

THE KUBERNETES
BIBLE

The definitive guide to deploying and managing
Kubernetes across major cloud platforms

Nassim Kebbani

Piotr Tylenda

Russ McKendrick

BIRMINGHAM—MUMBAI

THE KUBERNETES BIBLE
Copyright © 2022 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without warranty,
either express or implied. Neither the authors, nor Packt Publishing or its dealers and distributors,
will be held liable for any damages caused or alleged to have been caused directly or indirectly by
this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing
cannot guarantee the accuracy of this information.

Group Product Manager: Rahul Nair

Publishing Product Manager: Shrilekha Malpani

Senior Editor: Athikho Sapuni Rishana

Content Development Editor: Nihar Kapadia

Technical Editor: Shruthi Shetty

Copy Editor: Safis Editing

Project Coordinator: Neil D'mello

Proofreader: Safis Editing

Indexer: Tejal Daruwale Soni

Production Designer: Alishon Mendonca

Marketing Coordinator: Sanjana Gupta

First published: February 2022

Production reference: 1130122

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-83882-769-4

www.packt.com

http://www.packt.com

Contributors

About the authors
Nassim Kebbani is an experienced software engineer with in-depth expertise in
Kubernetes and the Amazon Web Services cloud provider. He has an extensive
background both in software development and operations teams, having implemented
the entire spectrum of a DevOps life cycle chain, from application code to pipelines,
and carried out monitoring in various industries such as e-commerce, media, and
financial services.

He has implemented numerous cloud-native architectures and containerized applications
on Docker and AWS and holds both Kubernetes CKA and CKAD certifications.

Piotr Tylenda is an experienced DevOps and software engineer with a passion for
Kubernetes and Azure technologies. In his projects, he has focused on the adoption of
microservices architecture for monolithic applications, developing big data pipelines
for e-commerce, and architecting solutions for scalable log and telemetry analytics for
hardware. His most notable contribution to Kubernetes' open source ecosystem is the
development of Ansible automation for provisioning and deploying hybrid Windows/
Linux Kubernetes clusters. Currently, he works at Microsoft Development Center
Copenhagen in Denmark as part of a team developing a Microsoft Dynamics 365 Business
Central SaaS offering.

Russ McKendrick is an experienced DevOps practitioner and system administrator with
a passion for automation and containers. He has been working in IT and related industries
for the better part of 27 years. During his career, he has had varied responsibilities in
many different sectors, including first-line, second-line, and senior support in both client-
facing and internal teams for small and large organizations. He works almost exclusively
with Linux, using open source systems and tools across both dedicated hardware and
virtual machines hosted in public and private clouds at N4Stack, which is a Node4
company, where he holds the title of practice manager (SRE and DevOps). He also buys
way too many records!

About the reviewer
Dushyant Nathalal Dubaria pursued a Master of Science degree in network and
telecommunication engineering from Southern Methodist University, USA, in December
2019. He is passionate about DevOps, the cloud, networking, virtualization, and
automation, and has a keen interest in technologies such as Docker and Kubernetes.
He has published articles in three international journal publications in IEEE, held at
Columbia University, New York, and at the University of Nevada, Las Vegas. He was
a teaching assistant and lecturer at Southern Methodist University and loves teaching
DevOps for networking, network automation, and programmability to graduate students.
He likes contributing to open source projects and was a speaker at the Linux Foundation
Event: Open Networking Summit, San Jose, April 2019, and at the Open Source Summit,
San Diego, August 2019.

Reviewing a book is harder than I thought and more rewarding than I
could have ever imagined. I would like to thank my friend, Jay Ashok Shah,

who introduced me to the world of DevOps and Kubernetes.

To my caring parents for always encouraging me to accomplish my goals.

To my loving wife, Monika, for her continued support with everything I do.

Finally, my sincere appreciation to the Packt committee for the learning
opportunities they have afforded me, especially Kajol Pawar and Neil

D'mello.

Preface

Section 1: Introducing Kubernetes

1
Kubernetes Fundamentals

Understanding monoliths
and microservices 4
Understanding the growth of the
internet since the late 1990s 4
Understanding the need for more
frequent software releases 5
Understanding the organizational shift
to agile methodologies 5
Understanding the shift from
on-premises to the cloud 7
Understanding why the cloud is well
suited for scalability 8
Exploring the monolithic architecture 10
Exploring the microservices architecture 10
Choosing between monolithic and
microservices architectures 12

Understanding containers
and Docker 13
Understanding why Docker is good
for microservices 13
Understanding the benefit of Docker
container isolation 14

How can Kubernetes help
you to manage your
Docker containers? 16
Understanding that Kubernetes is
meant to use Docker in production 16

Exploring the problems that
Kubernetes solves 18
Ensuring high availability 18
Release management and
container deployment 19
Autoscaling containers 21
When and where is Kubernetes
not the solution? 22

Understanding the history
of Kubernetes 22
Understanding how and where
Kubernetes started 22
Who manages Kubernetes today? 24
Where is Kubernetes today? 24

Summary 25

Table of Contents

vi Table of Contents

2
Kubernetes Architecture – From Docker Images to
Running Pods

Understanding the difference
between the master and
worker nodes 28
The kube-apiserver component 34
The role of kube-apiserver 34
How do you install kube-apiserver? 38
Where do you install kube-apiserver? 40

Exploring the kubectl
command-line tool
and YAML syntax 42
The role of kubectl 42
How does kubectl work? 44
The YAML syntax 46
kubectl should be installed on any
machine that needs to interact with
the cluster 49

The Etcd datastore 50
The role of the Etcd datastore 50
Where do you install Etcd? 52

The Kubelet and worker
node components 53
The Kubelet agent 54
The kube-proxy component 56

The kube-scheduler component 56
The role of the kube-scheduler
component 56
Where do you install kube-scheduler? 58

The kube-controller-manager
component 58
The role of the kube-controller-
manager component 59
Where do you install
kube-controller-manager? 59

How to make Kubernetes
highly available 60
The single-node cluster 60
The single-master cluster 61
The multi-master multi-node cluster 62

Summary 64

3
Installing Your First Kubernetes Cluster

Technical requirements 66
Installing a single-node cluster
with Minikube 67
Launching a single-node Kubernetes
cluster using Minikube 67
Stopping and deleting the local
Minikube cluster 70

Launching a multi-node
Kubernetes cluster with Kind 71
Installing Kind onto your local system 72
Stopping and deleting the local
Kind cluster 74

Installing a Kubernetes cluster
using Google GKE 75

Table of Contents vii

Launching a multi-node Kubernetes
cluster on Google GKE 76
Stopping and deleting a Kubernetes
cluster on Google GKE 80

Installing a Kubernetes cluster
using Amazon EKS 80
Launching a multi-node Kubernetes
cluster on Amazon EKS 81

Deleting the Kubernetes cluster on
Amazon EKS 88

Installing a Kubernetes cluster
using Azure AKS 89
Launching a multi-node Kubernetes
cluster on Azure AKS 89
Stopping and deleting a Kubernetes
cluster on Azure AKS 92

Summary 92

Section 2: Diving into Kubernetes
Core Concepts

4
Running Your Docker Containers

Technical requirements 96
Let's explain the notion of Pods 97
Each Pod gets an IP address 99
How you should design your Pods 100

Launching your first Pods 101
Creating a Pod with imperative syntax 101
Creating a Pod with declarative syntax 102
Reading the Pod's information
and metadata 103
Listing the objects in JSON or YAML 104
Backing up your resource using the
list operation 104
Getting more information from the
list operation 105
Accessing a Pod from the outside world 105
Entering a container inside a Pod 106
Deleting a Pod 107

Labeling and annotating
the Pods 107

What are labels and why do we
need them? 108
What are annotations and how do they
differ from labels? 109
Adding a label 109
Listing labels attached to a Pod 111
Adding or updating a label to/of a
running Pod 111
Deleting a label attached to a
running Pod 112
Adding an annotation 113

Launching your first job 113
What are jobs? 114
Creating a job with restartPolicy 115
Understanding the job's backoffLimit 116
Running a task multiple times
using completions 117
Running a task multiple times
in parallel 118

viii Table of Contents

Terminating a job after a specific
amount of time 119
What happens if a job succeeds? 120
Deleting a job 120

Launching your first Cronjob 121
What are Cronjobs? 121
Creating your first Cronjob 122
Understanding the schedule 123

Understanding the role of the
jobTemplate section 124
Controlling the Cronjob
execution deadline 124
Managing the history limits of jobs 124
Creating a Cronjob 125
Deleting a Cronjob 125

Summary 125

5
Using Multi-Container Pods and Design Patterns

Technical requirements 128
Understanding what
multi-container Pods are 128
Concrete scenarios where you need
multi-container Pods 129
When not to create a
multi-container Pod 130
Creating a Pod made up of
two containers 130
What happens when Kubernetes fails
to launch one container in a Pod? 132
Deleting a multi-container Pod 135
Understanding the Pod deletion
grace period 136
Accessing a specific container inside
a multi-container Pod 137
Running commands in containers 138
Overriding the default commands run
by your containers 139
Introducing initContainers 141
Accessing the logs of a
specific container 143

Sharing volumes between
containers in the same Pod 144
What are Kubernetes volumes? 145
Creating and mounting an
emptyDir volume 147
Creating and mounting a
hostPath volume 150

The ambassador design pattern 152
What is the ambassador
design pattern? 152
A simple example of an ambassador
multi-container Pod 153

The sidecar design pattern 154
What is the sidecar design pattern? 155
A simple example of a sidecar multi-
container Pod 155

The adapter design pattern 155
What is the adapter design pattern? 156
A simple example of an adapter multi-
container Pod 156

Summary 157

Table of Contents ix

6
Configuring Your Pods Using ConfigMaps and Secrets

Technical requirements 160
Understanding what
ConfigMaps and Secrets are 160
Decoupling your application and
your configuration 161
Understanding how Pods consume
ConfigMaps and Secrets 163

Configuring your Pods
using ConfigMaps 164
Listing ConfigMaps 164
Creating a ConfigMap 164
Creating a ConfigMap from
literal values 166
Storing entire configuration files
in a ConfigMap 167
Creating a ConfigMap from an env file 169
Reading values inside a ConfigMap 170
Linking ConfigMaps as
environment variables 172

Mounting a ConfigMap as a
volume mount 175
Deleting a ConfigMap 177
Updating a ConfigMap 178

Managing sensitive
configuration with the
Secret object 178
Listing Secrets 178
Creating a Secret imperatively with
--from-literal 179
Creating a Secret declaratively with a
YAML file 179
Creating a Secret with content
from a file 180
Reading a Secret 181
Consuming a Secret as an
environment variable 182
Consuming a Secret as a volume mount 183
Deleting a Secret 184
Updating a Secret 184

Summary 185

7
Exposing Your Pods with Services

Technical requirements 188
Why would you want to expose
your Pods? 188
Understanding Pod IP assignment 188
Understanding Pod IP assignment
is dynamic 190
Never hardcode a pod's IP addresses
in your application code 191
Understanding how services route
traffic to Pods 192

Understanding round-robin load
balancing in Kubernetes 193
Understanding how to call a service
in Kubernetes 194
Understanding how DNS names are
generated for services 194
How services get a list of the Pods they
service traffic to 195
Using the dnsutils Docker image to
debug your services 197
Why you shouldn't use the --expose flag 199

x Table of Contents

Understanding how DNS names are
generated for services 200
Understanding the different types
of services 201

The NodePort service 202
Why do you need NodePort services? 202
Creating two containous/whoami Pods 202
Understanding NodePort
YAML definition 203
Making sure NodePort works
as expected 206
Is this setup production-ready? 206
Listing NodePort services 207
Adding more Pods to NodePort services 207
Describing NodePort services 207
Deleting NodePort services 208
NodePort or kubectl port-forward? 208

The ClusterIP service 209
Why do you need ClusterIP services? 209
How do I know if I need NodePort or
ClusterIP services to expose my Pods? 210
Listing ClusterIP services 210
Creating ClusterIP services using the
imperative way 210
Describing ClusterIP services 211

Creating ClusterIP services using the
declarative way 213
Deleting ClusterIP services 214
Understanding headless services 214

The LoadBalancer service 215
Explaining the LoadBalancer services 216
Should I use the LoadBalancer
service type? 216

Implementing ReadinessProbe 217
Why do you need ReadinessProbe? 217
Implementing ReadinessProbe 218
What is LivenessProbe and why do you
need it? 219
Implementing LivenessProbe 220
Using ReadinessProbe and
LivenessProbe together 223

Securing your Pods using the
NetworkPolicy object 224
Why do you need NetworkPolicy? 224
Understanding Pods are not isolated
by default 225
Configuring NetworkPolicy with labels
and selectors 226

Summary 229

8
Managing Namespaces in Kubernetes

Technical requirements 232
Introduction to
Kubernetes namespaces 232
Why do you need namespaces? 232
How namespaces are used to split
resources into chunks 233
Understanding default namespaces 234

How namespaces impact your
resources and services 236
Listing namespaces inside your cluster 236
Retrieving the data of a
specific namespace 236
Creating a namespace using
imperative syntax 237
Creating a namespace using
declarative syntax 237

