
system has a shadow password facility, use it. Hiding encrypted passwords greatly reduces the risk of password 
guessing.

12.2.1 The Shadow Password File 

Shadow password files have restricted permissions that prevent them from being read by intruders. The encrypted 
password is stored only in the shadow password file, /etc/shadow, and not in the /etc/passwd file. The passwd file 
is maintained as a world-readable file because it contains information that various programs use. The shadow file 
can only be read by root and it does not duplicate the information in the passwd file. It only contains passwords 
and the information needed to manage them. The format of a shadow file entry on a Solaris system is:

file:///C|/mynapster/Downloads/warez/tcpip/ch12_02.htm (1 of 13) [2001-10-15 09:18:56]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


[Chapter 12] 12.2 User Authentication 

username:password:lastchg:min:max:warn:inactive:expire:flag

username is the login username. password is the encrypted password or one of the keyword values NP and *LK*. 
lastchg is the date that the password was last changed, written as the number of days from January 1, 1970 to the 
date of the change. min is the minimum number of days that must elapse before the password can be changed. max 
is the maximum number of days the user can keep the password before it must be changed. warn is the number of 
days before the password expires that the user is warned. inactive is the number of days the account can be 
inactive before it is locked. expire is the date on which the account will be closed. flag is unused.

The encrypted password appears only in this file. Every password field in the /etc/passwd file contains an x, which 
tells the system to look in the shadow file for the real password. Every password field in the /etc/shadow file 
contains either an encrypted password, NP, or *LK*. If it contains the keyword NP, it means that there is no 
password because this is not a login account. System accounts, such as daemon or uucp, are not login accounts, so 
they have NP in the password field. *LK* in the password field means that this account has been locked and is 
therefore disabled from any further use.

While the most important purpose of the shadow file is to protect the password, the additional fields in the shadow 
entry provide other useful security services. One of these is password aging. A password aging mechanism defines 
a lifetime for each password. When a password reaches the end of its lifetime, the password aging mechanism 
notifies the user to change the password. If it is not changed within some specified period, the password is 
removed from the system and the user is blocked from using his account.

The lastchg, max, and warn fields all play a role in password aging. They allow the system to know when the 
password was changed and how long it should be kept, as well as when the user should be warned about his 
impending doom. Another nice feature of the shadow file is the min field. This is a more subtle aspect of password 
aging. It prevents the user from changing her favorite password to a dummy password and then immediately back 
to her favorite. When the password is changed it must be used for the number of days defined by min before it can 
be changed again. This reduces one of the common tricks used to avoid really changing passwords.

The inactive and expire fields help eliminate unused accounts. Here "inactivity" is determined by the number of 
days the account continues with an expired password. Once the password expires, the user is given some number 
of days to log in and set a new password. If the user does not log in before the specified number of days has 
elapsed, the account is locked and the user cannot log in.

The expire field lets you a create user account that has a specified "life." When the date stored in the expire field is 
reached, the user account is disabled even if it is still active. The expiration date is stored as the number of days 
since January 1, 1970.

On a Solaris system the /etc/shadow file is not edited directly. It is modified by using the "users" sub-window of 
the admintool or special options on the passwd command line. This window is shown in Figure 12.1 The 
username, password, min, max, warn, inactive, and expire fields are clearly shown.

Figure 12.1: Admintool password maintenance

file:///C|/mynapster/Downloads/warez/tcpip/ch12_02.htm (2 of 13) [2001-10-15 09:18:56]



[Chapter 12] 12.2 User Authentication 

The passwd command on Solaris systems has -n min, -w warn, and -x max options to set the min, max, and warn 
fields in the /etc/shadow file. Only the root user can invoke these options. Here root sets the maximum life of 
Tyler's password to 180 days:

# passwd -x 180 tyler

The Solaris system permits the system administrator to set default values for all of these options so that they do not 
have to be set every time a user is added through the admintool or the passwd command line. The default values 
are set in the /etc/default/passwd file.

% cat /etc/default/passwd
#ident  "@(#)passwd.dfl 1.3     92/07/14 SMI"
MAXWEEKS=
MINWEEKS=
PASSLENGTH=6

The default values that can be set in the /etc/default/passwd file are:

MAXWEEKS

The maximum life of a password defined in weeks - not days. The 180-day period used in the example 
above would be defined with this parameter as MAXWEEKS=26.

MINWEEKS

file:///C|/mynapster/Downloads/warez/tcpip/ch12_02.htm (3 of 13) [2001-10-15 09:18:56]



[Chapter 12] 12.2 User Authentication 

The minimum number of weeks a password must be used before it can be changed.
PASSLENGTH

The minimum number of characters that a password must contain. This is set to 6 in the sample file. Only 
the first eight characters are significant on a Solaris system. Setting the value above 8 does not change that 
fact.

WARNWEEKS

The number of weeks before a password expires that the user is warned.

This section uses Solaris as an example because the shadow password system is provided as part of the Solaris 
operating system. If it doesn't come with your system, you may be able to download shadow password software 
from the Internet. It is available for Linux systems. The shadow file described above is exactly the same format 
used on Linux systems and it functions in the same way.

No intruder can take the encrypted password and decrypt it back to its original form, but encrypted passwords can 
be compared against encrypted dictionaries. If bad passwords are used, they can be easily guessed. Take care to 
protect the /etc/passwd file and choose good passwords.

12.2.2 Choosing a Password 

A good password is an essential part of security. We usually think of the password used for login; however, one-
time passwords and encryption keys are needed. For all of these purposes you want to choose a good password. 
Choosing a good password boils down to this, don't choose a password that can be guessed using the techniques 
described above. Some guidelines for choosing a good password are:

●     Don't use your login name.
●     Don't use the name of anyone or anything.
●     Don't use any English, or foreign language, word or abbreviation.
●     Don't use any personal information associated with the owner of the account. For example, don't use 

initials, phone number, social security number, job title, organizational unit, etc.
●     Don't use keyboard sequences, e.g., qwerty.
●     Don't use any of the above spelled backwards, or in caps, or otherwise disguised.
●     Don't use an all-numeric password.
●     Don't use a sample password, no matter how good, that you've gotten from a book that discusses computer 

security.
●     Do use a mixture of numbers, special characters, and mixed-case letters.
●     Do use at least six characters.
●     Do use a seemingly random selection of letters and numbers.

Common suggestions for constructing seemingly random passwords are:

1.  Use the first letter of each word from a line in a book, song, or poem. For example: "People don't know you 
and trust is a joke." [1] would produce Pd'ky&tiaj.

[1] Toad the Wet Sprocket, "Walk on the Ocean."

2.  Use the output from a random password generator. Select a random string that can be pronounced and is 
easy to remember. For example, the random string "adazac" can be pronounced a-da-zac, and you can 

file:///C|/mynapster/Downloads/warez/tcpip/ch12_02.htm (4 of 13) [2001-10-15 09:18:56]



[Chapter 12] 12.2 User Authentication 

remember it by thinking of it as "A-to-Z." Add uppercase letters to create your own emphasis, e.g., 
aDAzac. [2]

[2] A VMS-system password generator created this password.

3.  Use two short words connected by punctuation, e.g., wRen%Rug.
4.  Use numbers and letters to create an imaginary vanity license plate password, e.g., 2hot4U?.

A common theme of these suggestions is that the password should be easy to remember. Avoid passwords that 
must be written down to be remembered. If unreliable people gain access to your office and find the password you 
have written down, the security of your system will be compromised.

However, don't assume that you will not be able to remember a random password. It may be difficult the first few 
times you use the password, but any password that is used often enough is easy to remember. If you have an 
account on a system that you rarely use, you may have trouble remembering a random password. But in that case, 
the best solution is to get rid of the account. Unused and under-utilized accounts are prime targets for intruders. 
They like to attack unused accounts because there is no user to notice changes to the files or strange Last login: 
messages. Remove all unused accounts from your systems.

How do you ensure that the guidance for creating new passwords is followed? The most important step is to make 
sure that every user knows these suggestions and the importance of following them. Cover this topic in your 
network security plan, and periodically reinforce it through newsletter articles and online system bulletins.

It is also possible to use programs that force users to follow specific password selection guidelines. The Web page 
http://csrc.nist.gov/tools/tools.htm lists several programs that do exactly that.

12.2.3 One-Time Passwords 

Sometimes good passwords are not enough. Passwords are transmitted across the network as clear text. Intruders 
use protocol-analyzer software to spy on network traffic and steal passwords. If a thief steals your password, it 
does not matter how good the password was.

The thief can be on any network that handles your TCP/IP packets. If you log in through your local network you 
have to worry only about local snoops. But if you log in over the Internet you must worry about unseen listeners 
from any number of unknown networks.

The rlogin command is not vulnerable to this type of attack. rlogin does not send the password over the network, 
because user authentication is done only on the local host. The remote host accepts the user because it trusts the 
local host. However, trust should be extended only to UNIX hosts on your local network that you really do trust. 
Never extend trust to remote systems. It is too easy for an intruder to pretend that he is logged into a trusted 
system by stealing the trusted system's IP address, or by corrupting DNS so that it gives his system's address in 
response to the trusted system's name. rlogin does not help when you must log in from a remote site or an 
untrusted system. Use one-time passwords for remote logins. Because a one-time password can be used only once, 
a thief who steals the password cannot use it.

Naturally, one-time passwords systems are a hassle. You must carry a list of one-time passwords, or something 
that can generate them, with you any time you want to log in. If you forget the password list, you cannot log in. 
However, this may not be as big a problem as it seems. You usually log in from your office where your primary 
login host is probably on your desktop or your local area network. When you log in to your desktop system from 
its keyboard, the password does not traverse the network, so you can use a reusable password. And rlogin can be 

file:///C|/mynapster/Downloads/warez/tcpip/ch12_02.htm (5 of 13) [2001-10-15 09:18:56]

http://csrc.nist.gov/tools/tools.htm


[Chapter 12] 12.2 User Authentication 

used between UNIX hosts on a local area network. One-time passwords are only needed for the occasions when 
you log in from a remote location or an untrusted host. For this reason, some one-time password systems are 
designed to allow reusable passwords when they are appropriate.

There are several one-time password systems. Some use specialized hardware such as "smart cards." OPIE is a 
free software system that requires no special hardware.

12.2.4 OPIE 

One-time Passwords In Everything (OPIE) is free software from the U.S. Naval Research Laboratory (NRL) that 
modifies a UNIX system to use one-time passwords. OPIE is directly derived from SKey, which is a one-time 
password system created by Bell Communications Research (Bellcore).

Download OPIE from ftp://ftp.nrl.navy.mil/pub/security/opie/opie-2.3.tar.gz. It is a binary file. gunzip the file and 
extract it using tar. The directory this produces contains the source files, Makefiles, and scripts necessary to 
compile and install OPIE.

OPIE comes with configure, an auto-configuration script that detects your system's configuration and modifies the 
Makefile accordingly. It does a good job, but you still should manually edit the Makefile to make sure it is correct. 
For example: my Linux system uses the Washington University FTP daemon wu.ftpd. OPIE replaces login, su, 
and ftpd with its own version of these programs. On my Linux system, configure did not find ftpd and I did not 
notice the problem when I checked the Makefile. make ran without errors but make install failed during the 
install of the OPIE FTP daemon. The Makefile was easily corrected and the rerun of make install was successful.

The effects of OPIE are evident as soon as the install completes. Run su and you're prompted with root's 
response: instead of Password:. login prompts with Response or Password: instead of just 
Password:. The response requested by these programs is the OPIE equivalent of a password. Programs that 
prompt with Response or Password accept either the OPIE response or the traditional password from the 
/etc/passwd file. This feature permits users to migrate gracefully from traditional passwords to OPIE. It also allows 
local console logins with re-usable passwords while permitting remote logins with one-time passwords. The best 
of both worlds - convenient local logins without creating separate local and remote login accounts!

To use OPIE you must first select a secret password that is used to generate the one-time password list, and then 
you must run the program that generates the list. To select a secret password, run opiepassword as shown below:

$ opiepasswd -c
Updating kristin:
Reminder  -  Only use this method from the console; NEVER from remote.
 If you are using telnet, xterm, or a dial-in, type ^C now or exit with
 no password. Then run opiepasswd without the -c parameter.
Using MD5 to compute responses.
Enter old secret pass phrase: 3J5Wd6PaWP
Enter new secret pass phrase: 9WA11WSfW95/NT
Again new secret pass phrase: 9WA11WSfW95/NT

The example above shows the user kristin updating her secret password. She runs opiepasswd from the computer's 
console, as indicated by the -c command option. Running opiepasswd from the console is the most secure. If it is 
not run from the console, you must have a copy of the opiekey software with you to generate the correct responses 
needed to enter your old and new secret passwords because clear-text passwords are only accepted from the 
console. Kristin is prompted to enter her old password and to select a new one. OPIE passwords must be at least 

file:///C|/mynapster/Downloads/warez/tcpip/ch12_02.htm (6 of 13) [2001-10-15 09:18:56]

ftp://ftp.nrl.navy.mil/pub/security/opie/opie%E2%80%932.3.tar.gz


[Chapter 12] 12.2 User Authentication 

10 characters long. Since the new password is long enough, opiepasswd accepts it and displays the following two 
lines:

ID kristin OPIE key is 499 be93564
CITE JAN GORY BELA GET ABED

These lines tell Kristin the information she needs to generate OPIE login responses and the first response she will 
need to log in to the system. The one-time password needed for Kristin's next login response is the second line of 
this display: a group of six short, uppercase character strings. The first line of the display contains the initial 
sequence number (499) and the seed (be93564) she needs, along with her secret password, to generate OPIE login 
responses. The software used to generate those responses is opiekey.

opiekey takes the login sequence number, the user's seed, and the user's secret password as input and outputs the 
correct one-time password. If you have opiekey software on the system from which you are initiating the login, 
you can produce one-time passwords one at a time. If, however, you will not have access to opiekey when you are 
away from your login host, you can use the -n option to request several passwords. Write the passwords down, put 
them in your wallet, and you're ready to go! [3] In the following example we request five (-n 5) responses from 
opiekey:

[3] Security experts will cringe when they read this suggestion. Writing down passwords is a "no-
no." Frankly, I think the people who steal wallets are more interested in my money and credit cards 
than in the password to my system. But you should consider this suggestion in light of the level of 
protection that your system needs.

$ opiekey -n 5 495 wi01309
Using MD5 algorithm to compute response.
Reminder: Don't use  opiekey  from  telnet  or dial-in sessions.
Enter secret pass phrase: UUaX26CPaU
491: HOST VET FOWL SEEK IOWA YAP
492: JOB ARTS WERE FEAT TILE IBIS
493: TRUE BRED JOEL USER HALT EBEN
494: HOOD WED MOLT PAN FED RUBY
495: SUB YAW BILE GLEE OWE NOR

First opiekey tells us that it is using the MD5 algorithm to produce the responses, which is the default for OPIE. 
For compatibility with older Skey or OPIE implementations, force opiekey to use the MD4 algorithm by using the 
-4 command-line option. opiekey prompts for your secret password. This is the password you defined with the 
opiepasswd command. It then prints out the number of responses requested and lists them in sequence number 
order. The login sequence numbers in the example are 495 to 491. When the sequence number gets down to 10, 
rerun opiepasswd and select a new secret password. Selecting a new secret password resets the sequence number 
to 499. The OPIE login prompt displays a sequence number and you must provide the response that goes with that 
sequence number. For example:

login: tyler
otp-md5 492 wi01309
Response or Password: JOB ARTS WERE FEAT TILE IBIS

At the login: prompt Tyler enters her username. The system then displays a single line that tells her that one-
time passwords are being generated with the MD5 algorithm (otp-md5), that this is login sequence number 492, 
and that the seed used for her one-time passwords is wi01309. She looks up the response for login number 492 and 
enters the six short strings. She then marks that response off her list because it cannot be used again to log into the 

file:///C|/mynapster/Downloads/warez/tcpip/ch12_02.htm (7 of 13) [2001-10-15 09:18:56]



[Chapter 12] 12.2 User Authentication 

system. A response from the list must be used any time she is not sitting at the console of her system. Reusable 
passwords can be used only at the console.

12.2.5 Secure the r Commands 

Some applications use their own security mechanisms. Make sure that the security for these applications is 
configured properly. In particular, check the UNIX r commands, which are a set of UNIX networking applications 
comparable to ftp and telnet. Care must be taken to ensure that the r commands don't compromise system 
security. Improperly configured r commands can open access to your computer facilities to virtually everyone in 
the world.

In place of password authentication, the r commands use a security system based on trusted hosts and users. 
Trusted users on trusted hosts are allowed to access the local system without providing a password. Trusted hosts 
are also called "equivalent hosts" because the system assumes that users given access to a trusted host should be 
given equivalent access to the local host. The system assumes that user accounts with the same name on both hosts 
are "owned" by the same user. For example, a user logged in as becky on a trusted system is granted the same 
access as a user logged in as becky on the local system.

This authentication system requires databases that define the trusted hosts and the trusted users. The databases 
used to configure the r commands are /etc/hosts.equiv and .rhosts.

The /etc/hosts.equiv file defines the hosts and users that are granted "trusted" r command access to your system. 
This file can also define hosts and users that are explicitly denied trusted access. Not having trusted access doesn't 
mean that the user is denied access; it just means that he is required to supply a password.

The basic format of entries in the /etc/hosts.equiv file is:

[+ | -][hostname] [+ | -][username]

The hostname is the name of a "trusted" host, which may optionally be preceded by a plus (+) sign. The plus 
sign has no real significance, except when used alone. A + sign without a hostname following it is a wildcard 
character that means "any host."

If a host is granted equivalence, users logged into that host are allowed access to like-named user accounts on your 
system without providing a password. (This is one good reason for administrators to observe uniform rules in 
handing out login names.) The optional username is the name of a user on the trusted host who is granted access 
to all user accounts. If username is specified, that user is not limited to like-named accounts, but is given access 
to all user accounts without being required to provide a password. [4]

[4] The root account is not included.

The hostname may also be preceded by a minus sign (-). This explicitly says that the host is not an equivalent 
system. Users from that host must always supply a password when they use an r command to interact with your 
system. A username can also be preceded with a minus sign. This says that, whatever else may be true about that 
host, the user is "not trusted" and must always supply a password.

The following examples show how entries in the hosts.equiv file are interpreted:

peanut

file:///C|/mynapster/Downloads/warez/tcpip/ch12_02.htm (8 of 13) [2001-10-15 09:18:56]



[Chapter 12] 12.2 User Authentication 

Allows password-free access from any user on peanut to a like-named user account on your local system.
-peanut

Denies password-free access from any user on peanut to accounts on your system.
peanut -david

Denies password-free access to the user david, if he attempts to access your system from peanut.
peanut +becky

Allows the user becky to access any account (except root) on your system, without supplying a password, if 
she logs in from peanut.

+ becky

Allows the user becky to access any account (except root) on your system without supplying a password, 
no matter what host she logs in from.

This last entry is an example of something that should never be used in your configuration. Don't use a standalone 
plus sign (+) in place of a hostname. It allows access from any host anywhere, and can open up a big security hole. 
For example, if the entry shown above was in your hosts.equiv file, an intruder could create an account named 
becky on his system and gain access to every account on your system. Check the /etc/hosts.equiv and ~/.rhosts 
files, and /etc/hosts.lpd, to make sure that none of them contain a plus-sign (+) entry. Remember to check the 
.rhosts file in every user's home directory.

A simple typographical error could give you a standalone plus sign. For example, consider the entry:

+ peanut becky

The system administrator probably meant "give becky password-free access to all accounts when she logs in from 
peanut." However, with an extraneous space after the + sign, it means "allow users named peanut and becky 
password-free access from any host in the world." Don't use a plus sign in front of a hostname, and always use 
care when working with the /etc/hosts.equiv file to avoid security problems.

When configuring the /etc/hosts.equiv file, grant trusted access only to the systems and users you actually trust. 
Don't grant trusted access to every system attached to your local network. It is best only to trust hosts from your 
local network when you know the person responsible for that host, and when you know that the host is not 
available for public use. Don't grant trusted access by default - have some reason for conferring trusted status. 
Never grant trust to remotely located systems. It is too easy for an intruder to corrupt routing or DNS in order to 
fool your system when you grant trust to a remote system. Also, never begin your hosts.equiv file with a minus 
sign (-) as the first character. (This confuses some systems, causing them to improperly grant access.) Always err 
on the side of caution when creating a hosts.equiv file. Adding trusted hosts as they are requested is much easier 
than recovering from a malicious intruder.

The .rhosts file grants or denies password-free r command access to a specific user's account. It is placed in the 
user's home directory and contains entries that define the trusted hosts and users. Entries in the .rhosts file use the 
same format as entries in the hosts.equiv file, and function in almost the same way. The difference is the scope of 
access granted by entries in these two files. In the .rhosts file, the entries grant or deny access to a single user 
account; the entries in hosts.equiv control access to an entire system.

This functional difference can be shown in a simple example. Assume the following entry:

file:///C|/mynapster/Downloads/warez/tcpip/ch12_02.htm (9 of 13) [2001-10-15 09:18:56]



[Chapter 12] 12.2 User Authentication 

pecan anthony

In almond's hosts.equiv file, this entry means that the user anthony on pecan can access any account on almond 
without entering a password. In an .rhosts file in the home directory of user resnick, the exact same entry allows 
anthony to rlogin from pecan as resnick without entering a password, but it does not grant password-free access to 
any other accounts on almond.

Individuals use the .rhosts file to establish equivalence among the different accounts they own. The entry shown 
above would probably only be made if anthony and resnick are the same person. For example, I have accounts on 
several different systems. Sometimes my username is hunt, and sometimes it is craig. It would be nice if I had the 
same account name everywhere, but that is not always possible; the names craig and hunt are used by two other 
people on my local network. I want to be able to rlogin to my workstation from any host that I have an account on, 
but I don't want mistaken logins from the other craig and the other hunt. The .rhosts file gives me a way to control 
this problem.

For example, assume my username on almond is craig, but my username on filbert is hunt. Another user on filbert 
is craig. To allow myself password-free access to my almond account from filbert, and to make sure that the other 
user doesn't have password-free access, I put the following .rhosts file in my home directory:

filbert hunt
filbert -craig

Normally the hosts.equiv file is searched first, followed by the user's .rhosts file, if it exists. The first explicit 
match determines whether or not password-free access is allowed. Therefore, the .rhosts file cannot override the 
hosts.equiv file. The exception to this is root user access. When a root user attempts to access a system via the r 
commands, the hosts.equiv file is not checked, only .rhosts in the root user's home directory is consulted. This 
allows root access to be more tightly controlled. If the hosts.equiv file was used for root access, entries that grant 
trusted access to hosts would give root users on those hosts root privileges. You can add trusted hosts to 
hosts.equiv without granting remote root users root access to your system.

If security is particularly important at your site, you should remember that the user can provide access with the 
.rhosts file even when the hosts.equiv file doesn't exist. The only way to prevent users from doing this is to 
periodically check for and remove the .rhosts files. As long as you have the r commands on your system, it is 
possible for a user to accidentally compromise the security of your system.

12.2.6 Secure Shell 

The r commands, also called the remote shell, pose a security threat. You cannot use these commands to provide 
secure remote access, even if you use all the techniques given in the previous section. At best, only trusted local 
systems can be given access via the r commands. The reason for this is that the r commands grant trust based on a 
belief that the IP address uniquely identifies the correct computer. Normally it does. But an intruder can corrupt 
DNS to provide the wrong IP address or corrupt routing to deliver to the wrong network and thus undermine the 
authentication scheme used by the r commands.

An alternative to the remote shell is the secure shell (SSH). SSH replaces the standard r commands with secure 
commands that include encryption and authentication. SSH uses a strong authentication scheme to ensure that the 
trusted host really is the host it claims to be. SSH provides a number of public key encryption schemes to ensure 
that every packet in the stream of packets is from the source it claims to be from. SSH is secure and easy to use.

The secure shell is available via the Internet at http://www.cs.hut.fi/ssh. The Web site also provides information 

file:///C|/mynapster/Downloads/warez/tcpip/ch12_02.htm (10 of 13) [2001-10-15 09:18:56]

http://www.cs.hut.fi/ssh


[Chapter 12] 12.2 User Authentication 

about the secure shell. Download and compile SSH. Use the configure command that comes with the SSH source 
code to detect the configuration of your system and build the correct Makefile. Then make and install the 
components of SSH. The key components are:

sshd

The Secure Shell daemon handles incoming SSH connections. sshd should be started at boot time from one 
of the boot scripts. Don't start sshd from inetd.conf. sshd generates an encryption key every time it starts. 
This can cause it to be slow to start, which makes it unsuitable for inetd.conf. A system serving SSH 
connections must run sshd.

ssh

The Secure Shell user command. ssh command replaces rsh and rlogin. It is used to securely pass a 
command to a remote system or to securely log in to a remote system. This command creates the outgoing 
connections that are handled by the remote Secure Shell daemon. A client system that wants to use a SSH 
connection must have the ssh command.

scp

Secure copy (scp) is the Secure Shell version of rcp.
ssh-keygen

Generates the public and private encryption keys used to secure the transmission for the Secure Shell.

When an ssh client connects to a sshd server, they exchange public keys. The systems compare the keys they 
receive to the known keys that they have stored in the /etc/ssh_known_hosts file and in the .ssh/known_hosts file in 
the user's host directory. [5] If the key is not found or has changed, the user is asked to verify that the new key 
should be accepted:

[5] The system administrator can initialize the ssh_known_hosts file by running make-ssh-known-
hosts, which gets the key from every host within a selected domain.

> ssh pecan
Host key not found from the list of known hosts.
Are you sure you want to continue connecting (yes/no)? yes
Host 'pecan' added to the list of known hosts.
craig's password: Watts.Watt.
Last login: Thu Sep 25 15:01:32 1997 from peanut
Linux 2.0.0.
/usr/X11/bin/xauth:  creating new authority file /home/craig/.Xauthority

If the key is found in one of the files or is accepted by the user, the client uses it to encrypt a randomly generated 
session key. The session key is then sent to the server and both systems use the key to encrypt the remainder of the 
SSH session.

The client is authenticated if it is listed in the hosts.equiv file, the shost.equiv file, the user's .rhosts file, or the 
.shosts file. This type of authentication is similar to the type used by the r commands and the format of the 
shost.equiv and the .shosts files is the same as their r command equivalents. Notice that in the sample above the 
user is prompted for a password. If the client is not listed in one of the files, password authentication is used. There 
is no need to worry about password thieves, because SSH encrypts the password before it is sent across the link.

file:///C|/mynapster/Downloads/warez/tcpip/ch12_02.htm (11 of 13) [2001-10-15 09:18:56]



[Chapter 12] 12.2 User Authentication 

Users can employ a public key challenge/response protocol for authentication. First generate your public and 
private encryption keys:

> ssh-keygen
Initializing random number generator...
Generating p:  ......................................++ (distance 616)
Generating q:  ....................++ (distance 244)
Computing the keys...
Testing the keys...
Key generation complete.
Enter file in which to save the key (/home/craig/.ssh/identity): 
Enter passphrase: Pdky&tiaj.
Enter the same passphrase again: Pdky&tiaj.
Your identification has been saved in /home/craig/.ssh/identity.
Your public key is:
1024 35 158564823484025855320901702005057103023948197170850159592181522
craig@pecan
Your public key has been saved in /home/craig/.ssh/identity.pub

The ssh-keygen command creates your keys. Enter a password, called a "passphrase" here, that is at least 10 
characters long. Use the rules described above to pick a good passphrase that is easy to remember. If you forget 
the passphrase, no one will be able to recover it for you.

Once you have created your keys on the client system, copy the public key to your account on the server. The 
public key is stored in your home directory on the client in .ssh/identity.pub. Copy it to .ssh/authorized_keys in 
your home directory on the server. Now when you log in using ssh, you are prompted for the passphrase:

> ssh pecan
Enter passphrase for RSA key 'craig@pecan': Pdky&tiaj.
Last login: Thu Sep 25 17:11:51 1997
Linux 2.0.0.

To improve system security, the r commands should be disabled after SSH is installed. Comment rshd, rlogind, 
rexcd, and rexd out of the inetd.conf file to disable inbound connections to the r commands. To ensure that SSH 
is used for outbound connections, replace rlogin and rsh with ssh. To do this, store copies of the original rlogin 
and rsh in a safe place, re-run configure with the special options shown below, and run make install:

# whereis rlogin
/usr/bin/rlogin
# whereis rsh
/usr/bin/rsh
# cp /usr/bin/rlogin /usr/lib/rlogin
# cp /usr/bin/rsh /usr/lib/rsh
# ./configure --with-rsh=/usr/bin --program-transform-name='s/s/r/'
# make install

The example assumes that the path to the original rlogin and rsh commands is /usr/bin. Use whatever is correct 
for your system.

After replacing the rlogin and rsh, you can still log in to systems that don't support SSH. You will, however, be 
warned that it is not a secure connection:

file:///C|/mynapster/Downloads/warez/tcpip/ch12_02.htm (12 of 13) [2001-10-15 09:18:56]



[Chapter 12] 12.2 User Authentication 

> rlogin cow
Secure connection to cow refused; reverting to insecure method.
Using rsh.  WARNING: Connection will not be encrypted.
Last login: Wed Sep 24 22:15:28 from peanut
Sun Microsystems Inc.   SunOS 5.5.1     Generic May 1996
You have new mail.

SSH is an excellent way to have secure communications between systems across the Internet. However, it does 
require that both systems have SSH installed. When you control both ends of the link, this is not a problem. But 
there are times when you must log in from a system that is not under your control. For those occasions, one-time 
passwords, as provided by OPIE, are still essential.

Previous: 12.1 Security 
Planning 

TCP/IP Network 
Administration

Next: 12.3 Application 
Security 

12.1 Security Planning Book Index 12.3 Application Security 

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/ch12_02.htm (13 of 13) [2001-10-15 09:18:56]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Chapter 12] 12.3 Application Security 

Previous: 12.2 User 
Authentication 

Chapter 12
Network Security 

Next: 12.4 Security 
Monitoring 

 

12.3 Application Security 

Having good user authentication is an important security measure. However, using good user 
authentication isn't the only thing that you can do to improve the security of your computer and your 
network. Many break-ins occur when bugs in applications are exploited or when applications are 
misconfigured. In this section we'll look at some things you can do to improve application security.

12.3.1 Remove Unnecessary Software 

Any software that allows an incoming connection from a remote site has the potential of being 
exploited by an intruder. Some security experts recommend you remove every daemon from the 
/etc/inetd.conf file that you don't absolutely need. (Configuring the inetd.conf files is discussed in 
Chapter 6, Configuring the Interface , with explicit examples of removing tftp from service.)

Server systems may require several daemons, but most desktop systems require very few, if any. 
Removing the daemons from inetd.conf only prevents in-bound connections. It does not prevent out-
bound connections. A user can still initiate a telnet to a remote site even after the telnet daemon is 
removed from her system's inetd.conf. A simple approach used by some people is to start by removing 
everything from inetd.conf and then add back to the file only those daemons that you decide you 
really need.

12.3.2 Keep Software Updated 

Vendors frequently release new versions of network software for the express purpose of improving 
network security. Use the latest version of the network software offered by your vendor. Track the 
security alerts, CERT advisories, and bulletins to know what programs are particularly important to 
keep updated.

Even programs that are installed to improve security can have bugs that compromise security. The 
shadow password software for Linux is an example. You must use shadow-960129.tar or later, or risk 
compromising your system. If you fail to keep the software on your system up-to-date you open a big 
security hole for intruders. Intruders don't discover new problems; they exploit well-known problems. 
Keep track of the known security problems so you can keep your system up-to-date.

file:///C|/mynapster/Downloads/warez/tcpip/ch12_03.htm (1 of 2) [2001-10-15 09:18:56]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


[Chapter 12] 12.3 Application Security 

Stay informed about the latest information about all fixes for your system. The computer security 
advisories are a good way to do this. Contact your vendor and find out what services they provide for 
distributing security fixes. Make sure that the vendor knows that security is important to you.

Previous: 12.2 User 
Authentication 

TCP/IP Network 
Administration

Next: 12.4 Security 
Monitoring 

12.2 User Authentication Book Index 12.4 Security Monitoring 

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/ch12_03.htm (2 of 2) [2001-10-15 09:18:56]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


file:///C|/mynapster/Downloads/warez/tcpip/ch12_04.htm

Previous: 12.3 Application 
Security 

Chapter 12
Network Security 

Next: 12.5 Access Control 

 

12.4 Security Monitoring 

A key element of effective network security is security monitoring. Good security is an ongoing process, and 
following the security guidelines discussed above is just the beginning. You must also monitor the systems to 
detect unauthorized user activity, and to locate and close security holes. Over time a system will change - active 
accounts become inactive; file permissions are changed. You need to detect and fix these problems as they arise.

12.4.1 Know Your System 

Network security is monitored by examining the files and logs of individual systems on the network. To detect 
unusual activity on a system, you must know what activity is normal. What processes are normally running? Who 
is usually logged in? Who commonly logs in after hours? You need to know this, and more, about your system in 
order to develop a "feel" for how things should be. Some common UNIX commands - ps and who - can help you 
learn what normal activity is for your system.

The ps command displays the status of currently running processes. Run ps regularly to gain a clear picture of 
what processes run on the system at different times of the day, and who runs them. The Linux ps -au command 
and the ps -ef Solaris command display the user and the command that initiated each process. This should be 
sufficient information to learn who runs what, and when they run it. If you notice something unusual, investigate 
it. Make sure you understand how your system is being used.

The who command provides information about who is currently logged into your system. It displays who is logged 
in, what device they are using, when they logged in and, if applicable, what remote host they logged in from. (The 
w command, a variation of who available on some systems, also displays the currently active process started by 
each user.) The who command helps you learn who is usually logged in, as well as what remote hosts they 
normally log in from. Investigate any variations from the norm.

If any of these routine checks gives you reason to suspect a security problem, examine the system for unusual or 
modified files, for files that you know should be there but aren't, and for unusual login activity. This close 
examination of the system can also be made using everyday UNIX commands. Not every command or file we 
discuss will be available on every system. But every system will have some tools that help you keep a close eye on 
how your system is being used.

12.4.2 Looking for Trouble 

Intruders often leave behind files or shell scripts to help them re-enter the system or gain root access. Use the ls -a 
| grep '^\.' command to check for files with names that begin with a dot (.). Intruders particularly favor names 
such as .mail, .xx, ... (dot, dot, dot), .. (dot, dot, space), or ..^G (dot, dot, control-G).

file:///C|/mynapster/Downloads/warez/tcpip/ch12_04.htm (1 of 8) [2001-10-15 09:18:58]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


file:///C|/mynapster/Downloads/warez/tcpip/ch12_04.htm

If any files with names like these are found, suspect a break-in. (Remember that one directory named . and one 
directory named .. are in every directory except the root directory.) Examine the contents of any suspicious files 
and follow your normal incident-reporting procedures.

You should also examine certain key files if you suspect a security problem:

/etc/inetd.conf

Check the names of the programs started from the /etc/inetd.conf file. In particular, make sure that it does 
not start any shell programs (e.g., /bin/csh). Also check the programs that are started by inetd to make sure 
the programs have not been modified. /etc/inetd.conf should not be world-writable.

r command security files

Check /etc/hosts.equiv, /etc/hosts.lpd, and the .rhosts file in each user's home directory to make sure they 
have not been improperly modified. In particular, look for any plus-sign (+) entries, and any entries for 
hosts outside of your local trusted network. These files should not be world-writable.

/etc/passwd

Make sure that the /etc/passwd file has not been modified. Look for new usernames, and changes to the 
UID or GID of any account. /etc/passwd should not be world-writable.

Files run by cron or at

Check all of the files run by cron or at, looking for new files or unexplained changes. Sometimes intruders 
use procedures run by cron or at to re-admit themselves to the system, even after they have been kicked 
off.

Executable files

Check all executable files, binaries, and shell files to make sure they have not been modified by the 
intruder. The master checklist, mentioned in the previous section, is helpful for this. Executable files should 
not be world-writable.

If you find or even suspect a problem, follow your reporting procedure and let people know about the problem. 
This is particularly important if you are connected to a local area network. A problem on your system could spread 
to other systems on the network.

12.4.2.1 Checking files 

The find command is a powerful tool for detecting potential filesystem security problems because it can search the 
entire filesystem for files based on file permissions. Intruders often leave behind setuid programs to grant 
themselves root access. The following command searches for these files, recursively, starting from the root 
directory:

# find / -user root -perm -4000 -print

This find command starts searching at the root (/) for files owned by the user root (-user root) that have the setuid 
permission bit set (-perm -4000). All matches found are displayed at the terminal (-print). If any filenames are 
displayed by find, closely examine the individual files to make sure that these permissions are correct. As a 
general rule, shell scripts should not have setuid permission.

You can use the find command to check for other problems that might open security holes for intruders. The other 

file:///C|/mynapster/Downloads/warez/tcpip/ch12_04.htm (2 of 8) [2001-10-15 09:18:58]



file:///C|/mynapster/Downloads/warez/tcpip/ch12_04.htm

common problems that find checks for are world-writable files (-perm -2), setgid files (-perm -2000), and 
unowned files (-nouser -o -nogroup). World-writable and setgid files should be checked to make sure that these 
permissions are appropriate. As a general rule, files with names beginning with a dot (.) should not be world-
writable, and setgid permission, like setuid, should be avoided for shell scripts.

The process of scanning the filesystem can be automated with the Tripwire program. Tripwire is available from 
Purdue University at ftp://coast.cs.purdue.edu/pub/tools/unix/Tripwire. This package not only scans the filesystem 
for problems, it computes digital signatures to ensure that if any files are changed, the changes will be detected.

12.4.2.2 Checking login activity 

Strange login activity, at odd times of the day or from unfamiliar locations, can indicate attempts by intruders to 
gain access to your system. We have already used the who command to check who is currently logged into the 
system. To check who has logged into the system in the past, use the last command.

The last command displays the contents of the wtmp file. [6] It is useful for learning normal login patterns and 
detecting abnormal login activity. The wtmp file keeps a historical record of who logged into the system, when 
they logged in, what remote site they logged in from, and when they logged out.

[6] This file is frequently stored in /usr/adm or /etc.

Figure 12.2 shows a single line of last command output. The figure highlights the fields that show the user who 
logged in, the device, the remote location from which the login originated (if applicable), the day, the date, the 
time logged in, the time logged out (if applicable), and the elapsed time.

Figure 12.2: Last command output

Simply typing last produces a large amount of output because every login stored in wtmp is displayed. To limit the 
output, specify a username or tty device on the command line. This limits the display to entries for the specified 
username or terminal. It is also useful to use grep to search last's output for certain conditions. For example, the 
command below checks for logins that occur on Saturday or Sunday: 

% last | grep 'S[au]' | more
craig     console                   Sun Dec 15 10:33   still logged in
reboot    ~                         Sat Dec 14 18:12
shutdown  ~                         Sat Dec 14 18:14
craig     ttyp3    modems.nuts.com  Sat Dec 14 17:11 - 17:43  (00:32)
craig     ttyp2    172.16.12.24     Sun Dec  8 21:47 - 21:52  (00:05)
        .

file:///C|/mynapster/Downloads/warez/tcpip/ch12_04.htm (3 of 8) [2001-10-15 09:18:58]

ftp://coast.cs.purdue.edu/pub/tools/unix/Tripwire


file:///C|/mynapster/Downloads/warez/tcpip/ch12_04.htm

        .
--More--

The next example searches for root logins not originating from the console. If you didn't know who made the two 
logins reported in this example, be suspicious: 

% last root | grep -v console
root      ttyp3    peanut.nuts.com   Tue Oct 29 13:12 - down   (00:03)
root      ftp      almond.nuts.com   Tue Sep 10 16:37 - 16:38  (00:00)

While the last command is a major source of information about previous login activity, it is not the only source. 
On some systems, the messages file records logins to the root account and failed logins. [7] Failed logins and root 
logins at odd times or from odd places are suspicious. The following grep command checks /usr/adm/messages 
for root login activity on a Linux system:

[7] Some systems, such as Solaris, don't log su activity and root logins in the messages file.

% grep -i login /usr/adm/messages
Nov 23 10:39:10 peanut login: ROOT LOGIN ON tty1
Nov 23 11:11:50 peanut login: 2 LOGIN FAILURES ON tty1, craig
Nov 23 11:25:11 peanut login: 2 LOGIN FAILURES ON tty1, root
Nov 23 11:25:16 peanut login: ROOT LOGIN ON tty1
Nov 23 11:28:15 peanut login: ROOT LOGIN ON tty1
Nov 24 22:31:40 peanut login: 2 LOGIN FAILURES ON tty1, craig
Nov 27 19:47:52 peanut login: 2 LOGIN FAILURES ON tty1, craig
Nov 29 11:10:36 peanut login: 2 LOGIN FAILURES ON tty1, craig
Dec  1 19:41:50 peanut login: 2 LOGIN FAILURES ON tty1, craig
Dec  9 22:05:27 peanut login: ROOT LOGIN ON tty1

Report any security problems that you detect, or even suspect. Don't be embarrassed to report a problem because it 
might turn out to be a false alarm. Don't keep quiet because you might get "blamed" for the security breach. Your 
silence will only help the intruder.

12.4.3 Automated Monitoring 

Manually monitoring your system is time-consuming and prone to errors and omissions. Fortunately, several 
automated monitoring tools are available. The Web site http://ciac.llnl.gov/ciac/ToolsUnixSysMon.html lists many 
of them. Tripwire (mentioned earlier), Tiger, COPS, and SATAN are all popular monitoring tools. COPS and 
SATAN are described below.

12.4.3.1 COPS 

COPS (Computer Oracle Password and Security) is a collection of programs that automate many of the computer 
monitoring procedures discussed in the previous sections. As with any monitoring system, COPS detects potential 
problems; it does not correct them. COPS does not replace personal monitoring by the system administrator, but it 
does provide additional tools to help the administrator perform monitoring tasks.

The tools in the COPS package check:

●     Permissions for files, directories, and devices

file:///C|/mynapster/Downloads/warez/tcpip/ch12_04.htm (4 of 8) [2001-10-15 09:18:58]

http://ciac.llnl.gov/ciac/ToolsUnixSysMon.html


file:///C|/mynapster/Downloads/warez/tcpip/ch12_04.htm

●     Contents of /etc/passwd and /etc/group files
●     Contents of /etc/hosts.equiv and ~/.rhosts files
●     Changes in SUID status

After completing these checks, COPS mails a report of the results to the system administrator.

COPS can be obtained at ftp://coast.cs.purdue.edu/pub/tools/unix. The tar file contains the source code and 
instructions for building COPS. Once COPS is built, edit the COPS shell file so that the variable SECURE points 
to the directory that contains the COPS programs, and the variable SECURE_USERS contains the email address 
of the person who should receive the COPS report. By default, the report is not mailed to anyone; it is written to a 
file. To force the report to be mailed to the SECURE_USERS, edit the COPS shell script by changing the MMAIL 
variable to MMAIL=YES.

The great advantage of COPS is that it is simple. COPS removes the hassles from security monitoring, making it 
more likely that these tasks will be performed. To run COPS, simply enter:

% cops

cops uses the system's hostname to create a directory within the directory defined by the SECURE variable. It 
writes the security report in this new directory in a file named after the current date. The format of the report's 
filename is year_month_day. For example, on peanut the home directory for the COPS programs is 
/usr/local/cops. If the current date is January 24, 1997, running the cops program creates the directory 
/usr/local/cops/peanut and writes the report into that directory with the file name 1997_Jan_24. Here's a sample 
report:

peanut:/usr/local/cops/peanut> cat 1997_Jan_24
ATTENTION:
Security Report for Fri Jan 24 16:21:21 EST 1997
from host peanut

**** root.chk ****
**** dev.chk ****
Warning! NFS file system /home/craig exported with no restrictions!
**** is_able.chk ****
Warning! /usr/spool/uucp is _World_ writable!
Warning! /etc/securetty is _World_ readable!
**** rc.chk ****
**** cron.chk ****
**** group.chk ****
**** home.chk ****
Warning! User uucp's home directory /var/spool/uucppublic is mode 01777!
Warning! User nobody's home directory /dev/null is not a directory!
         (mode 020666)
Warning! User guest's home directory /dev/null is not a directory!
         (mode 020666)
**** passwd.chk ****
Warning! Password file, line 15, uid > 8 chars
         postmaster:*:14:12:postmaster:/var/spool/mail:/bin/bash
**** user.chk ****
**** misc.chk ****
**** ftp.chk ****

file:///C|/mynapster/Downloads/warez/tcpip/ch12_04.htm (5 of 8) [2001-10-15 09:18:58]

ftp://coast.cs.purdue.edu/pub/tools/unix


file:///C|/mynapster/Downloads/warez/tcpip/ch12_04.htm

ftp-Warning! Incorrect permissions on "ls" in /home/ftp/bin!
ftp-Warning! Incorrect permissions on "passwd" in /home/ftp/etc!
ftp-Warning! Incorrect permissions on "group" in /home/ftp/etc!
**** pass.chk ****
**** kuang ****
**** bug.chk****

Look at each line in the report you receive. Some lines might indicate real problems, such as the first warning line 
in our sample report that indicates /home/craig is exported via NFS without proper access control. Other lines 
might indicate conditions that are not problems for your system. In our example, we decide to leave /etc/securetty 
with world-read permission. Read the file docs/warnings for an explanation of each warning message. Evaluate 
each line of the report and correct anything that needs correcting. Rerun COPS and examine the new report. It 
should report only the problems that you are willing to accept.

Once you're satisfied with your system's security, schedule COPS to run at regular intervals. New problems can be 
introduced into your system over time. It's better to have the COPS discover the problem than to have the 
"robbers" discover it!

12.4.3.2 SATAN 

Another tool for testing the security of your system is the Security Administrator's Tool for Analyzing Networks 
(SATAN). SATAN's introduction was met by near hysteria in the popular press, largely because of the tool's 
name. Despite its name, SATAN is just another security tool.

SATAN does have some unique features. While COPS is intended for use on an individual system, SATAN is 
designed to test entire networks of systems. This is both a feature and a problem. If you are the administrator of 
your network, running SATAN allows you to check all of the systems on the network from one central system. If, 
however, you are responsible for only one system and you use SATAN to probe the other systems on your 
network, you will irritate all of the other system administrators on the network who will view the SATAN probes 
as attempted break-ins. Use SATAN only to test systems on your own network that you have officially recognized 
authority over.

Another feature of SATAN is that it uses your system's Web browser as the interface for viewing the security 
reports it generates. This is helpful if you have a large network of systems. The browser's ability to link together 
related documents allows SATAN to organize various hierarchies of security information. Use the browser to 
search for the most critical errors, the most troublesome subnets, or the most vulnerable hosts. The screenshot in 
Figure 12.3 shows a display of hosts listed in sequence from the one with the most security errors to the one with 
the least. Clicking on a hostname provides a specific report of the errors on that host.

Figure 12.3: SATAN interface

file:///C|/mynapster/Downloads/warez/tcpip/ch12_04.htm (6 of 8) [2001-10-15 09:18:58]



file:///C|/mynapster/Downloads/warez/tcpip/ch12_04.htm

The information in Figure 12.3 comes from the foo.org database provided in the SATAN documentation set. 
Download the binary file satan.doc.tar.Z from ftp://ftp.win.tue.nl/pub/security/unix. Uncompress and untar the file 
and follow the simple instructions in the README file to build the documentation system. You can then play with 
SATAN without the danger of accidentally probing any of the systems on your network. If you like what you see, 
you can download the full product from the same location by getting the binary file satan.tar.Z.

For many sites, well-informed users and administrators, good password security, and good system monitoring 
provide adequate network security. But for some security-conscious sites, more may be desired. That "more" is 
usually some technique for limiting access between systems connected to the network, or for limiting access to the 
data the network carries. In the remainder of this chapter we look at various security techniques that limit access.

Previous: 12.3 Application 
Security 

TCP/IP Network 
Administration

Next: 12.5 Access Control 

12.3 Application Security Book Index 12.5 Access Control 

file:///C|/mynapster/Downloads/warez/tcpip/ch12_04.htm (7 of 8) [2001-10-15 09:18:58]

ftp://ftp.win.tue.nl/pub/security/unix


file:///C|/mynapster/Downloads/warez/tcpip/ch12_04.htm

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/ch12_04.htm (8 of 8) [2001-10-15 09:18:58]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Chapter 12] 12.5 Access Control 

Previous: 12.4 Security 
Monitoring 

Chapter 12
Network Security 

Next: 12.6 Encryption 

 

12.5 Access Control 

Access control is a technique for limiting access. Routers and hosts that use access control check the address 
of a host requesting a service against an access control list. If the list says that the remote host is permitted 
to use the requested service, the access is granted. If the list says that the remote host is not permitted to 
access the service, the access is denied. Access control does not bypass any normal security checks. It adds a 
check to validate the source of a service request, and retains all of the normal checks to validate the user.

Access control systems are common in terminal servers and routers. For example, Cisco routers have an 
access control facility. Access control software is also available for UNIX hosts. Two such packages are 
xinetd and the TCP wrappers program. Clearly, there are a variety of ways to implement access controls. In 
this section we use TCP wrappers ("wrapper").

12.5.1 wrapper 

The wrapper package performs two basic functions: it logs requests for Internet services, and provides an 
access control mechanism for UNIX systems. Logging requests for specific network services is a useful 
monitoring function, especially if you are looking for possible intruders. If this were all it did, wrapper 
would be a useful package. But the real power of wrapper is its ability to control access to network services.

The wrapper software is available through the http://csrc.nist.gov/tools/tools.htm Web page. The wrapper tar 
file contains the C source code and Makefile necessary to build the wrapper daemon tcpd.

Make tcpd and then install it in the same directory as the other network daemons. Edit /etc/inetd.conf and 
replace the path to each network service daemon that you wish to place under access control with the path to 
tcpd. The only field in the /etc/inetd.conf entry affected by tcpd is the sixth field, which contains the path to 
the network daemon.

For example, assume that the entry for the finger daemon in /etc/inetd.conf on our Solaris system is:

finger  stream  tcp  nowait  nobody  /usr/etc/in.fingerd  in.fingerd

The value in the sixth field is /usr/etc/in.fingerd. To monitor access to the finger daemon, replace this value 
with /usr/etc/tcpd, as in the following entry:

finger   stream  tcp  nowait  nobody  /usr/etc/tcpd   in.fingerd

file:///C|/mynapster/Downloads/warez/tcpip/ch12_05.htm (1 of 4) [2001-10-15 09:18:58]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm
http://csrc.nist.gov/tools/tools.htm


[Chapter 12] 12.5 Access Control 

Now when inetd receives a request for fingerd, it starts tcpd instead. tcpd then logs the fingerd request, 
checks the access control information, and, if permitted, starts the real finger daemon to handle the request.

Make a similar change for every service you want to place under access control. Good candidates for access 
control are ftpd, tftpd, telnetd, rshd, rlogind, rexecd, and fingerd. Obviously, tcpd cannot control access 
for daemons that are not started by inetd, such as sendmail and NFS.

Using the wrapper on our Slackware 96 Linux system is even easier. There is no need to download and 
install the tcpd software. It comes as an integral part of the Linux release. You don't even have to edit the 
/etc/inetd.conf file because the sixth field of the entries in that file already point to the tcpd program, as 
shown below:

finger   stream  tcp  nowait  nobody  /usr/sbin/tcpd   in.fingerd -w

12.5.1.1 tcpd access control files 

The information tcpd uses to control access is in two files, /etc/hosts.allow and /etc/hosts.deny. Each file's 
function is obvious from its name. hosts.allow contains the list of hosts that are allowed to access the 
network's services, and hosts.deny contains the list of hosts that are denied access. If the files are not found, 
tcpd permits every host to have access and simply logs the access request. Therefore, if you only want to 
monitor access, don't create these two files.

