
technology innovation centre

In-Course Assessment Brief

Undergraduate Programme Academic Year
2004/2005

Module:
Programming for Communications
and Networks V

Semester: 1

Assignment 2: Coursework

Division: Electronics, Communications and Software

Module Co-ordinator: Richard Kay

Set Date: Thurs 7 Oct 2004

Hand-in Date:
Writeups: Thurs 3 Feb 2005. See assignment details for
demonstration dates for individual program demonstrations.

Hand-in Method: Submitted through the box system, to the module co-ordinator.
Nominal time to
complete this
assignment:

40 Hours

Brief Assessment
Details

Assessment Weighting:

This assessment comprises 4 small programs to be designed,
implemented, tested, demonstrated and documented by
students.

This assignment is worth 50% of the total module mark.

Individual Assessment: Individual assessment. The work you submit shall be your
own and not the product of collaboration with anyone else.
Plagiarism will be penalised.

Group assessments. Members of the group shall be listed in
the assessment.

Learning Outcomes to be Assessed
On completing this assignment students will be able to write programs which use various
means of communicating with other programs.
Assessment Details:
See below.
Assessment Criteria:
Program 1 is worth 40%. Programs 2,3 and 4 are worth 20% each.
Within each program, marks are divided equally between (a.) demonstration, (b.) source
code, (c.) documentation and (d.) quality and completeness.

Students are required to design, implement, test, demonstrate and document the following
programs. Documentation to include specification, a test plan and a 200 word review of
what was learned for each program. Feedback sheets resulting from demonstrations must
be included in final coursework submitted.

Program 1. 40% demonstration due week 8.

Students must write a script which analyses a mail log file created by the Sendmail email
relay program. The language recommended for this application is Bash shell script, but
other scripting languages available on the server (e.g. Other Unix shells, Perl, Python)
may also be used. The mail log file will be made available before week 3 through the
module web site. Students are expected to automate use of utility programs such as awk,
sed, grep, sort etc, chaining use of these programs through use of pipelines and temporary
files and I/O redirection facilities as provided by the bash shell script language, or use
comparable facilities in the scripting language chosen.

The output resulting from this automated analysis is required to list the incoming IP
addresses from which mail messages are received or rejected. The output list should be in
descending order of number of attempts to send messages from each IP address, and
within this order the output list should be sorted by IP address in ascending order. Log
lines concerning incoming messages all contain the string: "from" and an externally
routable IP address in dot quad format (e.g. 11.254.35.27). Email addresses within the log
file supplied have been changed for reasons of privacy.

Demonstration of programs 2, 3 and 4.

Note that while students are required to be in a position to demonstrate any or all of
programs 2, 3 and 4 by week 13, the time available for demonstrations is limited in
practice. Staff will therefore decide which of these programs must be demonstrated based
on the time available, and demonstration times in addition to timetabled tutorials may
optionally be booked if required. Communications concerning booking of specific
demonstration times require that students read announcements made on the pcn5 email
list referenced on the module website.

Program 2. 20% demonstration due week 13

Process creation. The creation of a child process that runs another program, specifiable by
the user. The process-IDs and parent-process-IDs of the parent and child should be
displayed, along with informative text on which process is currently executing. Include
options for specifying whether or not the parent should wait for the child to terminate.

Program 3. 20% demonstration due week 13

The use of signals. Write a program that contains functions to handle SIGINT and
SIGQUIT signals. The functions should print out appropriate messages to indicate which
signal has been detected . They should also ignore both SIGINT and SIGQUIT whilst they
are handling the signal. (Explain why this should be so).

Program 4. 20% demonstration due week 13

Interprocess communication – pipes. Write a program that creates a pipe and forks two
children. Each child then writes to the pipe. The parent reads from the pipe and prints out
any data that it receives. Write another program that uses two pipes operating in different
directions to give two-way communication between two processes.