Table of Contents xi

Deleting a namespace 238
Creating a resource inside a
namespace with the -n option 239
Listing resources inside a
specific namespace 240
Listing all the resources inside a
specific namespace 241
Understanding that names are scoped
to a namespace 241
Understanding that not all resources
are in a namespace 243
Resolving a service using namespaces 243
Switching between namespaces
with kubectl 244
Displaying the current namespace
with kubectl 245
Configuring ResourceQuota and
Limit at the namespace level 246

Understanding why you should set
ResourceQuota 247
Understanding how Pods consume
these resources 247
Understanding how Pods can require
computing resources 248
Understanding how you can limit
resource consumption 250
Understanding why you
need ResourceQuota 251
Creating a ResourceQuota 252

Listing ResourceQuota 254
Deleting ResourceQuota 254
Introducing LimitRange 254
Listing LimitRange 256
Deleting LimitRange 256
Summary 256

9
Persistent Storage in Kubernetes

Technical requirements 260
Why you would want to use
PersistentVolume 260
Introducing PersistentVolumes 260
Introducing PersistentVolume types 262
The benefits brought by
PersistentVolume 263
Introducing access modes 264
Understanding that not all
access modes are available to all
PersistentVolume types 264
Creating our first PersistentVolume 265
How does Kubernetes
PersistentVolumes handle
cloud-based storage? 266
Amazon EBS PersistentVolume YAML 266

GCE PersistentDisk PersistentVolume
YAML 267
NFS PersistentVolume YAML 268
Can Kubernetes handle the
provisioning or creation of the
resource itself? 268

Understanding how to mount
a PersistentVolume to your
Pod claims 269
Introducing PersistentVolumeClaim 269
Splitting storage creation and
storage consumption 270
The summarized PersistentVolume
workflow 271
Creating a Pod with a
PersistentVolumeClaim object 272

xii Table of Contents

Understanding the life cycle
of a PersistentVolume object
in Kubernetes 276
Understanding that PersistentVolume
objects are not bound to namespaces 276
Reclaiming a PersistentVolume object 278
Updating a reclaim policy 279
Understanding PersistentVolume and
PersistentVolumeClaims statuses 280

Static and dynamic
PersistentVolume provisioning 281
Static versus dynamic provisioning 281
Introducing dynamic provisioning 282
Introducing StorageClasses 282
Understanding the role of
PersistentVolumeClaim for dynamic
storage provisioning 284

Summary 287

Section 3: Using Managed Pods
with Controllers

10
Running Production-Grade Kubernetes Workloads

Technical requirements 292
Ensuring HA and FT
on Kubernetes 292
High Availability 293
Fault Tolerance 294
HA and FT for Kubernetes applications 294

What is ReplicationController? 295
Creating a ReplicationController object 296
Testing the behavior of
ReplicationController 299
Scaling ReplicationController 300
Deleting ReplicationController 302

What is ReplicaSet and
how does it differ from
ReplicationController? 303
Creating a ReplicaSet object 304
Testing the behavior of ReplicaSet 306
Scaling ReplicaSet 308
Using Pod liveness probes together
with ReplicaSet 309
Deleting a ReplicaSet object 312

Summary 313
Further reading 313

11
Deployment – Deploying Stateless Applications

Technical requirements 316
Introducing the
Deployment object 317
Creating a Deployment object 319

Exposing Deployment Pods using
Service objects 323
Scaling a Deployment object 335
Deleting a Deployment object 338

Table of Contents xiii

How does a Deployment
object manage revisions and
version rollout? 338
Updating a Deployment object 340
Rolling back a Deployment object 344
Deployment object
best practices 347
Use declarative object management
for Deployments 347

Do not use the Recreate strategy for
production workloads 347
Do not create Pods that match an
existing Deployment label selector 348
Carefully set up your container probes 348
Use meaningful and semantic
image tags 349
Migrating from older versions
of Kubernetes 350

Summary 350
Further reading 350

12
StatefulSet – Deploying Stateful Applications

Technical requirements 354
Introducing the
StatefulSet object 354
Managing state in containers 355
Managing state in Kubernetes Pods 356
StatefulSet and how it differs from a
Deployment object 357

Managing StatefulSet 359
Creating a StatefulSet 359
Using the headless Service and stable
network identities 367
State persistence 369
Scaling StatefulSet 372
Deleting a StatefulSet 375

Releasing a new version of an
app deployed as a StatefulSet 377

Updating StatefulSet 379
Rolling back StatefulSet 387

StatefulSet best practices 387
Use declarative object management
for StatefulSets 388
Do not use the
TerminationGracePeriodSeconds Pod
with a 0 value for StatefulSets 388
Scale down StatefulSets
before deleting 388
Ensure state compatibility during
StatefulSet rollbacks 389
Do not create Pods that match an
existing StatefulSet label selector 389

Summary 389
Further reading 390

xiv Table of Contents

13
DaemonSet – Maintaining Pod Singletons on Nodes

Technical requirements 392
Introducing the
DaemonSet object 392
Creating and managing
DaemonSets 394
Creating a DaemonSet 395
Modifying a DaemonSet 400

Deleting a DaemonSet 403

Common use cases
for DaemonSets 404
Alternatives to DaemonSets 405
Summary 406
Further reading 406

Section 4: Deploying Kubernetes on
the Cloud

14
Kubernetes Clusters on Google Kubernetes Engine

Technical requirements 412
What are GCP and GKE? 412
Google Cloud Platform 412
Google Kubernetes Engine 413

Preparing your environment 413
Signing up for a GCP account 414
Creating a project 415
Installing the GCP command-line
interface 415

Launching your first
GKE cluster 421

Deploying a workload and
interacting with your cluster 422
Configuring your local client 423
Launching an example workload 424
Exploring Google Cloud Console 425
Deleting your cluster 430

More about cluster nodes 430
Summary 433
Further reading 433

Table of Contents xv

15
Launching a Kubernetes Cluster on Amazon Web Services
with Amazon Elastic Kubernetes Service

Technical requirements 436
What are AWS and
Amazon EKS? 436
AWS 436
Amazon EKS 438

Preparing your local
environment 438
Signing up for an AWS account 439
Installing the AWS command-line
interface 439
Installing eksctl, the official CLI for
Amazon EKS 443

Launching your Amazon
EKS cluster 444
Deploying a workload and
interacting with your cluster 447
Deploying the workload 447
Exploring the AWS console 449

Deleting your Amazon
EKS cluster 454
Summary 455
Further reading 456

16
Kubernetes Clusters on Microsoft Azure with Azure
Kubernetes Service

Technical requirements 458
What are Microsoft Azure
and AKS? 458
Microsoft Azure 458
AKS 459

Preparing your
local environment 460
The Azure CLI 460

Launching your AKS cluster 465

Deploying a workload and
interacting with your cluster 468
Launching the workload 468
Exploring the Azure portal 469

Deleting your AKS cluster 479
Summary 480
Further reading 481

xvi Table of Contents

Section 5: Advanced Kubernetes

17
Working with Helm Charts

Technical requirements 486
Understanding Helm 487
Releasing software to
Kubernetes using Helm 489
Installing Helm on Ubuntu 490
Installing Helm on Windows 490
Installing Helm on macOS 491
Deploying an example chart 491

Helm chart anatomy 499
Installing popular solutions
using Helm charts 501
Kubernetes Dashboard 502
Elasticsearch with Kibana 505
Prometheus with Grafana 507

Summary 510
Further reading 510

18
Authentication and Authorization on Kubernetes

Technical requirements 512
Authentication and user
management 513
Static token files 515
ServiceAccount tokens 516
X.509 client certificates 523
OpenID Connect tokens 525
Other methods 527

Authorization and introduction
to RBAC 528
RBAC mode in Kubernetes 530

Azure Kubernetes Service
and Azure Active Directory
integration 535
Prerequisites 536
Deploying a managed AKS cluster with
AAD and Azure RBAC integration 536
Accessing the AKS cluster with AAD
integration enabled 537
Using Azure RBAC for an AKS cluster 539

Summary 543
Further reading 544

19
Advanced Techniques for Scheduling Pods

Technical requirements 546
Refresher – What is
kube-scheduler? 547

Managing Node affinity 549
Pod Node name 549
Pod Node selector 554

Table of Contents xvii

Node affinity configuration for Pods 558

Using Node taints
and tolerations 564

Scheduling policies 572
Summary 573
Further reading 574

20
Autoscaling Kubernetes Pods and Nodes

Technical requirements 576
Pod resource requests
and limits 577
Autoscaling Pods vertically
using a Vertical Pod Autoscaler 582
Enabling a VPA in GKE 583
Enabling a VPA for other
Kubernetes clusters 584
Using a VPA 585

Autoscaling Pods horizontally
using a Horizontal Pod
Autoscaler 590

Using an HPA 592

Autoscaling Kubernetes Nodes
using a Cluster Autoscaler 599
Enabling the cluster autoscaler in GKE 600
Enabling the cluster autoscaler in the
Amazon Elastic Kubernetes Service 601
Enabling the cluster autoscaler in the
Azure Kubernetes Service 601
Using the cluster autoscaler 602

Summary 609
Further reading 610

21
Advanced Traffic Routing with Ingress

Technical requirements 612
Refresher: Kubernetes services 612
The ClusterIP Service 613
NodePort service 615
The LoadBalancer service 616

Introducing the Ingress object 618

Using nginx as an
Ingress Controller 621
Azure Application Gateway
Ingress Controller for AKS 624
Summary 629
Further reading 629

Index
Other Books You May Enjoy

Preface
Containers have allowed a real leap forward since their massive adoption in the world of
virtualization because they have allowed greater flexibility, especially these days, when
buzzwords such as cloud, agile, and DevOps are on everyone's lips.

Today, almost no one questions the use of containers and they're basically everywhere,
especially since the success of Docker.

Containers have brought tremendous flexibility to organizations, but they have remained
questionable for a very long time when organizations went to face the challenge of
deploying them in production. For years, companies were using containers for proof-
of-concept projects, local development, and suchlike, but the use of containers for real
production workloads was inconceivable for many organizations.

Container orchestrators were the game-changer, with Kubernetes in the lead.

Originally built by Google, Kubernetes is today the leading container orchestrator that is
providing you with all the features you need in order to deploy containers in production
at scale. Kubernetes is popular, but it is also complex. This tool is so versatile that getting
started with it and progressing to advanced usages is not an easy task: it is not an easy tool
to learn and operate.

As an orchestrator, Kubernetes has its own concepts independent of those of a container
engine, such as Docker. But when both are used together, you get a very strong platform
ready to deploy your cloud-native applications in production. As engineers working with
Kubernetes daily, we were convinced, like many, that it was a technology to master and we
decided to share our knowledge in order to make Kubernetes accessible by covering most
of this orchestrator.

This book is entirely dedicated to Kubernetes and is the result of our work: it provides
a broad view of Kubernetes and covers a lot of aspects of the orchestrators, from pure
container Pod creation to deploying the orchestrator on the public cloud. We didn't want
this book to be a Getting started guide.

We hope this book will teach you everything you want to learn about Kubernetes!

xx Preface

Who this book is for
This book is for people who intend to use Kubernetes with Docker. Although Kubernetes
can be used together with a lot of different container engines and is not tied to Docker, the
combination between the two remains the most frequent use case of Kubernetes.

This book is very technical. It mainly focuses on Kubernetes and Docker from an
engineering perspective, and thus, it is dedicated to engineers, whether they come from a
developer or a system background, and not to project managers. It is a Kubernetes bible
for people who are going to use Kubernetes daily, or for people who wish to discover this
tool. You shouldn't be afraid of typing some commands on a terminal.

Being a total beginner to Kubernetes or having an intermediate level is not a problem, but
you must already have some technical ability with Docker to follow this book. Containers
should be familiar to you. This book can also serve as a guide if you are in the process of
migrating an existing application to Kubernetes.

The book incorporates content that will allow readers to deploy Kubernetes on public
cloud offerings such as Amazon EKS or Google GKE. Cloud users who wish to add
Kubernetes to their stack on the cloud will appreciate this book.

What this book covers
Chapter 1, Kubernetes Fundamentals, is an introduction to Kubernetes. We're going to
explain what Kubernetes is, why it was created, who created it, who is making this project
alive, and when and why you should use it as part of your stack.

Chapter 2, Kubernetes Architecture – from Docker Images to Running Pods, covers how
Kubernetes is built as a distributed software, and is technically not a single monolith
binary but built as a set of microservices interacting with each other. We're going to
explain this architecture and how Kubernetes proceeds to translate your instructions into
running Docker containers.

Chapter 3, Installing Your First Kubernetes Cluster, explains that Kubernetes is really
difficult to install due to its distributed nature, so to make the process easier, it is possible
to install by using one of its distributions. Kind and Minikube are two options we're going
to discover in this chapter to have a Kubernetes cluster working on your machine.

Chapter 4, Running Your Docker Containers, is an introduction to the concept of Pods.

Chapter 5, Using Multi-Container Pods and Design Patterns, introduces multi-container
Pods and the design patterns, such as a proxy or sidecar that you can build when running
several containers as part of the same Pod.