If the files are found, tcpd checks the hosts.allow file first, followed by the hosts.deny file. It stops as soon 
as it finds a match for the host and the service in question. Therefore, access granted by hosts.allow cannot 
be overridden by hosts.deny.

The format of entries in both files is the same:

service-list : host-list [: shell-command]

The service-list is a list of network services, separated by commas. These are the services to which access is 
being granted (hosts.allow) or denied (hosts.deny). Each service is identified by the process name used in the 
seventh field of the /etc/inetd.conf entry. This is simply the name that immediately follows the path to tcpd 
in inetd.conf. (See Chapter 5, Basic Configuration , for a description of the arguments field in the 
/etc/inetd.conf entry.) 

Again, let's use finger as an example. We changed its inetd.conf entry to read:

finger   stream  tcp  nowait  nobody  /usr/etc/tcpd   in.fingerd

Therefore, we would use in.fingerd as the service name in a hosts.allow or hosts.deny file.

The host-list is a comma-separated list of hostnames, domain names, Internet addresses, or network 
numbers. The systems listed in the host-list are granted access (hosts.allow) or denied access (hosts.deny) to 
the services specified in the service-list. A hostname or an Internet address matches an individual host. For 
example, peanut is a hostname and 172.16.12.2 is an Internet address. Both match a particular host. A 
domain name matches every host within that domain; e.g., .nuts.com matches almond.nuts.com, 

file:///C|/mynapster/Downloads/warez/tcpip/ch12_05.htm (2 of 4) [2001-10-15 09:18:58]



[Chapter 12] 12.5 Access Control 

peanut.nuts.com, pecan.nuts.com, and any other hosts in the domain. When specified in a tcpd access 
control list, domain names always start with a dot (.). A network number matches every IP address within 
that network's address space. For example, 172.16. matches 172.16.12.1, 172.16.12.2, 172.16.5.1, and any 
other address that begins with 172.16. Network addresses in a tcpd access control list always end with a dot 
(.).

A completed hosts.allow entry that grants FTP and telnet access to all hosts in the nuts.com domain is shown 
below:

ftpd,telnetd : .nuts.com

Two special keywords can be used in hosts.allow and hosts.deny entries. The keyword ALL can be used in 
the service-list to match all network services, and in the host-list to match all hostnames and addresses. The 
second keyword, LOCAL, can be used only in the host-list. It matches all local hostnames. tcpd considers a 
hostname "local" if it contains no embedded dots. Therefore, the hostname peanut would match on LOCAL, 
but the hostname peanut.nuts.com would not match. The following entry affects all services and all local 
hosts:

ALL : LOCAL

The final field that can be used in these entries is the optional shell-command field. The shell command 
specified in this field will execute whenever a match occurs. The command is executed in addition to the 
normal functions of the access list match. In other words, if a match occurs for an entry that has an optional 
shell command, tcpd logs the access, grants or denies access to the service, and then passes the shell 
command to the shell for execution.

A more complete example of how tcpd is used will help you understand these entries. First, assume that you 
wish to allow every host in your local domain (nuts.com) to have access to all services on your system, but 
you want to deny access to every service to all other hosts. Make an entry in /etc/hosts.allow to permit 
access to everything by everyone in the local domain:

ALL : LOCAL, .nuts.com

The keyword ALL in the services-list indicates that this rule applies to all network services. The colon (:) 
separates the services-list from the host-list. The keyword LOCAL indicates that all local hostnames without 
a domain extension are acceptable, and that the .nuts.com string indicates that all hostnames that have the 
nuts.com domain name extensions are also acceptable. To prevent access from everyone else, make an entry 
in the /etc/hosts.deny file:

ALL : ALL

Every system that does not match the entry in /etc/hosts.allow is passed on to /etc/hosts.deny. Here the entry 
denies access to everyone, regardless of what service they are asking for. Remember, even with ALL in the 
services-list field, only services started by inetd, and only those services whose entries in inetd.conf have 
been edited to invoke tcpd, are affected. This does not provide security for any other service.

file:///C|/mynapster/Downloads/warez/tcpip/ch12_05.htm (3 of 4) [2001-10-15 09:18:58]



[Chapter 12] 12.5 Access Control 

Previous: 12.4 Security 
Monitoring 

TCP/IP Network 
Administration

Next: 12.6 Encryption 

12.4 Security Monitoring Book Index 12.6 Encryption 

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/ch12_05.htm (4 of 4) [2001-10-15 09:18:58]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Chapter 12] 12.6 Encryption 

Previous: 12.5 Access 
Control 

Chapter 12
Network Security 

Next: 12.7 Firewalls 

 

12.6 Encryption 

Encryption is a technique for limiting access to the data carried on the network. Encryption encodes 
the data in a form that can be read only by systems that have the "key" to the encoding scheme. The 
original text, called the "clear text," is encrypted using an encryption device (hardware or software) 
and an encryption key. This produces encoded text, which is called the cipher. To recreate the "clear 
text," the cipher must be decrypted using the same type of encryption device and an appropriate key.

Largely because of spy novels and World War II movies, encryption is one of the first things that 
people think of when they think of security. However, encryption is not always applicable to network 
security. Encrypting data for transmission across a network requires that the same encryption 
equipment, or software, be used at both ends of the data exchange. Unless you control both ends of 
the network and can ensure that the same encryption device is available, it is difficult to use end-to-
end data encryption. For this reason, encryption is most commonly used to exchange data in 
individual applications where the software at both ends of the network is defined by a single vendor. 
For example, a Web server and a Web browser from the same vendor use the same encryption. 
Encrypting all types of data is limited to places where the entire system is under the control of a single 
authority, such as military networks, private networks, individual systems, or when the individuals at 
both ends of the communication can reach personal agreement on the encryption technique and key.

What is needed to make encryption truly useful in a global network are universally recognized 
encryption standards and a trusted infrastructure to support those standards. Public-key encryption is 
the technology that will make encryption an important security technology for an open global network 
like the Internet. Public-key systems encode the clear-text with a key that is widely known and 
publicly available, but the cipher can only be decoded back to clear-text with a secret key. This means 
that Dan can look up Kristin's public key in a trusted database and use it to encode a message to her 
that no one else can read. Even though everyone on the Internet has access to the public key, only 
Kristin can decrypt the message using her secret key. Kristin can then look up Dan's public key to 
encrypt her reply. This encrypted communication takes place without Dan or Kristin ever divulging 
their secret keys. However, to ensure that the keys have not been tampered with, public-key 
cryptography requires a trusted system for distributing public keys. And because the encrypting key is 
available to everyone, it requires a digital signature system to authenticate that a message is really 
from whom it purports to be from.

Government and industry are working on the standards and infrastructure for public-key 

file:///C|/mynapster/Downloads/warez/tcpip/ch12_06.htm (1 of 2) [2001-10-15 09:18:59]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


[Chapter 12] 12.6 Encryption 

cryptography. The type of encryption used in the examples in this section is symmetric encryption. It 
requires that the same encryption technique and the same secret key is used for both encrypting and 
decrypting the message. It does not rely on public keys, digital signatures, or a widely accepted 
infrastructure, but its usefulness is limited. Truly effective public-key cryptography must wait for the 
creation of a trusted public-key infrastructure.

12.6.1 When is symmetric encryption useful? 

Before using encryption, decide why you want to encrypt the data, whether the data should be 
protected with encryption, and whether the data should even be stored on a networked computer 
system.

A few valid reasons for encrypting data are:

●     To prevent casual browsers from viewing sensitive data files
●     To prevent accidental disclosure of sensitive data
●     To prevent privileged users (e.g., system administrators) from viewing private data files
●     To complicate matters for intruders who attempt to search through a system's files

Encryption is not a substitute for good computer security. Encryption can protect sensitive or personal 
information from casual snooping, but it should never be the sole means of protecting critical 
information. Encryption systems can be broken, and encrypted data can be deleted or corrupted just 
like any other data. So don't let encryption lull you into a false sense of security. Some information is 
so sensitive or critical that it should not be stored on a networked computer system, even if it is 
encrypted. Encryption is only a small part of a complete security system. To find out more about file 
encryption, see PGP: Pretty Good Privacy, by Simson Garfinkel (O'Reilly & Associates). It provides 
a book-length treatment of PGP, an encryption program used for files and electronic mail.

Previous: 12.5 Access 
Control 

TCP/IP Network 
Administration

Next: 12.7 Firewalls 

12.5 Access Control Book Index 12.7 Firewalls 

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/ch12_06.htm (2 of 2) [2001-10-15 09:18:59]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Chapter 12] 12.7 Firewalls 

Previous: 12.6 Encryption Chapter 12
Network Security 

Next: 12.8 Words to the 
Wise 

 

12.7 Firewalls 

A firewall system is a popular way to provide network security. The term "firewall" implies protection 
from danger, and just as the firewall in your car protects the passengers' compartment from the car's 
engine, a firewall computer system protects your network from the outside world. A firewall computer 
provides strict access control between your systems and the outside world.

The concept of a firewall is quite simple. A firewall is a choke point through which all traffic between 
a secured network and an unsecured network must pass. In practice, it is usually a choke point 
between an enterprise network and the Internet. Creating a single point through which all traffic must 
pass allows the traffic to be more easily monitored and controlled and allows security expertise to be 
concentrated on that single point.

Firewalls are implemented in many ways. In fact, there are so many different types of firewalls, the 
term is almost meaningless. When someone tells you they have a firewall you really can't know 
exactly what they mean. Covering all of the different types of firewall architectures requires an entire 
book - see Building Internet Firewalls (O'Reilly & Associates). Here we cover the screened subnet 
architecture (probably the most popular firewall architecture), and the multi-homed host architecture, 
which is essentially a firewall-in-a-box.

The most common firewall architecture contains at least four hardware components: an exterior 
router, a secure server (called a Bastion Host), an exposed network (called a Perimeter Network), and 
an interior router. Each hardware component provides part of the complete security scheme. Figure 
12.4 illustrates this architecture.

Figure 12.4: Screened subnet firewall

file:///C|/mynapster/Downloads/warez/tcpip/ch12_07.htm (1 of 6) [2001-10-15 09:19:00]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


[Chapter 12] 12.7 Firewalls 

The exterior router is the only connection between the enterprise network and the outside world. This 
router is configured to do a minimal level of access control. It checks to make sure that no packet 
coming from the external world has a source address that matches the internal network. If our network 
number is 172.16, the exterior router discards any packets it receives on its exterior interface that 
contain the source address 172.16. That source address should only be received by the router on its 
interior interface. Security people call this type of access control packet filtering. In some ways it is 
similar to the packet filtering we did in Chapter 11, Troubleshooting TCP/IP because packets are 
"filtered out" based on IP header information.

The interior router does the bulk of the access control work. It filters packets not only on address but 
also on protocol and port numbers to control the services that are accessible to and from the interior 
network. What services are blocked by this router are up to you. If you plan to use a firewall, the 
services that will be allowed and those that will be denied should be defined in your security policy 
document. Almost every service can be a threat. These threats must be evaluated in light of your 
security needs. Services that are intended only for internal users (NIS, NFS, X-Windows, etc.) are 
almost always blocked. Services that allow writing to internal systems (the r commands, telnet, FTP, 
SMTP, etc.) are usually blocked. Services that provide information about internal systems (DNS, 
fingerd, etc.) are usually blocked. This doesn't leave much running! That is where the bastion host and 
perimeter network come in.

The bastion host is a secure server. It provides an interconnection point between the enterprise 
network and the outside world for the restricted services. Some of the services that are restricted by 
the interior gateway may be essential for a useful network. Those essential services are provided 
through the bastion host in a secure manner. The bastion host provides some services directly, such as 

file:///C|/mynapster/Downloads/warez/tcpip/ch12_07.htm (2 of 6) [2001-10-15 09:19:00]



[Chapter 12] 12.7 Firewalls 

DNS, SMTP mail services, and anonymous FTP. Other services are provided as proxy services. When 
the bastion host acts as a proxy server, internal clients connect to the outside through the bastion hosts 
and external systems respond back to the internal clients through the host. The bastion host can 
therefore control the traffic flowing into and out of the site to any extent desired.

There can be more than one secure server, and there often is. The perimeter network connects the 
servers together and connects the exterior router to the interior router. The systems on the perimeter 
network are much more exposed to security threats than are the systems on the interior network. This 
is as it must be. After all, the secure servers are needed to provide service to the outside world as well 
as to the internal network. Isolating the systems that must be exposed on a separate network lessens 
the chance that a compromise of one of those systems will lead directly to the compromise of an 
internal system.

The multi-homed host architecture attempts to duplicate all of these firewall functions in a single box. 
It works by replacing an IP router with a multi-homed host that does not forward packets at the IP 
layer. [8] The multi-homed host effectively severs the connection between the interior and exterior 
networks. To provide the interior network with some level of network connectivity, it performs 
similar functions to the bastion hosts.

[8] The role that IP routers, also called gateways, play in gluing the Internet together is 
covered extensively in earlier chapters.

Figure 12.5 shows a comparison between an IP router and a multi-homed host firewall. A router 
handles packets up through the IP layer. The router forwards each packet based on the packet's 
destination address, and the route to that destination indicated in the routing table. A host, on the other 
hand, does not forward packets. The multi-homed host processes packets through the Application 
Layer, which provides it with complete control over how packets are handled. [9]

[9] See the GATEWAY option in Chapter 5, for information on how to prevent a multi-
homed host from forwarding packets.

Figure 12.5: Firewalls versus routers

file:///C|/mynapster/Downloads/warez/tcpip/ch12_07.htm (3 of 6) [2001-10-15 09:19:00]



[Chapter 12] 12.7 Firewalls 

This definition of a firewall - as a device completely distinct from an IP router - is not universally 
accepted. Some people refer to routers with special security features as firewalls, but this is really just 
a matter of semantics. In this book, routers with special security features are called "secure routers" or 
"secure gateways." Firewalls, while they may include routers, do more than just filter packets.

12.7.1 Functions of the firewall 

An intruder cannot mount a direct attack on any of the systems behind a firewall. Packets destined for 
hosts behind the firewall are simply delivered to the firewall. The intruder must instead mount an 
attack directly against the firewall machine. Because the firewall machine can be the target of break-in 
attacks, it employs very strict security guidelines. But because there is only one firewall versus many 
machines on the local network, it is easier to enforce strict security on the firewall.

The disadvantage of a firewall system is obvious. In the same manner that it restricts access from the 
outside into the local network, it restricts access from the local network to the outside world. To 
minimize the inconvenience caused by the firewall, the system must do many more things than a 
router does. Some firewalls provide:

●     DNS name service for the outside world
●     Email forwarding
●     Proxy services

Only the minimal services truly needed to communicate with external systems should be provided on 
a firewall system. Other common network services (NIS, NFS, rsh, rcp, finger, etc.) should generally 
not be provided. Services are limited to decrease the number of holes through which an intruder can 
gain access. On firewall systems, security is more important than service.

file:///C|/mynapster/Downloads/warez/tcpip/ch12_07.htm (4 of 6) [2001-10-15 09:19:00]



[Chapter 12] 12.7 Firewalls 

The biggest problems for the firewall machine are ftp service and remote terminal service. To 
maintain a high level of security, user accounts are discouraged on the firewall machine; however, 
user data must pass through the firewall system for ftp and remote terminal services. This problem 
can be handled by creating special user accounts for ftp and telnet that are shared by all internal 
users. But group accounts are generally viewed as security problems. A better solution is to provide 
proxy services on the firewall. To do this you need to run a proxy server on the firewall and proxy 
clients on your internal system. Most commercial client software includes support for proxy services. 
Many packages are compatible with SOCKS, a freely available proxy service package that can be 
downloaded from the Internet.

Because to be effective a firewall must be constructed with great care, and because there are many 
configuration variables for setting up a firewall machine, vendors offer special firewall software. 
Some vendors sell special-purpose machines designed specifically for use as firewall systems. Before 
setting up your own firewall, investigate the options available from your hardware vendor.

The details of setting up a firewall system are beyond the scope of this book. Before you proceed, I 
recommend you read Building Internet Firewalls and Firewalls and Internet Security, listed in the 
bibliography at the end of this chapter. Unless you have skilled UNIX systems administrators with 
adequate free time, a do-it-yourself firewall installation is a mistake. Hire a company that specializes 
in firewall design and installation. If your information is valuable enough to protect with a firewall, it 
must be valuable enough to protect with a professionally installed firewall.

Firewall systems are useful to many sites, but for some others they are not appropriate. The 
restrictions they place on individual users are not acceptable to some organizations, and these 
restrictions can drive independent-minded users to find other ways to handle their communications 
needs. Think seriously about your real security needs before selecting a solution.

12.7.2 Routing control 

A firewall system works by controlling routing between the protected system and the rest of the 
world. A carefully modified static routing table can be used to provide a similar type of protection 
between internal systems on an enterprise network.

As we discussed in the chapters on routing and troubleshooting, it is necessary for your system to 
have a routing table entry for every network with which it will communicate. This can be either an 
explicit route for an individual network, or a default route for all networks. Without the proper routes, 
your system cannot communicate with remote networks, and the remote networks cannot 
communicate with your system. Regardless of how the remote site sets up its routing, it cannot 
communicate with your host if your host does not have a route back to the remote site. Because of 
this, you can control which remote sites are able to communicate with your system by controlling the 
contents of the routing table.

For example, assume that the nuts.com personnel department is on subnet 172.16.9.0, and that the 
router for their subnet is 172.16.9.1. They want to talk only to other hosts on their subnet and to a 
management system named hickory.nuts.com (172.16.18.7). To implement this policy with the routing 

file:///C|/mynapster/Downloads/warez/tcpip/ch12_07.htm (5 of 6) [2001-10-15 09:19:00]



[Chapter 12] 12.7 Firewalls 

table, each host administrator on the personnel subnet:

1.  Makes sure that no routing protocol is running, and that none is started automatically at boot 
time.

2.  Disables source routing.
3.  Makes sure that there is no default route in the routing table, and that a default route is not 

added automatically at boot time.
4.  Adds a host-specific route to 172.16.18.7 (hickory.nuts.com), and makes sure that this static 

route is added each time the system boots.

Using netstat to display this limited routing table on host 172.16.9.14 shows the following:

# netstat -nr
Routing tables
Destination    Gateway       Flags    Refcnt Use   Interface
127.0.0.1      127.0.0.1     UH       2      7126   lo0
172.16.18.7    172.16.9.1    UGH      1      1285   le0
172.16.9.0     172.16.9.14   U        30     89456  le0

The display shows the loopback route, a route to the local subnet (172.16.9.0), and a host route to 
hickory.nuts.com (172.16.18.7). There are no other routes, so there are no other locations with which 
this host can communicate. Therefore, if an intruder launched an attack against this system, he would 
receive no response.

This security technique is less restrictive than an internal firewall, because it affects only the systems 
that contain the data or processes that are being protected. This technique is easy to implement and 
does not require special equipment or software. However, it is also much less secure than a firewall. If 
any of these systems is successfully attacked, all of the systems could be compromised. Each system 
being protected this way must be properly configured, while one firewall can protect a group of 
systems. This works only when there are a small number of systems and they are all under the control 
of a single network administrator. In a few situations, this is a possible alternative to an internal 
firewall..

Previous: 12.6 Encryption TCP/IP Network 
Administration

Next: 12.8 Words to the 
Wise 

12.6 Encryption Book Index 12.8 Words to the Wise 

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/ch12_07.htm (6 of 6) [2001-10-15 09:19:00]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Chapter 12] 12.8 Words to the Wise 

Previous: 12.7 Firewalls Chapter 12
Network Security 

Next: 12.9 Summary 

 

12.8 Words to the Wise 

I am not a security expert; I am a network administrator. In my view, good security is good system 
administration and vice versa. Most of this chapter is just common-sense advice. It is probably 
sufficient for most circumstances, but certainly not for all.

Make sure you know whether there is an existing security policy that applies to your network or 
system. If there are policies, regulations, or laws governing your situation, make sure to obey them. 
Never do anything to undermine the security system established for your site.

No system is completely secure. No matter what you do, you will have problems. Realize this and 
prepare for it. Prepare a disaster recovery plan and do everything necessary, so that when the worst 
does happen, you can recover from it with the minimum possible disruption.

A good listing of available security publications can be found at http://csrc.nist.gov/secpub. If you 
want to read more about security, I recommend the following:

●     RFC 1244, Site Security Handbook, P. Holbrook, J. Reynold, et al., July 1991.
●     RFC 1281, Guidelines for the Secure Operation of the Internet, R. Pethia, S. Crocker, and B. 

Fraser, November 1991.
●     Practical UNIX and Internet Security, Simson Garfinkel and Gene Spafford, O'Reilly & 

Associates, 1996.
●     Building Internet Firewalls, Brent Chapman and Elizabeth Zwicky, O'Reilly & Associates, 

1995.
●     Computer Security Basics, Deborah Russell and G. T. Gangemi, Sr., O'Reilly & Associates, 

1991.
●     Firewalls and Internet Security, William Cheswick and Steven Bellovin, Addison-Wesley, 

1994.

Previous: 12.7 Firewalls TCP/IP Network 
Administration

Next: 12.9 Summary 

12.7 Firewalls Book Index 12.9 Summary 

file:///C|/mynapster/Downloads/warez/tcpip/ch12_08.htm (1 of 2) [2001-10-15 09:19:00]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm
http://csrc.nist.gov/secpub


[Chapter 12] 12.8 Words to the Wise 

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/ch12_08.htm (2 of 2) [2001-10-15 09:19:00]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Chapter 12] 12.9 Summary 

Previous: 12.8 Words to the 
Wise 

Chapter 12
Network Security 

Next: 13. Internet 
Information Resources 

 

12.9 Summary 

Network access and computer security work at cross-purposes. Attaching a computer to a network 
increases the security risks for that computer. Evaluate your security needs to determine what must be 
protected and how vigorously it must be protected. Develop a written site security policy that defines 
your procedures and documents the security duties and responsibilities of employees at all levels.

Network security is essentially good system security. Good user authentication, effective system 
monitoring, and well-trained system administrators provide the best security. Tools are available to 
help with these tasks. SSH, OPIE, Tripwire, COPS, SATAN, TCP Wrapper, encryption, and firewalls 
are all tools that can help.

Like troubleshooting, network security is an ongoing process. In the final chapter, we discuss another 
ongoing process - learning. Now we look at ways you can keep abreast of the most current 
information in network administration.

Previous: 12.8 Words to the 
Wise 

TCP/IP Network 
Administration

Next: 13. Internet 
Information Resources 

12.8 Words to the Wise Book Index 13. Internet Information 
Resources 

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/ch12_09.htm [2001-10-15 09:19:01]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm
file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Chapter 13] Internet Information Resources 

Previous: 12.9 Summary Chapter 13 Next: 13.2 Anonymous FTP 

 

13. Internet Information Resources 
Contents:
The World Wide Web 
Anonymous FTP 
Finding Files 
Retrieving RFCs 
Mailing Lists 
The White Pages 
Summary 

Now that our network is configured, debugged, and secure, how will we use it? Increasingly, a 
network serves not merely as a delivery link between two hosts, but as a path to information 
resources. Information servers, file repositories, databases, and information directories are available 
throughout the Internet. But, with millions of devices connected to the Internet, finding these services 
can be a daunting task.

This chapter explores various ways to avail yourself of this storehouse of information. We look at 
how information is retrieved from network servers, some tools that make it easier to locate that 
information, and how to configure your system as an anonymous FTP server.

13.1 The World Wide Web 

The primary method used to retrieve network information is the World Wide Web. The Web is an 
interlinked network of hypertext servers based on the Hypertext Transfer Protocol (HTTP) that runs 
on top of TCP/IP. The Web is accessed via a browser, a program that provides a consistent graphical 
interface to the user. All of the popular UNIX browsers - Netscape, Mosaic, Arena, etc. - are modeled 
after the original Mosaic browser developed at the National Center for Supercomputer Applications 
(NCSA). Therefore, they share a common look and feel.

Most UNIX systems do not ship with a built-in browser; you need to download one from the Internet. 
The Netscape browser is available at the URL http://www.netscape.com. It can be downloaded, 
evaluated, and then purchased. (It's nice to be able to try before you buy!) The Mosaic browser is 
available free of charge at ftp://ftp.ncsa.edu/Web/Mosaic/Unix/binaries. They both work well and in 

file:///C|/mynapster/Downloads/warez/tcpip/ch13_01.htm (1 of 6) [2001-10-15 09:19:02]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm
http://www.netscape.com/
ftp://ftp.ncsa.edu/Web/Mosaic/Unix/binaries


[Chapter 13] Internet Information Resources 

an almost identical manner. However, Netscape is the most popular browser and has an active 
development team.

Obtaining information from hypertext Web pages is the most common use for a browser. Use yours to 
keep up with the most current network information. Figure 13.1 shows a network administrator 
checking the security alerts at the Computer Security Resource Clearinghouse at the National Institute 
of Standards and Technology.

Figure 13.1: Security alerts website

The URL field near the top of the sample screen is the location of the Web page we are reading. On 

file:///C|/mynapster/Downloads/warez/tcpip/ch13_01.htm (2 of 6) [2001-10-15 09:19:02]



[Chapter 13] Internet Information Resources 

some other browsers this field is labeled "Location" or "Netsite," but in all cases it performs the same 
function: it holds the path to the information resource. In the example the location is 
http://csrc.nist.gov/secalert/. "URL" stands for universal resource locator. It is a standard way of 
defining a network resource and it has a specific structure:

service://server/path/file

In the sample URL, http is the service; csrc.nist.gov is the server; and secalerts is the path to the 
resource contained on that server. This tells the browser to locate a host with the domain name 
csrc.nist.gov, and to ask it for the hypertext information located in the secalerts path. Hypertext is not 
the only type of information that can be retrieved by a browser. The browser is intended to provide a 
consistent interface to various types of network resources. HTTP is only one of the services that can 
be specified in a URL.

A Web browser can be used to view local hypertext files. This is how the gated documentation is 
delivered. Figure 13.2 shows a network administrator reading the gated documentation. The URL in 
Figure 13.2 is file://localhost/usr/doc/config_guide/config.html. The service is file, which means that 
the resource is to be read via the standard filesystem. The server is the local host (localhost). The path 
is /usr/doc/config_gated, and the file is config.html.

Figure 13.2: Reading GateD documentation

file:///C|/mynapster/Downloads/warez/tcpip/ch13_01.htm (3 of 6) [2001-10-15 09:19:02]

http://csrc.nist.gov/secalert/


[Chapter 13] Internet Information Resources 

Another browser service that is often used by a network administrator is FTP. Figure 13.3 shows a 
network administrator using a browser to download software. The URL in Figure 13.3 is 
ftp://ftp.ncsa.edu/Web/Mosaic/Unix/binaries/2.6. FTP is the service used to access the resource, 
which in this case is a binary file. The server is ftp.ncsa.edu, which is the anonymous FTP server at 
the National Center for Super Computing Applications. The path is /Web/Mosaic/Unix/binaries/2.6 
and the file is any of the files listed on the screen.

Figure 13.3: Browser FTP interface

file:///C|/mynapster/Downloads/warez/tcpip/ch13_01.htm (4 of 6) [2001-10-15 09:19:02]

ftp://ftp.ncsa.edu/Web/Mosaic/Unix/binaries/2.6


[Chapter 13] Internet Information Resources 

Reading important announcements and documentation and downloading files are probably the most 
common uses a network administrator has for a Web browser. There are, however, many other things 
that can be done with a browser and a huge number of resources available on the network. A detailed 
discussion of browsers and the Web is beyond the scope of this book. See The Whole Internet User's 
Guide and Catalog, by Ed Krol (O'Reilly & Associates), for a full treatment of these subjects.

The browser provides a consistent interface to a variety of network services. But it is not the only 
way, or necessarily the best way, to access all of these services. In particular, it may not be the fastest 
or most efficient way to download a file. Figure 13.3 shows a file being downloaded from an 
anonymous FTP server. An alternative is to invoke ftp directly from the command-line interface.

file:///C|/mynapster/Downloads/warez/tcpip/ch13_01.htm (5 of 6) [2001-10-15 09:19:02]



[Chapter 13] Internet Information Resources 

Previous: 12.9 Summary TCP/IP Network 
Administration

Next: 13.2 Anonymous FTP 

12.9 Summary Book Index 13.2 Anonymous FTP 

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/ch13_01.htm (6 of 6) [2001-10-15 09:19:02]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Chapter 13] 13.2 Anonymous FTP 

Previous: 13.1 The World 
Wide Web 

Chapter 13
Internet Information 

Resources 

Next: 13.3 Finding Files 

 

13.2 Anonymous FTP 

Anonymous FTP is mentioned throughout this book as a technique for retrieving publicly available 
files and programs from the many FTP servers around the Internet. Anonymous FTP is simply an ftp 
session in which you log into the remote server using the username anonymous and, by convention, 
your email address as the password. [1] The anonymous FTP example below should make this simple 
process clear:

[1] Some FTP servers request your real username as a password.

% ftp ftp.ncsa.edu
Connected to ftp.ncsa.uiuc.edu.
220 FTP server Wed May 21 1997 ready.
Name (ftp.ncsa.edu:kathy): anonymous
331 Guest login ok, use email address as password.
Password:
ftp> cd /Web/Mosaic/Unix/binaries/2.6
250 CWD command successful.
ftp> binary
200 Type set to I.
ftp> get Mosaic-hp-2.6.Z Mosaic.Z
200 PORT command successful.
150 Opening BINARY mode data connection for Mosaic-hp-2.6.Z.
226 Transfer complete.
local: Mosaic.Z remote: Mosaic-hp-2.6.Z
809343 bytes received in 3.5 seconds (2.3e+02 Kbytes/s)
ftp> quit
221 Goodbye.

In this example, the user logs into the server ftp.ncsa.edu using the username anonymous and the 
password kathy@nuts.com, which is her email address. With anonymous FTP, she can log in even 
though she doesn't have an account on ftp.ncsa.edu. Of course what she can do is restricted, but she 
can retrieve certain files from the system, and that's just what she does. She changes to the 
/Web/Mosaic/Unix/binaries/2.6 directory and gets the compressed file Mosaic-hp-2.6.Z. The file is 
retrieved in binary mode.

file:///C|/mynapster/Downloads/warez/tcpip/ch13_02.htm (1 of 4) [2001-10-15 09:19:03]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


[Chapter 13] 13.2 Anonymous FTP 

13.2.1 Creating an FTP Server 

Using the anonymous FTP service offered by a remote server is very simple. However, setting up an 
anonymous FTP service on your own system is a little more complicated. Here are the steps to set up 
an anonymous FTP server:

1.  Add user ftp to the /etc/passwd file.
2.  Create an ftp home directory owned by user ftp that cannot be written to by anyone.
3.  Create a bin directory under the ftp home directory that is owned by root, and that cannot be 

written to by anyone. The ls program should be placed in this directory and changed to mode 
111 (execute-only).

4.  Create an etc directory in the ftp home directory that is owned by root, and that cannot be 
written to by anyone. Create special passwd and group files in this directory, and change the 
mode of both files to 444 (read-only).

5.  Create a pub directory in the ftp home directory that is owned by root and is only writable by 
root, i.e., mode 644. Don't allow remote users to store files on your server, unless it is 
absolutely necessary and your system is on a private, non-connected network. If you must 
allow users to store files on the server, change the ownership of this directory to ftp and the 
mode to 666 (read and write). This should be the only directory where anonymous FTP users 
can store files.

The following examples show each of these steps. First, create the ftp home directory and the required 
subdirectories. In our example, we create the ftp directory under the /usr directory.

# mkdir /usr/ftp
# cd /usr/ftp
# mkdir bin
# mkdir etc
# mkdir pub

Then copy ls to /usr/ftp/bin, and set the correct permissions.

# cp /bin/ls /usr/ftp/bin
# chmod 111 /usr/ftp/bin/ls

Create a group that will be used only by anonymous FTP, a group that has no other members. In our 
example we create a group called anonymous. An entry for this new group is added to the /etc/group 
file, and a file named /usr/ftp/etc/group is created that contains only this single entry.

anonymous:*:15:

Create a user named ftp by placing an entry for that user in the file /etc/passwd. Also create a file 
named /usr/ftp/etc/passwd that contains only the ftp entry. Here's the entry we used in both files:

file:///C|/mynapster/Downloads/warez/tcpip/ch13_02.htm (2 of 4) [2001-10-15 09:19:03]



[Chapter 13] 13.2 Anonymous FTP 

ftp:*:15:15:Anonymous ftp:/usr/ftp:

These examples use a GID of 15 and a UID of 15. These are only examples; pick a UID and GID that 
aren't used for anything else on your system.

A cat of the newly created /usr/ftp/etc/passwd and /usr/ftp/etc/group files shows the following:

% cat /usr/ftp/etc/passwd
ftp:*:15:15:Anonymous ftp:/usr/ftp:
% cat /usr/ftp/etc/group
anonymous:*:15:

After the edits are complete, set both files to mode 444:

# chmod 444 /usr/ftp/etc/passwd
# chmod 444 /usr/ftp/etc/group

Set the correct ownership and mode for each of the directories. The ownership of /usr/ftp/pub, 
/usr/ftp/bin, and /usr/ftp/etc do not need to be changed because the directories were created by root.

# cd /usr/ftp
# chmod 644 pub
# chmod 555 bin
# chmod 555 etc
# cd ..
# chown ftp ftp
# chmod 555 ftp

If you must allow users to write their own files in the pub directory, make the following changes: [2]

[2] This opens a large security hole. Allow users to write their own files to the 
anonymous FTP server only if you must.

# chown ftp pub
# chmod 666 pub

For most UNIX systems, the installation is complete. But if you have a Sun OS 4.x system, a few 
more steps are necessary. The dynamic linking used by Sun OS requires that the ftp home directory 
contains:

1.  The runtime loader
2.  The shared C library
3.  /dev/zero

file:///C|/mynapster/Downloads/warez/tcpip/ch13_02.htm (3 of 4) [2001-10-15 09:19:03]



[Chapter 13] 13.2 Anonymous FTP 

These Sun-specific steps are shown in the following examples. First, create the directory 
/usr/ftp/usr/lib, then copy the files ld.so and libc.so.* into the new directory, and set the file 
permissions:

# cd /usr/ftp
# mkdir usr
# mkdir usr/lib
# cp /usr/lib/ld.so usr/lib
# cp /usr/lib/libc.so.* usr/lib
# chmod 555 libc.so.*
# chmod 555 usr/lib
# chmod 555 usr

Next, create the ftp/dev directory, and run mknod to create dev/zero:

# cd /usr/ftp
# mkdir dev
# cd dev
# mknod zero c 3 12
# cd ..
# chmod 555 dev

Now you can copy the files you wish to make publicly available into /usr/ftp/pub. To prevent these 
files from being overwritten by remote users, set the mode to 644 and make sure the files are not 
owned by user ftp.

Once you complete the configuration steps necessary for your system, test it thoroughly before 
announcing the service. Make sure that your server provides the anonymous FTP service you want, 
without providing additional "services" that you don't want (such as allowing anonymous users access 
to files outside of the ftp home directory). Anonymous FTP is a potential security risk. If you offer 
this service at all, limit the number of systems at your site that provide it (one is usually enough), and 
take care to ensure that the installation is done properly.

Previous: 13.1 The World 
Wide Web 

TCP/IP Network 
Administration

Next: 13.3 Finding Files 

13.1 The World Wide Web Book Index 13.3 Finding Files 

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/ch13_02.htm (4 of 4) [2001-10-15 09:19:03]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Chapter 13] 13.3 Finding Files 

Previous: 13.2 Anonymous 
FTP 

Chapter 13
Internet Information 

Resources 

Next: 13.4 Retrieving RFCs 

 

13.3 Finding Files 

Anonymous FTP requires detailed knowledge from the user. To retrieve a file, you must know the 
FTP server and the directory where the file is located. When the network was small, this was not a 
major problem. There were a limited number of important FTP servers, and they were well stocked 
with files. You could always ftp to a major server and search through some directories using ftp's ls 
command. This old approach is not compatible with a large and expanding Internet for two reasons:

●     There are now thousands of major anonymous FTP servers. Knowing them all is difficult.
●     There are now millions of Internet users. They cannot all rely on a few well-known servers. 

The servers would quickly be overwhelmed with ftp requests.

archie is an application designed to help with this problem. It provides a database of information 
about anonymous FTP sites and the files they contain.

13.3.1 archie 

archie expands the usefulness of anonymous FTP by helping you locate the file, program, or other 
information that you need. archie uses information servers that maintain databases containing 
information about hundreds of FTP servers, and thousands of files and programs throughout the 
Internet.

archie's primary database is a listing of files and the servers from which the files can be retrieved. In 
the simplest sense, you tell archie which file you're looking for, and archie tells you which FTP 
servers the file is available from.

archie can be used in four different ways: interactively, through electronic mail, via a Web browser, 
or from an archie client. To use archie interactively, telnet to one of the archie servers. [3] Log in 
using the username archie and no password. At the archie> prompt, type help to get a full set of 
interactive archie commands.

[3] The list of publicly accessible servers is available at 
http://www.bunyip.com/products/archie/world/servers.html.

file:///C|/mynapster/Downloads/warez/tcpip/ch13_03.htm (1 of 5) [2001-10-15 09:19:04]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm
http://www.bunyip.com/products/archie/world/servers.html


[Chapter 13] 13.3 Finding Files 

There are many interactive archie commands, but the basic function of locating a program that is 
accessible via anonymous FTP can be reduced to two commands.

prog pattern

Display all files in the database with names that match the specified pattern.
mail address

Mail the output of the last command to address, which is normally your own email address.

The following example uses both of these commands to interactively search for gated-R3_5_5.tar, 
and then mail the results of the search to craig@peanut.nuts.com.

% telnet archie.internic.net
Trying 198.49.45.10...
Connected to archie.ds.internic.net.
Escape character is ']'.
UNIX(r) System V Release 4.0 (ds0)

login: archie
 
# Bunyip Information Systems, Inc., 1993, 1994, 1995
 
archie> prog gated-R3_5_5.tar
# Search type: sub.
# Your queue position: 1
# Estimated time for completion: 5 seconds.
working... O

Host ftp.zcu.cz    (147.228.206.16)
Last updated 11:32 27 Jun 1997

 Location: /pub/security/merit/gated
  FILE -r--r--r-- 1460773 bytes Jan 1997 gated-R3_5_5.tar.gz

archie> mail craig@peanut.nuts.com
archie> quit

The archie output provides all of the information you need to initiate an anonymous FTP transfer:

●     The name of the server (ftp.zcu.cz in our example)
●     The directory on the server that contains the file (/pub/security/merit/gated in our example)
●     The full name of the file (gated-R3_5_5.tar.gz in our example)

You can also use archie by sending email to archie at any one of the archie servers; for example, 
archie@archie.internic.net. The text of the mail message must contain a valid archie email command. 

file:///C|/mynapster/Downloads/warez/tcpip/ch13_03.htm (2 of 5) [2001-10-15 09:19:04]



[Chapter 13] 13.3 Finding Files 

To get a complete list of archie email commands, send mail containing the help command to one of 
the servers. In the example below, the email help file is requested from archie.internic.net.

% mail archie@archie.internic.net
Subject:
help
^D
EOT

While these two methods of accessing archie work fine, the best way to use archie is through a Web 
browser. Many Web servers provide an archie interface. 
http://pubweb.nexor.co/uk/public/archie/servers.html lists several of these gateways. The server used 
in Figure 13.4 is http://archie.bunyip.com/archie.html.

Figure 13.4: Archie Web interface

file:///C|/mynapster/Downloads/warez/tcpip/ch13_03.htm (3 of 5) [2001-10-15 09:19:04]

http://pubweb.nexor.co/uk/public/archie/servers.html
http://archie.bunyip.com/archie.html


[Chapter 13] 13.3 Finding Files 

Enter the name of the program you want to locate in the Search for: box and press the Search 
button. Your browser displays the search results with links directly to the file you're seeking. For 
example, assume we rerun the search for gated-R3_5_5.tar.gz using the 
http://archie.bunyip.com/archie.html Web page. The server returns a list of eight matches, the first of 
which is the anonymous FTP server at ftp.zcu.cz. The filename gated-R3_5_5.tar.gz that is displayed 
next to the FTP server is a link. Clicking on the link transfers the file from ftp.zcu.cz to your system. 
Search and retrieval all in one interface!

While the Web browser provides the easiest interface to archie, some people prefer to run an archie 
client on their local system. Using an archie client reduces the load on the servers and improves 
responsiveness for the user. If you believe you'll access archie very frequently, it might be worth 
setting up an archie client.

13.3.1.1 archie client software 

archie client software is available via anonymous FTP from the ftp.bunyip.com server. The software 
is stored in the pub/archie/clients directory. The README file in this directory provides a short 
description of each type of client. There are at least three different client software packages for UNIX: 
an X windows client and two command-line clients, one written in C and the other written in Perl. 
Check the archie servers for the latest developments in client software.

This section uses the command-line archie client written in C as an example. The C code and the 
instruction to make the client are all contained in the c-archie-1.4.1.tar.gz file from ftp.bunyip.com. 
Once the client has been made and installed, it is invoked using the command:

% archie [options] string

The string is the name of the file that you are asking archie to find. It can be the exact filename, a 
substring of the name, or a regular expression.

The options control how the string is interpreted. The -e option searches for a filename that exactly 
matches the string; the -s option matches on any record that contains the string as any part of the 
filename; and the -r option interprets the string as a UNIX regular expression when looking for 
matches.

The following example uses the archie client to search for sites from which the ppp software can be 
retrieved. The search uses a regular expression that will match any compressed tar file with a name 
that starts with ppp.

file:///C|/mynapster/Downloads/warez/tcpip/ch13_03.htm (4 of 5) [2001-10-15 09:19:04]

http://archie.bunyip.com/archie.html


[Chapter 13] 13.3 Finding Files 

% archie -r '^ppp.*\.tar\.Z' > ppp.locations

Our example stores archie's output in the file ppp.locations. You can then examine ppp.locations to 
find the closest FTP server that has the latest version of the ppp tar file. Redirecting the output to a 
file is usually a good idea because archie often produces a lot of output. By default, the archie client 
will return as many as 95 matches to the search. To limit the number of matches returned, use the 
option -mn, where n is the maximum number of matches archie should return. For example, -m5 
limits the search to five matches.

The archie database is frequently out-of-date or dominated by obscure FTP servers that have poor 
connectivity. This limits its utility. But sometimes archie is the only place you have to start your 
search for a file.

Previous: 13.2 Anonymous 
FTP 

TCP/IP Network 
Administration

Next: 13.4 Retrieving RFCs 

13.2 Anonymous FTP Book Index 13.4 Retrieving RFCs 

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/ch13_03.htm (5 of 5) [2001-10-15 09:19:04]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Chapter 13] 13.4 Retrieving RFCs 

Previous: 13.3 Finding Files Chapter 13
Internet Information 

Resources 

Next: 13.5 Mailing Lists 

 

13.4 Retrieving RFCs 

Throughout this book, we have referred to many RFCs. These are the Internet documents used for 
everything from general information to the definitions of the TCP/IP protocols standards. As a 
network administrator, there are several important RFCs that you'll want to read. In this section we 
describe how you can obtain them.

RFCs are available via the World Wide Web at http://www.internic.net. Follow the links from that 
home page through the directory services to the IETF RFC page. The page allows you to search the 
RFCs for keywords or to load the RFC index. The index is particularly useful if you know the number 
of the RFC you want. Figure 13.5 shows a network administrator scrolling through the index looking 
for RFC 1122.

Figure 13.5: The RFC index

file:///C|/mynapster/Downloads/warez/tcpip/ch13_04.htm (1 of 4) [2001-10-15 09:19:05]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm
http://www.internic.net/


[Chapter 13] 13.4 Retrieving RFCs 

In another example the network administrator does not know which RFCs contain the information she 
is looking for, but she knows what she wants. The administrator is trying to find out more about the 
SMTP service extensions that have been proposed for Extended SMTP. Figure 13.6 shows the four 
RFCs displayed as a result of her query.

Figure 13.6: An RFC Web search

file:///C|/mynapster/Downloads/warez/tcpip/ch13_04.htm (2 of 4) [2001-10-15 09:19:05]



[Chapter 13] 13.4 Retrieving RFCs 

The Web provides the most popular and best method for browsing through RFCs. However, if you 
know what you want, anonymous FTP can be a faster way to retrieve a specific document. RFCs are 
stored at ds.internic.net in the rfc directory. It stores the RFCs with filenames in the form rfcnnnn.txt 
or rfcnnnn.ps, where nnnn is the RFC number and txt or ps indicates whether the RFC is ASCII text or 
PostScript. To retrieve RFC 1122, ftp to ds.internic.net and enter get rfc/rfc1122.txt at the ftp> 
prompt. This is generally a very quick way to get an RFC, if you know what you want.

To help you find out which RFC you do want, get the rfc-index.txt file. It is a complete index of all 
RFCs by RFC number, and it's available from ds.internic.net in the rfc directory. You'll only need to 

file:///C|/mynapster/Downloads/warez/tcpip/ch13_04.htm (3 of 4) [2001-10-15 09:19:05]



[Chapter 13] 13.4 Retrieving RFCs 

get a new RFC index occasionally. Most of the time, the RFC you're looking for has been in 
publication for some time and is already listed in the index. Retrieve the RFC index and store it on 
your system. Then search it for references to the RFCs you're interested in.

13.4.1 Retrieving RFCs by mail 

While anonymous FTP is the fastest way and the Web is the best way to get an RFC, they are not the 
only ways. You can also obtain RFCs through electronic mail. Electronic mail is available to many 
users who are denied direct access to Internet services because they are on a non-connected network 
or are sitting behind a restrictive firewall. Also, there are times when email provides sufficient service 
because you don't need the document quickly.

Retrieve RFCs through email by sending mail to mailserv@ds.internic.net. Leave the Subject: line 
blank. Request the RFC in the body of the email text, preceding the pathname of the RFC with the 
keyword FILE. In this example, we request RFC 1258.

% mail mailserv@ds.internic.net
Subject:
FILE /rfc/rfc1258.txt
^D

The technique works very well. In the time it took to type these paragraphs, the requested RFC was 
already in my mailbox.

Previous: 13.3 Finding Files TCP/IP Network 
Administration

Next: 13.5 Mailing Lists 

13.3 Finding Files Book Index 13.5 Mailing Lists 

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/ch13_04.htm (4 of 4) [2001-10-15 09:19:05]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Chapter 13] 13.5 Mailing Lists 

Previous: 13.4 Retrieving 
RFCs 

Chapter 13
Internet Information 

Resources 

Next: 13.6 The White Pages 

 

13.5 Mailing Lists 

Mailing lists bring together people with similar interests to exchange information and ideas. Most mailing 
lists run under usage guidelines that restricted discussion to a specific topic. Mailing lists are often used as 
places to report problems and get solutions, or to receive announcements. Some mailing lists are digests of 
newsgroups.

There is an enormous number of mailing lists. The list-of-lists contains information about many of the 
mailing lists that are of interest to network administrators. [4] Use a Web browser to search for mailing lists 
that interest you at http://catalog.com/vivian/interest-group-search.html. If you prefer, the list-of-lists can be 
downloaded via anonymous FTP from nisc.sri.com in the file netinfo/interest-groups.txt and searched with 
standard UNIX tools. Either way, you get the same information. The following example is the list-of-lists 
entry for the Berkeley Internet Name Domain (BIND) software mailing list:

[4] Despite its large size, not every network administration mailing list is contained in the 
interest-groups.txt file. You hear about some lists by word of mouth.

BIND@uunet.uu.net
  Subscription Address: bind-request@uunet.uu.net
  Owner: BIND-REQUEST@UUNET.UU.NET
  Description:
   This list covers topics relating to Berkeley Internet Name Domain 
   (BIND) domain software.

The entry has four sections: the address of the mailing list, the address to which subscription requests are 
sent, the address of the owner, and a description of the list.

When you find a list you wish to join, don't send mail directly to the list asking to be enrolled. Instead, send 
the enrollment request to the subscription address, which identifies the person or process that maintains the 
list. If the list is manually maintained, as in the BIND example above, send your enrollment request to list-
name-request@host where list-name is the actual name of the list, and is followed by the literal string -
request. The -request extension is widely used as the address for administrative requests, such as being 
added to or dropped from a list, when lists are manually maintained. For example, to join the BIND mailing 
list, send your enrollment request to bind-request@uunet.uu.net. All other correspondence is sent directly to 
bind@uunet.uu.net.

Many mailing lists automate list management with programs like majordomo and LISTSERV. You can tell 

file:///C|/mynapster/Downloads/warez/tcpip/ch13_05.htm (1 of 5) [2001-10-15 09:19:06]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm
http://catalog.com/vivian/interest-group-search.html


[Chapter 13] 13.5 Mailing Lists 

the type of server being used by looking at the subscription address in the list-of-lists. The user portion of 
that address will be either "majordomo" or "LISTSERV," depending on the server being used. To subscribe 
to a majordomo list, send email to the subscription address and type the following in the body of the 
message:

subscribe list-address your-address

where list-address is the address of the email list, and your-address is your email address.

To subscribe to a LISTSERV mailing list, send email to the subscription address with the following in the 
message body:

subscribe list your-name

where list is the name of the list, not necessarily its address, as that name appears in the first line of its list-
of-lists entry. your-name is your first and last name. This is not your email address. LISTSERV takes 
your email address from the email headers.

13.5.1 Newsgroups 

A mailing list is one way of distributing announcements and exchanging questions and answers, but it is not 
the most efficient way. A mail message is sent to every person on the list. It is sent immediately, and it must 
be stored on the local system until it is read. Thus, if there are 100 people on a list, 100 messages are sent 
over the network and stored at 100 receiving systems. Network news provides a more efficient method for 
distributing this kind of information. The information is stored around the network on, for most sites, one or 
two news servers. Therefore, instead of moving mail messages to every individual on your network who 
wants to discuss the Linux operating system, news articles about Linux are stored at one location where they 
can be read when the user is ready. Not only does this reduce the network load, it reduces the number of 
redundant copies that are stored on local disk files.

Network news is delivered over TCP/IP networks using the Network News Transfer Protocol (NNTP). 
NNTP is included as part of the TCP/IP protocol stack on most UNIX systems and requires no special 
configuration. The only thing you need to know to get started is the name of your closest network news 
server. Ask your ISP. Most ISPs provide network news as part of their basic service.

NNTP is a simple command/response protocol. The NNTP server listens to port 119:

% telnet news.nuts.com 119
Trying 172.16.16.19...
Connected to news.nuts.com.
Escape character is ']'.
200 news.nuts.com ready (posting ok).
quit
205
Connection closed by foreign host.

A help command sent to this server would have produced a list of 23 NNTP commands. Luckily this is not 

file:///C|/mynapster/Downloads/warez/tcpip/ch13_05.htm (2 of 5) [2001-10-15 09:19:06]



[Chapter 13] 13.5 Mailing Lists 

how you read network news. You use a newsreader.

UNIX systems often include a news reader. Our sample Linux system includes several different readers: nn, 
rn, tin, and trn. Your system may have anyone one of these or another newsreader. See the appropriate 
manpage for specific instructions on using a particular reader.