Preface xxi

Chapter 6, Configuring Your Pods Using ConfigMaps and Secrets, explains how, in
Kubernetes, we separate Kubernetes applications from their configurations. Both
applications and configurations have their own life cycle thanks to the ConfigMap and
Secret resources. This chapter will be dedicated to these two objects and how to mount
data in ConfigMap and Secret as environment variables or volumes mounted on your Pod.

Chapter 7, Exposing Your Pods with Services, teaches you the notion of services in
Kubernetes. Each Pod in Kubernetes gets assigned its own IP address dynamically.
Services are extremely useful if you want to provide a consistent one to expose Pods
within your cluster to other Pods or to the outside world, with a single static DNS name.
You'll learn here that there are three main service types, called ClusterIp, NodePort, and
LoadBalancer, which are all dedicated to a single use case in terms of Pod exposition.

Chapter 8, Managing Namespaces in Kubernetes, explains how using namespaces is a key
aspect of cluster management and forcibly, you'll have to deal with namespaces during
your journey with Kubernetes. Though it's a simple notion, it is a key one, and you'll have
to master namespaces perfectly in order to be successful with Kubernetes.

Chapter 9, Persistent Storage in Kubernetes, covers how, by default, Pods are not persistent.
As they're just managing raw Docker containers in the end, destroying them will result in
the loss of your data. The solution to that is the usage of persistent storage thanks to the
PersistentVolume and PersistentVolumeClaim resource kinds. This chapter is dedicated
to these two objects and the StorageClass object: it will teach you that Kubernetes is
extremely versatile in terms of storage and that your Pods can be interfaced with a lot of
different storage technologies.

Chapter 10, Running Production-Grade Kubernetes Workloads, takes a deep dive into high
availability and fault tolerance in Kubernetes using ReplicationController and ReplicaSet.

Chapter 11, Deployment – Deploying Stateless Applications, is a continuation of the
previous chapter and explains how to manage multiple versions of ReplicaSets using the
Deployment object. This is the basic building block for stateless applications running on
Kubernetes.

Chapter 12, StatefulSet – Deploying Stateful Applications, takes a look at the next important
Kubernetes object: StatefulSet. This object is the backbone of running stateful applications
on Kubernetes. We explain the most important differences between running stateless and
stateful applications using Kubernetes.

Chapter 13, DaemonSet – Maintaining Pod Singletons on Nodes, covers DaemonSet, which
is a special Kubernetes object that can be used for running operational or supporting
workloads on Kubernetes clusters. Whenever you need to run precisely one container Pod
on a single Kubernetes node, DaemonSet is what you need.

xxii Preface

Chapter 14, Kubernetes Clusters on Google Kubernetes Engine, looks at how we can move
our Kubernetes workload to Google Cloud using both the native command-line client and
the Google Cloud console.

Chapter 15, Launching a Kubernetes Cluster on Amazon Web Services with Amazon Elastic
Kubernetes Service, looks at moving the workload we launched in the previous chapter to
Amazon's Kubernetes offering.

Chapter 16, Kubernetes Clusters on Microsoft Azure with Azure Kubernetes Service, looks at
launching a cluster in Microsoft Azure.

Chapter 17, Working with Helm Charts, covers Helm Charts, which is a dedicated
packaging and redistribution tool for Kubernetes applications. Armed with knowledge
from this chapter, you will be able to quickly set up your Kubernetes development
environment or even plan for the redistribution of your Kubernetes application as a
dedicated Helm Chart.

Chapter 18, Authentication and Authorization on Kubernetes, covers authorization
using built-in role-based access control and authorization schemes together with user
management.

Chapter 19, Advanced Techniques for Scheduling Pods, takes a deeper look at Node affinity,
Node taints and tolerations, and advanced scheduling policies in general.

Chapter 20, Autoscaling Kubernetes Pods and Nodes, introduces the principles behind
autoscaling in Kubernetes and explains how to use Vertical Pod Autoscaler, Horizontal
Pod Autoscaler, and Cluster Autoscaler.

Chapter 21, Advanced Traffic Routing with Ingress, covers Ingress objects and
IngressController in Kubernetes. We explain how to use nginx as an implementation
of IngressController and how you can use Azure Application Gateway as a native
IngressController in Azure environments.

To get the most out of this book
It is necessary to have some prior knowledge to get the most out of this book. Indeed,
this book is dedicated to Kubernetes, and although this orchestrator can be used with
many container engines, this book will be about using Kubernetes in combination with
Docker. It is therefore necessary to know Docker as much as possible. You don't have to
be an expert, but you should be able to launch and manage applications on Docker before
reading this book.

Preface xxiii

While it is possible to run Windows containers with Kubernetes, most of the topics
covered in this book will be Linux-based. Having a good knowledge of Linux will be
helpful, but not required. Again, you don't have to be an expert: knowing how to use a
terminal session and basic Bash scripting should be enough.

Lastly, having some general knowledge of software architecture such as REST APIs will be
beneficial.

We strongly advise you to not attempt to install Kubernetes or Kubectl on your machine
for now. Kubernetes is not a single binary but is a distributed software composed of
several components and as such, it is really complex to install a complete Kubernetes
cluster from scratch. Instead, we recommend that you follow the third chapter of this
book, which is dedicated to the setup of Kubernetes.

If you are using the digital version of this book, we advise you to type the code yourself
or access the code via the GitHub repository (link available in the next section). Doing
so will help you avoid any potential errors related to the copying and pasting of code.

Please note that Kubernetes and Kubectl are the two tools we're going to use most
frequently in this book, but there is a huge ecosystem around Kubernetes and we might
install additional software not mentioned in this section. This book is also about using
Kubernetes in the cloud, and we're going to discover how to provision Kubernetes clusters
on public cloud platforms such as Amazon Web Services and Google Cloud Platform.
As part of this setup, we might install additional software dedicated to these platforms
that are not strictly bound to Kubernetes, but also to other services provided by these
platforms.

Download the example code files
You can download the example code files for this book from GitHub at https://
github.com/PacktPublishing/The-Kubernetes-Bible. In case there's an
update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

https://github.com/PacktPublishing/The-Kubernetes-Bible
https://github.com/PacktPublishing/The-Kubernetes-Bible
https://github.com/PacktPublishing/

xxiv Preface

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781838827694_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in the text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "Now, we need to create a kubeconfig file for our local Kubectl
CLI."

A block of code is set as follows:

apiVersion: v1

kind: Pod

metadata:

 name: nginx-Pod

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

apiVersion: v1

kind: ReplicationController

metadata:

 name: nginx-replicationcontroller-example

Any command-line input or output is written as follows:

$ kubectl get nodes

Bold: Indicates a new term, an important word, or words that you see on screen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"On this screen, you should see an Enable Billing button."

Tips or Important Notes
Appear like this.

https://static.packt-cdn.com/downloads/9781838827694_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838827694_ColorImages.pdf

Preface xxv

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your
book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit authors.
packtpub.com.

Share Your Thoughts
Once you've read The Kubernetes Bible, we'd love to hear your thoughts! Please click
here to go straight to the Amazon review page for this book and share
your feedback.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

http://www.packtpub.com/support/errata
http://authors.packtpub.com
http://authors.packtpub.com
https://packt.link/r/1838827692
https://packt.link/r/1838827692

Section 1:
Introducing
Kubernetes

Kubernetes is a fantastic container orchestrator tool that can manage Docker containers at
a large scale. Let's discover what Kubernetes is exactly, how it started as an internal project
at Google to become a leading solution, and how it can help you today to manage Docker
containers in production.

This part of the book comprises the following chapters:

• Chapter 1, Kubernetes Fundamentals

• Chapter 2, Kubernetes Architecture – From Docker Images to Running Pods

• Chapter 3, Installing Your First Kubernetes Cluster

1
Kubernetes

Fundamentals
Welcome to The Kubernetes Bible. This is the first chapter of this book, and I'm happy
to accompany you on your journey with Kubernetes. If you are working in the software
development industry, you have probably heard about Kubernetes. This is normal because
the popularity of Kubernetes has grown a lot in recent years.

Built by Google, Kubernetes is the leading container orchestrator solution in terms of
popularity and adoption: it's the tool you need if you are looking for a solution to manage
containerized applications in production at scale, whether it's on-premises or on a public
cloud. Be focused on the word. Deploying and managing containers at scale is extremely
difficult because, by default, container engines such as Docker do not provide any way on
their own to maintain the availability and scalability of containers at scale.

Kubernetes first emerged as a Google project, and they put a lot of effort into building
a solution to deploy a huge number of containers on their massively distributed
infrastructure. By adopting Kubernetes as part of your stack, you'll get an open source
platform that was built by one of the biggest companies on the internet, with the most
critical needs in terms of stability.

Although Kubernetes can be used with a lot of different container runtimes, this book is
going to focus on the Kubernetes + Docker combination.

4 Kubernetes Fundamentals

Perhaps you are already using Docker on a daily basis, but the world of container
orchestration might be completely unknown to you. It is even possible that you do not
even see the benefits of using such technology because everything looks fine to you with
just raw Docker. That's why, in this first chapter, we're not going to look at Kubernetes in
detail. Instead, we will focus on explaining what Kubernetes is and how it can help you
to manage your Docker containers in production. It will be easier for you to learn a new
technology if you already understand why it was built.

In this chapter, we're going to cover the following main topics:

• Understanding monoliths and microservices

• Understanding containers and Docker

• What is Kubernetes?

• How can Kubernetes help you to manage Docker containers?

• What problem does Kubernetes solve?

• Understanding the story of Kubernetes

Understanding monoliths and microservices
Let's put Kubernetes and Docker to one side for the moment, and instead, let's talk a
little bit about how internet and software development evolved together over the past 20
years. This will help you to gain a better understanding of where Kubernetes sits and what
problem it solves.

Understanding the growth of the internet since the
late 1990s
Since the late 1990s, the popularity of the internet has grown rapidly. Back in the 1990s,
and even in the early 2000s, the internet was only used by a few hundred thousand people
in the world. Today, almost 2 billion people are using the internet, whether for email, web
browsing, video games, or more.

There are now a lot of people on the internet, and we're using it to answer tons of different
needs, and these needs are adressed by dozens of applications deployed on dozens of
devices.

Additionally, the number of connected devices has increased, as each person can now
have several devices of a different nature connected to the internet: laptops, computers,
smartphones, TVs, tablets, and more.

Understanding monoliths and microservices 5

Today, we can use the internet to shop, to work, to entertain, to read, or to do whatever. It
has entered almost every part of our society and has led to a profound paradigm shift for
the last 20 years. All of this has given the utmost importance to software development.

Understanding the need for more frequent software
releases
To cope with this ever-increasing number of users who are always demanding more in
terms of features, the software development industry had to evolve in order to make new
software releases faster and more frequent.

Indeed, back in the 1990s, you could build an application, deploy it to production, and
simply update it once or twice a year. Today, companies must be able to update their
software in production, sometimes several times a day, whether to deploy a new feature, to
integrate with a social media platform, to support the resolution of the latest fashionable
smartphone, or even to release a patch to a security breach identified the day before.
Everything is far more complex today, and you must go faster than before.

We constantly need to update our software, and in the end, the survival of many
companies directly depends on how often they are able to offer releases to their users. But
how do we accelerate software developments life cycles so that we can deliver new versions
of our software to our users more frequently?

IT departments of companies had to evolve, both in an organizational sense and a
technical sense. Organizationally, they changed the way they managed projects and
teams in order to shift to agile methodologies, and technically, technologies such as cloud
computing platforms, containers, virtualization were adopted widely and helped a lot
to align technical agility with organizational agility. All of this to ensure more frequent
software releases! So, let's focus on this evolution next.

Understanding the organizational shift to agile
methodologies
From a purely organizational point of view, agile methodologies such as Scrum, Kanban,
and DevOps became the standard way to organize IT teams.

Typical IT departments that do not apply agile methodologies are often made of three
different teams, each of them having a single responsibility toward the development and
release process life cycle.

6 Kubernetes Fundamentals

Before the adoption of agile methodologies, there was very strong opposition between
them:

• The business team: These teams are in charge of explaining the need for a new
feature to other teams, especially the developers. Their job is hard because they need
to translate business needs into concrete technical features that can be understood
by the developers.

• The development team: These teams are in charge of writing the code. First, they
take the specs from the business team, and then they implement the software and
features. If they do not understand the need, the development of new features can
go back and forth between them and the business team, which can lead to a massive
loss of time. Even worse, back in the old days, these guys had no clear vision of the
type of environment their code would ultimately run on because it was kept at the
sole discretion of the operation team.

• The operation team: These teams are in charge of deploying the software to the
production servers and operating it. Often, they are not happy when they hear that a
new version of a piece of software, which includes new features, has to be deployed
because the management judges them on their ability to provide stability to the app.
In general, they are here to deploy something that was developed by another team
without having a clear vision of what it contains and how it is configured since they
did not participate in its development.

These are what we call silos. The roles are clearly defined, people do not work together
that much, and when something goes wrong, everyone loses time in an attempt to find the
right information from the proper person.

This kind of siloed organization has led to major issues:

• A significantly longer development time

• Greater risk in the deployment of a release that might not work at all in production

And that's essentially what agile methodologies and DevOps broke. The change agile
methodologies wrought was to make people work together by creating multidisciplinary
teams.

An agile team consists of a product owner describing concrete features by writing them
as user stories that are readable by the developers who are working in the same team
as them. Developers should have visibility over the production environment and the
ability to deploy on top of it, preferably using a continuous integration and continuous
deployment (CI/CD) approach. Testers should also be part of agile teams in order to
write tests.

Understanding monoliths and microservices 7

Simply put, by adopting agile methodologies and DevOps, these silos were broken
and multidisciplinary teams capable of formalizing a need, implementing it, testing it,
releasing it, and maintaining it in the production environment were created.

Important Note
Rest assured, even though we are currently discussing agile methodologies
and the whole internet in a lot of detail, this book is really about Kubernetes!
We just need to explain some of the problems that we have faced before
introducing Kubernetes for real!

Agile development teams are complete operational units that are capable of handling all
development steps on their own. An agile team should understand the business value
brought by a new feature. They should have a minimal view of the software architecture,
understand how to build it, how to test it, and the production environment it will run on.

That's the purpose of the expression You Build It, You Run It that you'll see everywhere
when reading about this subject: an agile team should be able to cover all aspects of an
app's development, release, and maintenance life cycles.

You just have to bear in mind that before this, teams were siloed and each had its own
scope and working process. So, we've covered the organizational transition brought by the
adoption of the agile methodologies, now let's discuss the technical evolution that we've
gone through over the past several years.

Understanding the shift from on-premises to the cloud
Having agile teams is very nice. But agility must also be applied to how the software is
built and hosted.

With the aim to always achieve faster and more recurrent releases, agile software
development teams had to revise two important aspects of software development and
release:

• Hosting

• Software architecture

Today, apps are not just for a few hundred users but potentially for millions of users
concurrently. Having more users on the internet also means having more computing
power capable of handling them. And indeed, hosting an application became a very big
challenge.

8 Kubernetes Fundamentals

Back in the old days, there were two ways to get machines to host your apps. We call this
on-premises hosting:

• Renting servers from established hosting providers

• Building your own data center, only for companies willing to invest a large amount
of money in data centers

When your user base grows, the need to get more powerful machines to handle the load.
The solution is to purchase a more powerful server and install your app on it from the
start or to order and rack new hardware if you manage your data center. This is not very
flexible. Today, a lot of companies are still using an on-premises solution, and often, it's
not super flexible.

The game-changer was the adoption of the public cloud, which is the opposite of
on-premises. The whole idea behind cloud computing is that big companies such
as Amazon, Google, and Microsoft, which own a lot of data centers, decided to
build virtualization on top of their massive infrastructure to ensure the creation and
management of virtual machines was accessible by APIs. In other words, you can get
virtual machines with just a few clicks or just a few commands.

Understanding why the cloud is well suited for
scalability
Today, virtually anyone can get hundreds or thousands of servers, in just a few clicks, in
the form of virtual machines or instances created on physical infrastructure maintained by
cloud providers such as Amazon Web Services, Google Cloud Platform, and Microsoft
Azure. A lot of companies decided to migrate their workload from on-premises to a cloud
provider, and their adoption has been massive over these last years.

Thanks to that, now, computing power is one of the simplest things you can get.

Cloud computing providers are now typical hosting solutions that agile teams possess in
their arsenal. The main reason for this is that the cloud is extremely well suited to modern
development.

Virtual machine configurations, CPUs, OSes, network rules, and more are publicly
displayed and fully configurable, so there are no secrets for your team in terms of what
the production environment is made of. Because of the programmable nature of cloud
providers, it is very easy to replicate a production environment in a development or
testing environment, providing more flexibility to teams and helping them face their
challenges when developing software.

Understanding monoliths and microservices 9

That's a useful advantage for an agile development team built around the DevOps
philosophy that needs to manage development, release, and application maintenance in
production.

Cloud providers have brought many benefits, as follows:

• Offering elasticity and scalability

• Helping to break up silos and enforcing agile methodologies

• Fitting well with agile methodologies and DevOps

• Offering low costs and flexible billing models

• Ensuring there is no need to manage physical servers

• Allowing virtual machines to be destroyed and recreated at will

• More flexible compared to renting a bare-metal machine monthly

Due to these benefits, the cloud is a wonderful asset in the arsenal of an agile development
team. Essentially, you can build and replicate a production environment over and over
without the hassle of managing the physical machine by yourself. The cloud enables you to
scale your app based on the number of users using it or the computing resources they are
consuming. You'll make your app highly available and fault-tolerant. The result is a better
user experience for your end users.

Important Note
Please note that Kubernetes can run both on the cloud and on-premises.
Kubernetes is very versatile, and you can even run it on a Raspberry Pi.
However, you'll discover that it's better to run it on a cloud due to the benefits
they provide. Kubernetes and the public cloud are a good match, but you are
not required or forced to run it on the cloud.

Now that we have explained what the cloud brought, let's move on to software
architecture, as over the years, a few things have also changed there.

Essentially, software architecture consists of design paradigms that you can choose when
developing software. In the 2020s, we can name two architectures:

• Monolithic architecture

• Microservices architecture

10 Kubernetes Fundamentals

Exploring the monolithic architecture
In the past, applications were mostly composed as monoliths. A typical monolith
application consists of a simple process, a single binary, or a single package.

This unique component is responsible for the entire implementation of the business logic,
to which the software must respond. Monoliths are a good choice if you want to develop
fairly simple applications that might not necessarily be updated frequently in production.
Why? Well, because monoliths have one major drawback. If your monolith becomes
unstable or crashes for some reason, your entire application will become unavailable:

Figure 1.1 – A monolith application consists of one big component that contains all your software

The monolithic architecture can allow you to gain a lot of time during your development
and that's perhaps the only benefit you'll find by choosing this architecture. However, it
also has many disadvantages. Here are a few of them:

• A failed deployment to production can break your whole application.

• Scaling activities become difficult to achieve; if you fail to scale, all your applications
might become unavailable.

• A failure of any kind on a monolith can lead to the complete outage of your app.

In the 2010s, these drawbacks started to cause real problems. With the increase in the
frequency of deployments, it became necessary to think of a new architecture that would
be capable of supporting frequent deployments and closer update cycles, while reducing
the risk or general unavailability of the application. This is why the microservices
architecture was designed.

Exploring the microservices architecture
The microservices architecture consists of developing your software application as a
suite of independent micro-applications. Each of these applications, which is called
a microservice, has its own versioning, life cycle, environment, and dependencies.
Additionally, it can have its own deployment life cycle. Each of your microservices must
only be responsible for a limited number of business rules, and all of your microservices,
when used together, make up the application. Think of a microservice as real full-featured
software on its own, with its own life cycle and versioning process.

Understanding monoliths and microservices 11

Since microservices are only supposed to hold a subset of all the features that the entire
application has, they have to be accessible to expose their functions. You have to get data
from a microservice, but you might also want to push data into it. You can make your
microservice accessible through widely supported protocols such as HTTP or AMQP, and
they need to be able to communicate with each other if needed.

That's why microservices are generally built as web services that are accessible through
HTTP REST APIs. This is something that greatly differs from the monolithic architecture:

Figure 1.2 – A microservice architecture where different microservices communicate with the HTTP
protocol

Another key aspect of the microservice architecture is that microservices need to be
decoupled: if a microservice becomes unavailable or unstable, it must not affect the other
microservices nor the entire application's stability. You must be able to provision, scale,
start, update, or stop each microservice independently without affecting anything else.
If your microservices need to work with a database engine, bear in mind that even the
database must be decoupled. Each microservice should have its own SQL database and so
on. So, if the database of microservice A crashes, it won't affect microservice B:

Figure 1.3 – A microservice architecture where different microservices communicate with the HTTP
protocol and also with a dedicated SQL server; this way, the microservices are isolated and have no

common dependencies

12 Kubernetes Fundamentals

The key rule is to decouple as much as possible so that your microservices are fully
independent. Because they are meant to be independent, microservices can also have
completely different technical environments and be implemented in different languages.
You can have one microservice implemented in Go, another one in Java, and another
one in PHP, and all together they form one application. In the context of a microservice
architecture, this is not a problem. Because HTTP is a standard, they will be able to
communicate with each other even if their underlying technologies are different.

Microservices must be decoupled from other microservices, but they must also be
decoupled from the operating system running them. Microservices should not operate
at the host system level but at the upper level. You should be able to provision them, at
will, on different machines without needing to rely on a strong dependency with the host
system; that's why microservice architectures and containers are a good combination.

If you need to release a new feature in production, you simply deploy the microservices
that are impacted by the new feature version. The others can remain the same.

As you can imagine, the microservice architecture has tremendous advantages in the
context of modern application development:

• It is easier to enforce recurring production deliveries with minimal impact on the
stability of the whole application.

• You can only upgrade to a specific microservice each time, not the whole
application.

• Scaling activities are smoother since you might only need to scale specific services.

However, on the other hand, the microservice architecture has a few disadvantages, too:

• The architecture requires more planning and is considered to be hard to develop.

• There are problems in managing each microservice's dependencies.

Indeed, microservice applications are considered hard to develop, and it is easy to just
do it incorrectly. This approach might be hard to understand, especially for junior
developers. On the other hand, dependency management also becomes complex since all
microservices can potentially have different dependencies.

Choosing between monolithic and microservices
architectures
Presented in this way, you might think that microservices are the better of the two
architectures. However, this is not always the case.

Understanding containers and Docker 13

Although the monolithic architecture is older than microservice architecture, monolithic
applications are not dead yet, and they can still be a good choice in certain situations.
Microservices are not necessarily the ideal answer to all projects. If your application is
simple, if there are only a few developers on your team working on your project, or if you
can tolerate outages when you deploy a new version in production, then you can still opt
for an application architecture that is a monolith.

On the other hand, if your application is more complex, if there are many developers
with different skills on your team, or if you have a high level of requirements in terms of
operational quality in production, scalability, and availability, then you should opt for a
microservice architecture.

The problem is that microservices are slightly more complex to develop and manage
in production since managing microservices essentially consists of managing multiple
applications that each have their own dependencies and life cycles. Thankfully, the rise of
Docker has enabled a lot of developers to adopt the microservice architecture.

Understanding containers and Docker
Following this comparison between monolithic and microservice architectures, you
should have understood that the architecture that best combines with agility and DevOps
is the microservice architecture. It is this architecture that we will discuss throughout the
book because this is the architecture that Kubernetes manages well.

Now, we will move on to discuss how Docker, which is a container engine for Linux, is a
good option in which to manage microservices. If you already know a lot about Docker,
you can skip this section. Otherwise, I suggest that you read through it carefully.

Understanding why Docker is good for microservices
Recall the two important aspects of the microservice architecture:

• Each microservice can have its own technical environment and dependency.

• At the same time, it must be decoupled from the operating system it's running on.

Let's put the latter point aside for the moment and discuss the first one: two microservices
of the same app can be developed in two different languages or be written in the same
language but as two different versions. Now, let's say that you want to deploy these two
microservices inside the same Linux machine. That would be a nightmare.

14 Kubernetes Fundamentals

The reason for this is that you'll have to install all the multiple versions of the different
runtimes, as well as the dependencies, and there might also be different versions or
overlaps between the two microservices. Additionally, all of this will be on the same host
operating system. Now, let's imagine you want to remove one of these two microservices
from the machine to deploy it on another server and clean the former machine of all the
dependencies used by that microservice. Of course, if you are a talented Linux engineer,
you'll succeed in doing this. However, for most people, the risk of conflict between the
dependencies is huge, and in the end, you might just make your app unavailable while
running such a nightmarish infrastructure.

There is a solution to this: you could build a machine image for each microservice and
then put each microservice on a dedicated virtual machine. In other words, you refrain
from deploying multiple microservices on the same machine. However, in this example,
you will need as many machines as you have microservices. Of course, with the help of
AWS or GCP, it's going to be easy to bootstrap tons of servers, each of them tasked to run
one and only one microservice, but it would be a huge waste of money to not mutualize
the computing power offered by the host.

That's why the second requirement exists: microservices should be decoupled from the
microservice they are running on. To achieve this, we use Docker containers.

Understanding the benefit of Docker container
isolation
Docker allows you to manage containers that are, in fact, isolated Linux namespaces.
Docker's job is to expose a user-friendly API to manage containers, which are like small
virtual machines that run on top of the Linux kernel, not at the hypervisor level. By
installing Docker on top of your Linux system, you, therefore, add an additional layer of
virtualization on top of your host machine. Your microservices are going to be launched
on top of this layer, not directly on the host system, whose sole role will be to run Docker.

Since containers are isolated, you can run as many containers as you want and have
them run applications written in different languages without any conflict. Microservice
relocation becomes as easy as stopping a running container and launching another one
from the same image on another machine.

The usage of Docker with microservices offers three main benefits:

• It reduces the footprint on the host system.

• It mutualizes the host system without the conflict between different microservices.

• It removes coupling between the microservice and the host system.

Understanding containers and Docker 15

Once a microservice has been containerized, you can eliminate its coupling with the host
operating system. The microservice will only depend on the container in which it will
operate. Since a container is much lighter than a real full-featured Linux operating system,
it will be easy to share and deploy on many different machines. Therefore, the container
and your microservice will work on any machine that is running Docker.