Regardless of the reader you have, they all have certain things in common. They all provide a way to 
subscribe to a news group, read articles from the group, and post your own articles to the group. In this trn 
example from our Linux system, the titles of the first 26 articles in the comp.os.linux.announce group are 
listed. To read an article, the user scrolls down to select the article and presses Enter. All readers provide a 
similar interface.

comp.os.linux.announce          50 articles (moderated)

a root      1  Ringconnect
b Clark     1  NTLUG Meeting
d Dave      1  Caldera
e Martin    1  Linux Users Group Meeting
f Evan      1  COMDEX Canada
g Jimn      1  Salt Lake Linux Users Group
i Tyde      1  San Fransisco Linux users' group
j Andy      1  Worcester Linux Users' Group
l Bob       1  MELUG meeting
o Olaf      1  IP tunnel
r Norbert   1  Index files
s Albert    1  Client-/Server-Backup
t Michael   1  Parallel programming
u Oz        1  FTP client
v Ted       1  Important notice
w Kamran    1  DIPC available
x Ken       1  Web site
y Cindy     1  CD-ROM available now!
z Bishop    1  C program documentation tool

-- Select threads (date order) -- Top 38% [>Z] --

Our sample Solaris system doesn't include any news readers mentioned above. But it doesn't matter. News is 
supported in the Netscape Navigator Web browser. Selecting Netscape News from the Windows menu in the 
Netscape browser opens a news reader. Figure 13.7 shows us reading news from comp.os.linux.

Figure 13.7: Netscape news interface

file:///C|/mynapster/Downloads/warez/tcpip/ch13_05.htm (3 of 5) [2001-10-15 09:19:06]



[Chapter 13] 13.5 Mailing Lists 

There are many, many newsgroups. Most of the newsgroups that are of interest to a network administrator 
are found in the comp category. comp.os contains sub-groups for various operating systems. comp.unix lists 
groups for various flavors of UNIX. comp.networks and comp.internet provide information about networks 
and the Internet. comp.security and comp.virus provide security information.

There is a tremendous amount of dross in most news groups. But if you need a question answered or 
information on a specific topic, they can be invaluable.

file:///C|/mynapster/Downloads/warez/tcpip/ch13_05.htm (4 of 5) [2001-10-15 09:19:06]



[Chapter 13] 13.5 Mailing Lists 

Previous: 13.4 Retrieving 
RFCs 

TCP/IP Network 
Administration

Next: 13.6 The White Pages 

13.4 Retrieving RFCs Book Index 13.6 The White Pages 

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/ch13_05.htm (5 of 5) [2001-10-15 09:19:06]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Chapter 13] 13.6 The White Pages 

Previous: 13.5 Mailing Lists Chapter 13
Internet Information 

Resources 

Next: 13.7 Summary 

 

13.6 The White Pages 

archie helps you locate important programs. The Web helps you retrieve important documents. whois 
helps you locate important people. One of the most important pieces of information in a network is who is 
in charge at the other end. In Chapter 11, Troubleshooting TCP/IP , we pointed out that it is important to 
know who is responsible for the other end of the link when troubleshooting a network problem. whois is a 
tool that helps you find this out.

whois obtains the requested information from the Internet white pages. The white pages is a database of 
information about responsible people that is maintained by the InterNIC. When you request an official 
network number or domain name, you are asked to provide your NIC handle, which is the index of your 
personal record in the white pages database. If you don't have a handle, the InterNIC assigns you one and 
automatically registers you in the white pages. Because of this, everyone who is responsible for an official 
network or domain has an entry in the white pages, and that entry can be retrieved by anyone who needs to 
contact them.

Many UNIX systems provide a whois command to query the InterNIC white pages. The general form of 
this command is:

% whois [-h server] name

The name field is the information to be searched for in the white pages database. The server field is the 
name of a system containing the white pages. Use rs.internic.net to locate responsible people, which is the 
default on most systems.

In the following example, we search for an entry for Craig Hunt. An individual's name is entered in the 
white pages as: last-name, first-name initial. So we ask to search for Hunt, Craig. [5]

[5] whois hunt would return several matches. Be as specific as possible to reduce the 
number of matches.

% whois 'Hunt, Craig'
[rs.internic.net]
Hunt, Craig (CH999)   info@foo.bar      +1 (123) 555 6789
Hunt, Craig W. (CWH3) Hunt@ENH.NIST.GOV    (301) 975-3827

To single out one record, look it up with "!xxx", where xxx is the

file:///C|/mynapster/Downloads/warez/tcpip/ch13_06.htm (1 of 4) [2001-10-15 09:19:07]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


[Chapter 13] 13.6 The White Pages 

handle, shown in parenthesis following the name, which comes first.

The InterNIC Registration Services Host contains ONLY Internet
Information (Networks, ASN's, Domains, and POC's).
Please use the whois server at nic.ddn.mil for MILNET Information.

If multiple matches are returned, as in this case, follow with a query for the individual's NIC handle to get 
the full information display. To query for the NIC handle, which is the field enclosed in parentheses 
directly following the username, simply enter the handle on the whois command line. The message at the 
end of the sample output implies that handles are entered as !xxx. This is not true. The UNIX whois 
command does not require the ! syntax. For example, to get more details about CWH3, enter:

%  whois cwh3
[rs.internic.net]
Hunt, Craig W. (CWH3)          Hunt@ENH.NIST.GOV
  National Institute of Standards and Technology
  Computer Systems and Communications Division
  Technology Building, Room A151
  Gaithersburg, MD 20899
  (301) 975-3827 (FTS) 879-3827

  Record last updated on 03-Dec-90.
  Database last updated on 15-Jul-97 04:35:06.

User information is generally only useful if you know exactly who you want to send email to and you don't 
know his or her address. The white pages database contains several other kinds of records, a few of which 
are very helpful for locating the people responsible for networks, domains, and hosts throughout the 
Internet. These record types are:

Domain

Provides detailed contact information for the people responsible for the specified domain.
Network

Provides detailed information for the contacts for the specified network.
Host

Provides general information about the specified host. This record type is not as useful as the others.

These record types can be used in the whois query to speed processing and limit the amount of output. All 
of the record types shown above can be abbreviated to their first two letters.

A sample query for the domain ora.com produces the following results:

% whois 'do ora.com'
O'Reilly & Associates (ORA-DOM1)
   101 Morris Street

file:///C|/mynapster/Downloads/warez/tcpip/ch13_06.htm (2 of 4) [2001-10-15 09:19:07]



[Chapter 13] 13.6 The White Pages 

   Sebastopol, CA 95472

   Domain Name: ORA.COM

   Administrative Contact, Technical Contact, Zone Contact:
      Pearce, Eric  (EP86)  eap@ORA.COM
      707-829-0515 x221
   Billing Contact:
      Johnston, Rick  (RJ724)  rick@ORA.COM
      707-829-0515 x331

   Record last updated on 28-Jan-97.
   Record created on 14-Jun-89.
   Database last updated on 15-Jul-97 04:35:06 EDT.

   Domain servers in listed order:

   NS.ORA.COM                   207.25.97.8
   NS.SONGLINE.COM              204.148.41.1

The query displays the name, address, and telephone number of the contacts for the domain, as well as a 
list of hosts providing authoritative name service for the domain.

To query the host record for a specific host, in this case one of the name servers listed above, simply query 
the desired hostname. For example, to find out more about ns.songline.com, enter:

% whois 'host ns.songline.com'
[No name] (NS2441-HST)

   Hostname: NS.SONGLINE.COM
   Address: 204.148.41.1
   System: Sun Sparc20 running Solaris 2.4

   Record last updated on 21-Aug-95.
   Database last updated on 15-Jul-97 04:35:06 EDT.

This query displays the hostname, IP address, and the system type: essentially the same information we 
could get from DNS.

A much more interesting query is for the point of contact for a specific network. To find out, enter a whois 
query with the network number. In our example, the IP address of one of the servers is 207.25.97.8. This is 
a class C address, so the network number is 207.25.97.0. The query is constructed as shown in the example 
below:

% whois 'net 207.25.97.0'
ANS CO+RE Systems, Inc. (NETBLK-ANS-C-BLOCK4)
   100 Clearbrook Rd
   Elmsford, NY 10523

file:///C|/mynapster/Downloads/warez/tcpip/ch13_06.htm (3 of 4) [2001-10-15 09:19:07]



[Chapter 13] 13.6 The White Pages 

   Netname: ANS-C-BLOCK4
   Netblock: 207.24.0.0 - 207.27.255.255
   Maintainer: ANS

   Coordinator:
      Vaidya, Vijay  (VV38)  vijay@ANS.NET
      914-789-5360
   Alternate Contact:
      ANS Hostmaster  (AH-ORG)  hostmaster@ANS.NET
      (800)456-6300  fax: (914)789-5310

   Domain System inverse mapping provided by:

   NS.ANS.NET                   192.103.63.100
   NIS.ANS.NET                  147.225.1.2

   Record last updated on 02-Sep-96.
   Database last updated on 15-Jul-97 04:35:06 EDT.

This query could also be done by network name, ANS-C-BLOCK4 in our example, but frequently you 
won't know the network name until you get the response from your query. In addition to the network name 
and number, this query tells you who is responsible for this network, and what name servers provide in-
addr.arpa domain service for this network.

With the information from these queries, we could contact the domain administrator and the network 
administrator. From these key contacts, we could learn about the administrators of individual systems in 
their domain or on their network. This information could put us directly in touch with the other system 
administrator we need to talk to when debugging a network problem.

Not all systems have a local whois command. If your system doesn't, telnet to rs.internic.net and enter 
whois at the command-line prompt. You'll then be prompted with Whois:. At this prompt enter any name 
you wish to search for, or enter help for more information.

Previous: 13.5 Mailing Lists TCP/IP Network 
Administration

Next: 13.7 Summary 

13.5 Mailing Lists Book Index 13.7 Summary 

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/ch13_06.htm (4 of 4) [2001-10-15 09:19:07]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Chapter 13] 13.7 Summary 

Previous: 13.6 The White 
Pages 

Chapter 13
Internet Information 

Resources 

Next: A. PPP Tools

 

13.7 Summary 

There is a wealth of information available through the network. Much of the available material 
provides information about TCP/IP and networking. The RFCs are, of course, a great source of 
information, but many RFCs are not written for beginners. It can be difficult determining which RFCs 
to read first. To help you make that decision, some RFCs that provide general information are 
identified as FYIs (For Your Information). The FYIs can be obtained from http://www.internic.net in 
the same manner as the RFCs.

In addition, you can find many books and papers about networking. My favorite reference to Internet 
information resources is The Whole Internet User's Guide & Catalog, by Ed Krol (O'Reilly & 
Associates). Not only does it explain how to use the information retrieval tools introduced in this 
chapter, it provides a well-organized catalog of many of the information sources available on the 
network.

As you explore these information sources, you'll see that there is much more to the network than can 
ever be covered in one book. This book has been your launching pad - helping you connect your 
system to the network. Now that your system is up and running, use it as a tool to expand your 
information horizons.

Previous: 13.6 The White 
Pages 

TCP/IP Network 
Administration

Next: A. PPP Tools

13.6 The White Pages Book Index A. PPP Tools

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/ch13_07.htm [2001-10-15 09:19:07]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm
http://www.internic.net/
file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Appendix A] PPP Tools

Previous: 13.7 Summary Appendix A Next: A.2 The PPP Daemon

 

A. PPP Tools
Contents:
Dial-Up IP
The PPP Daemon
chat

This appendix is a reference for dip, pppd, and chat. These tools are used to create dial-up IP 
connection for the Point to Point Protocol (PPP). dip and chat are both scripting languages. Creating 
a script that initializes the modem, dials the remote server, logs in, and configures the remote server is 
the biggest task in configuring a PPP connection. Chapter 6, Configuring the Interface , provides 
examples and tutorial information about all three of the programs covered here. This appendix 
provides a reference to the programs.

A.1 Dial-Up IP

dip is a scripting tool designed specifically for creating SLIP and PPP connections. [1] The syntax of 
the dip command is:

[1] Serial Line IP (SLIP) predates PPP. Today most serial connections are PPP, which is 
what this appendix emphasizes.

dip [options] [scriptfile]

The dip command is invoked with either an option set or a script file specified, or with both. When 
scriptfile is specified, dip executes the commands contained in the script file to create a point-to-
point connection. Examples of scripts and dip are shown in Chapter 6. The options valid with script 
files are:

-v

Runs dip in verbose mode. In this mode, dip echos each line of the script file as it is executed, 
and displays enhanced status messages.

-m mtu

file:///C|/mynapster/Downloads/warez/tcpip/appa_01.htm (1 of 8) [2001-10-15 09:19:08]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


[Appendix A] PPP Tools

Sets the Maximum Transmission Unit (MTU) to the number of bytes specified by mtu. The 
default MTU is 296 bytes.

-p proto

Selects the serial line protocol. Possible values for proto are: SLIP, CSLIP, PPP, or TERM.

The other dip command line options are:

-k

Kills the last dip process you started. You can only kill a process you own, unless of course 
you're root.

-l device

Identifies that the process to be killed is the one that has locked the specified device. This 
option is only valid when used with the -k option.

-i [username]

Runs dip as a login shell to provide a PPP or SLIP server. The diplogin command is equivalent 
to dip -i. These two forms of the command are used interchangeably, but diplogin is the most 
common form. diplogin is placed in the login shell field of the /etc/passwd file entry for each 
PPP client. From there it is run by login. The username from the /etc/passwd file is used to 
retrieve additional configuration information from /etc/diphosts. If the optional username is 
specified with the diplogin command, that username is used to retrieve the information from 
the /etc/diphosts file. Chapter 6 provides a tutorial and examples of running diplogin to create a 
PPP server, and of using the /etc/diphosts file.

-a

Prompts for the username and password. The -a option is valid only when used with the -i 
option. The diplogini command is equivalent to dip -i -a. diplogini is used as a login shell in 
the /etc/passwd file where it is run by login. Runs dip in test mode, which allows you to input 
individual script language commands directly from the keyboard. The -t option is frequently 
used in combination with -v so that the result of each command can be better observed. As 
shown in Chapter 6, this option is used to debug a dip script.

diplogin and diplogini are used only on servers and are not used with a script file. The script file is 
used on the PPP clients when dip is configured to dial into a remote server. The script file contains the 
instructions used to do this.

A.1.1 The dip Script File

The script file is made up of comments, labels, variables, and commands. Any line that begins with a 
sharp sign (#) is a comment. A label is a line that contains only a string ending in a colon. Labels are 

file:///C|/mynapster/Downloads/warez/tcpip/appa_01.htm (2 of 8) [2001-10-15 09:19:08]



[Appendix A] PPP Tools

used to divide the script into separate procedures. For example, the section of the script that dials the 
remote host might begin with the label:

Dial-in:

A variable stores a value. A variable name is a string that begins with a dollar sign ($). You might, for 
example, create a variable to hold a loop counter and give it the name $loopcntr. It is possible to 
create your own variables, but this is rarely done. The variables that are used in most scripts are the 
special variables defined by dip. Table 13.1 lists the special variables and the value that each holds.

Table A.1: dip Special Variables

Variable Value Stored

$errlvl The return code of the last command

$locip The IP address of the local host

$local The fully qualified domain name of the local host

$rmtip The IP address of the remote host

$remote The fully qualified domain name of the remote host

$mtu The Maximum Transmission Unit in bytes

$modem The modem type; currently this must be HAYES

$port The name of the serial device, e.g., cua0

$speed The transmission speed of the port

The final component of the script file is the command list. There are many script commands. Because 
this appendix is a reference, we cover them all. However, most scripts are built using only a few of 
these commands. See the sample scripts in Chapter 6 and at the end of this section for realistic dip 
scripts. The complete list of script commands is:

beep [n]

Tells the system to beep the user. Repeat n times.
bootp

Tells the system to use the BOOTP protocol to obtain the local and remote IP addresses. This 
command applies only to SLIP. PPP has its own protocol for assigning addresses; SLIP does 
not. Usually SLIP addresses are statically set inside the script. However, some SLIP servers 
have evolved techniques for dynamic address assignment. The most common method is for the 
server to display the address as clear text immediately after the connection is made. Use the get 
$locip remote command to retrieve the address from this type of SLIP server. Other SLIP 
servers require you to send them a command before they will display the address. Put the 
required server command in the script and follow it with the get command. Finally, a few SLIP 
servers use BOOTP to distribute addresses. Use the bootp command in your script to enable 
BOOTP when it is required by your SLIP server. Sends a BREAK. Some remote servers may 

file:///C|/mynapster/Downloads/warez/tcpip/appa_01.htm (3 of 8) [2001-10-15 09:19:08]



[Appendix A] PPP Tools

require a BREAK as an attention character.
chatkey keyword code

Maps a modem response keyword to a numeric code. The predefined mappings are:

0 OK
1 CONNECT
2 ERROR
3 BUSY
4 NO CARRIER
5 NO DIALTONE

config [interface|routing] [pre|up|down|post] arguments...

Modifies interface characteristics (interface) or the routing table (routing) either before (pre) 
the link comes up, when it is up, when it goes down, or after (post) the link is shutdown. For 
example:

config up routing add canary gw ibis

adds a route to canary using ibis as the gateway when the link is up. Allowing users to modify 
the routing table or interface characteristics is very dangerous. The config command is disabled 
in the DIP code and requires re-compilation to be enabled.

databits 7|8

Sets the number of data bits to 7 or 8. 8 bits is recommended for PPP and SLIP links.
dec $variable [value]

Decrements $variable by value. The default value is 1.
default

Sets the PPP connection as the default route.
dial phonenumber [timeout]

Dials the phonenumber. If the remote modem does not answer within timeout seconds, 
the connection aborts. $errlvl is set to a numeric value based on the keyword returned by the 
local modem. Set chatkey for the keyword to numeric mappings.

echo on|off

Enables or disables the display of modem commands.
exit [n]

Exits the script, optionally returning the number n as the exit status. Clears the input buffer.
get $variable [ask | remote [timeout]] value

file:///C|/mynapster/Downloads/warez/tcpip/appa_01.htm (4 of 8) [2001-10-15 09:19:08]



[Appendix A] PPP Tools

Sets $variable to value, unless ask or remote is specified. When ask is specified, the 
user is prompted for the value. When remote is specified, the value is read from the remote 
machine, optionally waiting timeout seconds for the remote system to respond.

goto label

Jumps to the section of the script identified by label.
help

Lists the dip script commands.
if expr goto label

A conditional statement that jumps to the section of the script identified by label if the 
expression evaluates to true. The expression must compare a variable to a constant using 
one of these operators: == (equal), != (not equal), < (less than), > (greater than), <= (less than 
or equal to), >= (greater than or equal to).

inc $variable [value]

Increments $variable by value. The default value is 1.
init command

Sets the command string used to initialize the modem. The default is ATE0 Q0 V1 X1.
mode SLIP|CSLIP|PPP|TERM

Selects the serial protocol. The default is SLIP.
modem type

Sets the modem type. Ignore this command. The only legal value is HAYES, and that is the 
default.

netmask mask

Sets the subnet mask.
parity E|O|N

Sets the parity to even (E), odd (O), or no (N). No parity (N) is recommended for SLIP and 
PPP links. Prompts the user for the password. Installs a proxy ARP entry for the remote system 
in the local host's ARP table.

print $variable

Displays the contents of $variable.
psend command

Executes command through the default shell passing the output to the serial device. The 
command runs using the user's real UID.

port device

file:///C|/mynapster/Downloads/warez/tcpip/appa_01.htm (5 of 8) [2001-10-15 09:19:08]



[Appendix A] PPP Tools

Identifies the serial device, such as cua0, that attaches the modem. Exits the script with a 
nonzero exit status, aborting the connection. Resets the modem.

send string

Passes string to the serial device.
shell command

Executes command through the default shell. The command runs using the user's real UID.
skey [timeout]

Waits for an S/Key challenge from the remote terminal server, prompts the user for the secret 
key, and generates and sends the response. Waits timeout seconds for the challenge. If the 
timer expires, $errlvl is set to 1; otherwise, it is set to 0. S/Key must be compiled into dip.

sleep time

Delays time seconds.
speed bits-per-second

Sets the port speed. The default is 38400.
stopbits 1|2

Sets the number of stop bits to 1 or 2. Enables terminal mode. In terminal mode, keyboard 
input is passed directly to the serial device.

timeout time

Sets the time in seconds that the line is allowed to remain inactive. When this timer expires, 
the link is closed.

wait text [timeout]

Waits timeout seconds for the text string to arrive from the remote system. If timeout is 
not specified, the script will wait forever.

In the next section we put some of these commands to work in a realistic script.

A.1.1.1 A sample dip script

This script is based on the PPP sample from Chapter 6. Labels and error detection have been added to 
create a more robust script.

# Select configuration settings
setup:
# Ask PPP to provide the addresses
get $local 0.0.0.0
# Select the port

file:///C|/mynapster/Downloads/warez/tcpip/appa_01.htm (6 of 8) [2001-10-15 09:19:08]



[Appendix A] PPP Tools

port cua1
# Set the port speed
speed 57600
# Create a loop counter
get $loopcntr 0

# Dial the remote server
dialin:
# Reset the modem and clear the input buffer
reset
flush
# Dial the PPP server and check the modem response
dial *70,301-555-1234
# If BUSY, dial again
if $errlvl == 3 goto redial
# If some other error, abort
if $errlvl != 1 goto dial-error
# Otherwise rest loop counter
get $loopcntr 0
# Give the server 2 seconds to get ready
sleep 2

# Login to the remote server
login:
# Send a carriage-return to wake up the server
send \r
# Wait for the Username> prompt and send the username
wait name> 20
if $errlvl != 0 goto try-again
send kristin\r
# Wait for the Password> prompt and send the password
wait word> 10
if $errlvl != 0 goto server-failure
password
# Wait for the PPP server's command line prompt
wait > 20
if $errlvl != 0 goto server-failure
# Send the command required by the PPP server
send ppp enabled\r

# Success! We're on-line
connected:
# Set the interface to PPP mode
mode PPP
# Exit the script
exit

file:///C|/mynapster/Downloads/warez/tcpip/appa_01.htm (7 of 8) [2001-10-15 09:19:08]



[Appendix A] PPP Tools

# Error processing routines

# Try dialing 3 times.  Wait 5 seconds between attempts
redial:
inc $loopcntr
if $loopcntr > 3 goto busy-failure
sleep 5
goto dialin

# Try a second carriage return
try-again:
inc $loopcntr
if $loopcntr > 1 goto server-failure
goto login

dial-error:
print Dial up of $remote failed.
quit

server-failure:
print $remote failed to respond.
quit

busy-failure:
print $remote is busy.  Try again later.
quit

This script provides a realistic example of the commands used in most scripts. However, you may 
encounter a particularly tough scripting problem. If you do, the abundance of scripting commands 
available with dip should be able to handle it. If dip can't do the job, try expect. See Exploring Expect 
by Don Libes (O'Reilly &amp;amp;amp;amp; Associates) for a full description of the expect scripting 
language.

Previous: 13.7 Summary TCP/IP Network 
Administration

Next: A.2 The PPP Daemon

13.7 Summary Book Index A.2 The PPP Daemon

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/appa_01.htm (8 of 8) [2001-10-15 09:19:08]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Appendix A] A.2 The PPP Daemon

Previous: A.1 Dial-Up IP Appendix A
PPP Tools

Next: A.3 chat

 

A.2 The PPP Daemon

The PPP Daemon (pppd) is a freely available implementation of the Point-to-Point Protocol (PPP) 
that runs on many UNIX systems. Examples of configuring and using pppd are covered in Chapter 6. 
The syntax of the pppd command is:

pppd [device] [speed] [options]

device is the name of the serial port over which the PPP protocol operates and speed is the 
transmission speed of that port in bits per second. The complexity of this command comes not from 
these simple parameters but from the large number of options that it supports. There are so many 
options, in fact, that they are often stored in a file. There are three options files that can be used with 
pppd: the /etc/ppp/options file, which is used to set system-wide pppd options; the ~/.ppprc file, 
which is used by an individual to set personal pppd options, and the /etc/ppp/options.device file, 
which sets options for a serial device, e.g., /etc/ppp/options.cua0 sets options for cua0. The order of 
precedence for options is that those specified in the /etc/ppp/options.device file are the highest 
priority, followed by those defined on the command line, then those in the ~/.ppprc file, and, finally, 
those defined in the /etc/ppp/options file. Some options that relate to system security, once defined in 
the /etc/ppp/options file, cannot be overridden by the user through the command line or the ~/.ppprc 
file. The system administrator can override any option set by the user by setting the option in the 
/etc/ppp/options.device file.

The following list contains all of the pppd options except those that do not relate to TCP/IP:

local_IP_address:remote_IP_address

Defines static local and remote IP addresses. Either address may be omitted. For example: 
172.16.25.3: defines only the local address, while :172.16.25.12 defines only the remote 
address. The default local address is the IP address associated with the local system's 
hostname.

-ac

Disables Address/Control compression negotiation.
-all

file:///C|/mynapster/Downloads/warez/tcpip/appa_02.htm (1 of 9) [2001-10-15 09:19:10]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


[Appendix A] A.2 The PPP Daemon

Disables all LCP and IPCP negotiations.
-am

Disables asyncmap negotiation. Sends all control characters as two-character escape 
sequences. 

asyncmap map

Defines the ASCII control characters that must be sent as two-character escape sequences. The 
first 32 ASCII characters are control characters. map is a 32-bit hex number with each bit 
representing a control character. Bit 0 (00000001) represents the character 0x00; bit 31 
(80000000) represents the character 0x1f. If a bit is on in map, the character represented by 
that bit must be sent as an escape sequence. If no asyncmap option is specified, all control 
characters are sent as escape sequences. The asyncmap option can also be written in the form -
as map.

auth

Requires the use of an authentication protocol. See Chapter 6 for a discussion of the 
authentication protocols CHAP and PAP.

bsdcomp receive,transmit

Enables the BSD-Compress scheme to compress packets. The maximum length code word 
used to compress packets accepted by this host is receive bits long. The maximum code 
word length used to compress packets sent by this host is transmit bits long. Acceptable 
code word length is 9 to 15 bits. Disable compression when receiving or transmitting by 
placing a 0 in receive or transmit, respectively.

-bsdcomp

Disables BSD-Compress compression.
+chap

Requires the use of the Challenge Handshake Authentication Protocol (CHAP).
-chap

Disables the use of CHAP. This is a bad idea.
chap-interval

Tells system to use CHAP to reauthenticate the remote system every n seconds.
chap-max-challenge n

Tells system to send the CHAP challenge to the remote system a maximum of n times until the 
remote system responds. The default is 10.

chap-restart n

Tells system to wait n seconds before retransmitting a CHAP challenges when the remote 
system fails to respond. The default is 3 seconds. 

file:///C|/mynapster/Downloads/warez/tcpip/appa_02.htm (2 of 9) [2001-10-15 09:19:10]



[Appendix A] A.2 The PPP Daemon

connect script

Invokes a script to create the serial connection. Any scripting language can be used, but 
chat is the most common. See Chapter 6 for an example of using connect to invoke an inline 
chat script.

crtscts

Enables hardware flow control (RTS/CTS).
-crtscts

Disables hardware flow control (RTS/CTS).
debug

Logs all control packets sent or received using syslogd with facility daemon and level debug. 
The debug option can also be written as -d.

defaultroute

Defines the PPP link as the default route. The route is removed when the connection is closed.
-defaultroute

Prevents users from creating a default route using the defaultroute option.
-detach

Prevents pppd from running as a background process. See the example in Chapter 6.
disconnect script

Invokes a script to gracefully shut down the serial connection. Any scripting language can 
be used, but chat is the most common.

domain name

Defines the name of the local domain. Use this if hostname does not return a fully qualified 
name for the local system.

escape x,x,...

Specifies characters that should be transmitted as two-character escape sequences. The 
characters are specified in a comma-separated list of hex numbers. Any character except 0x20 - 
0x3f and 0x5e can be escaped.

file file

Defines another options file, where file is the name of the new file. Options are normally 
read for /etc/ppp/options, ~/.ppprc, the command line, and /etc/ppp/options.device. See the 
description of these files earlier in this section.

-ip

file:///C|/mynapster/Downloads/warez/tcpip/appa_02.htm (3 of 9) [2001-10-15 09:19:10]



[Appendix A] A.2 The PPP Daemon

Disables IP address negotiation. When used, the remote IP address must be explicitly defined 
by a pppd option.

+ip-protocol

Enables the IPCP and IP protocols, which is the default.
-ip-protocol

Disables the IPCP and IP protocols. This should never be used on a TCP/IP network. It is for 
pure IPX networks.

ipcp-accept-local

Tells system to use the local IP address provided by the remote server even if it is defined 
locally.

ipcp-accept-remote

Tells system to use the remote IP address provided by the remote server even if it is defined 
locally.

ipcp-max-configure n

Tells system to send the IPCP configure-request packet a maximum of n times. The default is 
10.

ipcp-max-failure n

Tells system to accept up to n IPCP configure-NAKs before sending a configure-reject. The 
default is 10.

ipcp-max-terminate n

Tells system to send no more than n IPCP terminate-request packets without receiving an 
acknowledgment. The default is 3.

ipcp-restart n

Tells system to wait n seconds before resending an IPCP configure-request packet. The default 
is 3.

ipparam string

Passes string to the ip-up and ip-down scripts. /etc/ppp/ip-up is a shell script executed by 
pppd when the link comes up. /etc/ppp/ip-down is a shell script executed by pppd when the 
link is brought down.

kdebug n

Enables kernel-level debugging. n is 1 to print general debugging messages, 2 to print received 
packets, and 4 to print transmitted packets.

lcp-echo-failure n

Tells system to terminate the connection if no reply is received to n LCP echo-requests. 

file:///C|/mynapster/Downloads/warez/tcpip/appa_02.htm (4 of 9) [2001-10-15 09:19:10]



[Appendix A] A.2 The PPP Daemon

Normally echo-requests are not used for this purpose because "link down" conditions are 
determined by the modem hardware.

lcp-echo-interval n

Tells system to wait n seconds before sending another LCP echo-request when the remote 
system fails to reply.

lcp-max-configure n

Tells system to send the LCP configure-request packet a maximum of n times. The default is 
10.

lcp-max-failure n

Tells system to accept up to n LCP configure-NAKs before sending a configure-reject. The 
default is 10.

lcp-max-terminate n

Tells system to send no more than n LCP terminate-request transmissions without receiving an 
acknowledgment. The default is 3.

lcp-restart n

Tells system to wait n seconds before resending a LCP configure-request packet. The default is 
3.

local

Tells system to ignore the DCD (Data Carrier Detect) and DTR (Data Terminal Ready) modem 
control lines.

lock

Tells system to use a UUCP-style lock file to ensure that pppd has exclusive access to the 
serial device.

login

Tells system to use the /etc/passwd file to authenticate PAP users. Records the login in the 
wtmp file.

modem

Tells system to use the DCD (Data Carrier Detect) and DTR (Data Terminal Ready) modem 
control lines; wait for the DCD signal before opening the serial device; and drop the DTR 
signal when terminating a connection.

-mn

Disables magic number negotiation.
mru n

Sets the Maximum Receive Unit (MRU) to n bytes. MRU is used to tell the remote system the 

file:///C|/mynapster/Downloads/warez/tcpip/appa_02.htm (5 of 9) [2001-10-15 09:19:10]



[Appendix A] A.2 The PPP Daemon

maximum packet size the local system can accept. The minimum is 128. The default is 1500.
-mru

Disables Maximum Receive Unit (MRU) negotiation.
mtu n

Sets the Maximum Transmission Unit (MTU) to n bytes. MTU defines the maximum length of 
a packet that can be sent. The smaller of the local MTU and the remote MRU is used to define 
the maximum packet length.

name name

Tells system to use name as the name of the local system for authentication purposes.
netmask mask

Defines the subnet mask.
noipdefault

Instructs system not to use hostname to determine the local IP address. The address must be 
obtained from the remote system or explicitly set by an option.

+pap

Requires the use of the Password Authentication Protocol (PAP).
-pap

Disables the use of PAP.
papcrypt

Instructs system not to accept passwords that are identical to those in the /etc/ppp/pap-secrets 
file because the ones in the file are encrypted. Therefore the transmitted password should not 
match an entry in the pap-secrets file until it is also encrypted.

pap-max-authreq n

Tells system to transmit no more than n PAP authenticate-requests if the remote system does 
not respond. The default is 10.

pap-restart n

Tells system to wait n seconds before retransmitting a PAP authenticate-request. The default is 
3 seconds.

pap-timeout n

Tells system to wait no more than n seconds for the remote system to authenticate itself. When 
n is 0, there is no time limit.

passive

file:///C|/mynapster/Downloads/warez/tcpip/appa_02.htm (6 of 9) [2001-10-15 09:19:10]



[Appendix A] A.2 The PPP Daemon

Tells system to wait for a Link Control Protocol (LCP) packet from the remote system even if 
that system does not reply to the initial LCP packet sent by the local system. Without this 
option the local system aborts the connection when it does not receive a reply. The passive 
option can also be written as -p.

-pc

Disables protocol field compression negotiation. By default, protocol field compression is not 
used. Setting this option means that even if the remote end requests it, it will not be used.

persist

Tells system to reopen the connection if it was terminated by a SIGHUP signal.
pred1comp

Tells system to ask the remote system to use Predictor-1 compression.
-pred1comp

Tells system not to use Predictor-1 compression.
proxyarp

Tells system to enable proxy ARP. This adds a proxy ARP entry for the remote system to the 
local system's ARP table.

-proxyarp

Disables the proxyarp option, preventing users from creating proxy ARP entries with pppd.
remotename name

Tells system to use name as the remote system's name for authentication purposes.
silent

Tells system to wait for an LCP packet from the remote system. Do not send the first LCP 
packet.

usehostname

Disables the name option, forcing the local hostname to be used for authentication purposes.
user username

Tells system to use username for PAP authentication when challenged by a remote host.
-vj

Disables Van Jacobson header compression.
-vjccomp

Disables the connection-ID compression option in Van Jacobson header compression.
vj-max-slots n

file:///C|/mynapster/Downloads/warez/tcpip/appa_02.htm (7 of 9) [2001-10-15 09:19:10]



[Appendix A] A.2 The PPP Daemon

Tells system to use n connection slots for Van Jacobson header compression. n must be a 
number from 2 to 16.

Several of the options listed above concern PPP security. One of the strengths of PPP is its security. 
The Challenge Handshake Authentication Protocol (CHAP) is the preferred PPP security protocol. 
The Password Authentication Protocol (PAP) is less secure and only provided for compatibility with 
less capable systems. The usernames, IP addresses, and secret keys used for these protocols are 
defined in the /etc/ppp/chap-secrets file and the /etc/ppp/pap-secrets file. Chapter 6 shows the format 
of these files and describes their use.

It is very important that the directory /etc/ppp and the files in that directory not be world- or group-
writable. Modifications to the chap-secrets, pap-secrets, or options files could compromise system 
security. In addition, the script files /etc/ppp/ip-up and /etc/ppp/ip-down may run with root privilege. 
If pppd finds a file with the name ip-up in the /etc/ppp directory, it executes it as soon as the PPP 
connection is established. The ip-up script is used to modify the routing table, process the sendmail 
queue, or do other tasks that depend on the presences of the network connection. The ip-down script is 
executed by pppd after the PPP connection is closed and is used to terminate processes that depend 
on the link. Clearly these scripts and the /etc/ppp directory must be protected.

A.2.1 Signal processing

pppd handles the following signals:

SIGUSR1

This signal toggles debugging on or off. The first SIGUSR1 signal received by pppd turns on 
debugging and begins logging diagnostic messages through syslogd with facility set to daemon 
and level set to debug. The second SIGUSR1 signal turns off debugging and closes the log file. 
See the debug option described above.

SIGUSR2

This signal causes pppd to renegotiate compression. It has limited applicability because it is 
only needed to restart compression after a fatal error has occurred. Most people close the PPP 
connection and open a new one after a fatal error.

SIGHUP

This signal closes the PPP connection, returns the serial device to its normal operating mode, 
and terminates pppd. If the persist option is specified, pppd opens an new connection instead 
of terminating.

SIGINT

This signal, or the SIGTERM signal, closes the PPP connection, returns the serial device to its 
normal operating mode, and terminates pppd. The persist option has no effect.

file:///C|/mynapster/Downloads/warez/tcpip/appa_02.htm (8 of 9) [2001-10-15 09:19:10]



[Appendix A] A.2 The PPP Daemon

Previous: A.1 Dial-Up IP TCP/IP Network 
Administration

Next: A.3 chat

A.1 Dial-Up IP Book Index A.3 chat

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/appa_02.htm (9 of 9) [2001-10-15 09:19:10]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Appendix A] A.3 chat

Previous: A.2 The PPP 
Daemon

Appendix A
PPP Tools

Next: B. A gated Reference

 

A.3 chat

chat is a general-purpose scripting language that is used to control the modem, dial the remote server, 
and perform the remote system login. chat is less powerful than dip but is widely used. The 
"expect/send" structure of a chat script is the fundamental structure used in most scripting languages.

A chat script is composed of expect/send pairs. These pairs consist of the string expected from the 
remote system, separated by whitespace from the response that is sent to the remote host when the 
expected string is received. If no string is expected from the remote system, two quotes ("") or two 
apostrophes (") are used to "expect nothing." A simple chat script is:

"" \r name> jane word> TOga!toGA

The script expects nothing ("") until it sends the remote system a carriage return (\r). Then the script 
expects the remote system to send the string name>, which is part of the system's Username> 
prompt. In response to this prompt, the script sends the username jane. Finally the script waits for 
part of the Password> prompt and responds with TOga!toGA. A script this simple can be defined 
directly on the chat command line:

% chat -v -t30 "" \r name> jane word> TOga!toGA

This command runs chat in verbose mode, sets the length of time the script waits for an expected 
string to 30 seconds, and then executes the simple login script described above.

The syntax of the chat command is:

chat [options] [script]

The chat command options are:

-v

Runs the chat script in verbose mode. Verbose mode logs informational messages via syslogd.
-V

file:///C|/mynapster/Downloads/warez/tcpip/appa_03.htm (1 of 4) [2001-10-15 09:19:11]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


[Appendix A] A.3 chat

Runs the chat script in stderr verbose mode. The stderr verbose mode displays informational 
messages on the stderr device. See Chapter 6 for an example of this being used with pppd.

-t timeout

Sets the maximum time to wait for an expected string. If the expected string is not received in 
timeout seconds, the reply string is not sent and the script 
terminates&amp;amp;amp;mdash;unless an alternate send is defined. If defined, the alternate 
send (more about this later) is sent and the remote system is given one more timeout period 
to respond. If this fails, the script is terminated with a nonzero error code. By default, the 
timeout period is 45 seconds.

-f scriptfile

Reads the chat script from the scriptfile instead of from the command line. Multiple 
lines of expect/send pairs are permitted in the file.

-r reportfile

Writes the output generated by REPORT strings to the reportfile. By default, REPORT 
strings are written to stderr. The REPORT keyword is covered below.

In order to make the scripts more useful and robust, chat provides special keywords, escape 
sequences, and alternate send/expect pairs that can be used in the script. First let's look at the five chat 
keywords.

Two keywords transmit special signals to the remote system. The keyword EOT sends the End of 
Transmission character. On UNIX systems this is usually the End of File character, which is a CTRL-
D. The BREAK keyword sends a line break to the remote system. The three remaining keywords 
define processing characteristics for the script itself.

The TIMEOUT keyword defines the amount of time to wait for an expected string. Because it is 
defined inside the script, the timeout value can be changed for each expected string. For example, 
assume you want to allow the remote server 30 seconds to display the initial Username> prompt but 
only 5 seconds to display Password> once the username has been sent. Enter this script command:

TIMEOUT 30 name> karen TIMEOUT 5 word> beach%PARTY

The ABORT keyword and the REPORT keyword are similar. They both define strings that, when 
received, cause a special action to take place. The ABORT keyword defines strings that cause the 
script to abort if they are received when the system is expecting the string CONNECT from the 
modem. The REPORT keyword defines substrings that determine what messages received on the 
serial port should be written to stderr or the report file. A sample chat script file illustrates both of 
these keywords:

REPORT CONNECT
ABORT BUSY

file:///C|/mynapster/Downloads/warez/tcpip/appa_03.htm (2 of 4) [2001-10-15 09:19:11]



[Appendix A] A.3 chat

ABORT 'NO CARRIER'
ABORT 'RING - NO ANSWER'
"" ATDT5551234
CONNECT \r
name> karen
word> beach%PARTY

The first line says that any message received by the script that contains the word CONNECT will be 
logged. If the -r command-line option was used when chat was started, the message is logged in the 
file defined by that option. Otherwise the message is displayed on stderr. The point of this command 
is to display the modem's connect message to the user. For example: the complete message might be 
CONNECT 28,800 LAPM/V, which tells the user the link speed and the transmission protocol used 
by the modems. The CONNECT message means success. The next three lines of the script begin with 
the keyword ABORT and define the modem messages that mean failure. If the modem responds with 
BUSY, NO CARRIER, or RING - NO ANSWER, the script aborts.

The last four lines are the basic expect/send pairs we have seen repeatedly in this section. We expect 
nothing ("") and send the dial command to the modem (ATDT). We expect CONNECT from the 
modem and send a carriage return (\r) to the remote server. We expect Username> from the remote 
server and send karen. Finally, we expect Password> from the server and send beach%PARTY.

chat extends the standard expect/send pair with an alternate send and an alternate expect to improve 
robustness. You may define an alternate send string and an alternate expect value to be used when the 
script times out waiting for the primary expected value. The alternate send and the alternate expect are 
indicated in the script by preceding them with dashes. For example:

gin:-BREAK-gin: becca

In this sample we wait for the string gin: and send the string becca. The first string and the last 
string compose the standard expect/send pair. The alternate send/expect is only used if the timer 
expires and the expected gin: string has not been received. When this occurs, the script sends a line 
break, restarts the timer, and waits for gin: again, because that is what our alternate send/expect pair 
(-BREAK-gin:) tells the script to do. Note that unlike the standard expect/send pair, in the 
send/expect pair a value is transmitted before a string is expected, i.e., the send comes before the 
expect. Another example more in keeping with our other script examples is:

name>&amp;amp;amp;mdash;name> karen

Here the script expects the name> string. If it is not received, the script sends an empty line, which is 
simply a carriage return, and again waits for the name> string. This action is dictated by the alternate 
send/expect pair, &amp;amp;amp;mdash;name>. The pair begins with a dash that signals the 
start of the send string, but the next character is the second dash that marks the beginning of the 
alternate expect string. There is no send string. It is this "empty string" that causes the script to send a 
single return character. This example is more common than the BREAK example shown above, 
though a little harder to explain.

file:///C|/mynapster/Downloads/warez/tcpip/appa_03.htm (3 of 4) [2001-10-15 09:19:11]



[Appendix A] A.3 chat

The carriage return character is not the only special character that can be sent from a chat script. chat 
provides several escape sequences for sending and receiving special characters. Table 13.2 lists these.

Table A.2: chat Escape Sequences

Escape Sequence Meaning

\b The backspace character.

\ Send without the terminating return character.

\d Delay sending for one second.

\K Send a BREAK.

\n Send a newline character.

\N Send a null character.

\ Delay sending 1/10th of a second.

\q Send the string but don't log it.

\r The carriage return.

\s The space character.

\t The tab character.

\\ The backslash character.

\ddd The ASCII character with the octal value ddd.

^C A control character.

All of the escape sequences start with a backslash (\) except for the sequence used to enter a control 
character. Control characters are entered as a caret (^) followed by an uppercase letter. For example 
control X is entered as ^X. The escape sequences that are described in Table 13.2 with the words 
"send" or "sending" can only be used in a send string; all others can be used in either a send or expect 
string. Several escape sequences are used in the following example:

"" \d\d^G\p^G\p\p^GWake\sUp!\nSleepy\sHead!

Expect nothing (""). Wait two seconds (\d\d). Send three ASCII BELL characters, which is CTRL-
G on the keyboard, at intervals of 1/10 of a second (^G\p^G\p\p^G). Send the string Wake Up!. 
Go to a new line (\n) and send the string Sleepy Head!.

Previous: A.2 The PPP 
Daemon

TCP/IP Network 
Administration

Next: B. A gated Reference

A.2 The PPP Daemon Book Index B. A gated Reference

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/appa_03.htm (4 of 4) [2001-10-15 09:19:11]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Appendix B] A gated Reference

Previous: A.3 chat Appendix B Next: B.2 The gated 
Configuration Language

 

B. A gated Reference
Contents:
The gated Command
The gated Configuration Language
Directive Statements
Trace Statements
Options Statements
Interface Statements
Definition Statements
Protocol Statements
static Statements
Control Statements
The Aggregate Statements

This appendix covers the syntax of the gated command and the gated configuration language. As a 
reference to the gated configuration language, this appendix stands on its own. But to fully 
understand how to configure gated, use this reference in conjunction with the sample configuration 
files in Chapter 7, Configuring Routing .

gated is constantly being improved. As it is upgraded, the command language changes. Refer to the 
latest manpages for the most recent information about gated.

B.1 The gated Command

The syntax of the gated command is:

gated [-c] [-C] [-n] [-N] [-t trace_options] [-f config_file] [trace_file]

The -c and -n command-line options debug the routing configuration file without impacting the 
network or the kernel routing table. Frequently, these debugging options are used with a test 
configuration identified by the -f config_file option:

file:///C|/mynapster/Downloads/warez/tcpip/appb_01.htm (1 of 4) [2001-10-15 09:19:11]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


[Appendix B] A gated Reference

-c

Tells gated to read the configuration file and check for syntax errors. When gated finishes 
reading the configuration file, it produces a snapshot of its status and then terminates. It writes 
the snapshot to /usr/tmp/gated_dump. Running gated with the -c option does not require 
superuser privilege, and it is not necessary to terminate the active gated process.

-C

Checks the configuration file for syntax errors. gated exits with a status 1 if there are errors 
and 0 if there are none. Because this provides exit status, it is useful for script files.

-n

Tells gated not to update the kernel routing table. This is used to test the routing configuration 
with real routing data without interfering with system operation.

-f config_file

Tells gated to read the configuration from config_file instead of from the default 
configuration file, /etc/gated.conf. Used in conjunction with the -c option, -f checks a new 
configuration without interfering with the currently running gated configuration.

The -N command-line option prevents gated from running in background mode as a daemon. This 
option is used when gated is started from inittab. By default, gated runs as a daemon.

The command-line arguments trace_options and trace_file are used for protocol tracing. 
The trace_file argument names the file to which the trace output is written. If a file is not 
specified, the trace is written to the standard output. Tracing usually produces a large amount of 
output.

The command-line options used for tracing are:

-t

This option turns on tracing. If -t is specified with no trace_options, gated defaults to 
general tracing, which traces normal protocol interactions and routing table changes. gated 
always logs protocol errors even if no tracing is specified. You can define several different 
trace_options, all of which are described later in this appendix. A few 
trace_options (detail, send, recv) cannot be specifed on the gated command line. Two 
others are most useful when they are defined on the command line: 

symbols

Traces the symbols read from the kernel, which is primarily of interest to developers 
debugging the interaction of gated and the kernel.

iflist

file:///C|/mynapster/Downloads/warez/tcpip/appb_01.htm (2 of 4) [2001-10-15 09:19:11]



[Appendix B] A gated Reference

Traces the list of interfaces read from the kernel. Use this to determine what interfaces 
are detected by the kernel interface scan.

The advantage of placing a trace option on the command line is that it can trace activities that happen 
before the configuration file is processed. For the two options listed above, this is an essential 
advantage. For other options it is not very important. Most trace options are specified in the 
configuration file. See the traceoptions command later in this appendix for more details.

B.1.1 Signal Processing

gated processes the following signals:

SIGHUP

Tells gated to reread the configuration file. The new configuration replaces the one that gated 
is currently running. SIGHUP loads the new configuration file without interrupting gated 
service. SIGHUP is available for quick configuration changes. At most sites, the routing 
configuration changes infrequently. The few times you need to change to a new configuration, 
terminate gated and rerun it with the new configuration. This is a more accurate test of how 
things will run at the next boot.

SIGINT

Tells gated to snapshot its current state to the file /usr/tmp/gated_dump.
SIGTERM

Tells gated to shut down gracefully. All protocols are shut down following the rules of that 
protocol. For example, EGP sends a CEASE message and waits for it to be confirmed. 
SIGTERM removes from the kernel routing table all routes learned via the exterior routing 
protocols. If you need to preserve those routes while gated is out of operation, use SIGKILL.

SIGKILL

Tells gated to terminate immediately and dump core. Routes are not removed from the routing 
table, and no graceful shutdown is attempted.

SIGUSR1

Tells gated to toggle tracing. If no trace flags are set, SIGUSR1 has no effect. But if tracing is 
enabled, the first SIGUSR1 causes gated to toggle off tracing and to close the trace file. The 
next SIGUSR1 turns tracing back on and opens the trace file. When the trace file is closed, it 
can be moved or removed without interfering with the operation of gated. Use this to 
periodically empty out the trace file to prevent it from becoming too large.

SIGUSR2

Tell gated to check for changes in the status of the network interfaces.

file:///C|/mynapster/Downloads/warez/tcpip/appb_01.htm (3 of 4) [2001-10-15 09:19:11]



[Appendix B] A gated Reference

The following is an example of gated signal handling. First, the SIGUSR1 signal is passed to the 
gated process using the process ID obtained from the gated.pid file (/var/run/gated.pid in this case).

# kill -USR1 `cat /var/run/gated.pid`

Next, the old trace file (/usr/tmp/gated.log in this case) is removed, and gated is passed another 
SIGUSR1 signal.

# rm /usr/tmp/gated.log
# kill -USR1 `cat /etc/gated.pid`

After receiving the second signal, gated opens a fresh trace file (still named /usr/tmp/gated.log). An ls 
shows that the new file has been created.

# ls -l /usr/tmp/gated.log
-rw-rw-r--  1 root          105 Jul  6 16:41 /usr/tmp/gated.log

Previous: A.3 chat TCP/IP Network 
Administration

Next: B.2 The gated 
Configuration Language

A.3 chat Book Index B.2 The gated Configuration 
Language

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/appb_01.htm (4 of 4) [2001-10-15 09:19:11]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Appendix B] B.2 The gated Configuration Language

Previous: B.1 The gated 
Command

Appendix B
A gated Reference

Next: B.3 Directive 
Statements

 

B.2 The gated Configuration Language

The gated configuration language is a highly structured language similar to C in appearance. 
Comments either begin with a #, or they begin with /* and end with */. gated configuration 
statements end with a semicolon, and groups of associated statements are enclosed in curly braces. 
The language structure is familiar to most UNIX system administrators, and the structure makes it 
easy to see what parts of the configuration are associated with each other. This is important when 
multiple protocols are configured in the same file.

The configuration language is composed of nine types of statements. Two statement types, directive 
statements and trace statements, can occur anywhere in the gated.conf file and do not directly relate to 
the configuration of any protocol. These statements provide instructions to the parser and control 
tracing from within the configuration file. The other seven statement types are options statements, 
interface statements, definition statements, protocol statements, static statements, control statements, 
and aggregate statements. These statements must appear in the configuration file in the correct order, 
starting with options statements and ending with aggregate statements. Entering a statement out of 
order causes an error when parsing the file.

The remainder of this appendix provides a description of all commands in the gated configuration 
language, organized by statement type.

Previous: B.1 The gated 
Command

TCP/IP Network 
Administration

Next: B.3 Directive 
Statements

B.1 The gated Command Book Index B.3 Directive Statements

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/appb_02.htm [2001-10-15 09:19:12]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm
file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Appendix B] B.3 Directive Statements

Previous: B.2 The gated 
Configuration Language

Appendix B
A gated Reference

Next: B.4 Trace Statements

 

B.3 Directive Statements

Directive statements provide direction to the gated command language parser about "include" files. 
An include file is an external file whose contents are parsed into the configuration as if it were part of 
the original gated.conf file. Include files can contain references to other include files, and these 
references can be nested up to 10 levels deep.

The two directive statements are:

%include filename

Identifies an include file. The contents of the file are "included" in the gated.conf file at the 
point in the gated.conf file where the %include directive is encountered. filename is any 
valid UNIX filename. If filename is not fully qualified, i.e., does not begin with a /, it is 
considered to be relative to the directory defined in the %directory directive.

%directory pathname

Defines the directory where the include files are stored. When it is used, gated looks in the 
directory identified by pathname for any include file that does not have a fully qualified 
filename.

Unless you have a very complex routing configuration, avoid using include files. In a complex 
environment, segmenting a large configuration into smaller, more easily understood segments can be 
helpful, but most gated configurations are very small. One of the great advantages of gated is that it 
combines the configuration of several different routing protocols into a single file. If that file is small 
and easy to read, segmenting the file unnecessarily complicates things.

Previous: B.2 The gated 
Configuration Language

TCP/IP Network 
Administration

Next: B.4 Trace Statements

B.2 The gated Configuration 
Language

Book Index B.4 Trace Statements

file:///C|/mynapster/Downloads/warez/tcpip/appb_03.htm (1 of 2) [2001-10-15 09:19:12]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


[Appendix B] B.3 Directive Statements

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/appb_03.htm (2 of 2) [2001-10-15 09:19:12]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


file:///C|/mynapster/Downloads/warez/tcpip/appb_04.htm

Previous: B.3 Directive 
Statements

Appendix B
A gated Reference

Next: B.5 Options 
Statements

 

B.4 Trace Statements

Trace statements allow you to control the trace file and its contents from within the gated.conf file. 
The trace statement is:

traceoptions ["trace_file" [replace] [size bytes[k|m] files n]] [nostamp] trace_options 
[except trace_options] ;

Its components are as follows:

trace_file

Identifies the file that receives the trace output. It has exactly the same function as the 
trace_file argument on the gated command line.

replace

Replaces the existing trace file. If you do not use this keyword, the trace output is appended to 
the current contents of the file. 

size bytes[k|m] [files n]

Limits the trace file to a maximum size of bytes. The optional k or m indicates thousands (k) 
or millions (m) of bytes. Thus 1000000 and 10m are equivalent entries. The size of the trace 
file cannot be less than 10k bytes. n defines the maximum number of trace files that should be 
saved. When the trace file reaches the maximum size, it is saved as trace_file.0, 
trace_file.1, trace_file.2 up to trace_file.n. The next save then overwrites 
trace_file.0. The value for n must be at least 2.

nostamp

Specifies that trace lines should not begin with a timestamp. Timestamping each line of trace 
data is the default.

trace_options

Define the events to be traced by gated. Each trace option is specified by a keyword name. The 
available trace options are: 

file:///C|/mynapster/Downloads/warez/tcpip/appb_04.htm (1 of 3) [2001-10-15 09:19:13]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


file:///C|/mynapster/Downloads/warez/tcpip/appb_04.htm

none

Turns off all tracing. 
all

Turns on all types of global tracing. 
general

Turns on both normal and route tracing. 
state

Traces state machine transitions for protocols such as OSPF and BGP. The RFCs 
describe these protocols using finite state machine (FSM) diagrams or tables. The 
protocols transition from one state to another based on the occurrence of certain events. 
For example, the state might change from idle to connect when a connection open event 
occurs. This is a highly specialized trace flag, useful only to those who have a thorough 
understanding of the protocols involved. Use this option within the protocol statement 
to trace a specific protocol's transitions.

normal

Traces normal protocols interactions. Errors are always traced. 
policy

Traces the application of routing policies. Use this to check that you have properly 
configured your routing policy.

task

Traces system-level processing. 
timer

Traces the various timers used by a protocol or peer. 
route

Traces routing table changes. Use this to check that routes are properly installed by the 
protocol.

detail

Traces the contents of the packets exchanged by the router. Must be specified before 
send or recv.

send

Limits the detail trace to packets sent by this router. 
recv

file:///C|/mynapster/Downloads/warez/tcpip/appb_04.htm (2 of 3) [2001-10-15 09:19:13]



file:///C|/mynapster/Downloads/warez/tcpip/appb_04.htm

Limits the detail trace to packets received by this router. Without these two options, all 
packets are traced when detail is specified.

symbols

Traces the symbols read from the kernel at startup. See the -t command-line argument.
iflist

Traces the kernel interface list. See the -t command-line argument. 
parse

Traces the lexical analyzer and parser. 
adv

Traces the allocation and release of blocks. 

except trace_options

Disables specific trace options. Must be used in conjunction with trace_options that 
enable a wide variety of tracing. For example: traceoptions all except state 
turns on all traces except for finite state machine tracing.

gated provides the flexibility for you to choose where you want to control tracing - on the command 
line or in the configuration file. By and large, the same trace options can be set on the gated command 
line or in the configuration file. detail, send and recv can be set only in the configuration file. 

Two others, symbols and iflist, are primarily used on the command line. Refer to the section on the 
gated command line for a description of setting trace options with -t.

Some trace options are only useful for protocol developers and other experts. For most of us, general, 
which enables normal and route tracing, is an appropriate level of information for debugging routing 
problems. Occasionally policy is useful for testing a routing policy. Most of the time, however, no 
tracing is needed.

Previous: B.3 Directive 
Statements

TCP/IP Network 
Administration

Next: B.5 Options 
Statements

B.3 Directive Statements Book Index B.5 Options Statements

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/appb_04.htm (3 of 3) [2001-10-15 09:19:13]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Appendix B] B.5 Options Statements

Previous: B.4 Trace 
Statements

Appendix B
A gated Reference

Next: B.6 Interface 
Statements

 

B.5 Options Statements

Options statements define parameters that direct gated to do special internal processing. Options 
statements appear before any other configuration statements in the gated.conf file. 

The options statement syntax is: 

options
[nosend]
[noresolv]
[gendefault [preference preference] [gateway gateway]]
[syslog [upto] log_level]
[mark time]
;

An options statement can contain: 

nosend

Instructs system not to send any packets. This option tests gated without actually sending out 
routing information. Use for RIP and HELLO. It is not yet implemented for BGP and is not 
useful for OSPF.

noresolv

Instructs system not to use the Domain Name System (DNS) to resolve hostnames and 
addresses. DNS failures can cause gated to deadlock during startup. Use this to prevent 
deadlock.

gendefault [preference preference] [gateway gateway]

Generates a default route, with a preference of 20, when gated peers with an EGP or BGP 
neighbor. If gateway is not defined, the gateway in the generated route is the system itself; the 
default route is not installed in the kernel table; and it is used only to advertise this system as a 
default gateway. If gateway is specified, the default route is installed in the kernel table with 
the specified router as the next hop. This option can be overridden with the nogendefault 

file:///C|/mynapster/Downloads/warez/tcpip/appb_05.htm (1 of 2) [2001-10-15 09:19:13]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


[Appendix B] B.5 Options Statements

option.
syslog [upto] log_level

Tells system to use the setlogmask facility to control gated logging. See the setlogmask(3) 
manpage if this facility is available on your system.

mark time

Sends a periodic timestamp message to the trace file. time defines how frequently the 
timestamp should be issued. Use this to determine if gated is running.

Previous: B.4 Trace 
Statements

TCP/IP Network 
Administration

Next: B.6 Interface 
Statements

B.4 Trace Statements Book Index B.6 Interface Statements

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/appb_05.htm (2 of 2) [2001-10-15 09:19:13]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Appendix B] B.6 Interface Statements

Previous: B.5 Options 
Statements

Appendix B
A gated Reference

Next: B.7 Definition 
Statements

 

B.6 Interface Statements

An interface statement defines configuration options for the network interfaces. The 
interface_list identifies the interfaces affected by the configuration options. The interfaces in 
the list are identified by interface name (e.g., le0), by hostname, by IP address, or by the keyword all. 
The keyword all refers to every interface on the system. The interface name can refer to a single 
interface or a group of interfaces. For example, an interface name of eth0 refers to the interface eth0, 
whereas the name le refers to all installed interfaces that start with the letters le (which might include 
le0, le1, and le2). A hostname can be used if it resolves to only one address. 

Most system administrators prefer to use the IP address to identify an interface. After all, IP addresses 
are inherently a part of TCP/IP, and it's TCP/IP routing that this file configures. 

Additionally, remote systems know this interface by its IP address, not its interface name. Finally, 
DNS may provide more than one address for a hostname, and future UNIX operating systems may 
allow more than one address per interface. IP addresses are safest.

gated supports four types of interfaces: loopback, broadcast, point-to-point, and non-broadcast multi-
access (NBMA). All of these are discussed in the text of this book except for NBMA. It is a multi-
access interface, but the underlying network is not capable of broadcast. Examples are frame relay and 
X.25.

gated ignores any interface in the list that has an invalid local, remote, or broadcast address, or an 
invalid subnet mask. gated also ignores a point-to-point interface that has the same local and remote 
addresses. gated assumes that interfaces that are not marked UP by the kernel do not exist.

The syntax of the interfaces statement is:

interfaces {
options
[strictinterfaces]
[scaninterval time] ;
interface interface_list
[preference preference]
[down preference preference]

file:///C|/mynapster/Downloads/warez/tcpip/appb_06.htm (1 of 3) [2001-10-15 09:19:14]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


[Appendix B] B.6 Interface Statements

[passive]
[simplex]
[reject]
[blackhole] ;
define address
[broadcast address] | [pointtopoint address]
[netmask mask]
[multicast] ;
} ;

The configuration options defined before the interface list are global options. The global options are:

strictinterfaces

Generates a fatal error if an interface is referenced in the configuration file that is not found 
when gated scans the kernel at startup and is not listed in a define statement. (See the define 
option later in this section.) Normally a warning message is issued and gated continues 
running.

scaninterval time

Specifies how often gated scans the kernel interface list for changes. The default is every 15 
seconds on most systems, and 60 seconds on systems that pass interface status changes through 
the routing socket, e.g., BSD 4.4. Note that gated also scans the interface list on receipt of a 
SIGUSR2.

The interface command defines the interface_list and all of the options that affect the 
specified interfaces. Options available on this statement are:

preference preference

Sets the preference for this interface. The value preference is a number between 0 and 255. 
gated prefers routes through interfaces with low preference numbers. The default preference 
for all directly attached network interfaces is 0.

down preference preference

Sets the preference used when gated believes an interface is not functioning properly. The 
default is 120.

passive

Prevents gated from downgrading the preference of the interface when it is not functioning 
properly. gated assumes that an interface is down when it stops receiving routing information 
through that interface. gated only performs this check if the interface is actively participating 
in a routing protocol.

simplex

file:///C|/mynapster/Downloads/warez/tcpip/appb_06.htm (2 of 3) [2001-10-15 09:19:14]



[Appendix B] B.6 Interface Statements

Specifies that gated should not use packets generated by this system as an indication that the 
interface is functioning properly. Only packets from remote systems are used to indicate that 
the interface is operating.

reject | blackhole

Either of these keywords identifies the interface as the "blackhole interface" used to install 
rejected routes in the kernel. (See the control statements for more about rejected routes.) This 
is available only on BSD systems that have installed a reject/blackhole pseudo-interface. 

The define address command lists interfaces that might not be present when gated scans the kernel 
interface list at startup. It overrides the strictinterfaces option for the interface defined by address. 
Possible options for the define command are:

broadcast address

Defines the broadcast address. 
pointopoint address

Defines the local address for a point-to-point interface. (See Chapter 6, Configuring the 
Interface for a discussion of point-to-point interfaces.) When this option is used, the address on 
the define statement specifies the address of the remote host, and the address specified after the 
pointopoint keyword defines the local address. Don't use both broadcast and pointopoint in 
the same define.

netmask mask

Defines the subnet mask.
multicast

Specifies that the interface supports multicasting. 

Previous: B.5 Options 
Statements

TCP/IP Network 
Administration

Next: B.7 Definition 
Statements

B.5 Options Statements Book Index B.7 Definition Statements

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/appb_06.htm (3 of 3) [2001-10-15 09:19:14]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Appendix B] B.7 Definition Statements

Previous: B.6 Interface 
Statements

Appendix B
A gated Reference

Next: B.8 Protocol 
Statements

 

B.7 Definition Statements

Definition statements are general configuration statements that relate to more than one protocol. 
Definition statements must appear before any protocol statements in gated.conf. The three definition 
statements are:

autonomoussystem asn [loops n] ;

Defines the autonomous system number (asn) used by BGP or EGP. The loops number 
defines the number of times this autonomous system may appear in an AS path for path vector 
protocols, such as BGP. The default value for n is 1.

routerid address ;

Defines the router identifier used by BGP and OSPF. Use the address of your primary OSPF or 
BGP interface. By default, gated uses the address of the first interface it encounters.

martians {
host address [allow];
address [mask mask | masklen number] [allow] ;
default [allow] ;
} ;

Changes the list of addresses about which all routing information is ignored. Sometimes a 
misconfigured system sends out obviously invalid destination addresses. These invalid addresses, 
called martians, are rejected by the routing software. This command allows changes to the list of 
martian addresses. A martian address can be specified as a host address by using the host keyword 
before the address, or as a network address by simply specifying the address.

An address mask can be defined for a network address. The mask can be defined in dotted decimal 
notation using the mask keyword or as a numeric prefix length using the masklen keyword. The 
address masks mask 255.255.0.0 and masklen 16 are equivalent. If no address mask is 
specified, the natural mask is used. Specifying an address in the martians statement adds the address 
to the martians list. The allow keyword is used to remove an address from the martians list. When an 
address is removed from the martians list, it then becomes a valid address for routing.

file:///C|/mynapster/Downloads/warez/tcpip/appb_07.htm (1 of 2) [2001-10-15 09:19:14]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


[Appendix B] B.7 Definition Statements

gated contains a standard martian list of addresses that are known to be invalid. This is the default 
martian list. The option default allow removes all of the standard entries from the martians list and 
permits unrestricted routing. Don't do this if you're on a connected network.

Here is a sample of each definition statement:

autonomoussystem 249 ;
routerid 172.16.12.2 ;
martians {
        host 0.0.0.26 ;
        192.168.0.0 masklen 16 allow ;
} ;

The statements in the sample perform the following functions:

●     The autonomoussystem statement tells gated to use AS number 249 for its BGP or EGP 
packets.

●     The routerid statement tells gated to use 172.16.12.2 as the router identifier for OSPF and 
BGP.

●     The martians statement prevents routes to 0.0.0.26 from being included in the table, but it 
allows routes to the private IP addresses in the range 192.168.0.0 to 192.168.255.255.

Previous: B.6 Interface 
Statements

TCP/IP Network 
Administration

Next: B.8 Protocol 
Statements

B.6 Interface Statements Book Index B.8 Protocol Statements

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/appb_07.htm (2 of 2) [2001-10-15 09:19:14]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Appendix B] B.8 Protocol Statements

Previous: B.7 Definition 
Statements

Appendix B
A gated Reference

Next: B.9 static Statements

 

B.8 Protocol Statements

Protocol statements enable or disable protocols and set protocol options. The protocol statements 
occur after the definition statements and before the static statements. There are many protocol 
statements and more may be added at any time. There are statements for the various interior and 
exterior routing protocols, and for other things that are not really routing protocols. 

In this section we begin with the interior protocols, move on to the exterior protocols, and finish with 
the special "protocols."

B.8.1 The ospf Statement

ospf yes | no | on | off [{
defaults {
preference preference ;
cost cost ;
tag [as] tag ;
type 1 | 2 ; } ;
exportlimit routes ;
exportinterval time ;
traceoptions trace_options ;
monitorauthkey password ;
backbone | area number {
authtype 0 | 1 | none | simple ;
stub [cost cost] ;
networks {
address [mask mask |masklen number] [restrict] ;
host address [restrict] ; } ;
stubhosts {
address cost cost ; } ;
interface interface_list [nonbroadcast] [cost cost] {
pollinterval time ;
routers {
address [eligible] ; } ;
interface_parameters } ;

file:///C|/mynapster/Downloads/warez/tcpip/appb_08.htm (1 of 26) [2001-10-15 09:19:17]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


[Appendix B] B.8 Protocol Statements

virtuallink neighborid router_id transitarea area {
interface_parameters } ;
} ;
} ] ;

The ospf statement enables or disables the Open Shortest Path First (OSPF) routing protocol. By 
default, OSPF is disabled. It is enabled by specifying yes or on (it doesn't matter which you use) and it 
is disabled with no or off.

NOTE: For the sake of brevity, this text explains only the first occurrence of any 
gated.conf parameter if it is used the same way in subsequent commands. Only 
differences between commands are explained. For example, yes | no | on | off is not 
explained again, because it is always used in the same way to enable or disable a 
protocol.

The ospf statement has many configuration parameters:

defaults

Defines the defaults used when importing OSPF routes from an external autonomous system 
and announcing those routes to other OSPF routers. The link-state advertisement (LSA) used to 
announce these routes is called an ASE (autonomous system external) because it contains 
routes from external autnomous systems. See the description of OSFP in Chapter 7. 

preference preference

Defines the preference of OSPF ASE routes. The default is 150.
cost cost

Defines the cost used when advertising a non-OSPF route in an ASE. The default is 1.
tag [as] tag

Defines the OSPF ASE tag value. The tag is not used by the OSPF protocol, but may be 
used by an export policy to filter routes. (See the export statement later in this 
appendix.) When the as keyword is specified, the tag field may contain AS path 
information.

type 1 | 2

Defines the type of ASE used. The default is type 1. Type 1 contains routes learned from 
an external protocol that provides a metric directly comparable to the OSPF metric. The 
metric is added to the cost of reaching the border router when routes are advertised. A 
type 2 ASE contains routes learned from an exterior gateway protocol that does not 
provide a routing metric comparable to the OSPF metric. These routes are advertised 
with the cost of reaching the border router. See Chapter 7.

file:///C|/mynapster/Downloads/warez/tcpip/appb_08.htm (2 of 26) [2001-10-15 09:19:17]



[Appendix B] B.8 Protocol Statements

exportlimit routes

Defines the maximum number of ASE LSAs that will be flooded at one time. The default is 
100.

exportinterval time

Defines how frequently ASE link-state advertisements are flooded to the network. The default 
is once per second.

traceoptions trace_options

Defines the tracing used to debug OSPF. In addition to the standard trace flags, OSPF supports: 

lsabuild

Traces construction of link-state advertisements (LSA). 
spf

Traces the Shortest Path First (SPF) calculations. 
hello

Traces the OSPF HELLO packets. 
dd

Traces the OSPF Database Description packets. 
request

Traces the OSPF Link-State Request packets. 
lsu

Traces the OSPF Link-State Update packets. 
ack

Traces OSPF Link-State Ack packets. 

monitorauthkey password

Defines the password used for ospf_monitor queries. By default these queries are not 
authenticated. If monitorauthkey is specified, incoming queries must contain the specified 
password.

backbone | area number

Defines the OSPF area of which this router is a member. Every router must belong to an area. If 
more than one area is configured, at least one must be the backbone. The backbone is defined 
using the backbone keyword. All other areas are defined by the area keyword and the number 

file:///C|/mynapster/Downloads/warez/tcpip/appb_08.htm (3 of 26) [2001-10-15 09:19:17]



[Appendix B] B.8 Protocol Statements

of the area, e.g., area 1. See Chapter 7 for a discussion of OSPF areas. Several configuration 
parameters are associated with each area: 

authtype 0 | 1 | none | simple

Specifies the authentication scheme used in this area. The authentication schemes can be 
defined by none or 0 for no authentication, or simple or 1 for password authentication. 
Each system in an area must use this same authentication scheme.

stub [cost cost]

Specifies that this is a stub area. A stub area is one in which there are no ASE routes. If 
a cost is specified, it is used to advertise a default route into the stub area.

networks

Defines the range of networks contained within this area. The specified ranges are 
advertised into other areas as summary network LSAs and not as inter-area routes. If 
restrict is specified, the summary network LSAs are not advertised. The entries in the 
networks list are either specified as host addresses by using the host keyword before the 
address, or as a network address by simply specifying the address. An address mask can 
be defined for a network address. The mask can be defined in dotted decimal notation 
using the mask keyword or as a numeric prefix length using the masklen keyword. The 
address masks mask 255.255.0.0 and masklen 16 are equivalent. If no address 
mask is specified, the natural mask is used. This option can reduce the amount of 
routing information propagated between areas.

stubhosts

Lists the directly attached hosts, and their costs, that should be advertised as reachable from 
this router. List point-to-point interfaces here.

interface interface_list [nobroadcast] [cost cost]

Defines the interfaces used by OSPF. If the keyword nobroadcast is specified, the interface 
connects to a non-broadcast multi-access (NBMA) network. If nobroadcast is not used, the 
interface connects to a broadcast or a point-to-point network. Specify the cost of the interface 
with the cost keyword, e.g., cost 5. The default cost is 1. Two options are specific to NBMA 
interfaces: 

pollinterval time

Defines the time interval at which OSPF HELLO packets are sent to neighbors.
routers

Lists all neighbors by address. The eligible keyword indicates if the neighbor can 
become a designated router. 

file:///C|/mynapster/Downloads/warez/tcpip/appb_08.htm (4 of 26) [2001-10-15 09:19:17]



[Appendix B] B.8 Protocol Statements

Point-to-point interfaces have one additional parameter: 

nomulticast

Forces gated to unicast OSPF packets over this interface. By default, OSPF packets to 
neighbors on point-to-point interfaces are sent via the IP multicast mechanism. Use this 
option if the remote neighbor does not support multicasting.

All interfaces - NBMA, point-to-point, and broadcast - can use these parameters: 

enable | disable ;

Enables or disables the interface.
retransmitinterval time ;

Defines the number of seconds between link-state advertisement retransmissions.
transitdelay time ;

Defines the estimated number of seconds required to transmit a link-state update over 
this interface. It must be greater than 0.

priority priority ;

Defines this system's priority for the designated router election. priority is a number 
from 0 to 255. The router with the highest priority becomes the designated router. A 
router whose priority is 0 is ineligible to become the designated router. See Chapter 7 
for a discussion of desginated routers.

hellointerval time ;

Defines the number of seconds between transmissions of HELLO packets. 
routerdeadinterval time ;

Defines the timeout before a neighbor is declared down. time is the maximum number 
of seconds this router will wait for a neighbor's Hello packet.

authkey key ;

Defines a key used to authenticate OSPF packets. The key is specified as one to eight 
decimal digits separated by periods, a one- to eight-byte hexadecimal string preceded by 
0x, or a one- to eight-character string in double quotes.

virtuallink neighborid router_id transitarea area

Defines a virtual link for the backbone area. The router_id is the router identifier of the 
remote router at the other end of the virtual link. The transit area must be one of the other areas 
configured on this system. All standard interface parameters defined above may be specified on 

file:///C|/mynapster/Downloads/warez/tcpip/appb_08.htm (5 of 26) [2001-10-15 09:19:17]



[Appendix B] B.8 Protocol Statements

a virtual link.

B.8.2 The rip Statement

rip yes | no | on | off [ {
broadcast ;
nobroadcast ;
nocheckzero ;
preference preference ;
defaultmetric metric ;
query authentication [none | [simple | md5 password]] ;
interface interface_list
[noripin] | [ripin]
[noripout] | [ripout]
[metricin metric] 
[metricout metric]
[version 1 | 2 [multicast | broadcast]] 
[[secondary] authentication [none | [simple | md5 password]] ;
trustedgateways gateway_list ;
sourcegateways gateway_list ;
traceoptions trace_options ;
} ] ;

The rip statement enables or disables RIP. By default RIP is enabled. The rip statement options are: 

broadcast

Forces gated to broadcast RIP update packets even if the system has only one network 
interface. By default, RIP updates are not broadcast if the system has only one network 
interface and are broadcast if it has more than one network interface; i.e., hosts do not broadcast 
updates and routers do. Forces gated to not broadcast RIP update packets even if the system 
has more than one network interface. If a sourcegateways clause is present, routes are still 
unicast directly to that gateway. See sourcegateways later in this section. Specifies that gated 
should not reject incoming version 1 RIP packets where the reserved fields are 0. Rejecting 
those packets is standard practice.

preference preference ;

Sets the gated preference for routes learned from RIP. The default preference for these routes is 
100.

defaultmetric metric ;

Defines the metric used when advertising routes via RIP that were learned from other 
protocols. The default metric is 16, which to RIP indicates an unusable route. This means 
that by default, routes learned from other protocols are not advertised as valid routes by RIP. 
Set a lower value only if you want all routes learned from other protocols advertised at that 

file:///C|/mynapster/Downloads/warez/tcpip/appb_08.htm (6 of 26) [2001-10-15 09:19:17]



[Appendix B] B.8 Protocol Statements

metric.
query authentication [none | [simple | md5 key]] ;

Specifies the authentication used for non-router query packets. The default is none. If simple is 
specified, the key is a 16-byte password. If md5 is specified, the key is a 16-byte value used 
with the packet contents to generate a Message Digest 5 cryptographic checksum.

interface interface_list

Identifies the interfaces over which RIP runs and defines the configuration parameters of those 
interfaces. The interface_list can contain interface names, hostnames, IP addresses, or 
the keyword all. Possible parameters are: 

noripin

Tells system to ignore RIP packets received on this interface. The default is to listen to 
RIP packets on all non-loopback interfaces.

ripin

Tells system to listen to RIP packets received on this interface. This is the default.
noripout

Tells system not to send RIP packets out this interface. The default is to send RIP on all 
broadcast and non-broadcast interfaces when in broadcast mode. See the nobroadcast 
option defined earlier in this list.

ripout

Tells system to send RIP packets out this interface. This is the default.
metricin metric

Specifies the RIP metric used for routes received on this interface. The default is the 
kernel interface metric plus 1, which is the default RIP hop count. If this metric is 
specified it is used as the absolute value, and is not added to the kernel metric.

metricout

Specifies the RIP metric added to routes sent out this interface. The default is 0. This 
option can only increase the metric.

version 1 | 2 [multicast | broadcast]

Identifies the version of RIP used for updates sent out this interface. Available versions 
are RIP 1 and RIP 2. RIP 1 is the default. If RIP 2 is specified and IP multicast is 
supported, full version 2 packets are sent via multicast. If multicast is not available, 
version 1-compatible version 2 packets are sent via broadcast. The keyword multicast, 
the default, specifies this behavior. The keyword broadcast specifies that RIP version 1-
compatible version 2 packets should be broadcast on this interface, even if IP multicast 
is available. Neither keyword is used with version 1.

file:///C|/mynapster/Downloads/warez/tcpip/appb_08.htm (7 of 26) [2001-10-15 09:19:17]



[Appendix B] B.8 Protocol Statements

[secondary] authentication [none | simple | md5 key]

Defines the RIP version 2 authentication used on this interface. The default 
authentication type is none. If simple is specified, the key is a 16-byte password. If 
md5 is specified, the key is a 16-byte value used with the packet contents to generate a 
Message Digest 5 cryptographic checksum. If secondary is specified, this defines the 
secondary authentication. Packets are always sent using the primary authentication 
technique. The secondary authentication type is defined only for incoming packets. 
Inbound packets are checked against both the primary and secondary authentication 
method before being discarded as invalid.

trustedgateways gateway_list ;

Defines the list of gateways from which RIP accepts updates. The gateway_list is simply a 
list of hostnames or IP addresses. By default, all gateways on the shared network are trusted to 
supply routing information. But if the trustedgateways statement is used, only updates from 
the gateways in the list are accepted.

sourcegateways gateway_list ;

Defines a list of gateways to which RIP sends packets directly. By default, RIP packets are 
broadcast or multicast to several systems on the shared network - but if this statement is used, 
RIP unicasts packets directly to the listed gateways.

traceoptions trace_options

Defines tracing for RIP. RIP supports most of the standard tracing options and these packet-
tracing options: 

packets

Traces all RIP packets. 
request

Traces the RIP information request packets, such as REQUEST, POLL, and 
POLLENTRY.

response

Traces all RIP RESPONSE packets. 
other

Traces any other type of RIP packet.

B.8.3 The hello Statement

hello yes | no | on | off [ {

file:///C|/mynapster/Downloads/warez/tcpip/appb_08.htm (8 of 26) [2001-10-15 09:19:17]



[Appendix B] B.8 Protocol Statements

broadcast ;
nobroadcast ;
preference preference ;
defaultmetric metric ;
interface interface_list 
[nohelloin] | [helloin]
[nohelloout] | [helloout]
[metricin metric]
[metricout metric] ;
trustedgateways gateway_list ;
sourcegateways gateway_list ;
traceoptions trace_options ;
} ] ;

This statement enables or disables Hello. By default, Hello is disabled. The default metric is 30000 (30 
seconds is the highest possible Hello metric) and the default preference is 90. Unless the preference 
values are altered, routes learned from Hello are preferred over those learned from RIP.

The hello statement has basically the same options as the rip statement. The only command 
differences are the keywords nohelloin and nohelloout, but they perform the same function for Hello 
as noripin and noripout do for RIP.

The hello statement supports most of the standard trace options. In addition, the option packets can be 
specified to trace all HELLO packets.

B.8.4 The isis Statement

isis yes | no | dual | ip | iso {
level 1 | 2 ;
traceoptions isis_traceoptions ;
systemid 6_digit_hexstring ;
area hexstring ;
set isis_parm value ; ... circuit string metric level 1 | 2 metric priority 
level 1 | 2 priority ;
} ;

The isis statement enables the IS-IS protocol. By default, it is disabled. The dual keyword enables IS-
IS for both ISO and IP addressing. The ip keyword enables it for IP addressing and iso enables it for 
ISO addressing. The options that may appear in the isis statement are:

level

Indicates whether the router, called an intermediate system (IS) in OSI terminology, is a Level 
1 (intra-area) or Level 2 (inter-area) IS. Default is Level 1.

traceoptions

file:///C|/mynapster/Downloads/warez/tcpip/appb_08.htm (9 of 26) [2001-10-15 09:19:17]



[Appendix B] B.8 Protocol Statements

Defines the IS-IS trace options. These are different from other gated trace options. The 
isis_traceoptions are: 

all

Traces everything. 
iih

Traces ISIS HELLO packets. 
lanadj

Traces LAN adjacency updates. 
p2padj

Traces point-to-point adjacency updates. 
lspdb

Traces signatures in the LSP database. 
lspcontent

Traces contents of the LSP database. 
lspinput

Traces input processing of the LSPs. 
flooding

Traces flooding of the LSPs. 
buildlsp

Traces creation of the LSPs. 
csnp

Traces processing of the CSNPs. 
psnp

Traces processing of the PSNPs. 
route

Traces route changes. 
update

Traces routing updates. 
paths

file:///C|/mynapster/Downloads/warez/tcpip/appb_08.htm (10 of 26) [2001-10-15 09:19:17]



[Appendix B] B.8 Protocol Statements

Traces paths calculated by the Shortest Path First (SPF) algorithm. 
spf

Traces the operation of the Shortest Path First (SPF) algorithm. 
events

Traces protocol events.

systemid

Defines the IS-IS system ID. If no system identifier is specified, the system ID portion of the 
first circuit's NSAP address is used.

area

Adds area addresses to those configured automatically from the circuits. IS-IS area addresses 
are automatically configured based on the real circuits over which IS-IS runs.

circuit

Defines the circuits used by IS-IS. Circuits normally are UNIX interfaces, and string is an 
interface name. The circuit options are: 

metric

Defines the Level 1 and Level 2 metrics for each circuit. metric is a numeric value in 
the range 1 to 63. The default value is 63.

priority

Defines the value used by IS-IS when electing a designated router. Routers with high 
priority values are preferred for the designated router. priority is a numeric value 
between 0 and 127. If no priority is specified, a random value is selected.

See A Guide to Gated Integrated IS-IS, by Steve Heimlich, for information on IS-IS configuration. 
The document is included in the gated distribution.

B.8.5 The bgp Statement

bgp yes | no | on | off [ {
preference preference ;
defaultmetric metric ;
traceoptions trace_options ;
group type external peeras as_number
| internal peeras as_number
| igp peeras as_number proto proto
| routing peeras as_number proto proto interface interface_list

file:///C|/mynapster/Downloads/warez/tcpip/appb_08.htm (11 of 26) [2001-10-15 09:19:17]



[Appendix B] B.8 Protocol Statements

| test peeras as_number {
allow {
address mask mask | masklen number
all
host address } ;
peer address
[metricout metric]
[localas as_number]
[nogendefault]
[gateway address]
[preference preference]
[preference2 preference]
[lcladdr address]
[holdtime time]
[version number]
[passive]
[sendbuffer number]
[recvbuffer number]
[indelay time]
[outdelay time]
[keep all | none]
[analretentive]
[noauthcheck]
[noaggregatorid]
[keepalivesalways]
[v3asloopokay]
[nov4asloop]
[logupdown]
[ttl ttl]
[traceoptions trace_options] ; } ;
}] ;

This statement enables or disables BGP. By default, BGP is disabled. The default preference is 170. 
By default, BGP does not advertise a metric. Unlike the RIP metric, the BGP metric does not play a 
primary role in determining the best route. The BGP metric is simply an arbitrary 16-bit value that can 
be used as one criterion for choosing a route. The defaultmetric statement can be used to define a 
metric that BGP will use when advertising routes.

Trace options can be specified for all of BGP or for individual BGP peers. BGP supports most of the 
standard trace options as well as the following:

packets

Traces all BGP packets. Traces BGP OPEN packets. Traces BGP UPDATE packets. Traces 
BGP KEEPALIVE packets. 

file:///C|/mynapster/Downloads/warez/tcpip/appb_08.htm (12 of 26) [2001-10-15 09:19:17]



[Appendix B] B.8 Protocol Statements

BGP peers must be members of a group. The group statement declares the group, defines which peers 
are members of the group, and defines the group "type." Multiple group statements may be specified, 
but each must have a unique combination of type and autonomous system number. There are four 
possible group types:

group type external peeras as_number

Specifies that BGP will run as a classic exterior gateway protocol. The peers listed in this group 
are members of an external autonomous system. Full policy checking is applied to all incoming 
and outgoing routes.

group type internal peeras as_number

Specifies that BGP will be used to distribute routes to an internal group that has no traditional 
interior gateway protocol. Routes received from external BGP peers are readvertised to this 
group with the received metric.

group type igp peeras as_number proto proto

Specifies that BGP will be used to distribute path attributes to an internal group that runs an 
interior gateway protocol. BGP advertises the AS path, path origin, and transitive optional 
attributes if the path attributes are provided by the IGP's tag mechanism. proto is the name of 
the interior gateway protocol, e.g., proto ospf.

group type routing peeras as_number proto proto interface interface_list

Specifies that BGP will be used internally to carry external routes, while an interior gateway 
protocol is used to carry only internal routes. Normally the routes learned by BGP from 
external autonomous systems are written in the routing table, where they are picked up and 
distributed by an interior protocol to the local autonomous sytem. For this type of group, BGP 
distributes the external routes itself and the interior protocol is limited to distributing only those 
routes that are interior to the local autonomous system. proto is the name of the interior 
protocol.

group type test peeras as_number

Specifies that the members of this group are test peers. All routing information exchanged by 
test peers is discarded.

A group clause contains peer subclauses. Any number of peer subclauses may belong to a group. 
Peers are specified explicitly with a peer statement, or implicitly with the allow statement.

allow

Any peer whose address is contained in the specified address range is a member of the group. 
The keyword all matches all possible addresses. The keyword host precedes an individual host 
address. The address and mask pairs define a range of addresses. Network masks can be 
defined with the keyword mask and an address mask written in dotted decimal notation or with 
the keyword masklen and the prefix length written as a decimal number. All parameters for 

file:///C|/mynapster/Downloads/warez/tcpip/appb_08.htm (13 of 26) [2001-10-15 09:19:17]



[Appendix B] B.8 Protocol Statements

these peers must be defined in the group clause.
peer address

The peer identified by address is a member of the group.

The BGP peer subclause allows the following parameters, which can also be specified on the group 
clause. If placed on the group clause, the parameters affect all peers in the group. The available 
options are:

metricout metric

Defines the primary metric for routes sent to the peer, which overrides the default metric, a 
metric specified on the group and any metric specified by export policy.

localas as_number

Defines the local system's autonomous system number (asn). The default is to use the asn 
defined in the autonomoussystem statement.

nogendefault

Prevents gated from generating a default route when BGP peers with this neighbor, even if 
gendefault is set in the options directive statement.

gateway address

Identifies the next-hop gateway through which packets for this peer are routed. Use this only if 
the neighbor does not share a network with the local system. This option is rarely needed.

preference preference

Defines the preference used for routes learned from this peer, which permits gated to prefer 
routes from one peer, or group of peers, over another.

preference2 preference

Defines the "second" preference. In the case of a preference tie, the second preference is used 
to break the tie. The default value is 0.

lcladdr address

Defines the address of the local interface used to communicate with this neighbor.
holdtime time

Defines the number of seconds the peer should wait for a keepalive, update, or notification 
message before closing the connection. The value is sent to the peer in the Hold Time field of 
the BGP Open message. The value must be either 0 (no keepalives will be sent) or at least 3.

version version

Identifies the version of the BGP protocol to use with this peer. By default, the version is 
negotiated when the connection is opened. Currently supported versions are 2, 3, and 4.

file:///C|/mynapster/Downloads/warez/tcpip/appb_08.htm (14 of 26) [2001-10-15 09:19:17]



[Appendix B] B.8 Protocol Statements

passive

Specifies that gated should wait for the peer to issue an OPEN. By default, gated periodically 
sends OPEN messages until the peer responds.

sendbuffer buffer_size

recvbuffer buffer_size

Defines the size of the send and receive buffers. The default is 65535 bytes, which is the 
maximum. These parameters are not used on normally functioning systems.

indelay time

outdelay time

Implements "route dampening." indelay defines the number of seconds a route must be stable 
before it is accepted. outdelay is the number of seconds a route must be present in the gated 
routing database before it is exported to this peer. The default value for each is 0, meaning that 
these features are disabled. Use this only if the routing table is fluctuating so rapidly it is 
unstable.

keep all

Tells system to retain routes learned from this peer even if the routes' AS paths contain our 
local AS number. Normally routes that contain the local AS number are discarded as potential 
routing loops.

analretentive

Tells system to issue warning messages for events, such as duplicate routes, that are normally 
"silently ignored."

noauthcheck

Instructs system not to verify that incoming packets have an authentication field of all 1s. Use 
this to interoperate with an implementation that uses the authentication field.

noaggregatorid

Sets the routerid in the aggregator attribute to 0. By default, it is set to the router identifier. Use 
this to prevent this router from creating aggregate routes with AS paths that differ from other 
routers in the AS.

keepalivesalways

Instructs system to send a keepalive even when an update could have correctly substituted for 
one. Used for interoperability with some routers.

v3asloopokay

Allows advertisement of a route with a loop in the AS path, i.e., with an AS appearing more 
than once in the path, to version 3 external peers.

file:///C|/mynapster/Downloads/warez/tcpip/appb_08.htm (15 of 26) [2001-10-15 09:19:17]



[Appendix B] B.8 Protocol Statements

nov4asloop

Prevents a route with a loop in the AS path from being advertised to version 4 external peers. 
Used to avoid passing such routes to a peer that incorrectly forwards them to version 3 
neighbors. 

logupdown

Logs every time a BGP peer enters or leaves the ESTABLISHED state.
ttl ttl

Defines the IP ttl for local neighbors. By default it is set to 1. Use this option if the local 
neighbor discards packets sent with a ttl of 1. Not all UNIX kernels allow the ttl to be specified 
for TCP connections.

The BGP trace options are covered previously.

B.8.6 The egp Statement

egp yes | no | on | off [ {
preference preference ;
defaultmetric metric ;
packetsize maxpacketsize ;
traceoptions trace_options ;
group [peeras as_number] [localas as_number] [maxup number] {
neighbor address
[metricout metric]
[preference preference]
[preference2 preference]
[ttl ttl]
[nogendefault]
[importdefault]
[exportdefault]
[gateway address]
[lcladdr address]
[sourcenet network]
[minhello | p1 interval]
[minpoll | p2 interval]
[traceoptions trace_options] ; } ;
}] ;

This statement enables or disables EGP. By default, EGP is disabled. The default metric for 
announcing routes via EGP is 255, and the default preference for routes learned from EGP is 200.

The packetsize argument defines the size of the largest EGP packet that will be sent or accepted. 
maxpacketsize is the size in bytes. The default is 8192 bytes. If gated receives a packet larger 

file:///C|/mynapster/Downloads/warez/tcpip/appb_08.htm (16 of 26) [2001-10-15 09:19:17]



[Appendix B] B.8 Protocol Statements

than maxpacketsize it is discarded, but maxpacketsize is increased to the size of the larger 
packet so that future packets won't have to be discarded.

The traceoptions statement defines the tracing for EGP. Tracing can be specified for the EGP 
protocol or for an individual EGP neighbor. The EGP trace options are:

packets

Traces all EGP packets.
hello

Traces EGP HELLO/I-HEARD-U packets. 
acquire

Traces EGP ACQUIRE/CEASE packets. 
update

Traces EGP POLL/UPDATE packets. 

The egp statement has two clauses: the group clause and the neighbor clause. EGP neighbors 
must be part of a group, and all of the neighbors in a group must be members of the same autonomous 
system. Use the group clause to define parameters for a group of EGP neighbors. Values set in a 
group clause apply to all neighbor clauses in the group. There can be multiple group clauses. The 
following parameters are set by the group clause:

peeras

Identifies the autonomous system number of the autonomous system to which the members of 
the group belong. If not specified, this number is learned from the neighbors.

localas

Defines the local system's autonomous system number. The default is to use the asn defined in 
the autonomoussystem statement.

maxup

Defines the number of EGP neighbors gated is to acquire. The default is to acquire all listed 
neighbors.

The neighbor clause defines one EGP neighbor. The only part of the clause that is required is the 
address argument, which is the host name or IP address of the neighbor. All other parameters are 
optional. All of these optional parameters can also be specified in the group clause if you want to 
apply the parameter to all neighbors. The neighbor clause parameters are:

metricout metric

file:///C|/mynapster/Downloads/warez/tcpip/appb_08.htm (17 of 26) [2001-10-15 09:19:17]



[Appendix B] B.8 Protocol Statements

Used for all routes sent to this neighbor. This value overrides the defaultmetric value set in the 
egp statement, but only for this specific neighbor.

preference preference

Defines the preference used for routes learned from this neighbor, which permits gated to 
prefer routes from one neighbor, or group of neighbors, over another.

preference2 preference

Defines the "second" preference. In the case of a preference tie, the second preference is used 
to break the tie. The default value is 0.

ttl ttl

Defines the IP ttl for local neighbors. By default, it is set to 1. Use this option if the local 
neighbor discards packets sent with a ttl of 1.

nogendefault

Prevents gated from generating a default route when EGP peers with this neighbor, even if 
gendefault is set in the options directive statement.

importdefault

Tells system to accept the default route if it is included in this neighbor's EGP update. By 
default, it is ignored.

exportdefault

Tells system to send the default route in EGP updates to this EGP neighbor. Normally a default 
route is not included in an EGP update.

gateway address

Identifies the next-hop gateway through which packets for this neighbor are routed. Use this 
only if the neighbor does not share a network with the local system. This option is rarely 
needed.

lcladdr address

Defines the address of the local interface used to communicate with the neighbor.
sourcenet network

Changes the network queried in EGP POLL packets. By default, this is the shared network. 
However, if the neighbor does not share a network with your system, the neighbor's network 
address should be specified here. This parameter is normally not needed. Do not use it if you 
share a network with the EGP neighbor.

minhello | p1 time

Sets the interval between the transmission of EGP HELLO packets. [1] The default Hello 
interval is 30 seconds. If the neighbor fails to respond to three HELLO packets, the system 
stops trying to acquire the neighbor. Setting a larger interval gives the neighbor a better chance 

file:///C|/mynapster/Downloads/warez/tcpip/appb_08.htm (18 of 26) [2001-10-15 09:19:17]



[Appendix B] B.8 Protocol Statements

to respond. The interval can be defined as seconds, minutes:seconds, or hours:minutes:seconds. 
For example, a 3-minute interval could be specified as 180 (seconds), 3:00 (minutes), or 0:3:00 
(no hours and 3 minutes). The keyword p1 can be used instead of the keyword minhello.

[1] Don't confuse this with the Hello protocol. Refer to the discussion of HELLO and I-
H-U packets in Chapter 7.

minpoll | p2 time

Sets the time interval between sending polls to the neighbor. The default is 120 seconds. If 
three polls are sent without a response, the neighbor is declared "down" and all routes learned 
from that neighbor are removed from the routing table. This can cause the routing table to be 
very unstable if a neighbor becomes congested and can't respond to rapid polls. A longer 
polling interval provides a more stable, but less responsive, routing table. Again the interval is 
defined as seconds, minutes:seconds, or hours:minutes:seconds.

B.8.7 The snmp Statement

snmp yes | no | on | off [ {
port port ;
debug ;
traceoptions trace_options ;
} ] ;

This command controls whether gated informs the SNMP management software of its status. SNMP 
is not a routing protocol and is not started by this command. You must run SNMP software 
independently. This statement only controls whether gated keeps the management software apprised 
of its status. The default is on, so gated does inform SNMP of its status.

The snmp statement supports three options:

port port

This option changes the SNMP port used by gated. By default, the SNMP daemon listens to 
port 199.

debug

Enables debugging of gated's SNMP code. By default, it is disabled. This option is used by 
code developers.

traceoptions trace_options

Traces the interactions between gated and the SNMP daemon. The detail, send, and recv 
options are not supported. Instead, the snmp statement uses these options: 

file:///C|/mynapster/Downloads/warez/tcpip/appb_08.htm (19 of 26) [2001-10-15 09:19:17]



[Appendix B] B.8 Protocol Statements

receive

Traces all requests received from the SNMP daemon. 
register

Traces SNMP requests to register variables. 
resolve

Traces SNMP requests to resolve variable names. 
trap

Traces SNMP trap requests. 

B.8.8 The redirect Statement

redirect yes | no | on | off [ {
preference preference ;
interface interface_list [noredirects | redirects] ;
trustedgateways gateway_list ;
traceoptions trace_options ;
} ] ;

This statement controls whether ICMP redirects are allowed to modify the kernel routing table. It does 
not prevent a system from sending redirects, only from listening to them. If no or off is specified, 
gated attempts to remove the effects of ICMP redirects from the kernel routing table whenever the 
redirects are detected. Remember that ICMP is part of IP; therefore, the redirects may be installed in 
the kernel table before they are seen by gated. If you disable redirects, gated actively removes the 
redirected routes from the routing table. By default, ICMP redirects are enabled on hosts that quietly 
listen to interior routing protocols and disabled on gateways that actively participate in interior routing 
protocols.

The default preference of a route learned from a redirect is 30, which can be changed with the 
preference option. The interface statement controls how redirects are handled on an interface-by-
interface basis. Redirects are ignored if noredirects is specified and are permitted if redirects, which 
is the default, is specified. The trustedgateways statement enables redirects on a gateway-by-gateway 
basis. By default, redirects are accepted from all routers on the local network. If the trustedgateways 
statement is used, only redirects received from a gateway listed in the gateway_list are accepted. 
The gateway_list is simply a list of hostnames or addresses. The trace_options defined on the 
traceoptions statement are the standard gated trace options.

B.8.9 The icmp Statement

icmp {
traceoptions trace_options ;

file:///C|/mynapster/Downloads/warez/tcpip/appb_08.htm (20 of 26) [2001-10-15 09:19:17]



[Appendix B] B.8 Protocol Statements

}

On some systems, gated listens to all ICMP messages but only processes the ICMP redirect packets. 
That processing is controlled by the redirect statement. In the future, more functionality may be added. 
At present the icmp statement is used only to enable tracing of ICMP messages. The tracing options 
supported by the icmp statement are:

packets

Traces all ICMP packets. 
redirect

Traces ICMP REDIRECT packets. 
routerdiscovery

Traces ICMP ROUTER DISCOVERY packets. 
info

Traces ICMP informational packets. 
error

Traces ICMP error packets. 

B.8.10 The routerdiscovery Statement

The Router Discovery Protocol informs hosts of the routers that are available on the network. It 
provides an alternative to static routes, routing protocols, and ICMP redirects for hosts that simply 
need to know the address of their default router. The Router Discovery Protocol is implemented as a 
server running on the router and a client running on the host. Both the server (router) software and the 
client (host) software are provided by gated.

First let's look at the server configuration statement:

routerdiscovery server yes | no | on | off [ {
traceoptions trace_options ;
interface interface_list
[minadvinterval time]
[maxadvinterval time]
[lifetime time] ;
address interface_list
[advertise | ignore]
[broadcast | multicast]
[ineligible | preference preference] ;
} ] ;

file:///C|/mynapster/Downloads/warez/tcpip/appb_08.htm (21 of 26) [2001-10-15 09:19:17]



[Appendix B] B.8 Protocol Statements

The routerdiscovery statement for both the client and server support tracing. The state trace flag can 
be used to trace finite state machine transitions. Router discovery packet tracing, however, is not done 
here. It is enabled via the ICMP statement.

The interface clause defines the physical interfaces and the parameters that apply to them. Only 
physical interfaces can be defined in the interface clause. Addresses are specified in the address 
clauses shown below. The interface parameters are: 

maxadvinterval time

Defines the maximum time interval between sending router advertisements. It must be more 
than 4 seconds and less than 30:00 minutes. The default is 10:00 minutes (600 seconds).

minadvinterval time

Defines the minimum time interval between sending router advertisements. It must be no less 
than 3 seconds and no greater than maxadvinterval. The default is 0.75 × maxadvinterval.

lifetime time

Defines how long clients should consider the addresses in a router advertisement valid. It must 
be greater than maxadvinterval and no more than 2:30:00 (two hours, thirty minutes). The 
default is 3 × maxadvinterval.

The address clause defines the IP addresses used and the parameters that apply to them. The address 
clause parameters are:

advertise | ignore

advertise specifies that the address should be included in router advertisements, which is the 
default. ignore specifies that the address should not be included in router advertisements.

broadcast | multicast

broadcast specifies that the address should be included in a broadcast router advertisement 
because some systems on the network do not support multicasting. This is the default if the 
router does not support multicasting.

multicast specifies that the address should only be included in a multicast router advertisement. 
If the system does not support multicasting, the address is not advertised.

ineligible | preference preference

Defines the preference of the address as a default router. preference is a 32-bit signed 
integer. The higher values mean the address is more preferable. Note that this is not gated 
preference. This is a value transmitted as part of the Router Discovery Protocol.

The keyword ineligible assigns a preference of hex 80000000 that means the address is not 

file:///C|/mynapster/Downloads/warez/tcpip/appb_08.htm (22 of 26) [2001-10-15 09:19:17]



[Appendix B] B.8 Protocol Statements

eligible to be the default router. Hosts use ineligible addresses to verify ICMP redirects.

For routerdiscovery to work, the hosts must have the routerdiscovery client software. It is part of 
gated and is configured by the routerdiscovery client statement.

B.8.10.1 The routerdiscovery client statement

routerdiscovery client yes | no | on | off [ {
traceoptions trace_options ;
preference preference ;
interface interface_list
[enable | disable]
[broadcast | multicast]
[quiet | solicit] ;
} ] ;

The client uses the same trace options as the server. Other options are different, however. The full list 
of client options is:

preference preference ;

Defines the preference of default routes learned from routerdiscovery. The default is 55. 
Unlike the server statement, this is gated preference.

interface interface_list

Defines the interfaces used by routerdiscovery.
enable | disable

Enables or disables routerdiscovery on the interface. enable is the default. 
broadcast | multicast

Specifies whether router solicitations should be broadcast or multicast on the interface. By 
default, router solicitations are multicast if it is supported; otherwise, router solicitations are 
broadcast. If the multicast keyword is specified and multicast is not available, the router 
solicitations are not sent. Generally, if these options are not specified, gated will do the right 
thing.

quiet | solicit

Specifies whether router solicitations are sent on this interface. solicit, which is the default, 
sends router solicitations. quiet listens to Router Advertisements but does not send router 
solicitations.