The following diagram shows a microservice architecture where each microservice is
actually wrapped by a Docker container:

Figure 1.4 – A microservice application where all microservices are wrapped by a Docker container;
the life cycle of the app becomes tied to the container, and it is easy to deploy it on any machine that is

running Docker

Docker fits well with the DevOps methodology, too. By developing locally in a Docker
container, which would be later be built and deployed in production, you ensure you
develop in the same environment as the one that will eventually run the application.

Docker is not only capable of managing the life cycle of a container, it is actually an entire
ecosystem around containers. It can manage networks, the intercommunication between
different containers, and all of these features respond particularly well to the properties of
the microservice architecture that we mentioned earlier.

By using the cloud and Docker together, you can build a very strong infrastructure to host
your microservice. The cloud will give you as many machines as you want. You simply
need to install Docker on each of them, and you'll be able to deploy multiple containerized
microservices on each of these machines.

16 Kubernetes Fundamentals

Docker is a very nice tool on its own. However, you'll discover that it's hard to run
it in production alone, just as it is. The reason is that Docker was built in order to be
an ecosystem around Linux containers, not a production platform. When it comes
to production, everything is particular, because it is the concrete environment where
everything happens for real. This environment deserves special treatment, and deploying
Docker on it is risky. This is because Docker cannot alone address the particular needs
that are related to production.

There are a number of questions, such as how to relaunch a container that failed
automatically and how to autoscale my container based on its CPU utilization, that Docker
alone cannot answer. This is the reason why some people were afraid to run Docker-based
workloads in production a few years ago.

To answer these questions, we will need a container orchestrator, such as the one
discussed in this book: Kubernetes.

How can Kubernetes help you to manage your
Docker containers?
Now, we will focus a little bit more on Kubernetes, which is the purpose of this book.
Here, we're going to discover that Kubernetes was meant to use container runtimes in
production, by answering operational needs mandatory for production.

Understanding that Kubernetes is meant to use
Docker in production
If you open the official Kubernetes website (at https://kubernetes.io), the title you
will see is Production-Grade Container Orchestration:

Figure 1.5 – The Kubernetes home page showing the header and introducing Kubernetes as a production
container orchestration platform

https://kubernetes.io

How can Kubernetes help you to manage your Docker containers? 17

These four words perfectly sum up what Kubernetes is: it is a container orchestration
platform for production. Kubernetes does not aim to replace Docker nor any of the
features of Docker; rather, it aims to help us to manage clusters of machines running
Docker. When working with Kubernetes, you use both Kubernetes and the full-featured
standard installations of Docker.

The title refers to production. Indeed, the concept of production is absolutely central to
Kubernetes: it was thought and designed to answer modern production needs. Managing
production workloads is different today compared to what it was in the 2000s. Back in the
2000s, your production workload would consist of just a few bare metal servers, if not a
single one on-premises. These servers mostly ran monoliths directly installed on the host
Linux system. However, today, thanks to public cloud platforms such as Amazon Web
Services (AWS) or Google Cloud Platform (GCP), anyone can now get hundreds or even
thousands of machines in the form of instances or virtual machines with just a few clicks.
Even better, we no longer deploy our applications on the host system but as containerized
microservices on top of the Docker engine instead, thereby reducing the footprint of the
host system.

A problem will arise when you have to manage Docker installations on each of these
virtual machines on the cloud. Let's imagine that you have 10 (or 100 or 1,000) machines
launched on your preferred cloud and you want to achieve a very simple task: deploy a
containerized Docker app on each of these machines.

You could do this by running the docker run command on each of your machines. It
would work, but of course, there is a better way to do it. And that's by using a container
orchestrator such as Kubernetes. To give you an extremely simplified vision of
Kubernetes, it is actually a REST API that keeps a registry of your machines executing a
Docker daemon.

Again, this is an extremely simplified definition of Kubernetes. In fact, it's not made of a
single centralized REST API, because as you might have gathered, Kubernetes itself was
built as a suite of microservices.

18 Kubernetes Fundamentals

Exploring the problems that Kubernetes
solves
You can imagine that launching containers on your local machine or a development
environment is not going to require the same level of planning as launching these same
containers on remote machines, which could face millions of users. Problems specific
to production will arise, and Kubernetes is a top solution with which to address these
problems when using containers in production:

• Ensuring high availability

• Handling release management and container deployments

• Autoscaling containers

Ensuring high availability
High availability is the central principle of production. This means that your application
should always remain accessible and should never be down. Of course, it's utopian. Even
the biggest companies such as Google or Amazon are experiencing outages. However, you
should always bear in mind that this is your goal. Microservice architecture is a way to
mitigate the risk of a total outage in the event of a failure. Using microservices, the failure
of a single microservice will not affect the overall stability of the application. Kubernetes
includes a whole battery of functionality to make your Docker containers highly available
by replicating them on several host machines and monitoring their health on a regular
and frequent basis.

When you deploy Docker containers, the accessibility of your application will directly
depend on the health of your containers. Let's imagine that for some reason, a container
containing one of your microservice becomes inaccessible; how can you automatically
guarantee that the container is terminated and recreated using only Docker without
Kubernetes? This is impossible because, by default, Docker cannot do it alone. With
Kubernetes, it becomes possible. Kubernetes will help you design applications that can
automatically repair themselves by performing automating tasks such as health checking
and container replacement.

If one machine in your cluster were to fail, all of the containers running on it would
disappear. Kubernetes would immediately notice that and reschedule all of the containers
on another machine. In this way, your applications will become highly available and fault-
tolerant as well.

Exploring the problems that Kubernetes solves 19

Release management and container deployment
Deployment management is another of these production-specific problems that
Kubernetes answers. The process of deployment consists of updating your application in
production in order to replace an old version of a given microservice with a new version.

Deployments in production are always complex because you have to update the containers
that are responding to requests from end users. If you miss them, the consequences can be
great for your application because it could become unstable or inaccessible, which is why
you should always be able to quickly revert to the previous version of your application by
running a rollback. The challenge of deployment is that it needs to be performed in the
least visible way to the end user, with as little friction as possible.

When using Docker, each release is preceded by a build process. Indeed, before releasing
a new container, you have to build a new Docker image containing the new version. A
Docker image is a kind of template used by Docker to launch containers. A container can
be considered a running instance of a Docker image.

Important Note
The Docker build process has absolutely nothing to do with Kubernetes: it's
pure Docker. Kubernetes will come into play later when you'll have to deploy
new containers based on a newly built image.

Triggering a build is straightforward. Perform the following steps:

1. You just need to run the docker build command:

$ docker build .

2. Docker reads build instructions from the Dockerfile file inside the . directory
and starts the build process.

3. The build completes.
4. The resulting image is stored on the local machine where the build ran.
5. Then, you push the new image to a Docker repository with a specific tag to identify

the software version included in the new image.

Once the push has been completed, another process starts, that is, the deployment. To
deploy a containerized Docker app, you simply need to pull the image from the machine
where you want to run it and then run a docker run command.

20 Kubernetes Fundamentals

This is what you'll need to do to release a new version of your containerized software,
and this is exactly where things can become hard if you don't use an orchestrator such as
Kubernetes.

The next step to achieve the release is to delete the existing container and replace it with
new containers created from this new image.

Without Kubernetes, you'll have to run a docker run command on the machine where
you want to deploy a new version of the container and destroy the container containing
the old version of the application. Then, you will have to repeat this operation on each
server that runs a copy of the container. It should work, but it is extremely tedious since it
is not automated. And guess what? Kubernetes can automate this for you.

Kubernetes has features that allow it to manage deployments and rollbacks of Docker
containers, and this will make your life a lot easier when responding to this problem.
With a single command, you can ask Kubernetes to update your containers on all of your
machines. Here is the command, which we'll learn later, that allows you to do that:

$ kubectl set image deploy/myapp myapp_container=myapp:1.0.0

Meaning of the command

kubectl set image <deployment_name> <container_name>=<docker_
image>:<docker_tag>

On a real Kubernetes cluster, this command will update the container called myapp_
container, which is running as part of the application called myapp, on every single
machine where myapp_container runs to the 1.0.0 tag.

Whether it has to update one container running on one machine or millions over multiple
data centers, this command works the same. Even better, it ensures high availability.

Remember that the goal is always to meet the requirement of high availability; a
deployment should not cause your application to crash or cause a service disruption.
Kubernetes is natively capable of managing deployment strategies such as rolling updates
aimed at avoiding service interruptions.

Additionally, Kubernetes keeps in memory all the revisions of a specific deployment
and allows you to revert to a previous version with just one command. It's an incredibly
powerful tool that allows you to update a cluster of Docker containers with just one
command.

Exploring the problems that Kubernetes solves 21

Autoscaling containers
Scaling is another production-specific problem that has been widely democratized
through the use of public clouds such as Amazon Web Services (AWS) and Google
Cloud Platform (GCP). Scaling is the ability to adapt your computing power to the load
you are facing – again to meet the requirement of high availability. Never forget that the
goal is to avoid outages and downtime.

When your production machines are facing a traffic spike and one of your containers is no
longer able to cope with the load, you need to find a way in which to identify the failing
container. Decide whether you wish to scale it vertically or horizontally; otherwise, if
you don't act and the load doesn't decrease, your container or even the host machine will
eventually fail, and your application might become inaccessible:

• Vertical scaling: This allows your container to use more computing power offered
by the host machine.

• Horizontal scaling: You can duplicate your container to another machine, and you
can load balance the traffic between the two containers.

Again, Docker is not able to respond to this problem alone; however, when you manage
your Docker with Kubernetes, it becomes possible. Kubernetes is capable of managing
both vertical and horizontal scaling automatically. It does this by letting your containers
consume more computing power from the host or by creating additional containers that
can be deployed on another node on the cluster. And if your Kubernetes cluster is not
capable of handling more containers because all your nodes are full, Kubernetes will even
be able to launch new virtual machines by interfacing with your cloud provider in a fully
automated and transparent manner by using a component called a Cluster Autoscaler.

Important Note
The Cluster Autoscaler only works if the Kubernetes cluster is deployed on a
cloud provider.

These goals cannot be achieved without using a container orchestrator. The reason for this
is simple. You can't afford to do these tasks; you need to think about DevOps' culture and
agility and seek to automate these tasks so that your applications can repair themselves, be
fault-tolerant, and be highly available.

Contrary to scaling out your containers or cluster, you must also be able to decrease the
number of containers if the load starts to decrease in order to adapt your resources to the
load, whether it is rising or falling. Again, Kubernetes can do this, too.

22 Kubernetes Fundamentals

When and where is Kubernetes not the solution?
Kubernetes has undeniable benefits; however, it is not always advisable to use it as
a solution. Here, we have listed several cases where another solution might be more
appropriate:

• Container-less architecture: If you do not use a container at all, Kubernetes won't
be of any use to you.

• Monolithic architecture: While you can use Kubernetes to deploy containerized
monoliths, Kubernetes shows all of its potential when it has to manage a high
number of containers. A monolithic application, when containerized, often consists
of a very small number of containers. Kubernetes won't have much to manage, and
you'll find a better solution for your use case.

• A very small number of microservices or applications: Kubernetes stands out
when it has to manage a large number of containers. If your app consists of two to
three microservices, a simpler orchestrator might be a better fit.

• No cluster: Are you only running one machine and only one Docker installation?
Kubernetes is good at managing a cluster of computers that executes a Docker
daemon. If you do not plan to manage a real cluster, then Kubernetes is not for you.

Understanding the history of Kubernetes
To finish this chapter, let's discuss the history of the Kubernetes project. It will be really
useful for you to understand the context in which the Kubernetes project started and the
people who are keeping this project alive.

Understanding how and where Kubernetes started
Kubernetes started as an internal project at Google. Since its founding in 1998, Google
gained huge experience in managing high-demanding workloads at scale, especially
container-based workloads. Today, in addition to Google, Amazon and Microsoft are also
releasing a lot of open source and commercial software to allow smaller companies to
benefit from their experience of managing cloud-native applications. Kubernetes is one
example of this open source software that has been released by Google.

Understanding the history of Kubernetes 23

At Google, everything has been developed as Linux containers since the mid-2000s. The
company understood the benefit of using containers long before Docker made them
simple to use for the general public. Essentially, everything at Google runs as a container.
And they are undoubtedly the first to have felt the need to develop an orchestrator that
would allow them to manage their container-based resources along with the machines
that launch them. This project is called Borg, and you can consider it to be the ancestor
of Kubernetes. Another container orchestrator project, called Omega, was then started
by Google in order to improve the architecture of Borg to make it easier to extend and
become more robust. Many of the improvements brought by Omega were later merged
into Borg.

Important Note
Borg is actually not the ancestor of Kubernetes because the project is not dead
and is still in use at Google. It would be more appropriate to say that a lot of
ideas from Borg were actually reused to make Kubernetes. Bear in mind that
Kubernetes is not Borg nor Omega. Borg was built in C++ and Kubernetes in
Go. In fact, they are two entirely different projects, but one is heavily inspired
by the other. This is important to understand: Borg and Omega are two internal
Google projects. They were not built for the public.