B.8.11 The kernel Statement

file:///C|/mynapster/Downloads/warez/tcpip/appb_08.htm (23 of 26) [2001-10-15 09:19:17]



[Appendix B] B.8 Protocol Statements

kernel { options [nochange] [noflushatexit] [remnantholdtime time] ; routes number ; flash 
[limit number] [type interface | interior | all] ; background [limit number] [priority flash | 
higher | lower] ; traceoptions trace_options ; } ;

The kernel statement defines the interactions between gated and the kernel.

options

Defines three possible configuration options. These are: 

nochange

Limits gated to deletes and adds. Use on early versions of the routing socket code that 
have a malfunctioning change operation.

noflushatexit

Prevents route deletions at shutdown. Normally shutdown processing deletes routes that 
do not have a "retain" indication. Use to speed startup on systems with thousands of 
routes.

remnantholddimte time

Defines the length of time routes read from the kernel forwarding table at startup are 
retained. The default is 3 minutes or as soon as they are overridden. time can be a 
value between 0 and 15 minutes. A 0 value causes the routes to be deleted immediately.

routes number

Defines the maximum number of routes gated will install in the kernel. By default there is no 
limit to the number of routes in the kernel forwarding table. 

flash

Tunes the parameters used for flash updates. When routes change, the process of notifying the 
kernel is called a "flash update." 

limit number

Sets the maximum number of routes processed during one flash update. The default is 
20. A value of -1 causes all route changes to be processed. Large updates can slow the 
processing of "time critical" protocols. 20 is a good default.

type interface | interior | all

Specifies the type of routes processed during a flash update. By default, only interface 
routes are installed during a flash update. interior specifies that interior routes are also 
installed, and all specifies that interior and exterior routes should be processed. 
Specifying flash limit -1 all causes all routes to be installed during the flash 

file:///C|/mynapster/Downloads/warez/tcpip/appb_08.htm (24 of 26) [2001-10-15 09:19:17]



[Appendix B] B.8 Protocol Statements

update, which mimics the behavior of previous versions of gated.

background

Tunes the parameters used for background processing. Since only interface routes are normally 
installed during a flash update, most routes are processed in batches in the background. 

limit number

Sets the number of routes processed in one batch. The default is 120.
priority flash | higher | lower

Sets the priority for processing batch updates. The default is lower, which means that 
batch updates are processed at a lower priority than flash updates. To process kernel 
updates at the same priority as flash updates, specify flash.

Many tracing options work for the kernel interface because, in many cases, it is handled as a routing 
protocol. The command-line trace, symbols and iflist, provide information about the kernel. The 
kernel statement trace options are:

remnants

Traces routes read from the kernel when gated starts. 
request

Traces gated kernel Add/Delete/Change operations. 

The remaining trace options only apply to systems that use the routing socket to exchange routing 
information with the kernel.

info

Traces informational messages received from the routing socket.
routes

Traces routes exchanged with the kernel. 
redirect

Traces redirect messages received from the kernel. 
interface

Traces interface status messages received from the kernel.
other

file:///C|/mynapster/Downloads/warez/tcpip/appb_08.htm (25 of 26) [2001-10-15 09:19:17]



[Appendix B] B.8 Protocol Statements

Traces any other messages received from the kernel. 

Previous: B.7 Definition 
Statements

TCP/IP Network 
Administration

Next: B.9 static Statements

B.7 Definition Statements Book Index B.9 static Statements

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/appb_08.htm (26 of 26) [2001-10-15 09:19:17]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Appendix B] B.9 static Statements

Previous: B.8 Protocol 
Statements

Appendix B
A gated Reference

Next: B.10 Control 
Statements

 

B.9 static Statements

static statements define the static routes used by gated. A single static statement can specify several 
routes. The static statements occur after protocol statements and before control statements in the 
gated.conf file. To gated, static routes are any routes defined with static statements. However, unlike 
the routes in a static routing table, these routes can be overridden by routes with better preference 
values.

The structure of a static statement is:

static {
[default] | [[host] address [mask mask | masklen n]] gateway gateways
[interface interface_list]
[preference preference]
[retain]
[reject]
[blackhole]
[noinstall] ;
address [mask mask | masklen n] interface interface
[preference preference] 
[retain]
[reject]
[blackhole]
[noinstall] ;
} ;

The static statement has two different clauses. The one with the keyword gateway is the one you'll 
use. This clause contains information similar to that provided by the route command. A static route is 
defined as a destination address reached though a gateway. The format of this clause is:

[default] | [[host] address [mask mask | masklen number]] gateway gateways

Defines a static route through one or more gateways. The destination is defined by the 
keyword default (for the default route) or by a destination address. The destination address can 
be preceded by the keyword host, if it is a host address, or followed by an address mask. The 

file:///C|/mynapster/Downloads/warez/tcpip/appb_09.htm (1 of 3) [2001-10-15 09:19:18]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


[Appendix B] B.9 static Statements

address mask can be defined with the keyword mask and a dotted decimal address mask, or by 
the keyword masklen and a numeric prefix length. The listed gateways must be on a directly 
attached network. Possible configuration parameters are: 

interface interface_list

When specified, gateways in the gateway_list must be directly reachable through 
one of these interfaces.

preference preference

Sets the gated preference for this static route. The default is 60.
retain

Prevents this static route from being removed during a graceful shutdown. Normally 
only interface routes are retained in the kernel forwarding table. Use this to provide 
some routing when gated is not running.

reject

Installs this route as a "reject route." Packets sent to a reject route are dropped and an 
"unreachable" message is sent back to the source. Not all kernels support reject routes.

blackhole

Installs this route as a "blackhole route." A blackhole route is the same as a reject route 
except the "unreachable" message is not sent.

noinstall

Instructs system to advertise this route via routing protocols but not to install it in the 
kernel forwarding table.

The other static statement clause uses the keyword interface instead of the keyword gateway. Use 
this clause only if you have a single physical network with more than one network address - a rare 
occurrence. ifconfig normally creates only one destination for each interface. This special form of the 
static statement adds additional destinations to the interface.

address [mask mask | masklen number] interface interface

The preference, retain, reject, blackhole, and noinstall options are the same as described above.

The default preference of a static route is 60, which prefers static routes over several other routing 
sources. If you want other types of routes to override static routes, use the preference argument on 
the static statement to increase the preference number. (Remember that high preference values mean 
less-preferred routes.) 

The following example defines a static default route through the gateway 172.16.12.1. The preference 
is set to 125 so that routes learned from RIP are preferred over this static route:

file:///C|/mynapster/Downloads/warez/tcpip/appb_09.htm (2 of 3) [2001-10-15 09:19:18]



[Appendix B] B.9 static Statements

static  {
        default gateway 128.66.12.1 preference 125 ;
 } ;

Previous: B.8 Protocol 
Statements

TCP/IP Network 
Administration

Next: B.10 Control 
Statements

B.8 Protocol Statements Book Index B.10 Control Statements

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/appb_09.htm (3 of 3) [2001-10-15 09:19:18]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Appendix B] B.10 Control Statements

Previous: B.9 static 
Statements

Appendix B
A gated Reference

Next: B.11 The Aggregate 
Statements

 

B.10 Control Statements

The control statements define your routing policy. Often when administrators hear the terms "routing 
policy" or "policy-based routing," they assume that this is something done inside the routing protocol. 

In reality, a routing policy is defined outside of the routing protocol in the configuration file. The 
policy defines what routes are accepted and what routes are advertsied. gated does this with two 
control statements: import and export. The import statement defines which routes are accepted and 
from what sources those routes are accepted. The export statement defines which routes are 
advertised based on the source of the routes and the protocol used to advertise them. 

The import and export statements use gated preference, routing metrics, routing filters, and AS paths 
to define routing policy. Preference and metrics are controlled by these keywords:

restrict

Says that the routes are not to be imported, in the case of the import command, or exported in 
the case of the export command. This keyword blocks the use of a specific route.

preference preference

Defines the preference value used when comparing this route to other routes. Preference is 
used when installing routes; not when advertising routes.

metric metric

Specifies the metric used when advertising a route. 

Route filters match routes by destination address. Among other places, route filters are used on 
martians and import and export statements. A route matches the most specific filter that applies. 
Specifying more than one filter with the same destination, mask, and modifiers generates an error. 
Import and export route filters can be specified in the following ways: [2]

[2] Route filters may include additional parameters. On import statements they include 
a preference, and on export statements a metric. "Preference" and "metric" are 
described previously.

file:///C|/mynapster/Downloads/warez/tcpip/appb_10.htm (1 of 8) [2001-10-15 09:19:19]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


[Appendix B] B.10 Control Statements

address [mask mask | masklen number] [exact | refines]

Defines a range of addresses using an address and an address mask. The address mask can be 
defined with the keyword mask and a mask written in dotted decimal notation or with the 
keyword masklen and a numeric prefix length. If no mask is defined the natural mask of the 
network is used. Two options can be used: 

exact

Matches a network, but no subnets or hosts of that network. 
refines

Matches subnets and/or hosts of a network, but not the network itself.

all

Matches every possible address.
default

Matches only the default route.
host address

Matches an individual host address. 

A routing filter that matches everything on network number 192.168.12.0 and the individual host 
10.104.19.12 contains:

192.168.12.0 masklen 24 ;
host 10.104.19.12 ;

When no route filtering is specified in an import or export statement, all routes from the specfied 
source will match that statement. If any filters are specified, only routes that match the specified filters 
are imported or exported.

Border Gateway Protocol (BGP) is designed to support policy-based routing. A key feature of BGP is 
that it is a path-vector protocol. Import and export statements allow you to use the AS path vector to 
enforce your routing policy.

An AS path lists the autonomous systems end-to-end for a route, and provides an indication of the 
completeness of the path. Each autonomous system that a route passes through prepends its AS 
number to the beginning of the AS path.

The "origin" of the path indicates its completeness. An origin of igp indicates the route was learned 
from an interior routing protocol and is most likely complete. An origin of egp indicates the route was 

file:///C|/mynapster/Downloads/warez/tcpip/appb_10.htm (2 of 8) [2001-10-15 09:19:19]



[Appendix B] B.10 Control Statements

learned from an exterior routing protocol that does not support AS paths (EGP for example) and the 
path is most likely not complete.

When the path information is definitely not complete, an origin of incomplete is used. All of these 
origins can be specified in the import and export statements, and therefore used in your routing 
policy. The keyword any is used when the policy applies to all origins.

The AS path can also be used in the control statements by defining an AS path regular expression. [3] 
The AS path regular expression provides a pattern-matching syntax used to filter routes based on the 
autonomous system numbers in the AS paths associated with those routes.

[3] AS path regular expressions are defined in RFC 1164. 

An AS path regular expression is a regular expression composed of autonomous system numbers and 
special operators. Table 13.1 lists the AS path operators. The AS path operator operates on an AS path 
term, which is an autonomous system number, a dot (.), which matches any autonomous system 
number, or a parentheses-enclosed subexpression. 

Table B.1: AS Path Operators

Symbol Meaning

{m,n} At least m and at most n repetitions.

{m} Exactly m repetitions.

{m,} m or more repetitions.

* 0 or more repetitions.

+ 1 or more repetitions.

? 0 or 1 repetition.

aspath_term | aspath_term Matches either the AS term on the left, or the AS term on the 
right. 

A simple AS path regular expression might be:

import proto bgp aspath 164+ origin any restrict ;

This restricts all routes that have one or more occurrences of autonomous system number 164 in their 
path vector.

B.10.1 The import Statement

The format of an import statement varies depending on the source protocol. The format of the import 
statements for the exterior gateway protocols is:

import proto bgp | egp autonomoussystem as_number

file:///C|/mynapster/Downloads/warez/tcpip/appb_10.htm (3 of 8) [2001-10-15 09:19:19]



[Appendix B] B.10 Control Statements

[restrict] |
[[preference preference] {
route_filter [restrict | (preference preference)]] ;
} ;

import proto bgp aspath aspath_regexp origin any | igp | egp | incomplete
[restrict] |
[[preference preference] {
route_filter [restrict | (preference preference)]] ;
} ;

BGP and EGP importation may be controlled by autonomous system number. BGP also can control 
importation using AS path regular expressions. Routes that are rejected by the routing policy are 
stored in the routing table with a negative preference. A negative preference prevents a route from 
being installed in the forwarding table or exported to other protocols. Handling rejected routes in this 
manner alleviates the need to break and re-establish a session if routing policy changes during a 
reconfiguration. 

The format of the import statements for the RIP, HELLO, and redirect protocols is:

import proto rip | hello | redirect
[interface interface_list | gateway gateway_list]
[restrict] |
[[preference preference] {
route_filter [restrict | (preference preference)]] ;
} ;

This statement controls what routes are imported based on the source protocol, interface and gateway. 
The order of precedence is from the most general (protocol) to the most specific (gateway). Unlike 
BGP and EGP, these protocols do not save routes that were rejected because these protocols have 
short update intervals.

The preference option is not used with RIP or HELLO. RIP and HELLO don't use preference to 
choose between routes of the same protocol. They use the protocol metrics.

The format of the import statement for the OSPF protocol is:

import proto ospfase [tag ospf_tag] [restrict] |
[[preference preference] {
route_filter [restrict | (preference preference)]] ;
} ;

Due to the nature of OSPF, only the importation of ASE routes can be controlled. Furthermore, it is 
only possible to restrict the importation of OSPF ASE routes when functioning as an AS border 
router. This requires you to specify an export ospfase statement in addition to the import ospfase 

file:///C|/mynapster/Downloads/warez/tcpip/appb_10.htm (4 of 8) [2001-10-15 09:19:19]



[Appendix B] B.10 Control Statements

statement. Specify an empty export statement to control importation of ASEs when no ASEs are 
being exported. (See the following section, "The export Statement.") If a tag is specified, the import 
statement only applies to routes with the tag. OSPF ASE routes that are rejected by policy are stored 
in the table with a negative preference.

OSPF routes are imported into the gated routing table with a preference of 10. Preference is not used 
to choose between OSPF ASE routes. OSPF costs are used for that purpose.

B.10.2 The export Statement

The syntax of the export statement is similar to the syntax of the import statement and the meaning 
of many of the parameters is identical. An important difference between the two statements is that 
while route importation is controlled by source information, route exportation is controlled by both 
source and destination. Thus export statements define where the routes will be sent and where they 
originated. The destination of the route advertisement is defined by the proto clause at the beginning 
of the export statement. The source of the routes is defined in the export list.

Each export statement varies slightly for each protocol. To advertise routes via EGP and BGP, use this 
syntax:

export proto bgp | egp as as_number
[restrict] |
[[metric metric] {
export_list ;
}] ;

Routes are exported via EGP and BGP to the specified autonomous system. restrict blocks exports to 
the AS. Valid BGP or EGP metrics can be specified. If no export list is defined, only the direct routes 
of the attached interfaces are exported. If an export list is used, it must explicitly specify everything 
that should be exported.

To advertise routes via RIP and HELLO, use this syntax:

export proto rip | hello
[interface interface_list | gateway gateway_list]
[restrict] |
[[metric metric] {
export_list ;
}] ;

Routes exported by RIP and HELLO are sent via the specified protocol and can be sent through a 
specifc interface or to a specific gateway. Set metric if you plan to export static or internally 
generated default routes. The metric option is only used when exporting non-RIP routes via RIP or 
non-HELLO routes via HELLO.

file:///C|/mynapster/Downloads/warez/tcpip/appb_10.htm (5 of 8) [2001-10-15 09:19:19]



[Appendix B] B.10 Control Statements

If no export list is specified, RIP exports direct routes and RIP routes, and HELLO exports direct 
routes and HELLO routes. If an export list is used it must explicitly specify everything that should be 
exported.

To advertise routes via OSPF, use this syntax:

export proto osfpase [type 1 | 2] [tag ospf_tag]
[restrict] |
[[metric metric] {
export_list ;
}] ;

Only OSPF ASE routes can be exported by gated. There are two types of OSPF ASE routes, type 1 
and type 2. They are described in Chapter 7 and earlier in this appendix. The default type is specified 
in the ospf protocol statement, but it can be overridden here. The ospf_tag is an arbitrary 32-bit 
number used to filter routing information. The default tag value is specified in the ospf protocol 
statement but it can be overridden here.

The source of the routes advertised by a protocol is defined by the export list. Each of the commands 
listed above contains an export list option. Just like those commands, the export list syntax varies 
depending on the source protocol of the routes. The commands described above define the protocols 
that are used to advertise the routes. The export lists shown below describe the protocols from which 
the routes are obtained. The biggest confusion caused by the export list syntax is that it is almost 
identical to the syntax shown above. In both cases we define protocols, autonomous systems, 
interfaces, gateways, and so on. In the first case we are defining the protocols, interfaces, etc., to 
which routes are sent, and in this case we define the protocols, interfaces, etc., from which routes are 
recieved.

To export routes learned from BGP and EGP, use this export list syntax:

export proto bgp | egp autonomoussystem as_number
[restrict] |
[[metric metric] {
route_filter [restrict | metric metric] ;
}] ;

This defines routes learned via BGP or EGP from a specific autonomous system. Routes can be 
restricted, or have a metric applied, based on matching the source AS number or the route filter.

When BGP is configured, gated assigns all routes an AS path. For interior routes, the AS path 
specifies igp as the origin and no autonomous systems in the AS path (the current AS is added when 
the route is exported). For EGP routes, the AS path specifies egp as the origin and the source AS as 
the AS path. For BGP routes, the AS path learned from BGP is used. If you run BGP, the export of all 
routes may be controlled by the AS path using this syntax:

file:///C|/mynapster/Downloads/warez/tcpip/appb_10.htm (6 of 8) [2001-10-15 09:19:19]



[Appendix B] B.10 Control Statements

proto proto | all
aspath aspath_regexp origin any | igp | egp | incomplete
[restrict] |
[[metric metric] {
route_filter [restrict | metric metric] ;
}] ;

The source of the routes can be any one protocol (proto) or all (all) protocols. The importation of 
routes can be controlled by matching their AS paths against the AS path regular expression 
(aspath_regexp) or by matching their addresses against the route_filter. Route filters and 
AS path regular expressions are explained above.

To export routes learned from RIP and HELLO, use this export list syntax:

proto rip | hello
[interface interface_list | gateway gateway_list]
[restrict] |
[[metric metric] {
route_filter [restrict | metric metric] ;
}] ;

The export of RIP and HELLO routes may be controlled by protocol, source interface, source 
gateway, or route filter.

To export routes learned from OSPF, use this export list syntax:

proto ospf | ospfase
[restrict] |
[[metric metric] {
route_filter [restrict | metric metric] ;
}] ;

The export of OSPF and OSPF ASE routes may be controlled by protocol and route filter. Exporting 
OSPF routes can also be controlled by tag using the syntax shown below:

proto proto | all tag tag
[restrict] |
[[metric metric] {
route_filter [restrict | metric metric] ;
}] ;

OSPF and RIP version 2 provide a tag field. For all other protocols, the tag is always 0. Routes may 
be selected based on the contents of the tag field.

There are other sources of routes that are not true routing protocols, and export lists can be defined for 

file:///C|/mynapster/Downloads/warez/tcpip/appb_10.htm (7 of 8) [2001-10-15 09:19:19]



[Appendix B] B.10 Control Statements

these sources. The two export lists for these sources are:

proto direct | static | kernel
[interface interface_list]
[restrict] |
[[metric metric] {
route_filter [restrict | metric metric] ;
}] ;

The export of these routes can be controlled based on the source "protocol" and the source interface. 
The "protocols" in this case are routes to direct interfaces, static routes, or routes learned from the 
kernel.

proto default | aggregate
[restrict] |
[[metric metric] {
route_filter [restrict | metric metric] ;
}] ;

The export of these routes may only be controlled based on source "protocol." default refers to routes 
created by the gendefault option. aggregate refers to routes created by the aggregate statements, the 
topic of the next section.

Previous: B.9 static 
Statements

TCP/IP Network 
Administration

Next: B.11 The Aggregate 
Statements

B.9 static Statements Book Index B.11 The Aggregate 
Statements

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/appb_10.htm (8 of 8) [2001-10-15 09:19:19]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Appendix B] B.11 The Aggregate Statements

Previous: B.10 Control 
Statements

Appendix B
A gated Reference

Next: C. A named 
Reference

 

B.11 The Aggregate Statements

Route aggregation is used by regional and national networks to reduce the number of routes 
advertised. With careful planning, large network providers can announce a few aggregate routes 
instead of hundreds of client network routes. Enabling aggregation is the main reason that CIDR 
blocks are allocated as contiguous address blocks.

Most of us don't have hundreds of routes to advertise. But we may have a classless address composed 
of a few class C address and we may need to tell gated how to handle it. Older versions of gated 
automatically generated an aggregate route to a natural network using the old Class A, B, and C 
concept; i.e., interface address 192.168.16.1 created a route to 192.168.16.0. With the advent of 
classless interdomain routing, this can be the wrong thing to do. gated does not aggregate routes 
unless it is explicitly configured with the aggregate statement:

aggregate default | address [mask mask | masklen number]
[preference preference] [brief] {
proto proto
[as as_number | tag tag | aspath aspath_regexp]
[restrict] |
[[preference preference] {
route_filter [restrict | (preference preference)]] ;
} ;

Several options are available for the aggregate statement:

preference preference;

Defines the preference of the resulting aggregate route. The default is 130.
brief

Specifies that the AS path of the agregate route should be the longest common AS path. The 
default is to build an AS path consisting of all contributing AS paths.

proto proto

file:///C|/mynapster/Downloads/warez/tcpip/appb_11.htm (1 of 3) [2001-10-15 09:19:19]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


[Appendix B] B.11 The Aggregate Statements

Only aggregate routes learned from the specified protocol. The value of proto may be any 
currently configured protocol. This includes the "protocols" direct, static, and kernel, 
discussed in the previous section; all for all possible protocols; and aggregate for other route 
aggregations.

as as_number

Only aggregate routes learned from the specified autonomous system.
tag tag

Only aggregate routes with the specified tag. 
aspath aspath_regexp

Only aggregate routes that match the specified AS path. 
restrict

Indicates routes that are not to be aggregated.

Routes that match the route filters may contribute to the aggregate route. A route may only contribute 
to an aggregate route that is more general than itself. Any given route may only contribute to one 
aggregate route, but an aggregate route may contribute to a more general aggregate.

A slight variation of aggregation is the generation of a route based on the existence of certain 
conditions. The most common usage for this is to create a default based on the presence of a route 
from a peer on a neighboring backbone. This is done with the generate statement.

generate default | address [mask mask | masklen number]
[preference preference] {
proto proto
[as as_number | tag tag | aspath aspath_regexp]
[restrict] |
[[preference preference] {
route_filter [restrict | preference preference]] ;
} ;
} ;

The generate statement uses many of the same options as the aggregate statement. These options are 
described earlier in this appendix.

Previous: B.10 Control 
Statements

TCP/IP Network 
Administration

Next: C. A named 
Reference

B.10 Control Statements Book Index C. A named Reference

file:///C|/mynapster/Downloads/warez/tcpip/appb_11.htm (2 of 3) [2001-10-15 09:19:19]



[Appendix B] B.11 The Aggregate Statements

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/appb_11.htm (3 of 3) [2001-10-15 09:19:19]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Appendix C] A named Reference

Previous: B.11 The 
Aggregate Statements

Appendix C Next: C.2 named.boot 
Configuration Commands

 

C. A named Reference
Contents:
The named Command
named.boot Configuration Commands
Zone File Records

This appendix provides detailed information about named syntax and the commands and files used to 
configure it. This is primarily a reference to use in conjunction with the tutorial information in 
Chapter 8, Configuring DNS Name Service . This information is useful to any domain administrator.

C.1 The named Command

The server side of DNS is run by the name server daemon, named. The syntax of the named 
command is: [1]

[1] Sun systems use in.named instead of named.

named [-d level] [-p port[/localport]] [[-b] bootfile] [[-q] [[-r]

The three options used on the named command line are:

-d level

Logs debugging information in the file /usr/tmp/named.run. The argument level is a number 
from 1 to 9. A higher level number increases the detail of the information logged, but even 
when level is set to 1, the named.run file grows very rapidly. Whenever you use debugging, 
keep an eye on the size of the named.run file and use SIGUSR2 to close and remove the file if 
it gets too large. Signal handling is covered in the next section.

It is not necessary to turn on debugging with the -d option to receive error messages from 
named. named displays error messages on the console and stores them in the messages, even 
if debugging is not specified. The -d option provides additional debugging information.

file:///C|/mynapster/Downloads/warez/tcpip/appc_01.htm (1 of 3) [2001-10-15 09:19:20]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


[Appendix C] A named Reference

-p port[/localport]

Defines the UDP/TCP port used by named. port is the port number used to connect to the 
remote name server. localport is the number of the port on which the local name server 
daemon listens for connections. If the -p option is not specified, the standard port (53) is used. 
Since port 53 is a well-known port, changing the port number makes the name server 
inaccessible to standard software packages. Therefore, -p is only used for testing.

-b bootfile

Specifies the file named uses as its configuration file. By default the configuration file is 
/etc/named.boot, but the -b option allows the administrator to choose another configuration 
file. Note that the -b is optional. As long as the filename used for bootfile doesn't start with 
a dash, the -b flag is not required. Any filename written on the named command line is 
assumed to be the boot file.

-q

Logs all incoming queries. named must be compiled with the QRYLOG option set to enable 
this type of logging.

-r

Turns off recursion. With this option set, the server will only provide answers for zones for 
which it is an authoritative server. It will not pursue the query through other servers or zones.

C.1.1 Signal Processing

named handles the following signals:

SIGHUP

Causes named to reread the named.boot file and reload the name server database. named then 
continues to run with the new configuration. This signal is particularly useful for forcing 
secondary servers to reload a database from the primary server. Normally the databases are 
downloaded from the primary server on a periodic basis. Using SIGHUP causes the reload to 
occur immediately.

SIGINT

Causes named to dump its cache to /usr/tmp/named_dump.db. The dump file contains all of 
the domain information that the local name server knows. The file begins with the root servers, 
and marks off every domain under the root that the local server knows anything about. If you 
examine this file, you'll see that it shows a complete picture of the information the server has 
learned.

SIGUSR1

Turns on debugging; each subsequent SIGUSR1 signal increases the level of debugging. 

file:///C|/mynapster/Downloads/warez/tcpip/appc_01.htm (2 of 3) [2001-10-15 09:19:20]



[Appendix C] A named Reference

Debugging information is written to /usr/tmp/named.run just as it is when the -d option is used 
on the named command line. Debugging does not have to be enabled with the -d option for the 
SIGUSR1 signal to work. SIGUSR1 allows debugging to be turned on when a problem is 
suspected, without stopping named and restarting it with the -d option.

SIGUSR2

Turns off debugging and closes /usr/tmp/named.run. After issuing SIGUSR2, you can examine 
named.run or remove it if it is getting too large.

Optionally, some other signals can be handled by named. These additional signals require named to 
be compiled with the appropriate options to support the signals:

SIGABRT

Writes statistics data to /var/tmp/named.stats. named must be compiled with -DSTATS for 
this signal to work.

SIGSYS

Writes profiling data into the /var/tmp directory. named must be compiled with profiling to 
support this signal.

SIGTERM

Writes back the primary and secondary database files. This is used to save data modified by 
dynamic updates before the system is shut down. named must be compiled with dynamic 
updating enabled.

SIGWINCH

Toggles logging of all incoming queries via syslogd. named must be compiled with QRYLOG 
option to support this.

Previous: B.11 The 
Aggregate Statements

TCP/IP Network 
Administration

Next: C.2 named.boot 
Configuration Commands

B.11 The Aggregate 
Statements

Book Index C.2 named.boot Configuration 
Commands

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/appc_01.htm (3 of 3) [2001-10-15 09:19:20]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Appendix C] C.2 named.boot Configuration Commands

Previous: C.1 The named 
Command

Appendix C
A named Reference

Next: C.3 Zone File 
Records

 

C.2 named.boot Configuration Commands

The /etc/named.boot file defines the name server configuration and tells named where to obtain the 
name server database information. named.boot contains the following types of records:

directory directory-path

Defines a default directory used for all subsequent file references anywhere in the named 
configuration. If named is forced to dump memory, the memory dump is stored in this 
directory.

primary domain-name file-name

Declares the local name server as the primary master server for the domain specified by 
domain-name. As a primary server, the system loads the name server database from the 
local disk file specified by name in the file-name field.

secondary domain-name server-address-list file-name

Makes the local server a secondary master server for the domain identified by domain-name. 
The server-address-list contains the IP address of at least one other master server for 
this domain. Multiple addresses can be provided in the list, but at least the primary server's 
address should be provided. The local server will try each server in the list until it successfully 
loads the name server database. The local server transfers the entire domain database and 
stores all of the data it receives in a local file identified by file-name. After completing the 
transfer, the local server answers all queries for information about the domain with complete 
authority.

cache . file-name

The cache command points to the file used to initialize the name server cache with a list of 
root servers. This command starts with the keyword cache, followed by the name of the root 
domain (.), and ends with the name of the file that contains the root server list. This file can 
have any name you wish, but it is usually called named.ca, named.root, or root.cache. The 
cache command is included in every named.boot file. named needs the list of root servers as a 
starting point from which to locate all other DNS domains.

forwarders server-address server-address ...

file:///C|/mynapster/Downloads/warez/tcpip/appc_02.htm (1 of 4) [2001-10-15 09:19:21]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


[Appendix C] C.2 named.boot Configuration Commands

The forwarders command provides named with a list of servers to try if it can't resolve a 
query from its own cache. In the syntax shown, server-address is the IP address of a 
server on your network that can perform a recursive name server query for the local host. (A 
recursive query [2] means that the remote server pursues the answer to the query, even if it 
does not have the answer itself, and returns the answer to the originator.) The servers listed on 
the forwarders command line (the servers are also called "forwarders") are tried in order until 
one responds to the query. The listed servers develop an extensive cache that benefits every 
host that uses them. Because of this, their use is often recommended. If you plan to use 
forwarders, your network administrator should define the list of forwarders for your network. 
The forwarders only develop a rich cache if they are used by several hosts. 

[2] Chapter 3, Network Services, discusses recursive and nonrecursive name server 
queries.

slave

The slave command forces the local server to use only the servers listed on the forwarders 
command line. The slave command can only be used if a forwarders command is also present 
in the named.boot file. A server that has a slave command in its named.boot file is called a 
slave server. A slave server does not attempt to contact the authoritative servers for a domain, 
even if the forwarding servers do not respond to its query. Regardless of the circumstances, a 
slave server queries only the forwarders. The slave command is used when limited network 
access makes the forwarders the only servers that can be reached by the local host. The slave 
command is not used on systems that have full Internet access because it limits their flexibility.

sortlist network network ...

The sortlist command causes named to prefer addresses from the listed networks over 
addresses from other networks. Normally, DNS sorts the addresses in a response only if the 
host issuing the query and the name server share a network. In that case, the shared network is 
the preferred network.

xfrnets address[&mask] ...

The xfrnets command limits zone transfers to hosts with the specified address. The 
address is written in dotted decimal notation and is intepreted as a network address. The 
optional mask field is used to change the interpretation of the address. When a bit is on in 
the mask field, that bit is significant for determining which hosts will be allowed to receive a 
zone file transfer. For example, xfrnets 172.16.0.0 allows every host on network 172.16 to do 
zone file transfers, while xfrnets 172.16.12.3&255.255.255.255 limits zone file transfers to the 
single host 172.16.12.3.

For security reasons, many sites do not want to let everyone list all of the hostnames in their 
domain. xfrnets limits the ability to retrieve your entire domain to specific, trusted hosts. 
tcplist is an alternative form of this command maintained for compatibility with older server 
implementations.

include file

file:///C|/mynapster/Downloads/warez/tcpip/appc_02.htm (2 of 4) [2001-10-15 09:19:21]



[Appendix C] C.2 named.boot Configuration Commands

The include command includes the contents of file at the location that the command appears 
in the boot file. This command can be used for very large configurations that are maintained by 
different people.

bogusns address address ...

The bogusns command prevents queries from being sent to the name server specified by 
address. address must be an IP address, not a domain name. This command is used to 
avoid cache contamination when you know that a remote name server is providing incorrect 
informatiom. bogusns is only a temporary fix placed in the boot file until the remote domain 
administrator has a chance to fix the real problem.

limit name value

The limit command changes BIND's internal quotas. value is a number that specifies the new 
quota setting. k, m, or g, for kilobytes, megabytes, and gigabytes, respectively, can be 
appended to the new quota value number as appropriate. name is the name of the quota being 
set. There are four possible values for name: datasize sets the process data size quota; [3] 
transfers-in sets the number of named transfer subprocesses that BIND may spawn at any one 
time; transfers-per-ns sets the maximum number of simultaneous zone transfers allowed to 
any one remote nameserver. There can be multiple limit commands in a boot file - one for each 
quota that is being set.

[3] This is a kernel quota and therefore can be set only on systems that provide a kernel 
call to implement this.

options option option ...

The options command enables optional features of BIND. The option keywords are 
Booleans. Specifying an option on the command line turns on the optional behavior. By 
default, the optional features are turned off. Valid option values are: query-log - logs all 
queries via syslogd, which produces a very large amount of log data. forward-only - all 
queries are to be sent to the forwarders; this is exactly the same as the slave command, though 
this syntax is now preferred over the slave syntax. fake-iquery - the nameserver responds to 
inverse queries with a fake reply rather than an error; used if you have some clients that cannot 
properly handle the error. no-recursion - the name server answers a query for data only in a 
zone for which it is authoritative; all other queries are answered with a referral to another 
server. no-fetch-glue - the nameserver does not fetch missing glue records for a query 
response; the resulting response could be incomplete; it is used with no-recursion to limit 
cache growth and reduce the chance of cache corruption.

check-names source action

The check-names command tells the name server to check host names against the standards 
for hostnames defined in RFC 952, and to check non-hostname responses to make sure that 
they contain nothing but printable characters. The source is the source of the hostname or 
string data that is being checked. The source can be primary for the primary zone file; 
secondary for the secondary zone file, or response for the message received during recursive 

file:///C|/mynapster/Downloads/warez/tcpip/appc_02.htm (3 of 4) [2001-10-15 09:19:21]



[Appendix C] C.2 named.boot Configuration Commands

search. The action tells the name server what to do when an error is detected: fail (reject the 
data; do not load, cache, or forward it); warn (send an error message to the system log); or 
ignore (process the data as if no error occurred). Multiple check-names commands can appear 
in a boot file; one for each source of data. The action for each source can be different.

max-fetch value

The max-fetch command performs exactly the same function as the limit transfers-in 
command described previously. The limit command is now the preferred syntax.

At this writing, an experimental named.boot command is supported in some configurations:

stub domain-name server-address-list file-name

This command declares that this is a "stub" server for the domain specified by domain-
name. The stub information is loaded from a server specified in the server-address-
list and is stored in the file identified by file-name. The format of the stub command is 
the same as the secondary command and the functions of the fields in the command are the 
same. However, the stub command has very limited applicability. It is only used on a primary 
host that is not secondary for its subordinate domains. In that limited case, it is used to ensure 
that the primary host has the correct NS records for its subordinate domains.

There is a named.boot command that is no longer widely supported. You'll occasionally encounter 
descriptions of it in material written about name service, and for that reason it's discussed here. But 
don't use it in your configurations. It is:

domain name

This command functions in exactly the same way as the domain command used in the 
resolv.conf file. It is an obsolete command and may not be available in future releases of 
BIND. You don't need this command because the default domain name is easily defined in 
resolv.conf.

Previous: C.1 The named 
Command

TCP/IP Network 
Administration

Next: C.3 Zone File 
Records

C.1 The named Command Book Index C.3 Zone File Records

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/appc_02.htm (4 of 4) [2001-10-15 09:19:21]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Appendix C] C.3 Zone File Records

Previous: C.2 named.boot 
Configuration Commands

Appendix C
A named Reference

Next: D. A dhcpd Reference

 

C.3 Zone File Records

Two types of entries are used to construct a zone file: control entries that simplify constructing the 
file, and standard resource records that define the domain data contained in the zone file. While there 
are several types of standard resource records, there are only two control statements. These are:

$INCLUDE filename

Identifies a file that contains data to be included in the zone file. The data in the included file 
must be valid control entries or standard resource records. $INCLUDE allows a large zone file 
to be divided into smaller, more manageable units.

The filename specified on the command line is relative to the directory named on the 
directory statement in the named.boot file. For example: if the named.boot file for almond 
contains a directory /etc statement, and a zone file on almond contains an $INCLUDE 
sales.hosts statement, then the file /etc/sales.hosts would be included in that zone file. If you 
don't want the filename to be relative to that directory, specify a fully qualified name, such as 
/usr/dns/sales.hosts.

$ORIGIN domainname

Changes the default domain name used by subsequent records in the zone file. Use this 
command to put more than one domain in a zone file. For example, an $ORIGIN sales 
statement in the nuts.com zone file sets the domain name to sales.nuts.com. All subsequent 
resource records would be relative to this new domain.

The named software uses $ORIGIN statements to organize its own information. Dumping the 
named database, with the SIGINT signal, produces a single file containing all the information 
that the server knows. This file, named_dump.db, contains many $ORIGIN entries used to 
place all of the domains that named knows about into a single file.

These two control entries are helpful for organizing and controlling the data in a zone file, but all of 
the actual database information comes from standard resource records. All of the files pointed to by 
named.boot contribute to the DNS database, so all of these files are constructed from standard 
resource records.

file:///C|/mynapster/Downloads/warez/tcpip/appc_03.htm (1 of 16) [2001-10-15 09:19:23]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


[Appendix C] C.3 Zone File Records

C.3.1 Standard Resource Records

The format of standard resource records, sometimes called RRs, is defined in RFC 1033, the Domain 
Administrators Operations Guide. The format is:

[name] [ttl] class type data

The individual fields in the standard resource record are:

name

This is the name of the object affected by this resource record. The named object can be as 
specific as an individual host, or as general as an entire domain. The string entered for name is 
relative to the current domain unless a fully qualified domain name is used. [4] Certain name 
values have special meaning. These are: 

 

A blank name field denotes the current named object. The current name stays in force 
until a new name value is encountered in the name field. This permits multiple RRs to 
be applied to a single object without having to repeat the object's name for each record.

..

Two dots in the name field refer to the root domain. However, a single dot (the actual 
name of the root) also refers to the root domain, and is more commonly used.

@

A single at-sign (@) in the name field refers to the current origin. The origin is a domain 
name derived by the system from the current domain name or explicitly set by the 
system administrator using the $ORIGIN command.

*

An asterisk in the name field is a wildcard character. It stands for a name composed of 
any string. It can be combined with a domain name or used alone. Used alone, an 
asterisk in the named field means that the resource record applies to objects with names 
composed of any string of characters plus the name of the current domain. Used with a 
domain name, the asterisk is relative to that domain. For example, *.bitnet. in the name 
field means any string plus the string .bitnet.

[4] The FQDN must be specified all the way to the root; i.e., it must end with a 
dot.

ttl

file:///C|/mynapster/Downloads/warez/tcpip/appc_03.htm (2 of 16) [2001-10-15 09:19:23]



[Appendix C] C.3 Zone File Records

Time-to-live defines the length of time in seconds that the information in this resource record 
should be kept in the cache. ttl is specified as a numeric value up to eight characters in 
length. If no value is set for ttl, it defaults to the value defined for the entire zone file in the 
minimum field of the SOA record.

class

This field defines the address class of the resource record. The Internet address class is IN. All 
resource records used by Internet DNS have IN in this field, but it is possible for a zone file to 
hold non-Internet information. For example, information used by the Hesiod server, a name 
server developed at MIT, is identified by HS in the class field, and chaosnet information is 
identified by a CH in the class field. All resource records used in this book have an address 
class of IN.

type

This field indicates the type of data this record provides. For example, the A type RR provides 
the address of the host identified in the name field. All of the standard resource record types 
are discussed in this appendix.

data

This field contains the information specific to the resource record. The format and content of 
the data field vary according to the resource record type. The data field is the meat of the RR. 
For example, in an A record, the data field contains the IP address.

In addition to the special characters that have meaning in the name field, zone file records use these 
other special characters:

;

The semicolon is the comment character. Use the semicolon to indicate that the remaining data 
on the line is a comment.

( )

Parentheses are the continuation characters. Use parentheses to continue data beyond a single 
line. After an opening parenthesis, all data on subsequent lines is considered part of the current 
line until a closing parenthesis.

\x

The backslash is an escape character. A non-numeric character following a backslash (\) is 
taken literally and any special meaning that the character may ordinarily have is ignored. For 
example, \; means a semicolon - not a comment.

\ddd

The backslash can also be followed by three decimal numbers. When the escape character is 
used in this manner the decimal numbers are interpreted as an absolute byte value. For 
example, \255 means the byte value 11111111.

file:///C|/mynapster/Downloads/warez/tcpip/appc_03.htm (3 of 16) [2001-10-15 09:19:23]



[Appendix C] C.3 Zone File Records

The same general resource record format is used for each of the resource records in a zone file. Each 
resource record is described below.

C.3.1.1 Start of Authority record

The Start of Authority (SOA) record marks the beginning of a zone, and is usually the first record in a 
zone file. All of the records that follow are part of the zone declared by the SOA. Each zone has only 
one SOA record; the next SOA record encountered marks the beginning of another zone. Because a 
zone file is normally associated with a single zone, it normally contains only one SOA record.

The format of the SOA record is:

[zone] [ttl] IN SOA origin contact (
serial
refresh
retry
expire
minimum
)

The components of the SOA record are:

zone

This is the name of the zone. Usually the SOA name field contains an at-sign (@). When used 
in an SOA record, the at-sign refers back to the domain name declared in the named.boot 
primary statement that points to this zone file.

ttl

Time-to-live is left blank on the SOA record.
IN

The address class is IN for all Internet RRs.
SOA

SOA is the resource record type. All the information that follows this is part of the data field 
and is specific to the SOA record.

Iorigin

This is the hostname of the primary master server for this domain. It is normally written as a 
fully qualified domain name. For example, almond is the master server for nuts.com, so this 
field contains almond.nuts.com. in the SOA record for nuts.com.

contact

file:///C|/mynapster/Downloads/warez/tcpip/appc_03.htm (4 of 16) [2001-10-15 09:19:23]



[Appendix C] C.3 Zone File Records

The email address of the person responsible for this domain is entered in this field. The address 
is modified slightly. The at-sign (@) that usually appears in an Internet email address is 
replaced by a dot. Therefore, if david@almond.nuts.com is the mailing address of the 
administrator of the nuts.com domain, the nuts.com SOA record contains 
david.almond.nuts.com. in the contact field.

serial

This is the version number of the zone file. It is an eight-digit numeric field usually entered as 
a simple number, e.g., 117. However, the composition of the number is up to the administrator. 
Some choose a format that shows the date the zone was updated, e.g., 92031100. Regardless of 
the format, the important thing is that the serial number must increase every time the data in 
the zone file is modified.

The serial field is extremely important. It is used by the secondary master servers to determine 
if the zone file has been updated. To make this determination, a secondary server requests the 
SOA record from the primary server and compares the serial number of the data it has stored to 
the serial number received from the primary server. If the serial number has increased, the 
secondary server requests a full zone transfer. Otherwise it assumes that it has the most current 
zone data. You must increment the serial number each time you update the zone data. If you 
don't, the new data will not be disseminated to the secondary servers.

refresh

This specifies the length of time that the secondary server should wait before checking with the 
primary server to see if the zone has been updated. Every refresh seconds, the secondary 
server checks the SOA serial number to see if the zone file needs to be reloaded. Secondary 
servers check the serial numbers of their zones whenever they restart or receive a SIGHUP 
signal. But it is important to keep the secondary server's database current with the primary 
server, so named does not rely on these unpredictable events. The refresh interval provides 
a predictable cycle for reloading the zone that is controlled by the domain administrator.

The value used in refresh is a number, up to eight digits long, that is the maximum number 
of seconds that the primary and secondary servers' databases can be out of sync. A low 
refresh value keeps the data on the servers closely synchronized, but a very low refresh 
value is not usually required. A value set lower than needed places an unnecessary burden on 
the network and the secondary servers. The value used in refresh should reflect the reality 
of how often your domain database is updated.

Most sites' domain databases are very stable. Systems are added periodically, but not generally on an 
hourly basis. When you are adding a new system, you can assign the hostname and address of that 
system before the system is operational. You can then install this information in the name server 
database before it is actually needed, ensuring that it is disseminated to the secondary servers long 
before it has to be used.

If extensive changes are planned, the refresh time can be temporarily reduced while the changes 
are underway. Therefore, you can normally set refresh time high, reducing load on the network 

file:///C|/mynapster/Downloads/warez/tcpip/appc_03.htm (5 of 16) [2001-10-15 09:19:24]



[Appendix C] C.3 Zone File Records

and servers. Two (43200 seconds) to four (21600 seconds) times a day for refresh is adequate for 
many sites.

The process of retrieving the SOA record, evaluating the serial number and, if necessary, 
downloading the zone file is called a zone refresh. Thus the name refresh is used for this value.

retry

This defines how long secondary servers should wait before trying again if the primary server 
fails to respond to a request for a zone refresh. retry is specified in seconds and can be up to 
eight digits long.

You should not set the retry value too low. If a primary server fails to respond, the server or 
the network could be down. Quickly retrying a down system gains nothing and costs network 
resources. A secondary server that backs up a large number of zones can have problems when 
retry values are short. If the secondary server cannot reach the primary servers for several of its 
zones, it can become stuck in a retry loop. [5] Avoid problems; use an hour (3600) or a half 
hour (1800) for the retry value.

[5] The server may alternate between periods when it fails to respond and when it 
resolves queries, or it may display the error "too many open files."

expire

This defines how long the zone's data should be retained by the secondary servers without 
receiving a zone refresh. The value is specified in seconds and is up to eight digits long. If after 
expire seconds the secondary server has been unable to refresh this zone, it should discard 
all of the data.

expire is normally a very large value. 3600000 seconds (about 42 days) is commonly used. 
This says that if there has been no answer from the primary server to refresh requests repeated 
every retry seconds for the last 42 days, discard the data. 42 days is a good value.

minimum

This is the value used as the default ttl in all resource records where an explicit ttl value is not 
provided. This is a number, up to eight digits long, that specifies how many seconds resource 
records from this zone should be held in a remote host's cache.

Make this a large value. Most of the records in a zone remain unchanged for long periods of 
time. Hosts are added to a zone, but hostnames (if they are well chosen) and addresses are not 
frequently changed. Forcing remote servers to query again for data that has not changed, just 
because it had a short ttl, is a waste of resources. If you plan to change a record, put a short ttl 
on that record; don't set the entire zone to a short ttl by setting a low minimum. Use a short 
minimum only if the entire database is being replaced. Use at least a week (604800) for normal 
operation.

file:///C|/mynapster/Downloads/warez/tcpip/appc_03.htm (6 of 16) [2001-10-15 09:19:24]



[Appendix C] C.3 Zone File Records

A sample SOA record for the nuts.com domain is:

@    IN  SOA  almond.nuts.com. david.almond.nuts.com. (
              92031101               ; serial
              43200                  ; refresh twice a day
              3600                   ; retry every hour
              3600000                ; expire after 1000 hours
              2419200                ; default ttl is one month
              )

Notice the serial number in this SOA. The serial number is in the format yymmddvv - where yy is the 
year, mm is the month, dd is the day, and vv is the version written that day. This type of serial number 
allows the administrator to track what day the zone was updated. Adding the version number allows 
for multiple updates in a single day. This zone file was created March 11, 1992, and it is the first 
update that day.

This SOA record also says that almond is the primary server for this zone and that the person 
responsible for this zone can be reached at the email address david@almond.nuts.com. The SOA tells 
the secondary servers to check the zone for changes twice a day and to retry every hour if they don't 
get an answer. If they retry a thousand times and never get an answer, they should discard the data for 
this zone. Finally, if an RR in this zone does not have an explicit ttl, it will default to 1 month.

C.3.1.2 Name server record

Name server (NS) resource records identify the authoritative servers for a zone. These records are the 
pointers that link the domain hierarchy together. NS records in the top-level domains point to the 
servers for the second-level domains, which in turn contain NS records that point to the servers for 
their subdomains. Name server records pointing to the servers for subordinate domains are required 
for these domains to be accessible. Without NS records, the servers for a domain would be unknown.

The format of the NS RR is:

[domain] [ttl] IN NS server

domain

The name of the domain for which the host specified in the server field is an authoritative 
name server.

ttl

Time-to-live is usually blank.
IN

The address class is IN.

file:///C|/mynapster/Downloads/warez/tcpip/appc_03.htm (7 of 16) [2001-10-15 09:19:24]



[Appendix C] C.3 Zone File Records

NS

The name server resource record type is NS.
server

The hostname of a computer that provides authoritative name service for this domain.

Usually domains have at least one server that is located outside of the local domain. The server 
name cannot be specified relative to the local domain; it must be specified as a fully qualified 
domain name. To be consistent, many administrators use fully qualified names for all servers, 
even though it is not necessary for servers within the local domain.

C.3.1.3 Address record

The majority of the resource records in a named.hosts zone file [6] are address records. Address 
records are used to convert hostnames to IP addresses, which is the most common use of the DNS 
database.

[6] Chapter 8 describes the various named configuration files.

The address RR contains the following:

[host] [ttl] IN A address 

host

The name of the host whose address is provided in the data field of this record. Most often the 
hostname is written relative to the current domain. 

ttl

Time-to-live is usually blank. 
IN

The address class is IN. 
A

The address resource record type is A. 
address

The IP address of the host is written here in dotted decimal form, e.g., 128.66.12.2.

A glue record is a special type of address record. Most address records refer to hosts within the zone, 
but sometimes an address record needs to refer to a host in another zone. This is done to provide the 
address of a name server for a subordinate domain. Recall that the NS record for a subdomain server 

file:///C|/mynapster/Downloads/warez/tcpip/appc_03.htm (8 of 16) [2001-10-15 09:19:24]



[Appendix C] C.3 Zone File Records

identifies the server by name. An address is needed to communicate with that server, so an A record 
must also be provided. The address record, combined with the name server record, links the domains 
together - thus the term "glue record." 

C.3.1.4 Mail exchanger record

The mail exchanger (MX) record redirects mail to a mail server. It can redirect mail for an individual 
computer or an entire domain. MX records are extremely useful for domains that contain some 
systems that don't run mail software. Mail addressed to those systems can be redirected to computers 
that do run mail software. MX records are also used to simplify mail addressing by redirecting mail to 
servers that understand the simplified addresses.

The format of the MX RR is:

[name] [ttl] IN MX preference host

name

The name of a host or domain to which the mail is addressed. Think of this as the value that 
occurs after the @ in a mailing address. Mail addressed to this name is sent to the mail server 
specified by the MX record's host field.

ttl

Time-to-live is usually blank.
IN

The address class is IN.
MX

The Mail Exchanger resource record type is MX.
preference

A host or domain may have more than one MX record associated with it. The preference field 
specifies the order in which the mail servers are tried. Servers with low preference numbers are 
tried first, so the most preferred server has a preference of 0. Preference values are usually 
assigned in increments of 5 or 10, so that new servers can be inserted between existing servers 
without editing the old MX records.

host

The name of the mail server to which mail is delivered when it is addressed to the host or 
domain identified in the name field.

Here is how MX records work. If a remote system understands how to use MX records and has mail 
to send to a host, it requests the host's MX records. DNS returns all of the MX records for the 
specified host. The remote server chooses the MX with the lowest preference value and attempts to 

file:///C|/mynapster/Downloads/warez/tcpip/appc_03.htm (9 of 16) [2001-10-15 09:19:24]



[Appendix C] C.3 Zone File Records

deliver the mail to that server. If it cannot connect to that server, it will try each of the remaining 
servers in preference order until it can deliver the mail. If no MX records are returned by DNS, the 
remote server delivers the mail directly to the host to which the mail is addressed. MX records only 
define how to redirect mail. The remote system and the mail server perform all of the processing that 
actually delivers the mail.

Because the remote system will first try to use an MX record, many domain administrators include 
MX records for every host in the zone. Many of these MX records point right back to the host to 
which the mail is addressed, e.g., an MX for almond with a host field of almond.nuts.com. These 
records are used to reduce the processing load of the remote computer. A nice gesture!

An important use for MX records is to allow mail to non-Internet sites to be delivered using Internet-
style addressing. MX records do this by redirecting the mail to computers that know how to deliver 
the mail to non-Internet networks. For example, sites using uucp can register an Internet domain 
name with UUNET. UUNET uses MX records to redirect Internet mail addressed to these non-
connected sites to uunet.uu.net, which delivers the mail to its final destination via uucp.

Here are some MX examples. All of these examples are for the imaginary domain nuts.com. In the 
first example, mail addressed to hazel.nuts.com is redirected to almond.nuts.com with this MX record:

hazel        IN    MX    10 almond

The second example is an MX record used to simplify mail addressing. People can send mail to any 
user in this domain without knowing the specific computer that the user reads his mail on. Mail 
addressed to user@nuts.com is redirected by this MX record to almond, which is a mail server that 
knows how to deliver mail to every individual user in the domain.

nuts.com.  IN    MX    10 almond.nuts.com.

The last example is an MX record that redirects mail addressed to any host within the domain to a 
central mail server. Mail addressed to any host, pecan.nuts.com, acorn.nuts.com, or 
anything.nuts.com, is redirected to almond. This is the most common use of the wildcard character 
(*).

*.nuts.com.  IN    MX    10 almond.nuts.com.

In these examples, the preference is 10 so that a mail server with a lower preference number can 
be added to the zone without changing the existing MX record. Also notice that the host names in the 
first example are specified relative to the nuts.com domain, but the other names are not relative 
because they end in a dot. All of these names could have been entered as relative names, because they 
all are hosts in the nuts.com domain. Fully qualified names were used only to vary the examples. 
Finally, the wildcard MX record applies only to hosts that do not have a specific MX record. If the 
specific record for hazel is in the same configuration as the wildcard record, the wildcard MX does 
not apply to hazel.

file:///C|/mynapster/Downloads/warez/tcpip/appc_03.htm (10 of 16) [2001-10-15 09:19:24]



[Appendix C] C.3 Zone File Records

C.3.1.5 Canonical Name record

The Canonical Name (CNAME) resource record defines an alias for the official name of a host. The 
CNAME record provides a facility similar to nicknames in the host table. The facility provides 
alternate host names for the convenience of users, and generic hostnames used by applications (such 
as loghost used by syslogd).

The CNAME record is frequently used to ease the transition from an old hostname to a new hostname. 
While it is best to avoid hostname changes by carefully choosing hostnames in the first place, not all 
changes can be avoided. When you do make a name change, it can take a long time before it becomes 
completely effective, particularly if the host name is embedded in a mailing list run at a remote site. 
To reduce problems for the remote site, use a CNAME record until they can make the change.

The format of the CNAME record is:

nickname [ttl] IN CNAME host

nickname

This hostname is an alias for the official hostname defined in the host field. The nickname 
can be any valid hostname.

ttl

Time-to-live is usually blank.
IN

The address class is IN.
CNAME

The Canonical Name resource record type is CNAME.
host

The canonical name of the host is provided here. This hostname must be the official hostname; 
it cannot be an alias.

One important thing to remember about the CNAME record is that all other resource records must be 
associated with the official hostname and not with the nickname. This means that the CNAME record 
should not be placed between a host and the list of RRs associated with that host. The example below 
shows a correctly placed CNAME record:

peanut     IN    A       128.66.12.2
           IN    MX      5 peanut.nuts.com.
           IN    HINFO   SUN-3/60 "SUN OS 4.0"
           IN    WKS     129.6.16.2 TCP ftp telnet smtp domain

file:///C|/mynapster/Downloads/warez/tcpip/appc_03.htm (11 of 16) [2001-10-15 09:19:24]



[Appendix C] C.3 Zone File Records

           IN    WKS     128.66.12.2 UDP domain
goober     IN    CNAME   peanut.nuts.com.

In this example, the hostname peanut stays in force for the MX, HINFO, and WKS records because 
they all have blank name fields. The CNAME record changes the name field value to goober, which is 
a nickname for peanut. Any RRs with blank name fields following this CNAME record would 
associate themselves with the nickname goober, which is illegal. An improper CNAME placement is:

peanut     IN    A       128.66.12.2
goober     IN    CNAME   peanut.nuts.com.
           IN    MX      5 peanut.nuts.com.
           IN    HINFO   SUN-3/60 "SUN OS 4.0"
           IN    WKS     128.66.12.2 TCP ftp telnet smtp domain
           IN    WKS     128.66.12.2 UDP domain

This improperly placed CNAME record causes named to display the error message "goober.nuts.com 
has CNAME and other data (illegal)." Check /usr/adm/messages for named error messages to ensure 
that you have not misplaced any CNAME records.

C.3.1.6 Domain Name Pointer record

The Domain Name Pointer (PTR) resource records are used to convert numeric IP addresses to 
hostnames. This is the opposite of what is done by the address record that converts hostnames to 
addresses. PTR records are used to construct the in-addr.arpa reverse domain files.

Many administrators ignore the reverse domains, because things appear to run fine without them. 
Don't ignore them. Keep these zones up-to-date. Several programs use the reverse domains to map IP 
addresses to hostnames when preparing status displays. A good example is the netstat command. 
Some service providers - ftp.uu.net is the best example - use the reverse domains to track who is using 
their service. If they cannot map your IP address back to a hostname, they reject your connection.

The format of the PTR record is:

name [ttl] IN PTR host

name

The name specified here is actually a number. The number is defined relative to the current in-
addr.arpa domain. Names in an in-addr.arpa domain are IP addresses specified in reverse 
order. If the current domain is 66.128.in-addr.arpa, then the name field for peanut 
(128.66.12.2) is 2.12. These digits (2.12) are added to the current domain (66.128.in-
addr.arpa) to make the name 2.12.66.128.in-addr.arpa. Chapter 4, Getting Started , discusses 
the unique structure of in-addr.arpa domain names.

ttl

file:///C|/mynapster/Downloads/warez/tcpip/appc_03.htm (12 of 16) [2001-10-15 09:19:24]



[Appendix C] C.3 Zone File Records

Time-to-live is usually blank.
IN

The address class is IN.
PTR

The Domain Name Pointer resource record type is PTR.
host

This is the fully qualified domain name of the computer whose address is specified in the name 
field. The host must be specified as a fully qualified name because the name cannot be relative 
to the current in-addr.arpa domain.

There are many examples of PTR records in the sample named.rev file shown in Chapter 8.

C.3.1.7 Host Information record

The Host Information (HINFO) resource record provides a short description of the hardware and 
operating system used by a specific host. The hardware and software are described using standard 
terminology defined in the Assigned Numbers RFC in the sections on Machine Names (hardware) and 
System Names (software). There are a large number of hardware and software designators listed in the 
RFC. Most name use the same general format. Names with embedded blanks must be enclosed in 
quotes, so some names have a dash (-) where you might expect a blank. A machine name is usually 
the manufacturer's name in uppercase letters separated from the model number by a dash; e.g., IBM-
PC/AT or SUN-3/60. The system name is usually the manufacturer's operating system name written in 
uppercase letters; e.g., DOS or "SUN OS 4.0." Naturally the rapid changes in the computer market 
constantly make the data in the Assigned Numbers RFC out-of-date. Because of this, many 
administrators make up their own values for machine names and system names.

The format of the HINFO record is:

[host] [ttl] IN HINFO hardware software

host

The hostname of the computer whose hardware and software is described in the data section of 
this resource record.

ttl

Time-to-live is usually blank.
IN

The address class is IN.
HINFO

file:///C|/mynapster/Downloads/warez/tcpip/appc_03.htm (13 of 16) [2001-10-15 09:19:24]



[Appendix C] C.3 Zone File Records

HINFO is the resource record type. All of the information that follows is part of the HINFO 
data field.

hardware

This field identifies the hardware used by this host. It contains the machine name defined in the 
Assigned Numbers RFC. This field must be enclosed in quotes if it contains any blanks. A 
single blank space separates the hardware field from the software field that follows it.

software

This field identifies the operating system software this host runs. It contains the system name 
defined for this operating system in the Assigned Numbers RFC. Use quotes if the system 
name contains any blanks.

No widely used application makes use of the HINFO record; the record just provides information. 
Some security-conscious sites discourage its use. They fear that this additional information helps 
intruders narrow their attacks to the specific hardware and operating system that they wish to crack.

C.3.1.8 Well-Known Services record

The Well-Known Services (WKS) resource record names the network services supported by the 
specified host. The official protocol names and services names used on the WKS record are defined in 
the Assigned Numbers RFC. The simplest way to list the names of the well-known services is to cat 
the /etc/services file on your system. Each host can have no more than two WKS records; one record 
for TCP and one for UDP. Because several services are usually listed on the WKS record, each record 
may extend through multiple lines.

The format of the WKS record is:

[host] [ttl] IN WKS address protocol services

host

The hostname of the computer that provides the advertised services.
ttl

Time-to-live is usually blank.
IN

The address class is IN.
WKS

The resource record type is WKS. All of the information that follows is variable information 
for the WKS record.

address

file:///C|/mynapster/Downloads/warez/tcpip/appc_03.htm (14 of 16) [2001-10-15 09:19:24]



[Appendix C] C.3 Zone File Records

The IP address of the host written in dotted decimal format, e.g., 128.66.12.2.
protocol

The transport level protocol through which the service communicates - either TCP or UDP.
services

The list of services provided by this host. As few or as many services as you choose may be 
advertised, but the names used to advertise the services must be the names found in the 
/etc/services file. Items in the list of services are separated by spaces. Parentheses are used to 
continue the list beyond a single line.

There are no widely used applications that make use of this record. It is only used to provide general 
information about the system. Again, security-conscious sites may not wish to advertise all of their 
services. Some protocols, such as tftp and finger, are prime targets for intruders.

C.3.1.9 Text record

The Text (TXT) resource record holds string data. The text data can be in any format. There are no 
standard TCP/IP applications for processing TXT records. These records are used to provide free-
form information about the named object. Some sites create local processes for TXT records and 
define a local format for the information. For example, a TXT record could hold the Ethernet address 
of a host at one site and a room number at another site.

The format of the TXT record is:

[name] [ttl] IN TXT string

name

The name of the domain object with which the string data is associated.
ttl

Time-to-live is usually blank.
IN

The address class is IN.
TXT

The resource record type is TXT.
string

The string field contains text data enclosed in quotation marks.

file:///C|/mynapster/Downloads/warez/tcpip/appc_03.htm (15 of 16) [2001-10-15 09:19:24]



[Appendix C] C.3 Zone File Records

Previous: C.2 named.boot 
Configuration Commands

TCP/IP Network 
Administration

Next: D. A dhcpd Reference

C.2 named.boot Configuration 
Commands

Book Index D. A dhcpd Reference

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/appc_03.htm (16 of 16) [2001-10-15 09:19:24]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Appendix D] A dhcpd Reference

Previous: C.3 Zone File 
Records

Appendix D Next: D.2 The dhcpd 
Command

 

D. A dhcpd Reference
Contents:
Compiling dhcpd
The dhcpd Command
The dhcpd.conf Configuration File

This appendix covers the syntax of the dhcpd command and the dhcpd.conf configuration file. It is a 
reference to the Internet Software Consortium (ISC) Dynamic Host Configuration Protocol (DHCP) 
server, ISC dhcpd. To fully understand how to configure and use dhcpd in realistic network 
environments, see the tutorial and sample configuration files in Chapter 9, Configuring Network Servers .

dhcpd is under development. The information in this appendix is based on Beta Release 5 Patch Level 
16. As a beta release, this software is bound to be upgraded and changed. Refer to the Web page 
http://www.isc.org/dhcp.html for the most recent information about dhcpd. And remember, a DHCP 
implementation from another vendor will probably be configured in a completely different manner.

D.1 Compiling dhcpd

The source code for dhcpd can be obtained through the ISC Web site at www.isc.org or via anonymous 
FTP at ftp://ftp.isc.org/isc/dhcp. The compressed tar file at the time of this writing was DHCPD-BETA-
5.16.tar.gz, though this name will change as new versions are released. Download, gunzip, and untar the 
file:

> ftp ftp.isc.org
Connected to pub1.bryant.vix.com.
220 pub1.bryant.vix.com FTP server ready.
Name (ftp.isc.org:craig): anonymous
331 Guest login ok, send your complete email address as password.
Password:
230 Guest login ok, access restrictions apply.
ftp> cd isc/dhcp
250 CWD command successful.
ftp> binary

file:///C|/mynapster/Downloads/warez/tcpip/appd_01.htm (1 of 3) [2001-10-15 09:19:24]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm
http://www.isc.org/dhcp.html
ftp://ftp.isc.org/isc/dhcp


[Appendix D] A dhcpd Reference

200 Type set to I.
ftp> get DHCPD-BETA-5.16.tar.gz
200 PORT command successful.
150 Opening BINARY mode data connection for DHCPD-BETA-5.16.tar.gz
226 Transfer complete.
181892 bytes received in 17 secs (10 Kbytes/sec)
ftp> quit
221 Goodbye.
> gunzip DHCPD-BETA-5.16.tar.gz
> tar -xvf DHCPD-BETA-5.16.tar
DHCPD-BETA-5.16/
DHCPD-BETA-5.16/cf/
DHCPD-BETA-5.16/cf/alphaosf.h
DHCPD-BETA-5.16/cf/bsdos.h
DHCPD-BETA-5.16/cf/freebsd.h
.
.
.

DHCPD-BETA-5.16/includes/
DHCPD-BETA-5.16/includes/netinet/
DHCPD-BETA-5.16/includes/netinet/if_ether.h
DHCPD-BETA-5.16/includes/netinet/ip.h
DHCPD-BETA-5.16/includes/netinet/udp.h

Change to the newly created directory, DHCPD-BETA-5.16 in the example, and run configure. 
configure determines the type of UNIX system you're running and creates the correct Makefile for that 
system. If configure cannot determine what version of UNIX you're running, you must build your own 
Makefile by hand. Next, type make to compile the daemon. Finally, copy the daemon and the manpages 
to the correct directories:

# cd DHCPD-BETA-5.16
# configure
System Type: linux
# make
cc -g      -c dhcpd.c -o dhcpd.o
cc -g      -c dhcp.c -o dhcp.o
cc -g      -c bootp.c -o bootp.o
.
.
.

nroff -man dhcpd.conf.5 >dhcpd.conf.cat5
# make install

The DHCP daemon should compile without errors. If you get compile errors or configure cannot 
determine your system configuration, you should consider abandoning the compile and notifying the 

file:///C|/mynapster/Downloads/warez/tcpip/appd_01.htm (2 of 3) [2001-10-15 09:19:24]



[Appendix D] A dhcpd Reference

support group. Join the support group mailing list by going to http://www.fugue.com/dhcp. Once you 
join, send mail to the dhcp-server@fugue.com mailing list describing your configuration and the exact 
problem you have. The list is read by most of the people using dhcpd. Someone may have already solved 
your problem.

Simply installing dhcpd may not be all that is required. Remember, dhcpd is beta software. Read the 
README file very carefully. dhcpd runs on a wide variety of systems, including OSF/1, most recent 
BSD derivatives, Solaris, and Linux. It runs best on OSF/1 and BSD. On other systems it may have some 
limitations. For example, on both Solaris and Linux it can support only one network interface. dhcpd also 
may require some system-specific configuration. Our sample Linux 2.0.0 system is an excellent example 
of this. To successfully run dhcpd we had to add the following entry to the /etc/hosts table:

255.255.255.255         all-ones

And we had to add a specific route for the limited broadcast address, 255.255.255.255:

# route add -host all-ones dev eth0

To reinstall the limited broadcast address in the kernel routing table after each boot, we added the 
following code to the /etc/rc.d/rc.inet2 startup script:

# Install the limited broadcast route and start DHCP
  if [ -f /etc/dhcpd.conf ]; then
    echo -n " dhcpd"
    route add -host all-ones dev eth0
    /usr/sbin/dhcpd
  fi

The information needed to complete these extra configuration steps was clearly defined in the README 
file. Read it before you try to run dhcpd.

Previous: C.3 Zone File 
Records

TCP/IP Network 
Administration

Next: D.2 The dhcpd 
Command

C.3 Zone File Records Book Index D.2 The dhcpd Command

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/appd_01.htm (3 of 3) [2001-10-15 09:19:24]

http://www.fugue.com/dhcp
file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


file:///C|/mynapster/Downloads/warez/tcpip/appd_02.htm

Previous: D.1 Compiling 
dhcpd

Appendix D
A dhcpd Reference

Next: D.3 The dhcpd.conf 
Configuration File

 

D.2 The dhcpd Command

The syntax of the dhcpd command is:

dhcpd [-p port] [-f] [-d] [-cf config-file] [-lf lease-file] [if0 [...ifn]]

dhcpd usually is run without any command-line arguments. Most of the arguments are used only 
when testing and debugging. Two of the command-line arguments handle special configuration 
requirements:

-f

Runs dhcpd in foreground mode. By default, dhcpd runs as a background daemon process. 
Use -f when dhcpd is started from inittab on a System V UNIX system.

if0 [...ifn]

Lists the interfaces on which dhcpd should listen for BOOTREQUEST packets. This is a 
whitespace-separated list of interface names. For example, dhcpd ec0 ec1 wd0 tells 
dhcpd to listen to interfaces ec0, ec1, and wd0. Normally this argument is not required. In 
most cases dhcpd locates all installed interfaces and eliminates the non-broadcast interfaces 
automatically. Use this argument only if it appears that dhcpd is failing to locate the correct 
interfaces.

All of the remaining command-line arguments are used for debugging or testing:

-p port

Causes dhcpd to listen to a non-standard port. The well-known port for DHCP is 67. Changing 
it means that clients cannot talk to the server. On rare occasions this is done during testing.

-d

Routes error messages to stderr. Normally error messages are written via syslog with facility 
set to DAEMON.

-cf config-file

file:///C|/mynapster/Downloads/warez/tcpip/appd_02.htm (1 of 2) [2001-10-15 09:19:25]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


file:///C|/mynapster/Downloads/warez/tcpip/appd_02.htm

Causes dhcpd to read the configuration from the file identified by config-file instead of 
from dhcpd.conf. Use this only to test a new configuration before it is installed in dhcpd.conf. 
Use the standard file for production.

-lf lease-file

Causes dhcpd to write the address lease information to the file identified by lease-file 
instead of to dhcpd.leases. Use this only for testing. Changing the name of the lease file could 
cause dynamic addresses to be misallocated. Use this argument with caution.

Kill the dhcpd daemon with the SIGTERM signal. The process ID (PID) of the dhcpd daemon is 
found in the /var/run/dhcpd.pid file. For example:

# kill -TERM 'cat /var/run/dhcpd.pid'

dhcpd uses three files. dhcpd writes its PID to /var/run/dhcpd.pid. It maintains a record of dynamic 
address leases in /var/db/dhcpd.leases, and dhcpd reads its configuration from /etc/dhcpd.conf. These 
last two files are created by you. Create an empty lease file before you run dhcpd the first time, e.g., 
touch /var/db/dhcpd.leases. Create a configuration and store it in dhcpd.conf.

Previous: D.1 Compiling 
dhcpd

TCP/IP Network 
Administration

Next: D.3 The dhcpd.conf 
Configuration File

D.1 Compiling dhcpd Book Index D.3 The dhcpd.conf 
Configuration File

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/appd_02.htm (2 of 2) [2001-10-15 09:19:25]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Appendix D] D.3 The dhcpd.conf Configuration File

Previous: D.2 The dhcpd 
Command

Appendix D
A dhcpd Reference

Next: E. A sendmail 
Reference

 

D.3 The dhcpd.conf Configuration File

When it starts, dhcpd reads its configuration from the /etc/dhcpd.conf file. dhcpd.conf defines the 
network being served by the DHCP server and the configuration information the server provides to its 
clients.

dhcpd.conf is an ASCII text file. Comments in the file begin with a sharp sign (#). Keywords are case-
insensitive. Whitespace can be used to format the file. Related statements are enclosed in curly braces. 
IP address can be entered as numeric addresses or as hostnames that resolve to addresses.

Statements in the configuration file define the topology of the network being served. In the 
documentation these statements are called "declarations" because they declare something about the 
network topology. The statements that define the topology are: server-identifier, shared-network, 
subnet, group, and host. When used, there is only one server-identifier. All the other statements can 
appear multiple times in the configuration file. The statements define a hierarchical structure. The 
shared-network contains subnets, and subnets can contain hosts.

Parameters and options can be associated with each of these statements. Parameters define things 
about the server and the protocol, such as the length of time for an address lease or where the boot file 
is located. The options provide the clients with values for the standard DHCP configuration options 
defined by the RFCs: for example, whether the client should enable IP forwarding. Parameters and 
options specified outside of a specific topology statement apply to all networks served by this server. 
Those specified in the group statement apply to all of the shared networks, subnets or hosts grouped 
together by the statement. The shared-network statement options and parameters apply to all subnets 
on the shared network. Subnet options and parameters apply to everything on the subnet. Host 
options and parameters only apply to the individual host. Options applied at a general level can be 
overridden by the same option applied at a more specific level. Subnet options override global 
options and host options override subnet options. This structure allows the network administrator to 
define configuration information for the entire network and all of its parts.

In the following sections, we examine the syntax of all of the topology statements and of all the 
parameters and options that can be associated with them. We include many more parameters and 
options than you will ever use, and there is no need to study them all. Use this reference to look up the 
details of individual parameters and options when you need them. See Chapter 9 for examples of how 
these statements, parameters, and options are actually used in a real-world configuration.

file:///C|/mynapster/Downloads/warez/tcpip/appd_03.htm (1 of 9) [2001-10-15 09:19:26]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


[Appendix D] D.3 The dhcpd.conf Configuration File

D.3.1 Topology Statements

server-identifier hostname;

The server-identifier statement documents the IP address of the server. It is sometimes used at 
the start of the file as the first statement of a group of parameter statements and option 
statements that apply to every network served by this server. The documentation calls these 
"global parameters."

group {[parameters] [options]}

The group statement groups together shared-network, subnet, host, or other group 
statements to apply a set of parameters or options to all members of the group.

shared-network name {[parameters] [options]}

The shared-network statement is used only if more than one IP subnet shares the same 
physical network. In most cases, different subnets are on different physical networks. The 
name, which must be provided, can be any descriptive name. It is used only in debugging 
messages. Parameters and options associated with the shared network are declared within the 
curly braces and apply to all subnets in the shared network. The subnets in a shared network 
must be defined within the curly braces of the shared-network statement. It is assumed that 
each shared-network statement contains at least two subnet statements; otherwise there is no 
need to use the shared-subnet statement. dhcpd cannot tell on which subnet of a shared 
network a client should boot. Therefore, dynamically allocated addresses are taken from the 
available range of all subnets on the shared network and assigned as needed.

subnet address mask netmask { [parameters] [options]}

The subnet statement defines the IP address and address mask of every subnet the daemon will 
serve. The address and mask are used to identify the clients that belong to the subnet. The 
parameters and options defined within the curly braces apply to every client on the subnet. 
Every subnet physically connected to the server must have a subnet statement even if the 
subnet does not have any clients.

host hostname {[parameters] [options]}

The host statement defines parameters and options for individual clients. Every BOOTP client 
must have a host statement in the dhcpd.conf file. For DHCP clients, the host statement is 
optional. It is matched to an actual DHCP or BOOTP clients by matching the dhcp-client-
identifier provided by the client or by matching the hardware parameter to the hardware 
address of the client. BOOTP clients do not provide a dhcp-client-identifier, so use the 
hardware address for BOOTP clients. DHCP clients can be identified by either the dhcp-client-
identifier or the hardware address.

D.3.2 Configuration Parameters

file:///C|/mynapster/Downloads/warez/tcpip/appd_03.htm (2 of 9) [2001-10-15 09:19:26]



[Appendix D] D.3 The dhcpd.conf Configuration File

The parameter statements defined in this section control the operation of the DHCP server and the 
DHCP protocol. The standard DHCP configuration values that are passed to clients are defined in 
option statements, which are covered in the next section. Some parameter statements can be 
associated with any of the topology statements discussed above. Others can only be used with specific 
statements. These are noted in the description of the parameter.

range [dynamic-bootp] low-address [high-address];

The range parameter defines the scope of addresses that are available for dynamic assignment 
by defining the lowest and highest IP addresses available for assignment. The range parameter 
must be associated with a subnet statement. All addresses in the scope of the range parameter 
must be in the subnet in which the range parameter is declared. The dynamic-bootp flag is 
specified if addresses may be automatically assigned to BOOTP clients as well as DHCP 
clients. The range parameter must be defined if you intend to use dynamic address assignment. 
If the subnet statement does not include a range parameter, dynamic address assignments are 
not made to clients on the subnet.

default-lease-time seconds;

The life of an address lease in seconds that is used if the client does not request a specific lease 
length.

max-lease-time seconds;

The maximum life of an address lease in seconds regardless of the lease length the client 
requests.

hardware type address;

Defines a client's hardware address. At present, type must be either ethernet or token-
ring. address must be an appropriate physical address for the type of hardware. The 
hardware parameter must be associated with a host statement. It is required for a BOOTP client 
to be recognized. It is optional for DHCP clients for which it is an alternative to the dhcp-
client-identifier option.

filename file;

Identifies the boot file for diskless clients. file is an ASCII string enclosed in quotation 
marks.

server-name name;

The hostname of the DHCP server that is provided to the client. name is an ASCII string 
enclosed in quotation marks.

next-server name;

The hostname or address of the server from which the boot file is to be loaded.
fixed-address address[, address... ];

Assigns one or more fixed IP addresses to a host. The fixed-address parameter is valid only 

file:///C|/mynapster/Downloads/warez/tcpip/appd_03.htm (3 of 9) [2001-10-15 09:19:26]



[Appendix D] D.3 The dhcpd.conf Configuration File

when associated with a host statement. If more than one address is supplied, the client is 
assigned the address that is valid for the subnet on which it is booting. If none of the addresses 
is valid for the subnet, no configuration data is sent to the client.

dynamic-bootp-lease-cutoff date;

Sets a termination date for addresses assigned to BOOTP clients. BOOTP clients do not have a 
way of renewing leases and don't know that address leases expire. By default, dhcpd assigns 
permanent address to BOOTP clients. This parameter changes that behavior. It is used only in 
special circumstances where the life of all systems is known in advance - for example, on a 
college campus where it is known that all student systems will be removed by June.

dynamic-bootp-lease-length seconds;

Defines the life of an address lease in seconds for an address automatically assigned to a 
BOOTP client. As noted above, BOOTP clients do not understand address leases. This 
parameter is used only in special circumstances where clients use a BOOTP boot PROM and 
run an operating system that supports DHCP. During the boot the client acts as a BOOTP 
client, but once it boots the client runs DHCP and knows how to renew a lease. Use this 
parameter, and the previous one, with caution. 

boot-unknown-clients flag;

Tells dhcpd whether or not to dynamically assign addresses to unknown clients. If flag is 
"false," addresses are provided only to clients that have a host statement in the configuration 
file. By default, the flag is "true" and addresses are dynamically assigned to any client on a 
valid subnet. 

get-lease-hostnames flag;

Tells dhcpd if it should send a DNS hostname to the client when it dynamically assigns it an 
IP address. If flag is "true," dhcpd uses DNS to look up the hostnames for all dynamically 
assigned addresses, which dramatically slows DHCP performance. By default the flag is 
"false" and no lookups are done. 

use-host-decl-names flag;

Causes the name provided on the host statement to be supplied to the client as its hostname.

D.3.3 DHCP Options

The option statements available with dhcpd cover all of the standard DHCP configuration options 
currently defined in the RFCs. Furthermore the syntax of the dhcpd.conf option statement is 
extensible. A new option can be identified by its decimal option code. All options are assigned a 
decimal option code, either in the RFC that describes the option or in the vendor documentation if it is 
vendor-specific. The value assigned to the new option can be expressed as a string enclosed in quotes 
or as a colon-separated list of hexadecimal numbers. Imagine that a new DHCP option is created and 
assigned an option code of 133. Further, imagine that the value carried by this option is a 16-bit binary 
mask and that you want your clients to "turn on" the high-order 4-bit and "turn off" all other bits in the 
mask. You could add the following option to your configuration:

file:///C|/mynapster/Downloads/warez/tcpip/appd_03.htm (4 of 9) [2001-10-15 09:19:26]



[Appendix D] D.3 The dhcpd.conf Configuration File

option option-133 F0:00

All option statements begin with the keyword option. The keyword is then followed by the name of 
the option and the value assigned to the option, in that order. In the example above, the option name is 
in the form option-nnn, where nnn is the decimal option code assigned to the option. In this manner 
any new option that appears can be added to dhcpd.conf file. The value assigned to this imaginary 
option is F000.

Looking at the huge list of standard options, you may well wonder if they will ever need to be 
extended. The standard options are listed in the following section. The types of values that are 
assigned to options are:

Address

An IP address written in dotted decimal notation or a host name that resolves to an address
String

A series of characters enclosed in quotation marks
Number

A numeric value
Flag

A switch containing either 1 or 0

In this book, the list of options is divided into "Commonly used options" and "Other options."

D.3.3.1 Commonly used options

option subnet-mask mask;

Specifies the subnet mask in dotted decimal notation. If the subnet mask option is not 
provided, dhcpd uses the network mask from the subnet statement.

option time-offset seconds;

Specifies the number of seconds this time zone is offset from Coordinated Universal Time 
(ETC).

option routers address[, address...];

Lists the routers the client should use, in order of preference.
option domain-name-servers address[, address...];

Lists the Domain Name System (DNS) name servers the client should use, in order of 

file:///C|/mynapster/Downloads/warez/tcpip/appd_03.htm (5 of 9) [2001-10-15 09:19:26]



[Appendix D] D.3 The dhcpd.conf Configuration File

preference.
option lpr-servers address [, address...];

Lists line printer (LPR) servers the client should use, in order of preference.
option host-name host;

Defines the hostname the client should use.
option domain-name domain;

Defines the domain name.
option interface-mtu bytes;

Defines the MTU the client should use. The minimum legal value for the MTU is 68.
option broadcast-address address;

Defines the broadcast address for the client's subnet.
option static-routes destination gateway[, destination gateway... ];

Lists the static routes the client should use. The default route cannot be specified in this 
manner. Use the routers option for the default route.

option trailer-encapsulation 0 | 1;

Specifies if the client should use trailer encapsulation. See the discussion of trailer 
encapsulation in Chapter 6, Configuring the Interface . 0 means "no" the client shouldn't and 1 
means "yes" the client should use trailer encapsulation.

option nis-domain string;

A character string that defines the name of the Network Information Services (NIS) domain.
option nis-servers address[, address...];

Lists IP addresses of the NIS servers the client should use, in order of preference.
option dhcp-client-identifier string;

Used in the host statement to define the DHCP client identifier. dhcpd can use the client 
identifier to identify DHCP clients in lieu of the hardware address.

D.3.3.2 Other options

option time-servers address[, address...];

Lists the time servers the client should use, in order of preference.
option ien116-name-servers address[, address...];

Lists the IEN 116 name servers the client should use, in order of preference. IEN 116 is an 

file:///C|/mynapster/Downloads/warez/tcpip/appd_03.htm (6 of 9) [2001-10-15 09:19:26]



[Appendix D] D.3 The dhcpd.conf Configuration File

obsolete name service. Avoid this and use DNS.
option log-servers address[, address...];

Lists the MIT-LCS UDP log servers the client should use, in order of preference.
option cookie-servers address[, address...];

Lists the cookie servers available to the client, in order of preference.
option impress-servers address[, address...];

Lists the Image Impress servers available to the client, in order of preference.
option resource-location-servers address[, address...];

Lists the Resource Location servers the client should use, in order of preference.
option boot-size blocks;

The number of 512-octet blocks in boot file.
option merit-dump path;

path is a character string that identifies the location of the file the client should dump core to 
in the event of a crash.

option swap-server address;

Specifies the IP address of the client's swap server.
option root-path path;

path is a character string that identifies the location of the client's root disk.
option ip-forwarding 0 | 1;

Specifies if the client should do IP forwarding. 0 disables IP forwarding, and 1 enables it.
option non-local-source-routing 0 | 1;

Specifies if the client should allow non-local source routes. Source routes are a potential 
security problem as they can be used by intruders to route data off the local network in ways 
not intended by the local network administrator. 0 disables forwarding of non-local source 
routed datagrams, and 1 enables forwarding. 0 is the more secure setting.

option policy-filter address mask[, address mask...];

Lists the IP addresses and masks that specify the only valid destination/mask pairs for 
incoming source routes. Any source-routed datagram whose next-hop address does not match 
one of the filters is discarded by the client.

option max-dgram-reassembly bytes;

Defines, in bytes, the largest datagram the client should be prepared to reassemble. The value 
of bytes cannot be less than 576.

file:///C|/mynapster/Downloads/warez/tcpip/appd_03.htm (7 of 9) [2001-10-15 09:19:26]



[Appendix D] D.3 The dhcpd.conf Configuration File

option default-ip-ttl ttl ;

Defines the default time-to-live (ttl) for outgoing datagrams. See the discussion of traceroute 
in Chapter 11, Troubleshooting TCP/IP , for information about ttl.

option path-mtu-aging-timeout seconds;

Set the number of seconds for timing out Path MTU values discovered by the mechanism 
defined in RFC 1191.

option path-mtu-plateau-table bytes[, bytes...];

Defines a table of MTU sizes to use when performing Path MTU Discovery as defined in RFC 
1191. The minimum MTU value cannot be smaller than 68.

option all-subnets-local 0 | 1;

Tells the client if all subnets of the local network use the same MTU. 1 means that all subnets 
share the same MTU. 0 means that some subnets have smaller MTUs.

option perform-mask-discovery 0 | 1;

Specifies if the client should use ICMP to discover the subnet mask. 0 enables ICMP mask 
discovery, and 1 disables it. Because the DHCP server can provide the correct subnet mask, 
ICMP mask discovery is rarely used on networks that have a DHCP server.

option mask-supplier 0 | 1;

Specifies if the client should respond to ICMP subnet mask requests. 0 means "no" and 1 
means "yes" it should respond.

option router-discovery 0 | 1;

Specifies if the client should use the Router Discovery mechanism defined in RFC 1256 to 
locate routers. 0 means "no" it shouldn't, and 1 means "yes" the client should perform router 
discovery. Because the DHCP server provides the correct list of routers, router discovery is 
rarely used on networks that have a DHCP server.

option router-solicitation-address address;

Defines the address to which the client should transmit a router solicitation request if router 
discovery is enabled.

option arp-cache-timeout seconds;

Defines the number of seconds entries are maintained in the ARP cache.
option ieee802-3-encapsulation 0 | 1;

Specifies if the client should use Ethernet II (DIX) or IEEE 802.3 Ethernet encapsulation on 
the network. 0 tells the client to use Ethernet II and 1 tells the client to use IEEE 802.3 
encapsulation.

option default-tcp-ttl ttl;

file:///C|/mynapster/Downloads/warez/tcpip/appd_03.htm (8 of 9) [2001-10-15 09:19:26]



[Appendix D] D.3 The dhcpd.conf Configuration File

Defines the default TTL for TCP segments. Possible values are 1 to 255.
option tcp-keepalive-interval seconds;

The number of seconds TCP should wait before sending a keepalive message. 0 means that 
TCP should not generate keepalive messages. Keepalive messages are generally discouraged.

option tcp-keepalive-garbage 0 | 1;

Specifies if the client should send TCP keepalive messages with an octet of garbage for 
compatibility with older implementations. 0 means don't send a garbage octet and 1 means 
send it. Keepalives are generally discouraged.

option ntp-servers address[, address...];

Lists the IP addresses of the Network Time Protocol (NTP) servers the client should use, in 
order of preference.

option netbios-name-servers address[, address...];

Lists the NetBIOS name servers (NBNS) the client should use, in order of preference.
option netbios-dd-server address[, address...];

Lists the NetBIOS datagram distribution servers (NBDD) the client should use, in order of 
preference.

option netbios-node-type type;

Defines the NetBIOS node type of the client. A type of 1 is a NetBIOS B-node; 2 is a P-
node; 4 is an M-node; 8 is an H-node.

option netbios-scope string;

A character string that defines the NetBIOS over TCP/IP scope parameter as specified in RFC 
1001/1002.

option font-servers address[, address...];

Lists the X Window System Font servers the client should use, in order of preference.
option x-display-manager address[, address...];

Lists the systems running the X Window System Display Manager that the client should use, in 
order of preference.

Previous: D.2 The dhcpd 
Command

TCP/IP Network 
Administration

Next: E. A sendmail 
Reference

D.2 The dhcpd Command Book Index E. A sendmail Reference

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/appd_03.htm (9 of 9) [2001-10-15 09:19:26]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Appendix E] A sendmail Reference

Previous: D.3 The 
dhcpd.conf Configuration 
File

Appendix E Next: E.2 The sendmail 
Command

 

E. A sendmail Reference
Contents:
Compiling sendmail
The sendmail Command
m4 sendmail Macros
More sendmail.cf
Sample Configurations

This appendix provides details of the syntax of the sendmail command, of the sendmail.cf file, and of the m4 
macros that can be used to build that file. It also contains excerpts of the sample sendmail.cf file described in 
Chapter 10, sendmail . It describes where to obtain the latest source code for sendmail and how to compile it. 
This appendix is a reference, not a tutorial. Refer to Chapter 10 for a tutorial on sendmail configuration.

We start the appendix with information on locating, downloading, and compiling the latest version of sendmail.

E.1 Compiling sendmail

The source code for sendmail is available via anonymous ftp from ftp.sendmail.org, where it is stored in the 
pub/sendmail directory. When you change to that directory, an information message tells you about the latest 
version of sendmail. sendmail is updated constantly. The following examples are based on sendmail V8.8.5. 
Remember that things will change for future releases. Always read the README files and installation 
documents that come with new software before beginning an installation.

Download the compressed sendmail tar file as a binary file. Uncompress and untar it. Change to the src directory 
in the sendmail directory created by the tar file and enter:

sh makesendmail

According to the documentation, this is all you need to do on most systems. This certainly works on BSD 4.4-
based systems. However, it does not work on every system. The two systems used for examples in this book, 
Solaris 2.5.1 and Slackware 96 Linux, both have problems. The problem with Solaris is that it does not have a C 
compiler. Before even attempting to install sendmail you must download and install the GNU C compiler, gcc. 
The problem with Slackware is more subtle. Different versions of Linux place files in different locations in the 
filesystem. Let's look at the details of installing sendmail V8.8.5 on a Slackware 96 system.

file:///C|/mynapster/Downloads/warez/tcpip/appe_01.htm (1 of 5) [2001-10-15 09:19:27]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


[Appendix E] A sendmail Reference

First we download the tar file and put the sendmail source files into the /usr/src directory where Slackware 96 
keeps various source files:

# ftp ftp.sendmail.org
Connected to kohler.CS.Berkeley.EDU.
220 kohler.CS.Berkeley.EDU FTP server ready.
Name (ftp.cs.berkeley.edu:craig): anonymous
331 Guest login ok, send your complete email address as password.
Password: craig@nuts.com
230 Guest login ok, access restrictions apply.
ftp> cd pub/sendmail
250 CWD command successful.
ftp> binary
200 Type set to I.
ftp> get sendmail.8.8.5.tar.gz
200 PORT command successful.
150 Opening BINARY mode data connection.
226 Transfer complete.
992815 bytes received in 187 secs (5.2 Kbytes/sec)
ftp> quit
221 Goodbye.
# gunzip sendmail.8.8.5.tar.gz
# cp sendmail.8.8.5.tar /usr/src
# cd /usr/src
# tar -xvf sendmail.8.8.5.tar

Next we run makesendmail.

# cd sendmail-8.8.5/src
# ./makesendmail
Configuration: os=Linux, rel=2.0.0, rbase=2, rroot=2.0, arch=i586, sfx=
Creating obj.Linux.2.0.0.i586 using Makefile.Linux
Making dependencies in obj.Linux.2.0.0.i586
make: Nothing to be done for `depend'.
Making in obj.Linux.2.0.0.i586
cc -I. -O -I/usr/local/include -DNDBM -DNEWDB    -c alias.c -o alias.o
.
.
.

cc -I. -O -I/usr/local/include -DNDBM -DNEWDB    -c map.c -o map.o
map.c:42: ndbm.h: No such file or directory
make: * [map.o] Error 1

makesendmail recognizes this is a Linux system, but the Makefile it selects is obviously not correct for the 
Slackware 96 variant of Linux. All of the Makefiles that makesendmail uses are located in the src/Makefiles 
subdirectory. Two of those files, Makefile.Linux and Makefile.Linux.ppc, are designed for Linux. The 
Makefile.Linux.ppc is a possible solution to our problem. Move it to Makefile.Linux and rerun makesendmail:

# cd Makefiles
# mv Makefile.Linux Makefile.Linux.orig

file:///C|/mynapster/Downloads/warez/tcpip/appe_01.htm (2 of 5) [2001-10-15 09:19:27]



[Appendix E] A sendmail Reference

# cp Makefile.Linux.ppc Makefile.Linux
# cd ..
# touch *
# ./makesendmail
Configuration: os=Linux, rel=2.0.0, rbase=2, rroot=2.0, arch=i586, sfx=
Making in obj.Linux.2.0.0.i586
cc -I. -O -I/usr/local/include -DNEWDB    -c alias.c -o alias.o
cc -I. -O -I/usr/local/include -DNEWDB    -c version.c -o version.o
cc -o sendmail alias.o ... version.o  -L/usr/local/lib -ldb
groff -Tascii -mandoc aliases.5 > aliases.0
groff -Tascii -mandoc sendmail.8 > sendmail.0

That's more like it! sendmail compiled and linked without problems.

A quick look at the differences in the two Makefiles shows that only four lines have been changed. Of those four 
lines, only two, DBMDEF and LIBS, were actually needed to successfully compile sendmail. Possible values for 
the database definition (DBMDEF) are shown in Table 13.4

Table E.1: DBMDEF Database Arguments

Argument Function

NDBM The dbm format from BSD 4.3 accessed with ndbm(3).

NEWDB The new BSD 4.4 database format accessed with db(3).

NIS Sun NIS.

NISPLUS Sun NIS+.

NETINFO NeXT's NetInfo.

HESIOD MIT's Hesiod server.

LDAPMAP X500 LDAP lookups.

The error displayed by the first ./makesendmail run stated that ndbm.h was not found. This indicates that the 
NDBM argument on the DBMDEF line is the likely culprit. Further, the comments in the Makefile.Linux file 
recommend using DNEWDB and the ldb library. This suggests that a possible solution is to change DBMDEF to 
DBMDEF= -DNEWDB and LIBS to LIBS= -ldb. This is exactly what Paul DuBois did when he created the 
Makefile.Linux.ppc file, and it is what allows sendmail to compile on a Slackware 96 system.

He also changed two other lines, neither of which is critical to the compile, but both of which are indicative of 
the type of things customized in a Makefile. Paul changed the STDIR variable that defines where the sendmail.st 
file is stored to STDIR= ${DESTDIR}/var/log. The location of files is the most commonly modified 
information in a makefile. He also changed BINGRP to BINGRP= mail to use the mail group defined by the 
Slackware 96 system as the group ID for the sendmail binary files.

Once sendmail compiles, it is installed with the following command:

# ./makesendmail install

One other thing that should be checked before declaring the installation complete is the makemap command. 
This is the command that builds the databases read by sendmail. Given the fact that sendmail encountered trouble 
while compiling certain types of database support, we are suspicious that compiling makemap will have similar 

file:///C|/mynapster/Downloads/warez/tcpip/appe_01.htm (3 of 5) [2001-10-15 09:19:27]



[Appendix E] A sendmail Reference

problems.

First change to the sendmail-8.8.5/makemap directory and look at the two makefiles located there. One of them, 
Makefile.dist, is the type of makefile supported by Slackware Linux. Copy Makefile.dist to Makefile and attempt 
a compile of makemap:

# cd ../makemap
# mv Makefile Makefile.orig
# cp Makefile.dist Makefile  
# make
cc -I. -O -I../src -I/usr/sww/include -DNDBM -DNEWDB    -c makemap.c
   -o makemap.o
makemap.c:53: ndbm.h: No such file or directory
make: *** [makemap.o] Error 1

Just as we suspected! makemap has the same compile problem as sendmail. Luckily, Paul DuBois's solution to 
the sendmail problem shows us the changes needed for the DBMDEF and LIBS variables. Additionally, we 
check all of the directory paths in the Makefile to ensure they are valid for a Slackware 96 system:

# grep -v '^#' Makefile | grep '/'
SRCDIR= ../src
INCDIRS=-I${SRCDIR} -I/usr/sww/include
LIBDIRS=-L/usr/sww/lib
BINDIR= ${DESTDIR}/usr/sbin
LINKS=  ${DESTDIR}/usr/ucb/newaliases ${DESTDIR}/usr/ucb/mailq
${OBJS}: ${SRCDIR}/conf.h
# ls /usr/sww
ls: /usr/sww: No such file or directory
# ls /usr/ucb
ls: /usr/ucb: No such file or directory
# whereis makemap
makemap: /usr/sbin/makemap
# whereis newaliases
newaliases: /usr/bin/newaliases
# whereis mailq
mailq: /usr/bin/mailq

These tests show that, in addition to Paul DuBois's corrections, we need to remove references to the non-existent 
/usr/sww and /usr/ucb directories and insert references to /usr/bin where mailq and newaliases really reside. 
After we make these changes, a diff shows the new Makefile code and a rerun of make shows that we have fixed 
the problem:

# diff Makefile.dist Makefile
22c22
< DBMDEF=       -DNDBM -DNEWDB
---
> DBMDEF=       -DNEWDB
30c30
< INCDIRS=-I${SRCDIR} -I/usr/sww/include
---

file:///C|/mynapster/Downloads/warez/tcpip/appe_01.htm (4 of 5) [2001-10-15 09:19:27]



[Appendix E] A sendmail Reference

> INCDIRS=-I${SRCDIR}
36c36
< LIBDIRS=-L/usr/sww/lib
---
> LIBDIRS=
39c39
< LIBS= -ldb -ldbm
---
> LIBS= -ldb
53c53
< LINKS=        ${DESTDIR}/usr/ucb/newaliases ${DESTDIR}/usr/ucb/mailq
---
> LINKS=        ${DESTDIR}/usr/bin/newaliases ${DESTDIR}/usr/bin/mailq
# make
cc -I. -O -I../src -DNEWDB    -c makemap.c -o makemap.o
cc -o makemap  makemap.o   -ldb

Run make install to install the new version of makemap. We're finished. Compiling sendmail wasn't as easy as 
the documentation implies, but wasn't impossible.

sendmail is now ready to run. The next section describes the syntax of the sendmail command.

Previous: D.3 The 
dhcpd.conf Configuration 
File

TCP/IP Network 
Administration

Next: E.2 The sendmail 
Command

D.3 The dhcpd.conf 
Configuration File

Book Index E.2 The sendmail Command

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/appe_01.htm (5 of 5) [2001-10-15 09:19:27]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Appendix E] E.2 The sendmail Command

Previous: E.1 Compiling 
sendmail

Appendix E
A sendmail Reference

Next: E.3 m4 sendmail 
Macros

 

E.2 The sendmail Command

The syntax of the sendmail command is deceptively simple:

sendmail [arguments] [address ...]

The syntax is deceptive because it hides the fact that there are a very large number of command-line 
arguments. Table 13.5 lists all of them.

Table E.2: sendmail Command-Line Arguments

Argument Function

-U Indicate initial user submission.

-Venvid Set the envelope ID to envid.

-Ndsn Set delivery status notification to dsn.

-Mxvalue Set macro x to value.

-Rreturn Set the part of the message returned with an error.

-Btype Set the MIME body type.

-pprotocol Set the receiving protocol and hostname.

-Xlogfile Log all traffic in the indicated log file.

-faddr Sender's machine address is addr.

-r addr Obsolete form of -f.

-h cnt Drop mail if forwarded cnt times.

-Fname Set the full name of this user to name.

-n Don't do aliasing or forwarding.

-t Send to everyone listed in To:, Cc:, and Bcc:.

-bm Deliver mail (default).

-ba Run in arpanet mode.

-bs Speak SMTP on input side.

-bd Run as a daemon.

-bt Run in test mode.

file:///C|/mynapster/Downloads/warez/tcpip/appe_02.htm (1 of 5) [2001-10-15 09:19:29]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


[Appendix E] E.2 The sendmail Command

-bv Verify addresses; don't collect or deliver mail.

-bi Initialize the alias database.

-bp Print the mail queue.

-q[time] Process queued mail. Repeat at interval time.

-Cfile Use file as the configuration file.

-dlevel Set debugging level.

-oxvalue Set option x to the specified value.

-i Ignore dots in incoming messages.

-m Send to me, too.

-v Run in verbose mode.

-saddr Alternate form of -f.

Several of the command-line arguments are covered in Chapter 10. These are:

-f

Allows trusted users to override the sender address on outgoing messages. For security reasons, 
it is disabled on some systems. Obsolete alternative forms of this argument are -r and -s.

-t

Reads the To:, Cc: and Bcc: headers from standard input. Used to send a file that contains these 
headers or when typing in a test message, as in Chapter 10.

-bd

Runs sendmail in background mode, causing it to collect incoming mail. Use this argument on 
the sendmail command in the boot script.

-bt

Used to test sendmail address rewrite rules. 
-bi

Initializes the aliases database. This is the same as the newaliases command covered in Chapter 
10.

-q

Sets the time interval at which the mail queue is processed. Use on the sendmail command in 
the boot script.

-C

Loads an alternative sendmail configuration file. Use this to test the configuration before 
moving the new file to sendmail.cf.

-v

file:///C|/mynapster/Downloads/warez/tcpip/appe_02.htm (2 of 5) [2001-10-15 09:19:29]



[Appendix E] E.2 The sendmail Command

Permits you to view the exchange of SMTP commands in real time.
-bv

Verifies address processing without actually sending mail.

Other than the two arguments (-bd and -q) used on the sendmail command line in the boot script to 
process incoming mail, the most common use for sendmail arguments is debugging. From the list 
above, -bt, -C, -bv, -v, and -t are all used in Chapter 10 in debugging examples. Other debugging 
arguments are:

-bp

Prints a list of mail that is queued for delivery. It is the same as the mailq command. Mail is 
queued when it cannot be delivered immediately because the remote host is temporarily unable 
to accept the mail. sendmail periodically processes the queue, based on the time interval you set 
with the -q argument, and attempts to deliver the mail in the queue. The queue can grow large 
enough to impede sendmail's performance if an important remote host is down. mailq shows 
how many items are queued as well as the source and destination of each piece of mail.