As the interest in containers became greater during the early 2010s, Google decided to
develop and release a third container orchestrator. This time, it was meant to be an open
source one that was built for the public. Therefore, Kubernetes was born and would
eventually be released in 2014.

Kubernetes was developed with the experience gained by Google to manage containers
in production. Most importantly, it inherited Borg and Omega's ideas, concepts, and
architectures. Here is a brief list of ideas and concepts taken from Borg and Omega, which
have now been implemented in Kubernetes:

• The concept of pods to manage your containers: Kubernetes uses a logical object,
called a pod, to create, update, and delete your containers.

• Each pod has its own IP address in the cluster.

• There are distributed components that all watch the central Kubernetes API in
order to retrieve the cluster state.

• There is internal load balancing between pods and services.

• Labels and selectors are two metadata used together to build interaction
between Kubernetes

24 Kubernetes Fundamentals

That's why Kubernetes is so powerful when it comes to managing containers in
production at scale: in fact, the concepts you'll learn in Kubernetes are older than
Kubernetes itself. They have existed for more than a decade, running Google's entire
infrastructure as part of Borg and Omega. So, although Kubernetes is a young project, it
was built on solid foundations.

Who manages Kubernetes today?
Kubernetes is no longer maintained by Google. They gave Kubernetes to an organization
called Cloud Native Computing Foundation (CNCF), which is a big consortium whose
goal is to promote the usage of container technologies. This happened in 2018.

Google is a founding member of CNCF along with companies such as Cisco, Red Hat,
and Intel. The Kubernetes source code itself is hosted on GitHub and is an extremely
active project on the platform. The code is under License Apache version 2.0, which is
a permissive open source license. You won't have to pay in order to use Kubernetes, as
the software is available for free, and if you are good at coding with Go, you can even
contribute to the code.

Where is Kubernetes today?
Kubernetes has a lot of competitors, and some of them are open source, too. Others are
bound to a specific cloud provider. We can name a few, as follows:

• Apache Mesos

• Hashicorp Nomad

• Docker Swarm

• Amazon ECS

These container orchestrators all have their pros and cons, but it's fair to say that
Kubernetes is, by far, the most popular of them all.

Kubernetes has won the fight of popularity and adoption and is really about to become
the de facto standard way of deploying container-based workloads in production. As its
immense growth made it one of the hottest topics in IT industry, it has become crucial for
cloud providers to come up with a Kubernetes offering as part of their services. Therefore,
Kubernetes is supported almost everywhere now.

Summary 25

The following Kubernetes-based services can help you to get a Kubernetes cluster up and
running with just a few clicks:

• Google GKE

• Amazon EKS

• Microsoft Azure AKS

• Alibaba ACK

It's not just about the cloud offerings. It's also about the Platform-as-a-Service market.
Recently, Red Hat OpenShift decided to rewrite their entire platform to rebuild it on
Kubernetes. Now they are offering a complete set of enterprise tools to build, deploy,
and manage Docker containers entirely on top of Kubernetes. In addition to this, other
projects such as Rancher were built as Kubernetes distributions to offer a complete set
of tools around the Kubernetes orchestrator, whereas projects such as Knative offers to
manage serverless workloads with the Kubernetes orchestrator.

Important Note
AWS is an exception because it has two container orchestrator services. The
first one is Amazon ECS, which is entirely made by AWS and is a competitor to
Kubernetes. The second one is Amazon EKS, which was released later than the
first one and is a complete Kubernetes offering on AWS. These services are not
the same, so do not be misguided by their similar names.

Learning Kubernetes today is one of the smartest decisions you can take if you are into
managing cloud-native applications in production. Kubernetes is evolving rapidly, and
there is no reason to think why its growth would stop.

By mastering this wonderful tool, you'll get one of the hottest skills being searched for in
the IT industry today. I hope you are now convinced!

Summary
This first chapter gave us room for a big introduction. We covered a lot of subjects, such
as monoliths, microservices, Docker containers, cloud computing, and Kubernetes. We
also discussed how this project came to life. You should now have a global vision of how
Kubernetes can be used to manage your containers in production.

26 Kubernetes Fundamentals

In the next chapter, we will discuss the process Kubernetes follows to launch a Docker
container. You will discover that you can issue commands to Kubernetes, and these
commands will be interpreted by Kubernetes as instructions to run containers. We will list
and explain each component of Kubernetes and its role in the whole cluster. There are a
lot of components that make up a Kubernetes cluster, and we will discover all of them. We
will explain how Kubernetes was technically built with a focus on the distinction between
master nodes, worker nodes, and control plane components.

2
Kubernetes

Architecture – From
Docker Images to

Running Pods
In the previous chapter, we laid the groundwork regarding what Kubernetes is from
a functional point of view. You should now have a better idea of how Kubernetes can help
you to manage clusters of machines running containerized microservices. Now, let's go
a little deeper into the technical details. In this chapter, we will examine how Kubernetes
enables you to manage containers that are distributed on different machines. Following
this chapter, you should have a better understanding of the anatomy of a Kubernetes
cluster; in particular, you will have a better understanding of Kubernetes components and
know the responsibility of each of them in the execution of your containers.

28 Kubernetes Architecture – From Docker Images to Running Pods

Kubernetes is made up of several distributed components, each of which plays a specific
role in the execution of Docker containers. To understand the role of each Kubernetes
component, we will follow the life cycle of a Docker container as it is created and
managed by Kubernetes: that is, from the moment you execute the command to create
the container to the point when it is actually executed on a machine that is part of your
Kubernetes cluster.

In this chapter, we're going to cover the following main topics:

• Understanding the difference between the master and worker nodes

• The kube-apiserver component

• The kubectl command-line tool and YAML syntax

• The Etcd datastore

• The kubelet and worker node components

• The kube-scheduler component

• The kube-controller-manager component

• How to make Kubernetes highly available

Understanding the difference between the
master and worker nodes
To run Kubernetes, you will require Linux machines, which are called nodes in
Kubernetes. A node could be a physical machine or a virtual machine on a cloud provider,
such as an EC2 instance. There are two types of nodes in Kubernetes:

• Master nodes

• Worker nodes

Master nodes are responsible for maintaining the state of the Kubernetes cluster, whereas
worker nodes are responsible for executing your Docker containers.

While using Linux, you will have probably used commands such as apt-get install
or yum install to get a new, fully functional software preconfigured that just works out
of the box. With Kubernetes, things are a slightly more complex.

The good news is that you can also use Windows-based nodes to launch Windows-based
containers in your Kubernetes cluster. The thing to know is that you can mix Linux and
Windows machines on your cluster and it will work the same, but you cannot launch
a Windows container on a Linux worker node and vice versa.

Understanding the difference between the master and worker nodes 29

By nature, Kubernetes is a distributed application. What we call Kubernetes is not a single
monolithic app released as a single build that you would install on a dedicated machine.
What we mean by Kubernetes is a collection of small projects. Each project is written in
Go and forms part of the overall project that is Kubernetes.

To get a fully functional Kubernetes cluster, you need to set up each of these components
by installing and configuring them separately and have them communicate with each
other. When these two requirements are met, you can start running your containers using
the Kubernetes orchestrator.

For development or local testing, it is fine to install all of the Kubernetes components on
the same machine; however, in production, these components should be spread across
different hosts. This will help you to make your Kubernetes cluster highly available. By
spreading the different components across multiple machines, you gain two benefits:

• You make your cluster highly available and fault-tolerant.

• You make your cluster a lot more scalable. Components have their own lifecycle,
they can be scaled without impacting others.

In this way, having one of your servers down will not break the entire cluster but just a
small part of it, and adding more machines to your servers becomes easy.

Each Kubernetes component has its own clearly defined responsibility. It is important for
you to understand each component's responsibility and how it articulates with the other
components to understand how Kubernetes works overall.

Depending on its role, a component will have to be deployed on a master node or a
worker node. While some components are responsible for maintaining the state of a whole
cluster and operating the cluster itself, others are responsible for running our application
containers by interacting with Docker daemons directly. Therefore, the components of
Kubernetes can be grouped into two families:

• Components belonging to the Control Plane:

These components are responsible for maintaining the state of the cluster. They
should be installed on a master node. These are the components that will keep the
list of containers executed by your Kubernetes cluster or the number of machines
that are part of the cluster. As an administrator, when you interact with Kubernetes,
you actually interact with the control plane components.

30 Kubernetes Architecture – From Docker Images to Running Pods

• Components belonging to the Worker Nodes:

These components are responsible for interacting with the Docker daemon in
order to launch containers according to the instructions they receive from the
control plane components. Worker node components must be installed on a Linux
machine running a Docker daemon. You are not supposed to interact with these
components directly. It's possible to have hundreds or thousands of worker nodes in
a Kubernetes cluster.

Clustering technologies use this architecture a lot. They define two types of nodes: masters
and workers. The master(s) nodes are responsible for the management of the cluster
and all operational tasks according to the instructions received from the administrator.
The worker(s) nodes are responsible for the execution of the actual workload based on
instructions received from the master(s).

Kubernetes works in relatively the same way. You are not supposed to launch your Docker
containers by yourself, and therefore, you do not interact directly with the worker nodes.
Instead, you send your instructions to the control plane. Then, it will delegate the actual
container creation and maintenance to the worker node on your behalf. You never run a
docker command directly:

Figure 2.1 – A typical Kubernetes workflow. The client interacts with the master node/control plane
components, which delegate container creation to a worker node. There is no communication between

the client and the worker node

When using Kubernetes you'll notice here and there the concepts of control plane and
the master node. They're almost the same: both expressions are meant to designate the
Kubernetes components responsible of cluster administration, and by extension, the
machines (or nodes) on which these components have been installed. In Kubernetes, we
generally try to avoid talking about master nodes. Instead, we talk about the control plane.

Understanding the difference between the master and worker nodes 31

The reason is because saying "master node" supposes the components allowing the
management of the cluster are installed on the same machine and have a strong
coupling with the machine that is running them. However, due to the distributed nature
of Kubernetes, its master node components can actually be spread across multiple
machines. This is quite tricky, but there are, in fact, two ways in which to set up the
control plane components:

• You run all of them on the same machine, and you have a master node.

• You run them on different machines, and you no longer have a master node.

Master node terminology tends to imply that all control plane components are running on
the same machine, but not the case. To achieve maximum fault tolerance, it's a good idea
to spread them across different machines. Kubernetes is so distributed that even its master
node can be broken into multiple machines, where each of them has the responsibility to
execute a single component that allows the management of the cluster.

The idea is that control plane components must be able to communicate with each other,
and this can be achieved by installing them onto different hosts. In fact, later, you'll
discover that the control plane components can even be launched as Docker containers
on worker node machines. This is a very advanced topic, but it's possible. That's why the
master node terminology is not that accurate to Kubernetes, and we prefer the control
plane terminology instead.

However, for the sake of simplicity, I'll consider, in this chapter, and also for a huge part of
this book, that we are using dedicated master node machines to execute all of the control
plane components in the same place. Throughout the different examples listed here,
control plane components will be tightly coupled with the machine that is executing them.
This will help you to understand the role of each component. Later, we will explore the
advanced techniques related to the management of control plane components, such as
launching them as Docker containers and more.

That being said, things are simpler when it comes to worker nodes: you start from a
standard machine running Docker, and you install the worker node components next
to the Docker runtime. These components will interface with the local container engine
that is installed on the said machine and execute containers based on the instructions
you send to the control plane components. You can control all the aspects of Docker
from Kubernetes thanks to this worker nodes mechanics: container creation, network
management, scaling containers, and so on. Adding more computing power to your
cluster is easy; you just need to add more worker nodes and have them join the cluster to
make room for more containers.

32 Kubernetes Architecture – From Docker Images to Running Pods

Important Note
By splitting the control plane and worker node components of different
machines, you are making your cluster highly available and scalable.
Kubernetes was built with all of the cloud-native concerns in mind; its
components are stateless, easy to scale, and built to be distributed across
different hosts. The whole idea is to avoid having a single point of failure by
grouping all of the components onto the same host.

Here is a simplified diagram of a full-featured Kubernetes cluster with all the components
listed. In this chapter, we're going to explain all of the components listed on this diagram,
their roles, and their responsibilities. Here, all of the control plane components are
installed on a single master node machine:

Figure 2.2 – A full-featured Kubernetes cluster with one master node and three worker nodes

The preceding diagram displays a 4-node Kubernetes cluster with all of the necessary
components. As you can see, there are quite a few components.

The following is a table that lists all of the Kubernetes components that we will discuss in
this chapter. In addition to all of these components, we will also examine the kubectl client
that will allow you to interact with your Kubernetes clusters:

Understanding the difference between the master and worker nodes 33

Bear in mind that Kubernetes is modified and, therefore, can be modified to fit a given
environment. When Kubernetes is deployed and used as part of a distribution such as
Amazon EKS or Red Hat Openshift, additional components could be present, or the
behavior of the default ones might differ. In this book, for the most part, we will discuss
bare Kubernetes. The components discussed in this chapter, and which are listed here, are
the default ones. You will find them everywhere; they are the backbone of Kubernetes.