When the queue requires immediate processing, invoke sendmail using -q with no time 
interval. This processes the entire queue. Some variations of the -q argument allow you to 
selectively process the queue. Use -qIqueue-id to process only those queue entries with the 
specified queue identifier; -qRrecipient to process only items being sent to the specified 
recipient; or -qSsender to process only mail sent from the specified sender. The mailq 
command displays the queue identifier, sender address, and recipient address for every item in 
the queue.

-o

Sets a sendmail option for this one instantiation of sendmail, e.g., -oA/tmp/test-aliases. Use 
this argument to test alternative option settings without editing the sendmail.cf file. -o uses the 
old sendmail option syntax. An alternate form of the argument is -O, which uses the new option 
syntax, e.g., -OAilasFile=/tmp/test-aliases. See sendmail Options later in this Appendix.

-d

Sets the level of detail displayed when debugging sendmail code. Can be used to debug rewrite 
rules, e.g., sendmail -bt -d21.12. Otherwise -d is only useful for sendmail source code 
debugging.

-h

Sets the counter used to determine if mail is looping. By default, it is set to 30, which is a good 
operational value. When you are debugging a mail loop problem, set the hop count lower, e.g., -
h10, to reduce the number of times a piece of mail is handled by the system. Otherwise, leave 
this value alone.

file:///C|/mynapster/Downloads/warez/tcpip/appe_02.htm (3 of 5) [2001-10-15 09:19:29]



[Appendix E] E.2 The sendmail Command

The remaining arguments are rarely used on the command line:

-B

Indicates the MIME message body type. Acceptable values are either 7BIT or 8BITMIME.
-N

Requests that the sender be notified of the delivery status of the mail. The default value is 
FAILURE, DELAY, which notifies the sender when mail delivery fails or is delayed in the 
queue. Other acceptable values are NEVER, to request that no status notifications be returned 
to the sender, and SUCCESS, to request notification of successful mail delivery.

-M

Sets a macro value for this instantiation of sendmail. For example, -MMnuts.com sets macro 
M to nuts.com.

-p

Sets the sending protocol and the sending host. This is equivalent to setting the internal s and r 
macros. If a system has more than one external mail protocol, for example, UUCP and SMTP, 
this forces the system to use a specific protocol for this piece of mail.

-R

Sets the amount of information returned to the sender when a message cannot be delivered. 
This can be either HDRS for headers-only or FULL for the headers and the full message body.

-U

Indicates that this mail comes directly from a user interface and was not forwarded from a 
remote mail handler. At this writing this argument is not yet used, but in the future user agent 
programs may include it when they pass mail to sendmail.

-V

Inserts an "envelop id" into the outbound message that is returned if message delivery fails.
-X

Logs all mail messages to the specified log file. This rapidly produces an enormous log file.
-n

Disables the processing of aliases and mail forwarding.
-bm

Tells sendmail to deliver mail, which it will do anyway.
-ba

Reads the header From: line to find the sender. Uses three digit reply codes, and ends error 
lines with <CRLF>. This is an obsolete argument.

file:///C|/mynapster/Downloads/warez/tcpip/appe_02.htm (4 of 5) [2001-10-15 09:19:29]



[Appendix E] E.2 The sendmail Command

-bs

Tells sendmail to use SMTP for incoming mail. When appropriate, sendmail will do this even 
without the -bs argument.

-i

Normally, an SMTP message terminates when a line containing only a dot is encountered. This 
argument tells sendmail to ignore the dots in incoming messages.

-m

Sends a copy of the mail to the person sending the mail. Normally this is done with a CC: or 
BCC: header in the message, not with the -m argument.

This is a complete list of sendmail command-line arguments at this writing. Some of these arguments 
were introduced in sendmail 8. Others are considered obsolete in sendmail V8. Check the manpage for 
your system to find out exactly what arguments are available on your system.

When the sendmail command is executed, it reads its configuration from the sendmail.cf file. A basic 
sendmail.cf file can be built from m4 macros that come with the sendmail source code. Chapter 10 
provides examples of how this is done. The next section provides a complete list of the m4 macros that 
come with the sendmail distribution.

Previous: E.1 Compiling 
sendmail

TCP/IP Network 
Administration

Next: E.3 m4 sendmail 
Macros

E.1 Compiling sendmail Book Index E.3 m4 sendmail Macros

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/appe_02.htm (5 of 5) [2001-10-15 09:19:29]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Appendix E] E.3 m4 sendmail Macros

Previous: E.2 The sendmail 
Command

Appendix E
A sendmail Reference

Next: E.4 More sendmail.cf

 

E.3 m4 sendmail Macros

The sendmail distribution comes with several sample configuration files. Chapter 10 provides an 
example of how the tcpproto.mc file is modified to produce a configuration file suitable for a Linux 
system. The prototype files are m4 macro configuration files that produce useable sendmail.cf files as 
output. The prototype files are located in the sendmail/cf/cf directory of the sendmail distribution. All 
of the m4 macro configuration files end with the .mc file name extension. The .mc files can be 
composed of the following m4 macros: [1]

[1] The macro commands are listed in the order they would occur in the configuration 
file.

VERSIONID

Defines the version number of the .mc source file. RCS or SCCS version numbers are 
commonly used. This command is optional.

OSTYPE

Points to the m4 source file that contains the operating system-specific information for this 
configuration. This is required.

DOMAIN

Points to the m4 source file that contains configuration information specific to this domain. 
This is optional.

FEATURE

Points to an m4 source file that defines an optional sendmail feature. This is not required for 
m4 to process the .mc source file, but many configurations have multiple FEATURE entries.

HACKS

Points to an m4 source file that contains site-specific configuration information. This is a 
temporary configuration used to fix a temporary problem. The use of HACKS is discouraged.

SITECONFIG

file:///C|/mynapster/Downloads/warez/tcpip/appe_03.htm (1 of 21) [2001-10-15 09:19:31]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


[Appendix E] E.3 m4 sendmail Macros

Points to a source file that contains m4 SITE commands that define the UUCP sites connected 
to this host. The format of the command is: SITECONFIG(file, local-hostname, class), which 
reads the UUCP hostnames from file into class. 

define

Defines a local value. Most "defines" are done in the m4 source files that are called by the .mc 
file, not in the .mc file itself. It can define a value for a sendmail.cf macro, option, or other 
command.

MAILER

Points to an m4 source file that contains the configuration commands that define a sendmail 
mailer. A least one MAILER command must appear in the configuration file. Generally more 
than one MAILER command is used.

LOCAL_RULE_n

Heads a section of code to be added to ruleset n, where n is 0, 1, 2, or 3. The code that follows 
the LOCAL_RULE_n command is composed of standard sendmail.cf rewrite rules. [2] The 
LOCAL_RULE_n command is rarely used.

[2] The one exception to this is the UUCPSMTP macro that can be used in the local 
rule. See the New sendmail Configuration Files document that come with the sendmail 
V8 distribution if you have questions about UUCP configuration.

LOCAL_CONFIG

Heads a section of code to be added to the sendmail.cf file after the local information section 
and before the rewrite rules. The section of code contains standard sendmail.cf configuration 
commands. This macro is rarely used.

Most of the macros in the .mc file point to other m4 source files. The macro names OSTYPE, 
DOMAIN, FEATURE, MAILER, HACKS, and SITECONFIG are all names of subdirectories within 
the sendmail/cf directory. The value passed to each of these macros is the name of a file within the 
specified directory. For example, the command FEATURE(nouucp) tells m4 to load the file 
nouucp.m4 from the feature directory and process the m4 source code found there. The real meat of 
the sendmail configuration is contained in the source files pointed to by the OSTYPE, DOMAIN, 
FEATURE, and MAILER commands.

The macro commands HACK, SITECONFIG, LOCAL_RULE_n, and LOCAL_CONFIG are rarely 
used in a macro configuration file. To simplify this appendix, we do not mention them again. [3] 
Likewise, for the sake of simplicity we avoid discussing UUCP configuration and concentrate on 
SMTP. Still, m4 configuration can appear to be enormously complex. Please remember that this 
appendix is a reference, and as such lists as many of the m4 macros as possible. Most of these you 
will never need to use. Refer to Chapter 10 for a realistic example of how m4 is used to build a 
sendmail.cf file.

file:///C|/mynapster/Downloads/warez/tcpip/appe_03.htm (2 of 21) [2001-10-15 09:19:31]



[Appendix E] E.3 m4 sendmail Macros

[3] To see examples of some of these commands, look at the ucbvax.mc sample file that 
comes with the sendmail V8 distribution.

In the following section we provide additional information about the OSTYPE, DOMAIN, 
FEATURE, and MAILER macros and details of the various commands used to build the m4 source 
files they call. Chapter 10 provides an example of building a custom DOMAIN macro source file. The 
source files can contain any of the macros we have already mentioned as well as the additional ones 
documented below. The macro configuration (.mc) file also can contain any of the commands 
documented below. In fact, pretty much any macro can appear in any file.

To bring some order out of this chaos, we have organized the commands according to the files they 
are most likely to appear in, which is similar to the organization found in the documentation that 
comes with sendmail distribution. Just remember, actual implementation files may have a different 
organization. We start by examining the define macros and the FEATURE macros that are the 
primary building blocks of all the other files.

E.3.1 define

The syntax of the define macro is:

define('parameter', 'value')

Where parameter is the keyword name of a sendmail configuration parameter and value is the 
value assigned to that configuration parameter. The parameter and the value are normally 
enclosed in single quotes to prevent inappropriate macro expansion.

Many of the configuration parameters that can be set using the define command are shown below. 
Most of the parameters correspond to sendmail options, macros, or classes. The name of the option, 
macro, or class set by the parameter is listed in the parameter description enclosed in square brackets 
([]). Macro names begin with a dollar sign ($j), class names begin with a dollar sign and an equal sign 
($=w), and options are shown with long option names (SingleThreadDelivery). To find out more 
about these parameters, see the descriptions of the macros, options, and classes they represent that are 
provided later in this appendix.

Because many define parameters are equivalent to options, macros, and classes, the command:

define('confDOMAIN_NAME', 'peanut.nuts.com')

placed in an m4 source file has the same effect as:

Djpeanut.nuts.com

placed directly in the sendmail.cf file. If you compile and install a new version of sendmail, build your 
configuration with m4 and set values for macros, classes, and options with the m4 define macro.

file:///C|/mynapster/Downloads/warez/tcpip/appe_03.htm (3 of 21) [2001-10-15 09:19:31]



[Appendix E] E.3 m4 sendmail Macros

The list of define parameters is quite long. However, because most of the parameters default to a 
reasonable value they do not have to be explicitly set in the m4 source file. The default value of each 
parameter is shown in the listing - unless there is no default.

confMAILER_NAME

Default is MAILER-DAEMON. The sender name used on error messages. [$n]
confDOMAIN_NAME

The full hostname. [$j]
confCF_VERSION

The configuration file's version number. [$Z]
confFROM_HEADER

Default is $?x$x <$g>$|$g$. . The From: header format.
confRECEIVED_HEADER

Default is $?sfrom $s $.$?_($?s$|from $.$_) $.by $j ($v/$Z)$?r with 
$r$. id $i$?u for $u$.; $b . The Received: header format.

confCW_FILE

Default is /etc/sendmail.cw. The file of local host aliases. [$=w]
confCT_FILE

Default is /etc/sendmail.ct. The file of trusted usernames. [$=t]
confTRUSTED_USERS

Trusted users name to add to root, uucp, and daemon.
confSMTP_MAILER

Default is esmtp. The mailer used for SMTP connections; must be smtp, smtp8, or esmtp.
confUUCP_MAILER

Default is uucp-old. The default UUCP mailer.
confLOCAL_MAILER

Default is local. The mailer used for local connections.
confRELAY_MAILER

Default is relay. The default mailer name for relaying.
confSEVEN_BIT_INPUT

Default is False. Force input to seven bits. [SevenBitInput]

file:///C|/mynapster/Downloads/warez/tcpip/appe_03.htm (4 of 21) [2001-10-15 09:19:31]



[Appendix E] E.3 m4 sendmail Macros

confEIGHT_BIT_HANDLING

Default is pass8. Defines how 8-bit data is handled. [EightBitMode]
confALIAS_WAIT

Default is 10m. The amount of time to wait for alias file rebuild. [AliasWait]
confMIN_FREE_BLOCKS

Default is 100. The minimum number of free blocks on the queue filesystem that must be 
available to accept SMTP mail. [MinFreeBlocks]

confMAX_MESSAGE_SIZE

Default is infinite. The maximum message size. [MaxMessageSize]
confBLANK_SUB

The character used to replace unquoted blank characters in email addresses. [BlankSub]
confCON_EXPENSIVE

Default is False. Tells system to hold mail bound for mailers that have the e flag set until the 
next queue run. [HoldExpensive]

confCHECKPOINT_INTERVAL

Default is 10. Tells system to checkpoint the queue files after this number of queued items are 
processed. [CheckpointInterval]

confDELIVERY_MODE

Default is background. Sets the default delivery mode. [DeliveryMode]
confAUTO_REBUILD

Default is False. Automatically rebuilds alias file. [AutoRebuildAliases]
confERROR_MODE

Default is print. Defines how errors are handled. [ErrorMode]
confERROR_MESSAGE

Points to a file containing a message that is prepended to error messages. [ErrorHeader]
confSAVE_FROM_LINES

Tells system not to discard UNIX From: lines. They are discarded if this is not set. 
[SaveFromLine]

confTEMP_FILE_MODE

Default is 0600. File mode for temporary files. [TempFileMode]
confMATCH_GECOS

file:///C|/mynapster/Downloads/warez/tcpip/appe_03.htm (5 of 21) [2001-10-15 09:19:31]



[Appendix E] E.3 m4 sendmail Macros

Tells system to match the email username to the GECOS field. This match is not done if this is 
not set. [MatchGECOS]

confMAX_HOP

Default is 25. The counter used to determine mail loops. [MaxHopCount]
confIGNORE_DOTS

Default is False. Tells system to ignore dots in incoming messages. [IgnoreDots]
confBIND_OPTS

Default is undefined. Sets options for DNS resolver. [ResolverOptions]
confMIME_FORMAT_ERRORS*

Default is True. Tells system to send MIME-encapsulated error messages. [SendMimeErrors]
confFORWARD_PATH

Default is $z/.forward.$w:$z/.forward. Places to search for .forward files. [ForwardPath]
confMCI_CACHE_SIZE

Default is 2. The number of open connections that can be cached. [ConnectionCacheSize]
confMCI_CACHE_TIMEOUT

Default is 5m. The amount of time inactive open connections are held in the cache. 
[ConnectionCacheTimeout]

confHOST_STATUS_DIRECTORY

Directory in which host status is saved. [HostStatusDirectory]
confUSE_ERRORS_TO*

Default is False. Delivers errors using the Errors-To: header. [UserErrorsTo]
confLOG_LEVEL

Default is 9. Level of detail for the logfile. [LogLevel]
confME_TOO

Default is False. Sends a copy to the sender. [MeToo]
confCHECK_ALIASES

Default is False. Looks up every alias during alias file build. [CheckAliases]
confOLD_STYLE_HEADERS*

Default is True. Treats headers without special chars as old style. [OldStyleHeaders]
confDAEMON_OPTIONS

file:///C|/mynapster/Downloads/warez/tcpip/appe_03.htm (6 of 21) [2001-10-15 09:19:31]



[Appendix E] E.3 m4 sendmail Macros

SMTP daemon options. [DaemonPortOptions]
confPRIVACY_FLAGS

Default is authwarnings. These flags restrict the use of some mail commands. [PrivacyOptions]
confCOPY_ERRORS_TO

Address to receive copies of error messages. [PostmasterCopy]
confQUEUE_FACTOR

Default is 600000. Used to calculate when a loaded system should queue mail instead of 
attempting delivery. [QueueFactor]

confDONT_PRUNE_ROUTES

Default is False. Don't prune route-addresses to the minimum possible. [DontPruneRoutes]
confSAFE_QUEUE

Create a queue file, then attempt delivery. This is not done unless this paramter is specified. 
[SuperSafe]

confTO_INITIAL

Default is 5m. Maximum time to wait for the initial connect response. [Timeout.initial]
confTO_CONNECT

Default is 0. Maximum time to wait for a connect to complete. [Timeout.connect]
confTO_ICONNECT

Maximum time to wait for the very first connect attempt to a host. [Timeout.iconnect]
confTO_HELO

Default is 5m. Maximum time to wait for a HELO or EHLO response. [Timeout.helo]
confTO_MAIL

Default is 10m. Maximum time to wait for a MAIL command response. [Timeout.mail]
confTO_RCPT

Default is 1h. Maximum time to wait for a RCPT command response. [Timeout.rcpt]
confTO_DATAINIT

Default is 5m. Maximum time to wait for a DATA command response. [Timeout.datainit]
confTO_DATABLOCK

Default is 1h. Maximum time to wait for a block during DATA phase. [Timeout.datablock]
confTO_DATAFINAL

file:///C|/mynapster/Downloads/warez/tcpip/appe_03.htm (7 of 21) [2001-10-15 09:19:31]



[Appendix E] E.3 m4 sendmail Macros

Default is 1h. Maximum time to wait for a response to the terminating ".". [Timeout.datafinal]
confTO_RSET

Default is 5m. Maximum time to wait for a RSET command response. [Timeout.rset]
confTO_QUIT

Default is 2m. Maximum time to wait for a QUIT command response. [Timeout.quit]
confTO_MISC

Default is 2m. Maximum time to wait for other SMTP command responses. [Timeout.misc]
confTO_COMMAND

Default is 1h. Maximum time to wait for a command to be issued. [Timeout.command]
confTO_IDENT

Default is 30s. Maximum time to wait for an IDENT query response. [Timeout.ident]
confTO_FILEOPEN

Default is 60s. Maximum time to wait for a file open. [Timeout.fileopen]
confTO_QUEUERETURN

Default is 5d. Time until a message is returned from the queue as undeliverable. 
[Timeout.queuereturn]

confTO_QUEUERETURN_NORMAL

"Undeliverable" timeout for normal priority messages. [Timeout.queuereturn.normal]
confTO_QUEUERETURN_URGENT

"Undeliverable" timeout for urgent priority messages. [Timeout.queuereturn.urgent]
confTO_QUEUERETURN_NONURGENT

"Undeliverable" timeout for low priority messages. [Timeout.queuereturn.non-urgent]
confTO_QUEUEWARN

Default is 4h. Time until a "still queued" warning is sent about a message. 
[Timeout.queuewarn]

confTO_QUEUEWARN_NORMAL

Time until a "still queued" warning is sent for normal priority messages. 
[Timeout.queuewarn.normal]

confTO_QUEUEWARN_URGENT

Time until a "still queued" warning is sent for urgent priority messages. 
[Timeout.queuewarn.urgent]

file:///C|/mynapster/Downloads/warez/tcpip/appe_03.htm (8 of 21) [2001-10-15 09:19:31]



[Appendix E] E.3 m4 sendmail Macros

confTO_QUEUEWARN_NONURGENT

Time until a "still queued" warning is sent for low priority messages. [Timeout.queuewarn.non-
urgent]

confTO_HOSTSTATUS

Default is 30m. Timer for stale host status information. [Timeout.hoststatus]
confTIME_ZONE

Default is USE_SYSTEM. Sets time zone from the system (USE_SYSTEM) or the TZ variable 
(USE_TZ). [TimeZoneSpec]

confDEF_USER_ID

Default is 1:1. Default user ID and group ID. [DefaultUser]
confUSERDB_SPEC

Path of the user database file. [UserDatabaseSpec]
confFALLBACK_MX

Backup MX host. [FallbackMXhost]
confTRY_NULL_MX_LIST

Default is False. Instructs system to connect to the remote host directly if the MX point to the 
local host. [TryNullMXList]

confQUEUE_LA

Default is 8. Sends mail directly to the queue when this load average is reached. [QueueLA]
confREFUSE_LA

Default is 12. Refuses incoming SMTP connections at this load average. [RefuseLA]
confMAX_DAEMON_CHILDREN

If set, refuses connection when this number of children is reached. [MaxDaemonChildren]
confCONNECTION_RATE_THROTTLE

Maximum number of connections permitted per second, if set. [ConnectionRateThrottle]
confWORK_RECIPIENT_FACTOR

Default is 30000. Factor used to lower the priority of a job for each additional recipient. 
[RecipientFactor]

confSEPARATE_PROC

Default is False. Delivers messages with separate processes. [ForkEachJob]
confWORK_CLASS_FACTOR

file:///C|/mynapster/Downloads/warez/tcpip/appe_03.htm (9 of 21) [2001-10-15 09:19:31]



[Appendix E] E.3 m4 sendmail Macros

Default is 1800. The factor used to favor a high-priority job. [ClassFactor]
confWORK_TIME_FACTOR

Default is 90000. Factor used to lower the priority of a job for each delivery attempt. 
[RetryFactor]

confQUEUE_SORT_ORDER

Default is Priority. Sorts queue by Priority or Host order. [QueueSortOrder]
confMIN_QUEUE_AGE

Default is 0. Minimum time a job must be queued. [MinQueueAge]
confDEF_CHAR_SET

Default is unknown-8bit. Default character set for unlabeled 8-bit MIME data. 
[DefaultCharSet]

confSERVICE_SWITCH_FILE

Default is /etc/service.switch. The path to the service switch file. [ServiceSwitchFile]
confHOSTS_FILE

Default is /etc/hosts. The path to the hostnames file. [HostsFile]
confDIAL_DELAY

Default is 0s. Amount of time to delay before retrying a "dial on demand" connection. 0s 
means "don't retry". [DialDelay]

confNO_RCPT_ACTION

Default is none. Handling for mail with no recipient headers: do nothing (none); add To: 
header (add-to); add Apparently-To: header (add-apparently-to); add a Bcc: header (add-
bcc); add "To: undisclosed-recipients" header (add-to-undisclosed). [NoRecipientAction]

confSAFE_FILE_ENV

Default is undefined. chroot() to this directory before writing files. [SafeFileEnvironment]
confCOLON_OK_IN_ADDR

Default is True. Treats colons as regular characters in addresses. [ColonOkInAddr]
confMAX_QUEUE_RUN_SIZE

Default is 0. Limits the number of entries processed in a queue run. 0 means no limit. 
[MaxQueueRunSize]

confDONT_EXPAND_CNAMES

Default is False. If true, don't convert nicknames to canonical names. False means "do 
convert." [DontExpandCnames]

file:///C|/mynapster/Downloads/warez/tcpip/appe_03.htm (10 of 21) [2001-10-15 09:19:31]



[Appendix E] E.3 m4 sendmail Macros

confFROM_LINE

Default is From $g $d. The format of the UNIX From: line. [UnixFromLine]
confOPERATORS

Default is .:%@!^/[]+. Address operator characters. [OperatorChars]
confSMTP_LOGIN_MSG

Default is $j sendmail $v/$Z; $b. The SMTP greeting message. [SmtpGreetingMessage]
confDONT_INIT_GROUPS

Default is False. If true, disable the initgroups(3) routine. False means "use the initgroups(3) 
routine. [DontInitGroups]

confUNSAFE_GROUP_WRITES

Default is False. If true, don't reference programs or file from group-writable :include: and 
.forward files. [UnsafeGroupWrites]

confDOUBLE_BOUNCE_ADDRESS

Default is postmaster. When errors occur sending an error message, send the second error 
message to this address. [DoubleBounceAddress]

confRUN_AS_USER

Default is undefined. Run as this user to read and deliver mail. [RunAsUser]
confSINGLE_THREAD_DELIVERY

Default is False. Force single threaded mail deliver when set with HostStatusDirectory. 
[SingleThreadDelivery]

define macros are the most common macros in the m4 source files. The next most commonly used 
macro is the FEATURE macro.

E.3.2 FEATURE

The FEATURE macro processes m4 source code from the cf/feature directory. Source files in that 
directory define optional sendmail features that you may wish to include in your configuration. The 
syntax of the FEATURE macro is:

FEATURE(name, [argument])

The FEATURE source file can be called with or without an optional argument. If an argument is 
passed to the source file the argument is used by the source file to generate code for the sendmail.cf 
file. For example:

file:///C|/mynapster/Downloads/warez/tcpip/appe_03.htm (11 of 21) [2001-10-15 09:19:31]



[Appendix E] E.3 m4 sendmail Macros

FEATURE(mailertable, dbm /usr/lib/mailertable)

generates the code for accessing the mailertable and defines that table as being a dbm database located 
in the file /usr/lib/mailertable.

There are several features available in sendmail V8. They are all listed in Table 13.6 The table 
provides the name of each feature and its purpose.

Table E.3: sendmail V8 Features

Name Purpose

use_cw_file Load $=w from /etc/sendmail.cw.

use_ct_file Load $=t from /etc/sendmail.ct.

redirect Support the .REDIRECT pseudo-domain.

nouucp Don't include UUCP address processing.

nocanonify Don't convert names with $[ ... $] syntax.

stickyhost Treat "user" different than "user@local.host".[4]

mailertable Mail routing using a mailer table.

domaintable Domain name mapping using a domain table.

bitdomain Use a table to map bitnet hosts to Internet addresses.

uucpdomain Use a table to map UUCP hosts to Internet addresses.

always_add_domain Add the local hostname to all locally delivered mail.

allmasquerade Also masquerade recipient addresses.

limited_masquerade Only masquerade hosts listed in $=M.

masquerade_entire_domain Masquerade all hosts within the masquerading domains.

genericstable Use a table to rewrite local addresses.

virtusertable Maps virtual domain names to real mail addresses.

nodns Don't include DNS support.

nullclient Forwarding all mail to a central server.

local_procmail Use procmail as the local mailer.

bestmx_is_local Accept mail as local when it is addressed to a host that lists us as its MX 
server.

smrsh Use smrsh as the prog mailer.

[4] See the discussion of "stickyhost" in the "DOMAIN" section later in this appendix.

The use_cw_file and the use_ct_file features are equivalent to Fw/etc/sendmail.cw and 
Fw/etc/sendmail.ct commands in the sendmail.cf file. See Chapter 10 for descriptions of host aliases 
($=w) and trusted users ($=t).

file:///C|/mynapster/Downloads/warez/tcpip/appe_03.htm (12 of 21) [2001-10-15 09:19:31]



[Appendix E] E.3 m4 sendmail Macros

The .REDIRECT pseudo-domain code returns an error message to the sender telling them to try a new 
address for the recipient. This is used to handle mail for people who no longer read mail at your site 
but who are still getting mail sent to a very old address. Enable this feature with the 
FEATURE(redirect) command and then add aliases for each obsolete mailing address in the form:

old-address        new-address.REDIRECT

For example: assume that Edward Winslow is no longer a valid user of almond.nuts.com. His old 
username, ed, should no longer accept mail. His new mailing address is WinslowE@industry.com. We 
enter the following alias in the /etc/aliases file:

ed                 WinslowE@industry.com.REDIRECT

Now when mail is to the ed account on almond, the following error is returned to the sender:

551 User not local; please try <WinslowE@industry.com>

Several of the FEATURE macros actually remove features from the sendmail.cf file instead of adding 
them. nouucp removes the code to handle UUCP addresses for systems that do not have access to 
UUCP networks, and nodns removes the code for DNS lookups for systems that do not have access to 
DNS. nocanonify, which is rarely used, disables the $[name]$ syntax that converts nicknames and IP 
addresses; see Table 10-7. Finally, the nullclient feature strips everything out of the configuration 
except for the ability to forward mail to a single mail server via a local SMTP link. The name of the 
mail server is provided as the argument on the nullclient command line. For example, 
FEATURE(nullclient, ms.big.com) forwards all mail to ms.big.com without any local mail 
processing.

Several features relate to mail relaying and masquerading. They are: stickyhost, allmasquerade, 
limited_masquerade and masquerade_entire_domain. All of these features are covered in the 
"DOMAIN" section later in this appendix.

Several of the features define databases that are used to perform special address processing. All of 
these features accept an optional argument that defines the database. (See the sample mailertable 
command at the beginning of this section for an example of defining the database with the optional 
argument.) If the optional argument is not provided the database description always defaults to hash -
o /etc/filename, where filename matches the name of the feature. For example: mailertable defaults to 
the definition hash -o /etc/mailertable. The database features are:

mailertable

Maps host and domain names to specific mailer:host pairs. [5] If the host or domain name in 
the recipient addresses matches a key field in the mailertable database, it returns the mailer and 
host for that address. The format of mailertable entries is:

[5] See Chapter 10 for a description of the mailer, host, and user triple returned by 

file:///C|/mynapster/Downloads/warez/tcpip/appe_03.htm (13 of 21) [2001-10-15 09:19:31]



[Appendix E] E.3 m4 sendmail Macros

ruleset 0.

domain-name mailer:host

where domain-name is either a full hostname (host plus domain) or a domain name. If a domain 
name is used it must start with a dot (.), and it will match every host in the specified domain.

domaintable

Converts an old domain name to a new domain name. The old name is the key and the new 
name is the value returned for the key.

bitdomain

Converts a Bitnet hostname to an Internet hostname. The Bitnet name is the key and the 
Internet hostname is the value returned. The bitdomain program that comes with sendmail V8 
can be used to build this database.

uucpdomain

Converts a UUCP name to an Internet hostname. The key is the UUCP host name and the value 
returned is the Internet hostname.

generictable

Converts a sender email address. The key to the database is either a username or a full email 
address (username and hostname). The value returned by the database is always a full email 
address. If the value specified in the database is not a full address, genericstable appends the 
value from $j to the value to force it to be a full address. genericstable converts the same 
address as those processed for masquerading and the features that affect masquerading affect 
the genericstable conversion in exactly the same way. See Chapter 10 for an example of using 
the genericstable and see the "DOMAIN" section later in this appendix for information on 
masquerading. Note that if you use the genericstable and you don't use masquerading, you can 
still get the functionality of the MASQUERADE_DOMAIN and the 
MASQUERADE_DOMAIN_FILE by using GENERICS_DOMAIN and 
GENERICS_DOMAIN_FILE. These commands have the same function and are used in the 
same way as their masquerade counterparts, which are described in the following section.

virtusertable

Aliases incoming email addresses. Essentially, this is an extended alias database for aliasing 
addresses that are not local to this host. The key to the database is a full email address or a 
domain name. The value returned by the database is the recipient address to which the mail is 
delivered. If a domain name is used as a key, it must begin with an at-sign (@). Mail addressed 
to any user in the specified domain is sent to the recipient defined by the virtusertable database. 
Any host name used as a key in the virtusertable database must also be defined in class w.

Two of the remaining FEATURE commands relate to domains. The always_add_domain macro 
makes sendmail add the local hostname to all locally delivered mail, even to those pieces of mail that 

file:///C|/mynapster/Downloads/warez/tcpip/appe_03.htm (14 of 21) [2001-10-15 09:19:31]



[Appendix E] E.3 m4 sendmail Macros

would normally have just a username as an address. The bestmx_is_local feature accepts mail 
addressed to a host that lists the local host as its preferred MX server as if the mail was local mail. If 
this feature is not used, mail bound for a remote host is sent directly to the remote host even if its MX 
record lists the local host as its preferred MX server. The bestmx_is_local feature should not be used 
if you use a wildcard MX record for your domain.

The last two features are used to select optional programs for the local and the prog mailers. 
local_procmail selects procmail as the local mailer. Provide the path to procmail as the argument in 
the FEATURE command. The smrsh feature selects the sendmail Restricted SHell (smrsh) as the 
prog mailer. smrsh provides improved security over /bin/sh, which is normally used as the prog 
mailer. Provide the path to smrsh as the argument in the FEATURE command.

The FEATURE commands discussed in this section and the define macros discussed previously are 
used to build the m4 source files. The remainder of this section describes the purpose and structure of 
the OSTYPE, DOMAIN, and MAILER source files.

E.3.3 OSTYPE

The source file for the OSTYPE macro defines operating system-specific parameters. Many operating 
systems are pre-defined. Look in the sendmail/cf/ostype directory for a full listing of the systems that 
are already defined.

OSTYPE source files are mostly composed of define macros. Table 13.7 lists the define parameters 
most frequently associated with the OSTYPE source file and the function of each parameter. The 
default value assigned to each parameter is shown enclosed in square brackets after its functional 
description, if the parameter has a default value.

Table E.4: OSTYPE Defines

Parameter Function

ALIAS_FILE Name of the alias file. [/etc/aliases]

HELP_FILE Name of the help file. [/usr/lib/sendmail.hf]

QUEUE_DIR Directory containing queue files. [/var/spool/mqueue]

STATUS_FILE Name of the status file. [/etc/sendmail.st]

LOCAL_MAILER_PATH The local mail delivery program. [/bin/mail]

LOCAL_MAILER_FLAGS Local mailer flags added to "lsDFM". [rmn]

LOCAL_MAILER_ARGS Arguments for local mail delivery. [mail -d $u]

LOCAL_MAILER_MAX Maximum size of local mail. 

LOCAL_MAILER_CHARSET Character set for local 8-bit MIME mail. 

LOCAL_SHELL_PATH Shell used to deliver piped email. [/bin/sh]

LOCAL_SHELL_FLAGS Flags added to lsDFM for the shell mailer. [eu]

LOCAL_SHELL_ARGS Arguments for the "prog" mail. [sh -c $u]

file:///C|/mynapster/Downloads/warez/tcpip/appe_03.htm (15 of 21) [2001-10-15 09:19:31]



[Appendix E] E.3 m4 sendmail Macros

LOCAL_SHELL_DIR Directory which the shell should run. [$z:/]

USENET_MAILER_PATH Program used for news. [/usr/lib/news/inews]

USENET_MAILER_FLAGS Usenet mailer flags. [rlsDFMmn]

USENET_MAILER_ARGS Arguments for the usenet mailer. [-m -h -n]

USENET_MAILER_MAX Maximum size of usenet mail messages. [100000]

SMTP_MAILER_FLAGS Flags added to "mDFMUX" for all SMTP mailers. 

SMTP_MAILER_MAX Maximum size of messages for all SMTP mailers. 

SMTP_MAILER_ARGS smtp mailer arguments. [IPC $h]

ESMTP_MAILER_ARGS esmtp mailer arguments. [IPC $h]

SMTP8_MAILER_ARGS smtp8 mailer arguments. [IPC $h]

RELAY_MAILER_ARGS relay mailer arguments. [IPC $h]

SMTP_MAILER_CHARSET Character set for SMTP 8-bit MIME mail. 

UUCP_MAILER_PATH Path to the UUCP mail program. [/usr/bin/uux]

UUCP_MAILER_FLAGS Flags added to "DFMhuU" for the UUCP mailer. 

UUCP_MAILER_ARGS UUCP mailer arguments.

   [uux - -r -z -a$g -gC $h!rmail ($u)]

UUCP_MAILER_MAX Maximum size for UUCP messages. [100000]

UUCP_MAILER_CHARSET Character set for UUCP 8-bit MIME mail. 

FAX_MAILER_PATH Path to the FAX program. [/usr/local/lib/fax/mailfax]

FAX_MAILER_ARGS FAX mailer arguments. [mailfax $u $h $f]

FAX_MAILER_MAX Maximum size of a FAX. [100000]

POP_MAILER_PATH Path of the POP mailer. [/usr/lib/mh/spop]

POP_MAILER_FLAGS Flags added to "lsDFM" for the POP mailer. [Penu]

POP_MAILER_ARGS POP mailer arguments. [pop $u]

PROCMAIL_MAILER_PATH Path to the procmail program. [/usr/local/bin/procmail]

PROCMAIL_MAILER_FLAGS Flags added to "DFMmn" for the Procmail mailer. [Shu]

PROCMAIL_MAILER_ARGS Procmail mailer arguments. [procmail -m $h $f $u]

PROCMAIL_MAILER_MAX Maximum size message for the Procmail mailer. 

MAIL11_MAILER_PATH Path to the mail11 mailer. [/usr/etc/mail11]

MAIL11_MAILER_FLAGS Flags for the mail11 mailer. [nsFx]

MAIL11_MAILER_ARGS mail11 mailer arguments. [mail11 $g $x $h $u]

PH_MAILER_PATH Path to the phquery program. [/usr/local/etc/phquery]

PH_MAILER_FLAGS Flags for the phquery mailer. [ehmu]

PH_MAILER_ARGS phquery mailer arguments. [phquery -- $u]

CYRUS_MAILER_FLAGS Flags added to "lsDFMnP" for the cyrus mailer. [A5@]

CYRUS_MAILER_PATH Path to the cyrus mailer. [/usr/cyrus/bin/deliver]

CYRUS_MAILER_ARGS cyrus mailer arguments. [deliver -e -m $h -- $u]

file:///C|/mynapster/Downloads/warez/tcpip/appe_03.htm (16 of 21) [2001-10-15 09:19:31]



[Appendix E] E.3 m4 sendmail Macros

CYRUS_MAILER_MAX Maximum size message for the cyrus mailer. 

CYRUS_MAILER_USER User and group used to the cyrus mailer. [cyrus:mail]

CYRUS_BB_MAILER_FLAGS Flags added to "lsDFMnP" for the cyrusbb mailer. 

CYRUS_BB_MAILER_ARGS cyrusbb mailer arguments. [deliver -e -m $u]

Despite the long list of parameters in Table 13.7 most OSTYPE macros are very short. The largest 
OSTYPE file in the sendmail V8 distribution contains only eight defines. There are a few reasons for 
this. First, many of the parameters in the table are redundant. They define the same things for different 
mailers, and no operating systems uses all of the mailers. Second, the default values are often correct. 
A define only needs to be made if the operating system requires a value different than the default.

E.3.4 DOMAIN

The DOMAIN source file defines configuration parameters that are related to the local domain. 
Chapter 10 provides an example of a DOMAIN file built for the imaginary nuts.com domain.

Table 13.8 shows some define macros that commonly appear in DOMAIN files. (See the syntax of the 
define macro earlier.) This table lists the parameters and the function of each parameter. All of these 
parameters are used to define mail relay hosts. The value provided for each parameter is either a 
hostname, i.e., the name of a mail relay server, or a mailer:hostname pair where the mailer is the 
internal name of a local sendmail mailer and the hostname is the name of the remote mail relay server. 
If only a hostname is used, the mailer defaults to relay, which is the name of the SMTP relay mailer. If 
no values are provided for these parameters, the BITNET, DECNET, and FAX pseudo-domains are 
not used, and the local host must be able to handle its own UUCP and "local" mail.

Table E.5: Mail Relay Defines

Parameter Function

UUCP_RELAY Server for UUCP-addressed email

BITNET_RELAY Server for BITNET-addressed email

DECNET_RELAY Server for DECNET-addressed email

FAX_RELAY Server for mail to the .FAX pseudo-domain[6]

LOCAL_RELAY Sever for unqualified names

LUSER_RELAY Server for apparently local names that really aren't local

MAIL_HUB Server for all incoming mail

SMART_HOST Server for all outgoing mail

[6] The "fax" mailer overrides this value.

The precedence of the relays defined by these parameters is from the most specific to the least 
specific. If both the BITNET_RELAY and the SMART_HOST relay are defined, the 
BITNET_RELAY is used for outgoing BITNET mail even though the SMART_HOST relay is 

file:///C|/mynapster/Downloads/warez/tcpip/appe_03.htm (17 of 21) [2001-10-15 09:19:32]



[Appendix E] E.3 m4 sendmail Macros

defined as handling "all" outgoing mail. If you define both LOCAL_RELAY and MAIL_HUB, you 
must also use the FEATURE(stickyhost) command to get the expected behavior.

When the stickyhost feature is specified, LOCAL_RELAY handles all local addresses that do not have 
a host part, and MAIL_HUB handles all local addresses that do have a host part. If stickyhost is not 
specified and both relays are defined, the LOCAL_RELAY is ignored and MAIL_HUB handles all 
local addresses. 

In addition to the defines shown in Table 13.8 there are a group of macros that relate to masquerading 
and relaying that also appear in the DOMAIN source file. Some of these are used in the examples in 
Chapter 10. The macros are:

LOCAL_USER(usernames)

Defines local usernames that should not be relayed even if LOCAL_RELAY or MAIL_HUB 
are defined. This command is the same as adding usernames to class L in the sendmail.cf file.

MASQUERADE_AS(host.domain)

Converts the host portion of the sender address on outgoing mail to the domain name defined 
by host.domain. Sender addresses that have no hostname or that have a hostname found in the 
w class are converted. This has the same as effect as defining host.domain for the M macro in 
the sendmail.cf file. See examples of MASQUERADE_AS and macro M in Chapter 10.

MASQUERADE_DOMAIN(otherhost.domain)

Converts the host portion of the sender address on outgoing mail to the domain name defined 
by the MASQUERADE_AS command, if the host portion of the sender address matches 
otherhost.domain. This command must be used in conjunction with MASQUERADE_AS. Its 
effect is the same as adding hostnames to class M in the sendmail.cf file. See Chapter 10.

MASQUERADE_DOMAIN_FILE(filename)

Loads otherhost.domain hostnames from the file identified by filename. This can be used in 
place of multiple MASQUERADE_DOMAIN commands. Its effect is the same as loading 
class M from a file by using the FMfilename command in the sendmail.cf file.

EXPOSED_USER(username)

Disables masquerading when the user portion of the sender address matches username. Some 
usernames, such as root, occur on many systems and are therefore not unique across a domain. 
For those usernames, converting the host portion of the address makes it impossible to sort out 
where the message really came from and makes replies impossible. This command prevents the 
MASQUERADE_AS command from having an effect on the sender addresses for specific 
users. This is the same as setting the values in class E in the sendmail.cf file.

There are several features that affect relaying and masquerading. We have already discussed 
FEATURE(stickyhost). Others are:

file:///C|/mynapster/Downloads/warez/tcpip/appe_03.htm (18 of 21) [2001-10-15 09:19:32]



[Appendix E] E.3 m4 sendmail Macros

FEATURE(masquerade_envelope)

Causes envelop addresses to be masqueraded in the same way that sender addresses are 
masqueraded. See Chapter 10 for an example of this command.

FEATURE(allmasquerade)

Causes recipient addresses to be masqueraded in the same way that sender addresses are 
masqueraded. Thus, if the host portion of the recipient address matches the requirements of the 
MASQUERADE_AS command, it is converted. Don't use this feature unless you are positive 
that every alias known to the local system is also known to the mail server that handles mail for 
the masquerade domain.

FEATURE(limited_masquerade)

Limits masquerading to those hosts defined in class M. The hosts defined in class w are not 
masqueraded.

FEATURE(masquerade_entire_domain)

Causes MASQUERADE_DOMAIN to be interpreted as referring to all hosts with an entire 
domain. If this feature is not used, only an address that exactly matches the value defined by 
MASQUERADE_DOMAIN is converted. If this feature is used, all addresses that end with the 
value defined by MASQUERADE_DOMAIN are converted. For example, assume that the 
options MASQUERADE_AS(nuts.com) and MASQUERADE_DOMAIN(sales.nuts.com) are 
defined. If FEATURE (masquerade_entire_domain) is set, every hostname in the 
sales.nuts.com domain is converted to nuts.com on outgoing email. Otherwise only the 
hostname sales.nuts.com is converted.

See the "FEATURE" section earlier in this chapter for more information on the available features.

E.3.5 MAILER

It is possible that you will need to customize a file location in an OSTYPE file or that you will need to 
define domain specific information in a DOMAIN file, but unless you develop your own mail delivery 
program you will not need to create a MAILER source file. Instead, you will need to invoke one or 
more existing files in your macro configuration file.

The available MAILER files are listed in Table 13.9 This table lists each MAILER value and its 
function. These are invoked using the MAILER(value) command in the macro configuration (.mc) 
file, where value is one of the mailer names from the table.

Table E.6: MAILER Values

Name Function

local The local and prog mailers

smtp All SMTP mailers: smtp, esmtp, smtp8, and relay

file:///C|/mynapster/Downloads/warez/tcpip/appe_03.htm (19 of 21) [2001-10-15 09:19:32]



[Appendix E] E.3 m4 sendmail Macros

uucp All UUCP mailers: uucp-old (uucp) and uucp-new (suucp)

usenet Usenet news support

fax Fax support using FlexFAX software

pop Post Office Protocol (POP) support

procmail An interface for procmail

mail11 The DECnet mail11 mailer

phquery The phquery program for CSO phone book

cyrus The cyrus and cyrusbb mailers

Your macro configuration file should have a MAILER(local) and a MAILER(smtp) entry. This gives 
you the local and prog mailers required by sendmail, the smtp mailer for standard SMTP mail, the 
esmtp mailer for Extended SMTP, the smtp8 mailer for 8-bit MIME mail, and the relay mailer for the 
various mail relay servers mentioned in the "DOMAIN" section of this appendix. Selecting local and 
smtp provides everything you need for a standard TCP/IP installation.

Of all the remaining mailers, only uucp is widely used. uucp provides UUCP mail support for systems 
directly connected to UUCP networks. The uucp-old mailer supports standard UUCP mail and the 
uucp-new mailer is used for remote sites that can handle multiple recipients in one transfer. The 
system needs the mailer that is correct for the capabilities of the remote site. Use class U to define the 
hostnames of systems that need the old mailer and class Y for the names of remote systems that can 
work with the new mailer. Specify MAILER(uucp) after the MAILER(smtp) entry if your system has 
both TCP/IP and UUCP connections. Ordering the MAILER statements in this way adds two more 
mailers to the two standard UUCP mailers: the uucp-dom mailer to support standard domain names, 
and the uucp-uudom mailer to support standard domain names with a standard UUCP envelop.

The other mailers are rarely used:

usenet

Modifies the sendmail rewrite rules to send local mail that contains ".usenet" in the username 
to the program inews. Instead of this mailer, choose a user mail agent that supports Usenet 
news. Don't hack sendmail to handle it.

fax

This is still experimental in sendmail V8, though built-in fax support could be useful when it is 
ready.

pop

On most systems, POP support is provided separately by the popd daemon, and the 
MAILER(pop) command is not used.

procmail

Only provides an interface to procmail for use in the mailertable. The sendmail V8 distribution 

file:///C|/mynapster/Downloads/warez/tcpip/appe_03.htm (20 of 21) [2001-10-15 09:19:32]



[Appendix E] E.3 m4 sendmail Macros

does not provide procmail. Even when procmail is used as the local mailer, as it is in 
Slackware Linux, the MAILER(procmail) command is not required.

mail11

Only used on DECNET mail networks that use the mail11 mailer.
phquery

Provides a name lookup program for the CSO phone book (ph) directory service. User 
directory services are usually configured in the user mail agent, not in sendmail.

cyrus

This is a local mail delivery program with a mailbox architecture. cyrus and cyrusbb mailers 
are not widely used.

This concludes our discussion of m4 macros. The output of all of the files and commands that go into 
the m4 processor is a sendmail.cf file. The remainder of this appendix provides additional details 
about the sendmail.cf configuration and excerpts from a sendmail.cf file. The bulk of information 
about sendmail.cf is found in Chapter 10.

Previous: E.2 The sendmail 
Command

TCP/IP Network 
Administration

Next: E.4 More sendmail.cf

E.2 The sendmail Command Book Index E.4 More sendmail.cf

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/appe_03.htm (21 of 21) [2001-10-15 09:19:32]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Appendix E] E.4 More sendmail.cf

Previous: E.3 m4 sendmail 
Macros

Appendix E
A sendmail Reference

Next: E.5 Sample 
Configurations

 

E.4 More sendmail.cf

Many options and flags can be used in configuring the sendmail.cf file. All of the important configuration 
parameters are covered in Chapter 10. But if you are unlucky enough to have a configuration that requires 
you to tweak one of the more obscure parameters, you will find all of them in the following tables.

E.4.1 sendmail Classes

sendmail has many internal macros. As of sendmail V8, it also has some internal classes. Some of these 
classes (e, n, q, and s) have been added to support new MIME mail features. A few (k, m, and w) hold the 
multiple hostnames and domains associated with a well-connected host. The last one (t) holds the list of 
trusted users. The full list of internal classes is shown in Table 13.10

Table E.7: Internal sendmail Classes

Name Stores

e Supported MIME Content-Transfer-Encodings. Initialized to 7bit, 8bit, and binary

k The system's UUCP node names

m All local domains for this host

n MIME body types that should never be 8- to 7-bit encoded. Initialized to multipart/signed

q MIME Content-Types that should not be Base64-encoded. Initialized to text/plain

s MIME message subtypes that can be processed recursively. Initialized to rfc822

t The list of trusted users

w All hostnames this system will accept as its own

E.4.2 sendmail Options

A large number of sendmail options can be set inside of the sendmail configuration file. Chapter 10 
provides the syntax of the option command in Table 10-1 and several examples of options. The complete 
list of options is:

AliasFile=[class:]file, [class:]file...

Identify the alias file(s). class is optional and defaults to "implicit". Valid classes are "implicit", 

file:///C|/mynapster/Downloads/warez/tcpip/appe_04.htm (1 of 16) [2001-10-15 09:19:34]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


[Appendix E] E.4 More sendmail.cf

"hash", "dbm", "stab" (internal symbol table) or "nis". The selected database class must be a 
database type that was compiled into sendmail on your system. file is the pathname of the alias 
file.

AliasWait=timeout

Wait timeout minutes for an "@:@" entry to appear in the alias database before starting up. 
When timeout expires, automatically rebuild the database if AutoRebuildAliases is set; 
otherwise, issue a warning.

AllowBogusHELO

Accept illegal HELO SMTP commands that don't contain a hostname.
AutoRebuildAliases

Automatically rebuild the alias database when necessary. The preferred method is to rebuild the 
alias database with an explicit newaliases command.

BlankSub=c

Use c as the blank substitution character to replace unquoted spaces in addresses. The default is to 
leave the spaces unchanged. 

CheckAliases

Check that the delivery address in each aliases is valid when rebuilding the alias database. Normally 
this check is not done. Adding this check slows the database build substantially. This is a Boolean.

CheckpointInterval=n

Checkpoint the queue after every n items are processed to simplify recovery if your system crashes 
during queue processing. The default is 10.

ClassFactor=fact

The multiplier used to favor messages with a higher value in the Priority: header. Defaults to 1800.
ColonOkInAddr

Accept colons in email addresses (e.g., host:user). Colons are always accepted in pairs in mail 
routing (nodename::user) or in an RFC 822 group constructs (groupname: member1, member2, ...;). 
By default, this option is "on" if the configuration version level is less than 6.

ConnectionCacheSize=n

The number of connections that can be held open (cached) by this instantiation of sendmail. The 
default is 1. The maximum is 4. 0 causes connections to closed immediately after the data is sent, 
which is the traditional way sendmail operated.

ConnectionCacheTimeout=timeout

The amount of time an inactive cached connection is held open. After timeout minutes of inactivity 
it is closed. The default is 5 minutes.

ConnectionRateThrottle=n

Limit the number of incoming connections accepted in any 1-second period to n. The default is 0, 

file:///C|/mynapster/Downloads/warez/tcpip/appe_04.htm (2 of 16) [2001-10-15 09:19:34]



[Appendix E] E.4 More sendmail.cf

which means no limit.
DaemonPortOptions=options

Set SMTP server options. The options are key=value pairs. The options are:

❍     Port=portnumber, where portnumber is any valid port number. It can be specified 
with the number or the name found in /etc/services. The default is port 25, smtp.

❍     Addr=mask, where mask is an IP address mask specified either in dotted decimal notation 
or as a network name. The default is INADDR-ANY, which accepts all addresses.

❍     Family=addressfamily, where addressfamily is a valid address family (see the 
ifconfig command). The default is INET, which allows IP addresses to be used.

❍     Listen=n, where n is a the number of queued connections allowed. The default is 10.
❍     SndBufSize=n, where n is the send buffer size.
❍     RcvBufSize=n, where n is the receive buffer size.