You might have noticed that the majority of these components have a name starting with
Kube: these are the components that are part of the Kubernetes project. Additionally, you
might have noticed that there are two components with a name that does not start with
Kube. The other two (Etcd and Container Engine) components are two external
dependencies that are not strictly part of the Kubernetes project, but which Kubernetes
needs in order to work:

• Etcd is a third-party database used by the Kubernetes project. Don't worry; you
won't have to master it in order to use Kubernetes.

• The container runtime is also a third-party engine. For us, it's going to be Docker
because Kubernetes forcibly needs to manage something.

Rest assured, you will not have to install and configure these components all by yourself.
Almost no one bothers with managing the components by themselves, and, in fact, it's
super easy to get a working Kubernetes without having to install the components.

For development purposes, you can use Minikube, which will install all of the Kubernetes
components on your local machine and run them as a single virtual machine. This is
absolutely NOT recommended for production, but it is incredibly useful for development
and tests.

34 Kubernetes Architecture – From Docker Images to Running Pods

For production purposes, you can use a cloud offering such as Amazon EKS or Google
GKE. This will give you a production-grade Kubernetes cluster that is fully integrated with
your preferred cloud provider along with all of the scaling mechanics that you are already
familiar with. If you don't have access to such platforms, you can use Kubeadm. This is a
Kubernetes installation utility that is capable of installing and configuring all Kubernetes
components with just one command.

For educational purposes, you can install them, one by one, from scratch. A very famous
tutorial, called Kubernetes the Hard Way, is available on the internet. It teaches you how
to install and configure the components of Kubernetes from scratch. From public key
infrastructure (PKI) management to networking and computing provisioning, this
tutorial teaches you how to install Kubernetes on bare Linux machines in Google Cloud.
Do not try to follow this tutorial if you are still new to Kubernetes as it's quite advanced.

You will observe many references to this tutorial on the internet because it's very famous.
Bear in mind that installing, securing, configuring, and managing a production-grade
Kubernetes cluster is time-consuming and not easy at all. You should avoid using the
result of the Kubernetes the Hard Way tutorial in production.

The kube-apiserver component
Kubernetes' most important component is a REST API called kube-apiserver,
Essentially, this is an API that exposes all Kubernetes features. You interact with
Kubernetes by calling this REST API through the kubectl command-line tool.

The role of kube-apiserver
This is a component that is part of the control plane, meaning it's something to install and
run on a master node. The kube-apiserver component is so important in Kubernetes
that, sometimes, people believe it is Kubernetes itself. However, it's not. kube-
apiserver is simply one component of the orchestrator. It's the most important, yes, but
it's just one of them.

It's implemented in Go. Its code is open source, under the Apache 2.0 license, and you can
find it hosted on GitHub.

The kube-apiserver component 35

When working with Kubernetes, the workflow is simple. When you want to give an
instruction to Kubernetes, you will always have to send an HTTP request to kube-
apiserver. When you want to tell Kubernetes to create, delete, or update a container,
you should always do so by calling the correct kube-apiserver endpoint with the
correct HTTP verb. This is how we will work all of the time with Kubernetes; kube-
apiserver is the single entry point for all operations issued to the orchestrator. This best
practice consists of never having to interact with one of the Docker daemons by yourself.
You do run containers by sending instructions to the kube-apiserver component
through the HTTP(S) protocol, and you let the Kubernetes components update the state
of the Docker daemons for you.

Let's update the previous architecture diagram to make it a little more accurate with what
happens in the real world:

Figure 2.3 – When interacting with Kubernetes, you are actually issuing HTTP requests to a
kube-apiserver component running on a master node; that's the only component you will interact

with directly

The kube-apiserver component is built according to the REST standard. REST is
very effective at exposing features via HTTP endpoints that you can request through
the various methods of the HTTP protocol (for example, GET, POST, PUT, PATCH, and
DELETE). To illustrate this, consider a dummy API that is managing users. You would
have a path called /users. By sending HTTP requests to this /users path, you can
command different operations against the users resource:

• The following request will retrieve a list of all the users on an API running on
localhost:

GET https://127.0.0.1/users

• This request would delete the users with an ID of 1 on an API running on
my.api.com:

DELETE https://my.api.com/users/1

POST https://127.0.0.1:8080/users

36 Kubernetes Architecture – From Docker Images to Running Pods

As you might have gathered, the REST standard relies entirely on the HTTP protocol. By
combining HTTP methods and paths, you can run different operations defined by the
method, against resources defined by the path.

Additionally, the REST standard brings a lot of flexibility. Because adding new resources
means adding new paths, any REST API can be extended. To bring things to life, REST
APIs generally use a datastore to maintain the state of the objects or resources they are
managing. With our dummy API, it could, for example, use a MySQL database and a
users table to keep the users created by calling the API in the long term.

There are two ways in which such an API can enable data retention:

• The REST API keeps its data in its own memory:

This could work; however, in this case, the API is stateful and impossible to scale.
• By using a full-featured database engine such as MariaDB or PostgreSQL:

This is the go-to way; delegating the storage to a third-party engine on another
host makes the API stateless. In this scenario, the API is scalable horizontally; you
can add a lot of instances of your API as long as they can retrieve the state in the
common database.

Any REST API can be easily upgraded or extended to do more than its initial intent. To
sum up, here are the essential properties of a REST API:

• It relies on the HTTP protocol.

• It defines a set of resources identified by URL paths.

• It defines a set of actions identified by HTTP methods.

• It can run actions against resources based on a properly forged HTTP request.

• It keeps the state of their resources on a datastore.

Just like this dummy users API, kube-apiserver is nothing more than a REST API,
which is at the heart of any Kubernetes cluster you will set up, no matter if it's local, on
the cloud, or on-premises. It is also stateless; that is, it keeps the state of the resources
by relying on a database engine called Etcd. This means you can horizontally scale the
kube-apiserver component by deploying it onto multiple machines and load balance
request issues to it using a layer 7 load balancer without losing data.

The kube-apiserver component 37

Important Note
By default, HTTP servers listen to port 80, whereas HTTPS services listen to
port 443. This is not the case with kube-apiserver. By default, the port
it listens to is port 6443. However, this configuration data can be overridden.

Because HTTP is supported almost everywhere, it is very easy to communicate with and
issue instructions to a Kubernetes cluster. However, most of the time, we interact with
Kubernetes thanks to a command-line utility named kubectl, which is the HTTP client
that is officially supported as part of the Kubernetes project. This book will also focus on
how to communicate with the API server through the use of the kubectl command-line
tool. In this chapter, we will explore this tool, too.

When you download kube-apiserver, you'll end up with a Go-compiled binary that
is ready to be executed on any Linux machine. The Kubernetes developers defined a set of
resources for us that are directly bundled within the binary. These resources are the ones
that Kubernetes manages. Unlike the dummy users API mentioned earlier, Kubernetes
does not describe a Users resource. This is simply because Kubernetes was not meant to
manage users but containers. So, do expect that all of the resources you will find in kube-
apiserver are related to container management, networking, and computing in general.

Let's name a few of these resources, as follows:

• Pod

• ReplicaSet

• PersistentVolume

• NetworkPolicy

• Deployment

Of course, this list of resources is not exhaustive. If you want a full list of the Kubernetes
components, you can access it from the official Kubernetes documentation API
reference page at https://kubernetes.io/docs/reference/generated/
kubernetes-api/v1.18/.

You might be wondering why there are no Containers resources here. As mentioned
in Chapter 1, Kubernetes Fundamentals, Kubernetes makes use of a resource called a
pod to manage the containers. For now, you can think of pods as though they were
containers. We will learn a lot about them in the coming chapters. Each of these resources
is associated with a dedicated URL path, and just as we witnessed earlier, changing
the HTTP method when calling the URL path will have a different effect. All of these
behaviors are defined in kube-apiserver; note that these behaviors are not something
you have to develop, they are directly implemented as part of the kube-apiserver.

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/

38 Kubernetes Architecture – From Docker Images to Running Pods

After the Kubernetes objects are stored on the Etcd database, other Kubernetes
components will convert these objects into raw Docker instructions. This way, multiple
Docker daemon can mirror the state of the cluster as it is stored in the Etcd datastore and
described by kube-apiserver.

Another important point to bear in mind is that kube-apiserver is the single entry
point and the single source of truth for the whole cluster. Everything in Kubernetes has
been designed to revolve around kube-apiserver. You'll see that other Kubernetes
components also have to read or change the state of the cluster: even they will do so by
calling kube-apiserver through HTTP and never directly. As an administrator, aside
from very rare occasions, you must never interact directly with the other components of
the cluster. So, ensure you refrain from using SSH to sign in to a machine that is part of
the cluster and start doing things manually.

The is because kube-apiserver does not just manage the state of the cluster, it also has
tons of different mechanisms related to authentication, authorization, and HTTP response
formatting. That's why doing things manually is really bad.

How do you install kube-apiserver?
In Chapter 3, Installing Your First Kubernetes Cluster, we will focus on how to install and
configure a Kubernetes cluster locally. However, I would like you to know that all of the
components of Kubernetes are available to download for free from Google's servers. You
can download a specific version of kube-apiserver, along with any component of
Kubernetes, using a simple wget command:

$ wget -q --show-progress --https-only –timestamping \

https://storage.googleapis.com/kubernetes-release/release/
v1.14.0/bin/linux/amd64/kube-apiserver

By calling this command, you will get the official build of kube-apiserver in version
1.14. However, running this binary won't be enough to have a fully working Kubernetes
cluster. This is because, again, Kubernetes is not just the kube-apiserver component.
You will require the other components of Kubernetes to make it work.

If you are wondering how to run kube-apiserver, essentially, there are two ways to
proceed:

• From a Docker image on a worker node

• From a systemd unit file on a dedicated master node

The kube-apiserver component 39

Let's put aside the Docker method because it's a little bit more advanced. Instead, let's
explain the simpler solution and run it as a systemd service. Essentially, systemd is a
daemon management tool that is available by default on Linux and will be helpful to run
kube-apiserver. I don't recommend you do that as it's going to be useless, but let me
show you how easy it is to run a Kubernetes component on Linux thanks to systemd:

1. We need to create a file at the following path: /etc/systemd/system/kube-
apiserver.service.

2. We need to put the following content inside the file. Essentially, this systemd unit
file executes the kube-apiserver binary that was downloaded earlier with some
arguments to configure it.

3. Once the unit file has been created, reload the systemd daemon, enable the new
service, and start it using the following commands:

$ systemctl daemon-reload

$ systemctl enable kube-apiserver

$ systemctl start kube-apiserver

Ensure that the following file exists in the directory with the following content. As you
might have gathered, it's just a basic systemd unit file, /etc/systemd/system/
kube-apiserver.service:

[Unit]

Description=Kubernetes API Server

Documentation=https://github.com/kubernetes/kubernetes

[Service]

ExecStart=/usr/local/bin/kube-apiserver

 --advertise-address=${INTERNAL_IP}

 --allow-privileged=true

 --apiserver-count=3

 --audit-log-path=/var/log/audit.log

 --authorization-mode=Node,RBAC

 --bind-address=0.0.0.0

 --client-ca-file=/var/lib/kubernetes/ca.pem

 --enable-admission-plugins=NamespaceLifecycle,NodeRestriction
,LimitRanger,ServiceAccount,DefaultStorageClass,ResourceQuota

 --etcd-cafile=/var/lib/kubernetes/ca.pem

 --etcd-certfile=/var/lib/kubernetes/kubernetes.pem

 --etcd-keyfile=/var/lib/kubernetes/kubernetes-key.pem

40 Kubernetes Architecture – From Docker Images to Running Pods

 --etcd-servers=https://10.240.0.10:2379,https://10.240.0.11:2
379,https://10.240.0.12:2379

 --encryption-provider-config=/var/lib/kubernetes/encryption-
config.yaml

 --kubelet-certificate-authority=/var/lib/kubernetes/ca.pem

 --kubelet-client-certificate=/var/lib/kubernetes/kubernetes.
pem

 --kubelet-client-key=/var/lib/kubernetes/kubernetes-key.pem

 --kubelet-https=true \\

 --runtime-config=api/all \\

 --service-account-key-file=/var/lib/kubernetes/service-
account.pem \\

 --service-cluster-ip-range=10.32.0.0/24

 --service-node-port-range=30000-32767

 --tls-cert-file=/var/lib/kubernetes/kubernetes.pem

 --tls-private-key-file=/var/lib/kubernetes/kubernetes-key.pem

 --v=2

Restart=on-failure

RestartSec=5

[Install]

WantedBy=multi-user.target

Don't attempt to run this example by yourself, as there are some missing parts for now. In
the next chapter, we are going to set up a local Kubernetes, but at least now you know that
it is easy to launch Kubernetes components as systemd: in the end, they are plain old
Linux-compiled binaries.