DefaultCharSet=charset

The character set placed in the Content-Type: header when 8-bit data is converted to MIME format. 
The default is "unknown-8bit". This option is overridden by the Charset= field of the mailer 
descriptor.

DefaultUser=user[:group]

The default user ID and group ID for mailers without the S flag in their definitions. If group is 
omitted, the group associated with user in the /etc/passwd file is used. The default is 1:1.

DeliveryMode=x

Deliver in mode x, where x is i (interactive delivery), b (background delivery), q (queue the 
message), or d (defer until the queue run). The default is b.

DialDelay=delaytime

Delay delaytime seconds before redialing a failed connection on dial-on-demand networks. The 
default is 0 (no redial).

DontExpandCnames

Disable the $[name$] syntax used to convert nicknames to canonical names.
DontInitGroups

Don't use the initgroups(3) call. This setting reduces NIS server load, but limits a user to the group 
associated with that user in /etc/passwd.

DontPruneRoutes

Don't optimize explicit mail routes. Normally, sendmail makes a route as direct as possible. 
However, optimizing the route may not be appropriate for systems located behind a firewall.

DoubleBounceAddress=error-address

Send the report of an error that occurs when sending an error message to error-address. The 
default is "postmaster".

file:///C|/mynapster/Downloads/warez/tcpip/appe_04.htm (3 of 16) [2001-10-15 09:19:34]



[Appendix E] E.4 More sendmail.cf

EightBitMode=action

Handle undeclared 8-bit data by following the specified action. The possible actions are: s (strict), 
reject undeclared 8-bit data; m (mime), convert it to MIME; and p (pass), pass it through unaltered. 

ErrorHeader=file-or-message

Prepend file-or-message to outgoing error messages. If file-or-message is the path to a text 
file that is to be prepended, it must begin with a slash. If this option is not defined, nothing is 
prepended to error messages.

ErrorMode=x

Handle errors messages according to x, where x is: p (print messages); q (give exit status but no 
messages); m (mail back messages); w (write messages to the user's terminal); e (mail back 
messages and always give zero exit status). If this option is not defined, error messages are printed.

FallbackMXhost=fallbackhost

Use fallbackhost as a backup MX server for every host.
ForkEachJob

Run a separate process for every item delivered from the queue. This option reduces the amount of 
memory needed to process the queue.

ForwardPath=path

The path to search for .forward files. Multiple paths can be defined by separating them with 
colons. The default is $z/.forward.

HelpFile=file

The path to the help file.
HoldExpensive

Queue mail for outgoing mailers that have the e (expensive) mailer flag. Normally mail is delivered 
immediately.

HostsFile=path

The path to the hosts file. The default is /etc/hosts.
HostStatusDirectory=path

Directory in which host status information is stored so that it can be shared between sendmail 
processes. Normally, the status of a host or connection is only known by the process that discovers 
that status. To function, this option requires that ConnectionCacheSize be set to at least 1.

IgnoreDots

Ignore dots in incoming messages. Dots cannot be ignored by SMTP mail because they are used to 
mark the end of a mail message.

LogLevel=n

n indicates the level of detail stored in the log file. n defaults to 9, which is normally plenty of 

file:///C|/mynapster/Downloads/warez/tcpip/appe_04.htm (4 of 16) [2001-10-15 09:19:34]



[Appendix E] E.4 More sendmail.cf

detail. 
MatchGECOS

Check the username from the email address against the GECOS field of the passwd file if it was not 
found in the alias database or in the username field of the passwd file. This option is not 
recommended.

MaxDaemonChildren=n

Refuse connections when n children are processing incoming mail. Normally sendmail sets no 
arbitrary limit on child processes.

MaxHopCount=n

Assume a message is looping when it has been processed more than n times. The default is 25.
MaxHostStatAge=n

Retain host status information for n minutes.
MaxMessageSize=n

The maximum message size advertised in response to the ESMTP EHLO. Messages larger than this 
are rejected.

MaxQueueRunSize=n

The maximum number of item that can be processed in a single queue run. The default is no limit.
MeToo

Send a copy to the sender.
MinFreeBlocks=n

Don't accept incoming mail unless n blocks are free in the queue filesystem.
MinQueueAge=n

Don't process any jobs that have been in the queue less than n minutes.
MustQuoteChars=s

The list of characters added to the set "@,;:\()[]" that must be quoted when used in the username 
part of an address. If MustQuoteChars is specified without an s value, it adds "." to the standard 
set of quoted characters.

NoRecipientAction=action

The action taken when a message has no valid recipient headers. action can be none to pass 
the message on unmodified, add-to to add a To: header using the recipient addresses from the 
envelope, add-apparently-to to add an Apparently-To: header, add-to-undisclosed to add a "To: 
undisclosed-recipients:;" header, or add-bcc to add an empty Bcc: header.

OldStyleHeaders

Allow spaces to delimit names. Normally, commas delimit names. 
OperatorChars=charlist

file:///C|/mynapster/Downloads/warez/tcpip/appe_04.htm (5 of 16) [2001-10-15 09:19:34]



[Appendix E] E.4 More sendmail.cf

The list of operator characters that are normally defined in macro o. The default is the standard set 
of operators. See the discussion of rewrite tokens, and the use of operators in determining tokens, in 
Chapter 10.

PostmasterCopy=username

Copy error messages to username. The default is not to send copies of error messages to the 
postmaster.

PrivacyOptions=options

Set SMTP protocol options, where options is a comma-separated list containing one or more 
of these keywords:

❍     public: allow all commands
❍     needmailhelo: require HELO or EHLO before MAIL
❍     needexpnhelo: require HELO or EHLO before EXPN
❍     noexpn: disable EXPN
❍     needvrfyhelo: require HELO or EHLO before VRFY
❍     novrfy: disable VRFY
❍     restrictmailq: restrict mailq to users with group access to the queue directory
❍     restrictqrun: only root and the owner of the queue directory are allowed to run the queue
❍     noreceipts: don't return successful delivery messages
❍     goaway: disable all SMTP status queries
❍     authwarnings: put X-Authentication-Warning: headers in messages

QueueDirectory=directory

directory is the pathname of the queue directory.
QueueFactor=factor

The factor used with the difference between the current load and the load average limit and with the 
message priority to determine if a message should be queued or sent immediately. The idea is to 
queue low-priority messages if the system is currently heavily loaded. It defaults to 600000.

QueueLA=n

Queue messages when the system load average exceeds n. The default is 8.
QueueSortOrder=sequence

Sort the queue in the sequence specified, where sequence is: h (hostname sequence); t 
(submission time sequence); or p (message priority order). Priority ordering is the default.

ResolverOptions=options

Set resolver options. Available option values are: debug, aaonly, usevc, primary, igntc, 
recurse, defnames, stayopen, and dnsrch. The option can be preceded by a plus (+) to turn it on or 
a minus (-) to turn it off. One other option, HasWildcardMX, is specified without a + or -. Simply 
adding HasWildcardMX turns the option on.

RunAsUser=userid[:groupid]

file:///C|/mynapster/Downloads/warez/tcpip/appe_04.htm (6 of 16) [2001-10-15 09:19:34]



[Appendix E] E.4 More sendmail.cf

Run sendmail under this user ID and group ID instead of under root. This may enhance security 
when the sendmail is running on a well maintained firewall. On general purpose systems, this may 
decrease security because it requires that many files be readable or writable by this user ID.

RecipientFactor=factor

The priority of a job is lowered by this factor for each recipient, so that jobs with large numbers of 
recipients have lower priority. Defaults to 30000.

RefuseLA=n

Refuse incoming SMTP connections when the system load average exceeds n. The default is 12.
RetryFactor=factor

The factor used to decrease the priority of a job every time it is processed, so that mail that cannot 
be delivered does not keep popping to the top of the queue. The default is 90000.

SafeFileEnvironment=directory

chroot(2) to directory before writing a file and refuse to deliver to symbolic links.
SaveFromLine

Save UNIX-style From: lines at the front of headers. Normally they are discarded.
SendMIMEErrors

Send error messages in MIME format.
ServiceSwitchFile=path

The path to a file that lists the of methods used for various services. The ServiceSwitchFile 
contains entries that begin with the service name followed by the service method. sendmail checks 
for services named "aliases" and "hosts" and supports "dns", "nis", "nisplus", or "files" as possible 
service methods, assuming that support for all of these methods is compiled into this copy of 
sendmail. ServiceSwitchFile defaults to /etc/service.switch. If that file does not exist, sendmail uses 
the following service methods: aliases are looked up in the aliases files, and hosts are looked up first 
using dns, then nis, and finally the hosts file. If the operating system has a built-in service switch 
feature, it is used and this option is ignored. See the description of the nsswitch.conf file in Chapter 
9, Configuring Network Servers . It is a service switch file.

SevenBitInput

Strip input to 7 bits for compatibility with old systems. This shouldn't be necessary.
SingleLineFromHeader

For compatibility with some versions of Lotus Notes, unwrapped From: lines that have embedded 
newlines into one long line.

SingleThreadDelivery

Don't open more than one SMTP connections to a remote host at the same time. This option 
requires the HostStatusDirectory option.

SmtpGreetingMessage=message

file:///C|/mynapster/Downloads/warez/tcpip/appe_04.htm (7 of 16) [2001-10-15 09:19:34]



[Appendix E] E.4 More sendmail.cf

The greeting sent to the remote host when it connects to the SMTP server port. This is the value 
defined in macro e.

StatusFile=file

Log summary statistics in file. By default, summary statistics are not logged.
SuperSafe

Create a queue file, even when attempting immediate delivery.
TempFileMode=mode

Use mode to set the access permissions for queue files. mode is an octal value. It defaults to 0600.
Timeout.type=timeout

Set timeout values, where type is the thing being timed and timeout is the time interval before 
the timer expires. Table 13.11 lists the valid type values, the event being timed and the default 
timeout value for each type.

Table E.8: Timeout Types

Type Waiting For Default

initial Initial greeting message 5m

helo Reply to HELO or EHLO command 5m

mail Reply to MAIL command 10m

rcpt Reply to RCPT command 1h

datainit Reply to DATA command 5m

datablock Data block read 1h

datafinal Reply to terminating "." 1h

rset Reply to RSET command 5m

quit Reply to QUIT command 2m

misc Reply to NOOP and VERB commands 2m

ident IDENT protocol response 30s

fileopen Open on a .forward or :include: file 60s

command Command read 1h

queuereturn Returning a queued message as undeliverable 5d

queuewarn Warning that a message is still queued none

hoststatus Removing stale host status 30m

TimeZoneSpec=tzinfo

Set the local time zone information to tzinfo. If TimeZoneSpec is not set, the system default is 
used; if set to null, the user's TZ variable is used.

TryNullMXList

file:///C|/mynapster/Downloads/warez/tcpip/appe_04.htm (8 of 16) [2001-10-15 09:19:34]



[Appendix E] E.4 More sendmail.cf

Connect directly to any remote host that lists the local system as its most preferred MX server, as if 
the remote host had no MX records. You are discouraged from using this option.

UnixFromLine=fromline

Defines the format for UNIX-style From: lines. This is the same as the value stored in macro l.
UnsafeGroupWrites

Group writable :include: and .forward files cannot reference programs or write directly to files. 
World-writable files always have these restrictions.

UseErrorsTo

Send error messages to the addresses listed in the Errors-To: header. Normally, errors are sent to the 
sender address form the envelope.

UserDatabaseSpec=udbspec

The user database specification.
UserSubmission

Indicates that this is not relayed mail, but an initial submission directly from a Mail User Agent.
Verbose

Run in verbose mode.

Older versions of sendmail use a different option syntax:

oxvalue

In this syntax o is the command, x is a single character option name, and value is the value passed to 
sendmail to set the option. Some options are Booleans that require no input value. Table 13.12 lists all of 
the old-style options.

Table E.9: Old-Style sendmail Options

Name Function

Afile Define the name of the alias file.

aN Wait N minutes for @:@; then rebuild the alias file.

Bc Define the blank substitution character.

c Queue mail for expensive mailers.

D Rebuild the alias database.

db Deliver in background mode.

di Deliver interactively.

dq Deliver during the next queue run.

ee Mail error messages and always return 0 exit status.

em Mail back error messages.

file:///C|/mynapster/Downloads/warez/tcpip/appe_04.htm (9 of 16) [2001-10-15 09:19:34]



[Appendix E] E.4 More sendmail.cf

ep Print error messages.

eq Just return exit status, not error messages.

ew Write back error messages.

Fn Set permissions for temporary files to n.

f Retain UNIX-style From: lines.

gn Set the default group ID for mailers to n.

Hfile Define the name of the SMTP help file.

I Use the BIND name server to resolve all hostnames.

i Ignore dots in incoming messages.

Ln Set the level of logging to n.

Mxval Set macro x to val.

m Send to me, too.

Nnet Define the name of the home network.

o Accept old format headers.

Qdir Define the name of the queue directory.

qn Define a factor n used to decide when to queue jobs.

rt Set interval t for read timeout.

Sfile Define the name of the statistics log file.

s Always create the queue file before attempting delivery.

Tt Set the queue timeout to t.

un Set the default user ID for mailers to n.

v Run in verbose mode.

Wpass Define password used for remote debugging.

Xl Refuse SMTP connections if load average exceeds l.

xl Queue messages if load average exceeds l.

Y Deliver each queued job in a separate process.

yn Lower priority of jobs by n for each recipient.

Zn Decrease a job's priority by n each time it is run.

zn Factor used with precedence to determine message priority.

See Chapter 10 for examples of setting options with both styles of syntax.

E.4.3 sendmail Mailer Flags

Mailer flags are declared in the F field of the mailer definition. Each mailer flag is set by a single character 
that represents that flag. For example: F=lsDFMe sets six different flags. Table 13.13 lists the single 
character name and function of each flag.

Table E.10: sendmail Mailer Flags

file:///C|/mynapster/Downloads/warez/tcpip/appe_04.htm (10 of 16) [2001-10-15 09:19:34]



[Appendix E] E.4 More sendmail.cf

Name Function

C Add @domain to addresses that do not have an @.

D The mailer wants a Date: header line.

E Add > to message lines that begin with From:.

e This an expensive mailer. See sendmail option c.

F The mailer wants a From: header line.

f The mailer accepts a -f flag from trusted users.

h Preserve uppercase in hostnames.

I The mailer will be speaking SMTP to another sendmail.

L Limit the line lengths as specified in RFC821.

l This is a local mailer.

M The mailer wants a Message-Id: header line.

m The mailer can send to multiple users in one transaction.

n Don't insert a UNIX-style From: line in the message.

P The mailer wants a Return-Path: line.

R Use the MAIL FROM: return-path rather than the return address.

r The mailer accepts a -r flag from trusted users.

S Don't reset the userid before calling the mailer.

s Strip quotes off of the address before calling the mailer.

U The mailer wants UNIX-style From: lines.

u Preserve uppercase in usernames.

X Prepend a dot to lines beginning with a dot.

x The mailer wants a Full-Name: header line.

See Chapter 10 for examples of mailer flag declaration within mailer definitions.

E.4.4 The sendmail K Command

The sendmail K command is used to define a database within the sendmail.cf file. The K command syntax 
is:

Kname type [arguments]

Chapter 10 provides examples of defining and using a sendmail database, and it describes the K command 
syntax. This appendix lists the valid type values and arguments that can be used with a K command.

The type field of the K command identifies what kind of database is being defined. There are several 
internal database types that are specific to sendmail and several external types that rely on external 
database libraries. Support for the external database types must be compiled into sendmail by explicitly 
specifying the supported database types in the DBMDEF variable in the Makefile used to build sendmail. 
See the example of compiling sendmail earlier in this appendix.

file:///C|/mynapster/Downloads/warez/tcpip/appe_04.htm (11 of 16) [2001-10-15 09:19:34]



[Appendix E] E.4 More sendmail.cf

The possible values for type are:

dbm

The "new dbm" database format. It is accessed using the ndbm(3) library. Only supported if 
sendmail is compiled with NDBM defined.

btree

The btree database format. It is accessed using the Berkeley db(3) library. Only supported if 
sendmail is compiled with NEWDB defined.

hash

The hash database format. It is accessed using the Berkeley db(3) library. Only supported if 
sendmail is compiled with NEWDB defined.

nis

NIS server lookups. sendmail must be compiled with NIS defined to support this.
nisplus

NIS+ server lookups. sendmail must be compiled with NISPLUS defined to support this.
hesiod

MIT hesiod server lookups. Support requires that sendmail is compiled with HESIOD defined.
ldapx

X500 directory searches using LDAP. sendmail must be compiled with LDAPMAP defined to 
support this. sendmail supports most of the standard command line arguments of the ldapsearch 
program.

netinfo

NeXT NetInfo lookups. Only supported if sendmail is compiled with NETINFO defined.
text

Text file lookups. Requires no external database libraries or compile options. The format of the text 
database is defined with the key field, value field, and field delimiter flags. See the next section for 
a description of the K command flags.

stab

An internal symbol table database.
implicit

The default internal sendmail format used for an alias file, if no type is defined for the file.
user

A special sendmail type used to verify the existence of a user by using getpwnam(3).
host

file:///C|/mynapster/Downloads/warez/tcpip/appe_04.htm (12 of 16) [2001-10-15 09:19:34]



[Appendix E] E.4 More sendmail.cf

A special sendmail type used to convert nicknames and IP addresses to canonical names via the 
domain name server. This is an alternative form of the $[name]$ syntax.

sequence

A special sendmail type used to define the order in which previously defined databases are 
searched. For example, assume that three databases (file1, file2, and file3) are defined by K 
commands. It is possible to add a fourth K command, Kallfiles sequence file3 file1 file2, that 
"combines" them together as allfiles and specifies that file3 is searched first, file1 second, and file2 
third.

switch

A special sendmail type that uses the service switch file to set the order in which database files are 
searched. The argument on a K command with a type of "switch" must be the name of a service 
in the service switch file. The values associated with the service name in the service switch file are 
used to create the names of databases that are searched in the order in which they are defined. For 
example: the command Kali switch aliases looks up the service switch entry for aliases. If it 
contains the values nis files, sendmail searches databases named ali.nis and ali.files in that 
order.

dequote

A special sendmail type used to strip unwanted double quotes (") from email addresses.

The argument that follows most database types is a filename. The filename identifies the external file that 
contains the database. Only the basic filename is provided. sendmail adds an extension appropriate for the 
database type. For example: Krealname dbm /usr/etc/names becomes /usr/etc/names.db because 
.db is the correct extension for dbm databases.

In addition to a filename, the arguments field can contain optional flags:

-o

This is an optional database. sendmail proceeds without error if the file is not found.
-N

Valid database keys are terminated with a NULL character.
-O

Valid database keys are never terminated with a NULL character. Never specify both -N and -O, 
which indicates that no keys are valid! It is safest to avoid both -N and -O and let sendmail 
determine the correct key structure unless you are positive about the correct flag.

-ax

Append the string x to the value return by a successful match.
-f

Do not convert uppercase to lowercase before attempting to match the key.

file:///C|/mynapster/Downloads/warez/tcpip/appe_04.htm (13 of 16) [2001-10-15 09:19:34]



[Appendix E] E.4 More sendmail.cf

-m

Check that the key exists in the database, but do not replace the key with the value returned by the 
database.

-kkeycol

The location of the key within a database entry. For most databases the key is the first field and this 
flag is not needed. For text file lookups this flag is required and keycol is the column number in 
which the key begins.

-vvalcol

The location of the value within a database entry. For most databases, the value follows the key and 
the -v flag is not used. For text file lookups, this flag is required and specifies the column in which 
the value field begins.

-zdelim

The character that delimits fields within the database. By default, it is whitespace.
-t

Allow database lookups that depend on remote servers to fail instead of queuing the mail for later 
processing. This is primarily used when you have DNS server problems. Normally when a remote 
server fails to respond the mail is put in the queue for later delivery. Setting this flag causes the mail 
to be immediately returned to the sender as undeliverable.

-sspacesub

Use spacesub to replace space characters after processing an address against the dequote 
database.

The full lists of database types and flag provided in this appendix will help you understand the K 
commands inserted into the sendmail.cf file by the m4 processor. Your own K commands will be much 
simpler. You will stick with a database type that is supported by your sendmail and makemap commands, 
and you will build simple databases designed to fulfill specific purposes. Chapter 10 provides examples of 
such databases, and the next section contains some simple scripts used to build those example databases.

E.4.4.1 Sample script

In Chapter 10, the realnames database is used to rewrite login usernames to the "firstname dot lastname" 
format for outbound email. The script shown below builds the realnames database from the /etc/passwd 
file.

#! /bin/sh
#
# Eliminate "non-login" accounts
grep -v ':*:' /etc/passwd | \
# Eliminate "exposed" usernames, i.e. usernames defined
#  in class E as names that should not be re-written
grep -v 'root:' | \

file:///C|/mynapster/Downloads/warez/tcpip/appe_04.htm (14 of 16) [2001-10-15 09:19:34]



[Appendix E] E.4 More sendmail.cf

# Replace delimiting colons with whitespace
sed 's/:/ /g' | \
# Output the username followed by firstname.lastname
awk '{ print $1, $5"."$6 }' > realnames
# Build the realnames database
makemap dbm realnames < realnames

Building realnames from the passwd file is completely dependent on the format of that file. The passwd 
file must have a consistent format for the GECOS field and a consistent way to identify a "non-user" 
account. A "non-user" account is not accessed by a user to log in or to collect email. It is normally a system 
account used by system or application software. A classic example is the uucp account. Every system has 
some way to mark that these accounts are not used for user logins. Some systems use an asterisk in the 
password field, while others use an exclamation mark, the letters NP, an x, or something else. The sample 
script assumes that an asterisk is used, which is the case on my Linux system. (My Solaris systems uses an 
x.) Print out your passwd file to find out what it uses and modify the script accordingly.

The sample script also assumes that the first two values in the GECOS field are the user's first and last 
name separated by a blank. If the beginning of the GECOS field is in any other format, the script produces 
garabage. The procedure you use to add new users to your system should produce a consistent GECOS 
field. Inconsistency is the enemy of automation. The sample below shows a file that has inconsistencies 
and the bad data it produces:

% cat /etc/passwd
root:oRd1L/vMzzxno:0:1:System Administrator:/:/bin/csh
nobody:*:65534:65534::/:
daemon:*:1:1::/:
sys:*:2:2::/:/bin/csh
bin:*:3:3::/bin:
uucp:*:4:8::/var/spool/uucppublic:
news:*:6:6::/var/spool/news:/bin/csh
ingres:*:7:7::/usr/ingres:/bin/csh
audit:*:9:9::/etc/security/audit:/bin/csh
craig:1LrpKlz8sYjw:198:102:Craig Hunt:/home/craig:/bin/csh
dan:RSU.NYlKuFqzh2:214:885:Dan Scribner:/home/dan:/bin/csh
becca:monfTHdnjj:101:102:"Becky_Hunt":/home/becca:/bin/csh
dave:lniuhugfds:121:885:David H. Craig:/home/dave:/bin/csh
kathy:TUVigddehh:101:802:Kathleen S McCafferty:/home/kathy:/bin/csh
% build.realnames
% cat realnames
craig Craig.Hunt
dan Dan.Scribner
becca "Becky_Hunt"./home/becca 
dave David.H. 
kathy Kathleen.S

Your passwd file may have grown over time under the control of several different system administrators. It 
may be full of inconsistencies. If it is, clean it up before you run the script to build email aliases, and then 
maintain it consistently.

file:///C|/mynapster/Downloads/warez/tcpip/appe_04.htm (15 of 16) [2001-10-15 09:19:34]



[Appendix E] E.4 More sendmail.cf

Previous: E.3 m4 sendmail 
Macros

TCP/IP Network 
Administration

Next: E.5 Sample 
Configurations

E.3 m4 sendmail Macros Book Index E.5 Sample Configurations

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/appe_04.htm (16 of 16) [2001-10-15 09:19:34]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Appendix E] E.5 Sample Configurations

Previous: E.4 More 
sendmail.cf

Appendix E
A sendmail Reference

Next: F. Selected TCP/IP 
Headers

 

E.5 Sample Configurations

In Chapter 10 we develop a sendmail configuration. The configuration has these characteristics:

●     It runs on a Linux system.
●     The hostname of the sending system is rewritten to the domain name on all out-bound mail. The hostname is rewritten 

in the message headers and the envelope headers.
●     The sender's username on all outgoing mail is rewritten to the user's first name and last name.

We use two approaches to produce this configuration. First, we use the sample m4 source files that come with sendmail to 
create a custom macro configuration file. Next, we created the same configuration by directly modifying the sample 
sendmail.cf file that comes with Slackware 96 Linux. In this section we recap both sample configurations.

To many system administrators, the simpliest way to create the configuration is to use the m4 macro source files. The macro 
source files are very short, and many people feel they are easier to read than the sendmail.cf file. If you download and compile 
sendmail, it is a good idea to use the macro files because the features in those files will match the downloaded sendmail 
release.

We name the macro file we create in Chapter 10 linux.mc. The file contains these macros:

VERSIONID('@(#)tcpproto.mc      8.5 (Berkeley) 3/23/96')
OSTYPE(linux)
DOMAIN(nuts.com)
FEATURE(nouucp)
MAILER(local)
MAILER(smtp)

It is identical to the tcpproto.mc file delivered with sendmail, with two modifications. First, we change the OSTYPE macro to 
define Linux as the operating system. Next we add a DOMAIN(nuts.com) line to invoke a "domain-specific" macro file we 
create and name nuts.com.m4. The nuts.com.m4 file contains the following lines:

MASQUERADE_AS(nuts.com)
FEATURE(masquerade_envelope)
FEATURE(genericstable)

These three lines peform all of the functions we required of our configuration. The MASQUERADE_AS statement rewrites the 
hostname to the domain name. The FEATURE(masquerade_envelope) statement ensures that the hostname is rewritten 
in the envelope headers as well as the message headers. The FEATURE(generictable) statement causes the username to 
be processed through the genericstable, which is the database we use to convert it to the user's first and last name.

All of the functions we require of our configuration are accomplished in five lines. Modifying the sendmail.cf file directly 
requires much more effort. However, the the m4 source files can only be used if they match the version of sendmail. For this 
reason, m4 is most often used by administrators who download and install sendmail themselves. Most administrators who use 
the sendmail that comes with their system also use the sendmail.cf file that comes with the system. In Chapter 10, we use the 
linux.smtp.cf file that comes with the Slackware 96 version of Linux 2.0. The detailed modifications of the file are explained in 

file:///C|/mynapster/Downloads/warez/tcpip/appe_05.htm (1 of 5) [2001-10-15 09:19:35]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


[Appendix E] E.5 Sample Configurations

Chapter 10. Excerpts from the modified file are listed in this appendix and are heavily commented to make the modifications 
more understandable. A full listing of the sendmail.cf file would consume 15 pages. Compare that to the listing of the m4 files 
shown above.

The linux.smtp.cf file is not identical to the configuration file produced by m4, even when you follow the example in the 
"Building a sendmail.cf with m4 Macros" section of Chapter 10. The configurations are similar but not identical. Use this text 
as a general guide to the structure and function of configuration file. Don't expect the details to match your file exactly.

This excerpt shows the entire local information section because it is discussed extensively in Chapter 10:

#++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
# The V command defines the configuration syntax version level.
# Level 6 was supported by sendmail-8.7.5, which was the release
# of sendmail that came with Slackware 96 Linux 2.0.  The vendor
# name Berkeley means that the standard syntax of the Berkeley
# distribution is supported.
#++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
# level 6 config file format
V6/Berkeley

#++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
#Like most sendmail configuration files, the first sections of the file
#contain the data that is most likely to require custom configuration.
#In this file, the section is titled "Local info".  Note that we moved
#things around in this section to bring related items together.  They
#don't really occur in this sequence in the linux.smtp.cf file.
#++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

##################
#   local info   #
##################
#++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
#If your host is known by more than one hostname, the multiple host
#names are defined in class "w", which contains all of the names for
#which your host will accept mail.
#++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Cwlocalhost

#++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
The j macro is correctly define by the system.  No need to set it here.
#++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
# my official domain name
# ... define this only if sendmail cannot automatically determine 
# your domain
#Dj$w.Foo.COM

#++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
#Class P is used to store pseudo domains.  It is only used in this
#file to store a dot (.) used to identify canonical names.  The dot
#(.) class, which is supposed to be used to identify canonical names,
#is not referenced anywhere else in the file.
#++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
CP.

# a class with just dot (for identifying canonical names)
C..

file:///C|/mynapster/Downloads/warez/tcpip/appe_05.htm (2 of 5) [2001-10-15 09:19:35]



[Appendix E] E.5 Sample Configurations

#++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
#Several different mail relay servers can be defined.  We don't use any
#in this sample configuration.  The L macro and the L class are only
#significant if relay servers are defined for handling "local" mail.
#++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
# "Smart" relay host (may be null)
DS

# who I send unqualified names to (null means deliver locally)
DR

# who gets all local email traffic ($R has precedence for unqualified names)
DH

# place to which unknown users should be forwarded
#Kuser user -m -a<>
#DLname_of_luser_relay

# class L: names that should be delivered locally, even if we have a relay
#CL root

#++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
#Sample K commands are included in the linux.smtp.cf file.  Of these,
#only the dequote database is active.  The others are commented out by
#default.  The purpose of each of these databases is explained earlier
#in this appendix.
#++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
# Mailer table (overriding domains)
#Kmailertable dbm /etc/mailertable

# Domain table (adding domains)
#Kdomaintable dbm /etc/domaintable

# dequoting map
Kdequote dequote

#++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
#Several lines relate to address "masquerading".  Macro M defines the
#hostname that should be used in place of the system's real hostname
#on outgoing mail.  The M class defines other hostnames that should be
#converted to the macro M hostname.  Class E defines usernames for which
#the hostname should not be converted to $M.
#++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
# class E: names that should be exposed as from this host, even if 
# we masquerade
CE root
# class M: domains that should be converted to $M
#CM

# who I masquerade as (null for no masquerading) (see also $=M)
DMnuts.com

#++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
#We added this K command to define a database that we created that converts
#username to the user's real first and last names.
#++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
# define a database to map login names to firstname.lastname
Krealnames dbm /tmp/realnames

file:///C|/mynapster/Downloads/warez/tcpip/appe_05.htm (3 of 5) [2001-10-15 09:19:35]



[Appendix E] E.5 Sample Configurations

# operators that cannot be in local usernames (i.e., network indicators)
CO @ % 

# my name for error messages
DnMAILER-DAEMON

#++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
#Macro Z contains the configuration file's version number.  Modify it
#every time the file is updated.  Keep a record of your modifications.
#++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
#  R1.0 - modified for peanut by Craig
#       - cleaned up the comments in the local info section
#  R1.1 - modified macro M to use nuts.com instead of the
#         hostname in outgoing mail
#  R2.0 - added rule a to S11 & S31 to rewrite to first.last format
DZ8.7.3R2.0

In Chapter 10 we modified ruleset 94 to enable masquerading for envelope addresses.

###################################################################
###  Ruleset 94 -- convert envelope names to masqueraded form   ###
###################################################################
#++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
#To enable "envelop" address masquerading we "uncommented" the first line
#in this ruleset so that it now calls ruleset 93.
#++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
S94
R$+                     $@ $>93 $1
R$* < @ *LOCAL* > $*    $: $1 < @ $j . > $2

The mailers do not usually require modification. However, in Chapter 10, we made some changes to the S rulesets of the 
"smtp" mailer. We made changes to both ruleset 11 and ruleset 31.

#++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
#In Chapter 10 we added a single rule to the end of this ruleset to lookup

#the username in the "realnames" database we created and return the
#user's real first and last names.
#++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
#
#  envelope sender rewriting
#
S11
R$+                     $: $>51 $1                      sender/recipient common
R$* :; <@>              $@                              list:; special case
R$*                     $: $>61 $1                      qualify unqual'ed names
R$+                     $: $>94 $1                      do masquerading
# when masquerading convert login name to firstname.lastname
R$- < @ $M . > $*       $: $(realnames $1 $) < @ $M . > $2  user=>first.last

#
#  envelope recipient rewriting --
#  also header recipient if not masquerading recipients
#
S21
R$+                     $: $>51 $1                      sender/recipient common
R$+                     $: $>61 $1                      qualify unqual'ed names

file:///C|/mynapster/Downloads/warez/tcpip/appe_05.htm (4 of 5) [2001-10-15 09:19:35]



[Appendix E] E.5 Sample Configurations

#++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
#In Chapter 10 we added a single rule to the end of this ruleset to look up

#the username name in the "realnames" database we created and return the
#user's real first and last names.  This is the same modification made
#above.  Often more than one ruleset is modified to add a single new 
#feature.
#++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
#
#  header sender and masquerading header recipient rewriting
#
S31
R$+                     $: $>51 $1                      sender/recipient common
R:; <@>                 $@                              list:; special case

# do special header rewriting
R$* <@> $*              $@ $1 <@> $2                    pass null host through
R< @ $* > $*            $@ < @ $1 > $2                  pass route-addr through
R$*                     $: $>61 $1                      qualify unqual'ed names
R$+                     $: $>93 $1                      do masquerading
# when masquerading convert login name to firstname.lastname
R$- < @ $M . > $*       $: $(realnames $1 $) < @ $M . > $2      user=>first.last

Previous: E.4 More 
sendmail.cf

TCP/IP Network 
Administration

Next: F. Selected TCP/IP 
Headers

E.4 More sendmail.cf Book Index F. Selected TCP/IP Headers

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/appe_05.htm (5 of 5) [2001-10-15 09:19:35]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Appendix F] Selected TCP/IP Headers

Previous: E.5 Sample 
Configurations

Appendix F Next: F.2 TCP Segment 
Header

 

F. Selected TCP/IP Headers
Contents:
IP Datagram Header
TCP Segment Header
ICMP Parameter Problem Message Header

In Chapter 11, Troubleshooting TCP/IP , several references are made to specific TCP/IP headers. Those 
headers are documented here. This is not an exhaustive list of headers; only the headers used in the 
troubleshooting examples in Chapter 11 are covered:

●     IP Datagram Header, as defined in RFC 791, Internet Protocol
●     TCP Segment Header, as defined in RFC 793, Transmission Control Protocol
●     ICMP Parameter Problem Message Header, as defined in RFC 792, Internet Control Message Protocol

Each header is presented using an excerpt from the RFC that defines the header. These are not exact quotes; the 
excerpts have been slightly edited to better fit this text. However, we still want to emphasize the importance of 
using primary sources for troubleshooting protocol problems. These headers are provided here to help you 
follow the examples in Chapter 11. For real troubleshooting, use the real RFCs. You can obtain your own 
copies of the RFCs by following the instructions in Chapter 13, Internet Information Resources .

F.1 IP Datagram Header

This description is taken from pages 11 to 15 of RFC 791, Internet Protocol, by Jon Postel, Information 
Sciences Institute, University of Southern California.

Internet Header Format
                                    
    0                   1                   2                   3   
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |Version|  IHL  |Type of Service|          Total Length         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |         Identification        |Flags|      Fragment Offset    |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Time to Live |    Protocol   |         Header Checksum       |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

file:///C|/mynapster/Downloads/warez/tcpip/appf_01.htm (1 of 4) [2001-10-15 09:19:36]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


[Appendix F] Selected TCP/IP Headers

   |                       Source Address                          |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                    Destination Address                        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                    Options                    |    Padding    |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Version:  4 bits

    The Version field indicates the format of the internet header. 
    This document describes version 4.

  IHL:  4 bits

    Internet Header Length is the length of the internet header in 32
    bit words.  The minimum value for a correct header is 5.

  Type of Service:  8 bits

    The Type of Service indication the quality of service desired.
    The meaning of the bits is explained below.

      Bits 0-2:  Precedence.
      Bit    3:  0 = Normal Delay,      1 = Low Delay.
      Bits   4:  0 = Normal Throughput, 1 = High Throughput.
      Bits   5:  0 = Normal Reliability 1 = High Reliability.
      Bit  6-7:  Reserved for Future Use.

         0     1     2     3     4     5     6     7
      +-----+-----+-----+-----+-----+-----+-----+-----+
      |                 |     |     |     |     |     |
      |   PRECEDENCE    |  D  |  T  |  R  |  0  |  0  |
      |                 |     |     |     |     |     |
      +-----+-----+-----+-----+-----+-----+-----+-----+

        Precedence

          111 - Network Control
          110 - Internetwork Control
          101 - CRITIC/ECP
          100 - Flash Override
          011 - Flash
          010 - Immediate
          001 - Priority
          000 - Routine

  Total Length:  16 bits

    Total Length is the length of the datagram, measured in octets 
    (bytes), including internet header and data.

  Identification:  16 bits

file:///C|/mynapster/Downloads/warez/tcpip/appf_01.htm (2 of 4) [2001-10-15 09:19:36]



[Appendix F] Selected TCP/IP Headers

    An identifying value assigned by the sender to aid in assembling
    the fragments of a datagram.

  Flags:  3 bits

    Various Control Flags.  The Flag bits are explained below:

      Bit 0: reserved, must be zero
      Bit 1: (DF) 0 = May Fragment,  1 = Don't Fragment.
      Bit 2: (MF) 0 = Last Fragment, 1 = More Fragments.

          0   1   2
        +---+---+---+
        |   | D | M |
        | 0 | F | F |
        +---+---+---+

  Fragment Offset:  13 bits

    This field indicates where in the datagram this fragment belongs.
    The fragment offset is measured in units of 8 octets (64 bits).
    The first fragment has offset zero.

  Time to Live:  8 bits

    This field indicates the maximum time the datagram is allowed to
    remain in the internet system. 

  Protocol:  8 bits

    This field indicates the Transport Layer protocol that the data
    portion of this datagram is passed to.  The values for various
    protocols are specified in the "Assigned Numbers" RFC.

  Header Checksum:  16 bits

    A checksum on the header only.  Since some header fields change
    (e.g., time to live), this is recomputed and verified at each
    point that the internet header is processed.  The checksum
    algorithm is:

      The checksum field is the 16 bit one's complement of the one's
      complement sum of all 16 bit words in the header.  For purposes
      of computing the checksum, the value of the checksum field is
      zero.

  Source Address:  32 bits

    The source IP address.  See Chapter 2, Delivering the Data, for a

    description of IP addresses.

  Destination Address:  32 bits

file:///C|/mynapster/Downloads/warez/tcpip/appf_01.htm (3 of 4) [2001-10-15 09:19:36]



[Appendix F] Selected TCP/IP Headers

    The destination IP address.  See Chapter 2 for a description of IP

    addresses.

  Options:  variable

    The options may or may not appear in datagrams, but they must be
    implemented by all IP modules (host and gateways).  No options
    were used in any of the datagrams examined in Chapter 11.

Previous: E.5 Sample 
Configurations

TCP/IP Network 
Administration

Next: F.2 TCP Segment 
Header

E.5 Sample Configurations Book Index F.2 TCP Segment Header

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/appf_01.htm (4 of 4) [2001-10-15 09:19:36]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Appendix F] F.2 TCP Segment Header

Previous: F.1 IP Datagram 
Header

Appendix F
Selected TCP/IP Headers

Next: F.3 ICMP Parameter 
Problem Message Header

 

F.2 TCP Segment Header

This description is taken from pages 15 to 17 of RFC 793, Transmission Control Protocol, by Jon Postel, 
Information Sciences Institute, University of Southern California.

TCP Header Format
                                    
    0                   1                   2                   3   
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |          Source Port          |       Destination Port        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                        Sequence Number                        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                    Acknowledgment Number                      |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Data |           |U|A|P|R|S|F|                               |
   | Offset| Reserved  |R|C|S|S|Y|I|            Window             |
   |       |           |G|K|H|T|N|N|                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |           Checksum            |         Urgent Pointer        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                    Options                    |    Padding    |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                             data                              |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Source Port:  16 bits

    The source port number.

  Destination Port:  16 bits

    The destination port number.

  Sequence Number:  32 bits

    The sequence number of the first data octet (byte) in this segment
    (except when SYN is present). If SYN is present the sequence
    number is the initial sequence number (ISN) and the first data
    octet is ISN+1.

file:///C|/mynapster/Downloads/warez/tcpip/appf_02.htm (1 of 3) [2001-10-15 09:19:36]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


[Appendix F] F.2 TCP Segment Header

  Acknowledgment Number:  32 bits

    If the ACK control bit is set, this field contains the value of
    the next sequence number the sender of the segment is expecting to
    receive.  Once a connection is established this is always sent.

  Data Offset:  4 bits

    The number of 32 bit words in the TCP Header.  This indicates
    where the data begins.  The TCP header (even one including options)
    is an integral number of 32 bits long.

  Reserved:  6 bits

    Reserved for future use.  Must be zero.

  Control Bits:  6  single-bit values (from left to right):

    URG:  Urgent Pointer field significant
    ACK:  Acknowledgment field significant
    PSH:  Push Function
    RST:  Reset the connection
    SYN:  Synchronize sequence numbers
    FIN:  No more data from sender

  Window:  16 bits

    The number of data octets (bytes) the sender of this segment is
    willing to accept.

  Checksum:  16 bits

    The checksum field is the 16 bit one's complement of the one's
    complement sum of all 16 bit words in the header and text.

  Urgent Pointer:  16 bits

    This field contains the current value of the urgent pointer as a
    positive offset from the sequence number in this segment.  The
    urgent pointer points to the sequence number of the octet
    following the urgent data.  This field is only be interpreted
    in segments with the URG control bit set.

  Options:  variable

    Options may occupy space at the end of the TCP header and are a
    multiple of 8 bits in length.

Previous: F.1 IP Datagram 
Header

TCP/IP Network 
Administration

Next: F.3 ICMP Parameter 
Problem Message Header

file:///C|/mynapster/Downloads/warez/tcpip/appf_02.htm (2 of 3) [2001-10-15 09:19:36]



[Appendix F] F.2 TCP Segment Header

F.1 IP Datagram Header Book Index F.3 ICMP Parameter Problem 
Message Header

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/appf_02.htm (3 of 3) [2001-10-15 09:19:36]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm


[Appendix F] F.3 ICMP Parameter Problem Message Header

Previous: F.2 TCP Segment 
Header

Appendix F
Selected TCP/IP Headers

 

 

F.3 ICMP Parameter Problem Message Header

This description is taken from pages 8 and 9 of RFC 792, Internet Control Message Protocol, by Jon Postel, 
Information Sciences Institute, University of Southern California.

Parameter Problem Message

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |     Type      |     Code      |          Checksum             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |    Pointer    |                   unused                      |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |      Internet Header + 64 bits of Original Data Datagram      |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Type

      12

   Code

      0 = pointer indicates the error.

   Checksum

      The checksum is the 16-bit ones's complement of the one's
      complement sum of the ICMP message starting with the ICMP Type.
      For computing the checksum , the checksum field should be zero.

   Pointer

      If code = 0, identifies the octet where an error was detected.

   Internet Header + 64 bits of Data Datagram

      The internet header plus the first 64 bits of the datagram that
      elicited this error response.

file:///C|/mynapster/Downloads/warez/tcpip/appf_03.htm (1 of 2) [2001-10-15 09:19:36]

file:///C|/mynapster/Downloads/warez/search/tsrch.htm


[Appendix F] F.3 ICMP Parameter Problem Message Header

Previous: F.2 TCP Segment 
Header

TCP/IP Network 
Administration

 

F.2 TCP Segment Header Book Index  

[ Library Home | DNS & BIND | TCP/IP | sendmail | sendmail Reference | Firewalls | Practical Security ]

file:///C|/mynapster/Downloads/warez/tcpip/appf_03.htm (2 of 2) [2001-10-15 09:19:36]

file:///C|/mynapster/Downloads/warez/index.htm
file:///C|/mynapster/Downloads/warez/dnsbind/index.htm
file:///C|/mynapster/Downloads/warez/sendmail/index.htm
file:///C|/mynapster/Downloads/warez/smdref/index.htm
file:///C|/mynapster/Downloads/warez/firewall/index.htm
file:///C|/mynapster/Downloads/warez/puis/index.htm

	Local Disk
	TCP/IP Network Administration
	Index
	Index A
	Index B
	Index C
	Index D
	Index E
	Index F
	Index G
	Index H
	Index I
	Index J
	Index K
	Index L
	Index M
	Index N
	Index O
	Index P
	Index Q
	Index R
	Index S
	Index T
	Index U
	Index V
	Index W
	Index X
	Index Y
	Index Z
	[Chapter 8] Configuring DNS Name Service 
	[Chapter 7] 7.8 Summary 
	[Chapter 7] 7.7 Configuring gated 
	[Chapter 7] 7.6 Gateway Routing Daemon 
	[Chapter 7] 7.5 Exterior Routing Protocols 
	[Chapter 7] 7.4 Interior Routing Protocols 
	[Chapter 7] 7.3 Building a Static Routing Table 
	[Chapter 7] 7.2 The Minimal Routing Table 
	[Chapter 7] Configuring Routing 
	[Chapter 6] 6.5 Summary 
	[Chapter 6] 6.4 Installing SLIP 
	[Chapter 6] 6.3 Installing PPP 
	[Chapter 6] 6.2 TCP/IP Over a Serial Line 
	[Chapter 6] Configuring the Interface 
	[Chapter 5] 5.5 Summary 
	[Chapter 5] 5.4 The Internet Daemon 
	[Chapter 5] 5.3 The BSD Kernel Configuration File 
	[Chapter 5] 5.2 Linux Kernel Configuration 
	file:///C|/mynapster/Downloads/warez/tcpip/ch05_01.htm
	[Chapter 4] 4.8 Summary 
	[Chapter 4] 4.7 netconfig 
	[Chapter 4] 4.6 Informing the Users 
	[Chapter 4] 4.5 Other Services 
	file:///C|/mynapster/Downloads/warez/tcpip/ch04_04.htm
	[Chapter 4] 4.3 Planning Routing 
	[Chapter 4] 4.2 Basic Information 
	[Chapter 4] Getting Started 
	[Chapter 3] 3.8 Summary
	file:///C|/mynapster/Downloads/warez/tcpip/ch03_07.htm
	[Chapter 3] 3.6 Bootstrap Protocol
	[Chapter 3] 3.5 Configuration Servers
	[Chapter 3] 3.4 Mail Services
	[Chapter 3] 3.3 Domain Name Service
	[Chapter 3] 3.2 The Host Table
	[Chapter 3] Network Services
	file:///C|/mynapster/Downloads/warez/tcpip/ch02_08.htm
	[Chapter 2] 2.7 Protocols, Ports, and Sockets
	[Chapter 2] 2.6 Address Resolution
	[Chapter 2] 2.5 The Routing Table
	[Chapter 2] 2.4 Internet Routing Architecture
	[Chapter 2] 2.3 Subnets
	[Chapter 2] 2.2 The IP Address
	[Chapter 2] Delivering the Data
	[Chapter 1] 1.8 Summary
	[Chapter 1] 1.7 Application Layer
	file:///C|/mynapster/Downloads/warez/tcpip/ch01_06.htm
	[Chapter 1] 1.5 Internet Layer
	[Chapter 1] 1.4 Network Access Layer
	[Chapter 1] 1.3 TCP/IP Protocol Architecture
	[Chapter 1] 1.2 A Data Communications Model
	[Chapter 1] Overview of TCP/IP
	[Preface] Acknowledgments
	[Preface] We'd Like to Hear from You
	[Preface] Conventions
	[Preface] UNIX Versions
	[Preface] Organization
	[Preface] Audience
	Preface
	[Chapter 8] 8.2 Configuring the Resolver 
	[Chapter 8] 8.3 Configuring named 
	[Chapter 8] 8.4 Using nslookup 
	[Chapter 8] 8.5 Summary 
	file:///C|/mynapster/Downloads/warez/tcpip/ch09_01.htm
	[Chapter 9] 9.2 Line Printer Daemon 
	[Chapter 9] 9.3 Network Information Service 
	[Chapter 9] 9.4 A BOOTP Server 
	file:///C|/mynapster/Downloads/warez/tcpip/ch09_05.htm
	[Chapter 9] 9.6 Managing Distributed Servers 
	[Chapter 9] 9.7 Mail Servers 
	file:///C|/mynapster/Downloads/warez/tcpip/ch09_08.htm
	[Chapter 10] sendmail 
	[Chapter 10] 10.2 Running sendmail as a Daemon 
	[Chapter 10] 10.3 sendmail Aliases 
	[Chapter 10] 10.4 The sendmail.cf File 
	file:///C|/mynapster/Downloads/warez/tcpip/ch10_05.htm
	[Chapter 10] 10.6 Rewriting the Mail Address 
	[Chapter 10] 10.7 Modifying a sendmail.cf File 
	file:///C|/mynapster/Downloads/warez/tcpip/ch10_08.htm
	[Chapter 10] 10.9 Summary 
	[Chapter 11] Troubleshooting TCP/IP 
	[Chapter 11] 11.2 Diagnostic Tools 
	[Chapter 11] 11.3 Testing Basic Connectivity 
	[Chapter 11] 11.4 Troubleshooting Network Access 
	[Chapter 11] 11.5 Checking Routing 
	[Chapter 11] 11.6 Checking Name Service 
	[Chapter 11] 11.7 Analyzing Protocol Problems 
	[Chapter 11] 11.8 Protocol Case Study 
	[Chapter 11] 11.9 Simple Network Management Protocol 
	file:///C|/mynapster/Downloads/warez/tcpip/ch11_10.htm
	[Chapter 12] Network Security 
	[Chapter 12] 12.2 User Authentication 
	[Chapter 12] 12.3 Application Security 
	file:///C|/mynapster/Downloads/warez/tcpip/ch12_04.htm
	[Chapter 12] 12.5 Access Control 
	[Chapter 12] 12.6 Encryption 
	[Chapter 12] 12.7 Firewalls 
	[Chapter 12] 12.8 Words to the Wise 
	[Chapter 12] 12.9 Summary 
	[Chapter 13] Internet Information Resources 
	[Chapter 13] 13.2 Anonymous FTP 
	[Chapter 13] 13.3 Finding Files 
	[Chapter 13] 13.4 Retrieving RFCs 
	[Chapter 13] 13.5 Mailing Lists 
	[Chapter 13] 13.6 The White Pages 
	[Chapter 13] 13.7 Summary 
	[Appendix A] PPP Tools
	[Appendix A] A.2 The PPP Daemon
	[Appendix A] A.3 chat
	[Appendix B] A gated Reference
	[Appendix B] B.2 The gated Configuration Language
	[Appendix B] B.3 Directive Statements
	file:///C|/mynapster/Downloads/warez/tcpip/appb_04.htm
	[Appendix B] B.5 Options Statements
	[Appendix B] B.6 Interface Statements
	[Appendix B] B.7 Definition Statements
	[Appendix B] B.8 Protocol Statements
	[Appendix B] B.9 static Statements
	[Appendix B] B.10 Control Statements
	[Appendix B] B.11 The Aggregate Statements
	[Appendix C] A named Reference
	[Appendix C] C.2 named.boot Configuration Commands
	[Appendix C] C.3 Zone File Records
	[Appendix D] A dhcpd Reference
	file:///C|/mynapster/Downloads/warez/tcpip/appd_02.htm
	[Appendix D] D.3 The dhcpd.conf Configuration File
	[Appendix E] A sendmail Reference
	[Appendix E] E.2 The sendmail Command
	[Appendix E] E.3 m4 sendmail Macros
	[Appendix E] E.4 More sendmail.cf
	[Appendix E] E.5 Sample Configurations
	[Appendix F] Selected TCP/IP Headers
	[Appendix F] F.2 TCP Segment Header
	[Appendix F] F.3 ICMP Parameter Problem Message Header