Where do you install kube-apiserver?
Cloud services such as Amazon EKS or Google GKE, or other similar cloud offerings,
will install and configure all the components of Kubernetes properly and expose you
to a Kubernetes endpoint (or, if you prefer, the kube-apiserver endpoint) without
giving you too much information regarding the underlying machines or load balancers
provisioned. The following is a screenshot of a Kubernetes cluster that was created on the
Amazon EKS service:

The kube-apiserver component 41

Figure 2.4 – The UI console showing details of a Kubernetes cluster provisioned on Amazon EKS

Note that the kube-apiserver component should be installed on a sufficiently
powerful machine dedicated to its execution. Indeed, it is a very sensitive component.
If your kube-apiserver component becomes inaccessible, your Docker containers
will continue to run, but you won't be able to interact with them through Kubernetes.
Instead, they become "orphan" containers running on isolated machines that are no longer
managed by a Kubernetes cluster.

You want to avoid this situation; that's why you should pay special attention to your
kube-apiserver instance(s).

In addition to this, be aware that the other Kubernetes components, as we'll discover
a little later, constantly send HTTP requests to kube-apiserver in order to understand
the state of the cluster or to update it. Because these components need to know the state
of the cluster at any moment, they are running a lot of HTTP requests against the kube-
apiserver component. And the more worker nodes you have, the more HTTP requests
that will be issued against kube-apiserver. That's why kube-apiserver should be
independently scaled as the cluster itself scales out.

As mentioned earlier, kube-apiserver is a stateless component that does not directly
maintain the state of the Kubernetes cluster itself and relies on a third-party database to
do so. You can scale it horizontally by hosting it on group of machines that are behind a
load balancer such as an HTTP API. When using such a setup, you interact with kube-
apiserver by calling your load balancer endpoint.

We have mentioned a lot of things about kube-apiserver. Now, let's take a look at
the kubectl client. This is the official HTTP client that will allow you to interact with
Kubernetes, or more exactly, with the kube-apiserver component of your Kubernetes
cluster.

42 Kubernetes Architecture – From Docker Images to Running Pods

Exploring the kubectl command-line tool
and YAML syntax
kubectl is the official command-line tool used by Kubernetes. You must install it on your
local machine; we will learn how to install it properly in the next chapter. For now, we
need to understand its role. This is an HTTP client that is fully optimized to interact with
Kubernetes and allows you to issue commands to your Kubernetes cluster. You can install
it right now since you are going to need it in the coming chapters:

• In Linux, use the following commands:

$ curl -LO https://storage.googleapis.com/kubernetes-
release/release/v1.14.10/bin/linux/amd64/kubectl

$ chmod +x ./kubectl

$ sudo mv ./kubectl /usr/local/bin/kubectl

$ kubectl version # Should output kubectl version

• On macOS, use the following commands:

$ curl -LO https://storage.googleapis.com/kubernetes-
release/release/v1.14.10/bin/darwin/amd64/kubectl

$ chmod +x ./kubectl

$ sudo mv ./kubectl /usr/local/bin/kubectl

$ kubectl version # Should output kubectl version

• In Windows, use the following commands

curl -LO https://storage.googleapis.com/kubernetes-
release/release/v1.14.10/bin/windows/amd64/kubectl.exe

 kubectl version # Should output kubectl version

This last example for Windows users requires you to add kubectl.exe to your PATH
variable before being able to call kubectl.

The role of kubectl
Since kube-apiserver is nothing more than an HTTP API, any HTTP client will work
to interact with a Kubernetes cluster. You can even use CURL to manage your Kubernetes
cluster, but of course, there is a better way to do that.

Exploring the kubectl command-line tool and YAML syntax 43

The developers of Kubernetes have developed a client for the kube-apiserver
component. This client comes in the form of a command-line tool called kubectl. So, why
would you want to use such a client and not go directly with CURL calls? Well, the reason
is simplicity. Indeed, kube-apiserver manages a lot of different resources and each of
them has its own URL path.

Calling kube-apiserver constantly through CURL would be possible but extremely
time-consuming. This is because remembering the path of each resource, and how to call
it is not user-friendly. Essentially, CURL is not the way to go since kubectl also manages
different aspects related to authentication against Kubernetes authentication layer,
managing cluster contexts and more.

You would have to go to the documentation all of the time to remember which URL
path, HTTP header, or query string. kubectl will do that for you by letting you call
kube-apiserver through commands that are easy to remember, secure, and entirely
dedicated to Kubernetes management.

When you call kubectl, it reads the parameters you pass to it, and based on them, will
forge and issue HTTP requests to the kube-apiserver component of your Kubernetes
cluster:

Figure 2.5 – The kubectl command line will call kube-apiserver with the HTTP protocol; you'll interact
with your Kubernetes cluster through kubectl all of the time

This is the general workflow with Kubernetes: you will always interact with Kubernetes
through kubectl. Once the kube-apiserver component receives a valid HTTP request
coming from you, it will read or update the state of the cluster in Etcd based on the
request you submitted. If it's a write operation, for example, to update the image of a
running container, kube-apiserver will update the state of the cluster in Etcd. Then,
the components running on the worker node where the said container is being hosted will
issue the proper Docker commands in which to launch a new container based on the new
image. This is so that the actual state of the Docker daemons always reflects what's
in Etcd.

44 Kubernetes Architecture – From Docker Images to Running Pods

Given that you won't have to interact with Docker yourself, or with Etcd, we can say that
the mastery of Kubernetes is largely based on your knowledge of the kubectl commands.
To be effective with Kubernetes, you must master kubectl because it is the command
that you will type constantly. You won't have to interact with any other components than
kube-apiserver and the kubectl command-line tool that allows you to call it.

kubectl is available to download for free directly from Google's servers. This is an Apache
2.0 licensed project that is officially part of the Kubernetes project. Its source code is
available on GitHub at https://github.com/kubernetes/kubectl.

Important Note
Since the kube-apiserver component is accessible through the HTTP(S)
protocol, you could interact with any Kubernetes cluster with any HTTP-
based library and even programmatically through your favorite programming
language. Tons of kubectl alternatives exist. However, kubectl, being the official
tool of the Kubernetes project, is the tool you'll systematically see in action in
the documentation, and most of the examples you will find use kubectl.

How does kubectl work?
When you call the kubectl command, it will try to read a configuration file that must be
created in $HOME/.kube/config. This configuration file is called kubeconfig.

All of the information, such as the kube-apiserver endpoint, its port, and the client
certificate used to authenticate against kube-apiserver, must be written in this file.
Its path can be overridden on your system by setting an environment variable, called
KUBECONFIG, or by using the --kubeconfig parameter when calling kubectl:

$ export KUBECONFIG="/custom/path/.kube/config"

$ kubectl --kubeconfig="/custom/path/.kube/config"

Each time you run a kubectl command, the kubectl command-line tool will look for
a kubeconfig file in which to load its configuration in the following order:

1. First, it checks whether the --kubeconfig parameter has been passed and loads
the config file.

2. At that point, if no kubeconfig file is found, kubectl looks for the KUBECONFIG
environment variable.

3. Ultimately, it falls back to the default one in $HOME/.kube/config.

https://github.com/kubernetes/kubectl

Exploring the kubectl command-line tool and YAML syntax 45

To view the config file currently used by your local kubectl installation, you can run this
command:

$ kubectl config view

The kubeconfig file contains different information about the Kubernetes cluster it
communicates with. That information includes the URL of kube-apiserver, the
configured user for authenticating against the said kube-apiserver, and more. The
role of the kubectl tool is to forge an HTTP request based on the arguments you pass
to the kubectl command and to execute it against the cluster specified on its loaded
kubeconfig file. Then, the HTTP request is actually sent to kube-apiserver, which
produces an HTTP response that kubectl will reformat in a human-readable format and
output to your Terminal.

The following command is probably one that you'll type almost every day when working
with Kubernetes:

$ kubectl get pods

This command lists the Pods. Essentially, it will issue a GET request to kube-apiserver
to retrieve the list of containers (pods) on your cluster. Internally, kubectl associates the
pods parameter passed to the command to the /api/v1/pods URL path, which is the
path that kube-apiserver uses to expose the pod resource.

Here is another command:

$ kubectl run nginx --restart Never --image nginx

This one is slightly trickier because run is not an HTTP method. In fact, this command
will issue a POST request against the kube-apiserver component, which will
result in the creation of a container called nginx, based on the nginx image hosted on
Docker Hub.

Important Note
In fact, this command won't create a container but a Pod. We will discuss the
pod resource extensively in Chapter 4, Running Your Docker Containers. Let's
try not to talk about containers anymore; instead, let's move on to pods and
familiarize ourselves with Kubernetes concepts and wordings. From now on, if
you come across the word container, it means a real container from a Docker
perspective. Additionally, pods refer to the Kubernetes resource.

46 Kubernetes Architecture – From Docker Images to Running Pods

The YAML syntax
kubectl supports two kinds of syntaxes:

• The imperative syntax

• The declarative syntax

Almost every instruction that you send to kube-apiserver through kubectl can be
written using one of these two forms.

Essentially, the imperative form runs kubectl commands on a shell session. By passing
in correct sub-commands and arguments, you can forge instructions for the kube-
apiserver component. Let me give you a few examples of the imperative syntax. All
of the following commands, once executed, issue HTTP requests against a given kube-
apiserver endpoint:

• This command creates a pod, called my-pod, based on the busybox:latest
Docker image:

$ kubectl run my-pod --restart Never --image
busybox:latest

• This command lists all the ReplicaSet resources in the my-namespace
namespace created on the Kubernetes cluster:

$ kubectl get rs -n my-namespace

• This command deletes a pod, called my-pod, in the default namespace:

$ kubectl delete pods my-pod

Imperative syntax has multiple benefits. If you already understand what kind of
instructions to send to Kubernetes and the proper command to achieve this, you are
going to be incredibly fast. The imperative syntax is easy to type, and you can do a lot with
just a few commands. Some operations are only accessible with imperative syntax, too.
For example, listing existing resources in the cluster is only possible with the imperative
syntax.

However, the imperative syntax has a big problem. It is very complicated having to keep
records of what you did previously in the cluster. If for some reason, you were to lose the
state of your cluster and need to recreate it from scratch, it's going to be incredibly hard to
remember all of the imperative commands that you typed in earlier to bring your cluster
back to the state you want. You could read your .bash_history file but of course, there
is a better way to do this.

Exploring the kubectl command-line tool and YAML syntax 47

So, let's move on to declarative syntax now. The declarative syntax is about writing a
JSON or YAML file on disk first and then applying it against the cluster using the kubectl
command line. Both JSON and YAML formats are supported; however, by convention,
Kubernetes users prefer YAML syntax because of its simplicity. YAML is not
a programming language. There is no real logic behind it. It's simply a kind of
key:value configuration syntax that is used by a lot of projects nowadays, and
Kubernetes is one of them.

Using kubectl in the declarative way requires you to create a file on your disk and to write
some key:value pairs, in YAML format, inside of it. Each key:value pair represents
the configuration data that you want to set to the Kubernetes resource you want to create.

The following is the imperative command that created the pod named my-pod using the
busybox:latest Docker image we used earlier:

$ kubectl run my-pod --restart Never --image busybox:latest

We will now do the same but with the declarative syntax instead:

apiVersion: v1

kind: Pod

metadata:

 name: my-pod

spec:

 containers:

 - name: busybox-container

 image: busybox:latest

Let's say this file is saved on disk with the name of pod.yaml. To create the actual pod,
you'll need to run the following command:

$ kubectl create -f pod.yaml

This result will be the equivalent of the previous command.

Each YAML file that is created for Kubernetes must contain four mandatory keys:

• apiVersion:

This field tells you in which API version the resource is declared. Each resource type
has an apiVersion key that must be set in this field. The pod resource type is in
API version v1.

48 Kubernetes Architecture – From Docker Images to Running Pods

• Kind:

This Kind field indicated the resource type the YAML file will create. Here, it is a
pod that is going to be created.

• Metadata:

This field tells Kubernetes about the name of the actual resource. Here, the pod is
named my-pod. This field describes the Kubernetes resource, not the Docker one.
This metadata is for Kubernetes, not for Docker.

• Spec:

This field tells Kubernetes what the object is made of. In the preceding example, the
pod is made of one container that will be named busybox-container based on
the busybox:latest image. These are the containers that are going to be created
on Docker.

Another important aspect of the declarative syntax is that it enables you to declare
multiple resources in the same file using three dashes as a separator between the resources.
Here is a revised version of the YAML file, which will create two pods:

apiVersion: v1

kind: Pod

metadata:

 name: my-pod

spec:

 containers:

 - name: busybox-container

 image: busybox:latest

apiVersion: v1

kind: Pod

metadata:

 name: my-second-pod

spec:

 containers:

 - name: nginx-container

 image: nginx:latest

You should be able to read this file by yourself and understand it; it just creates two pods.
The first one uses the busybox image, and the second one uses the nginx image.

Exploring the kubectl command-line tool and YAML syntax 49

Of course, you don't have to memorize all of the syntaxes and what value to set for
each key. It would be useless for you, so just use copy and paste from the documentation
when needed.

The declarative syntax offers a lot of benefits, too. With it, you'll be slower because writing
these YAML files is a lot more time-consuming than just issuing a command in the
imperative way. However, it offers two major benefits:

• Infrastructure as Code (IaC) management:

You'll be able to keep the configuration stored somewhere and use Git to version
your Kubernetes resources, just as you would do with IaC. If you were to lose the
state of your cluster, keeping the YAML files versioned in Git will enable you to
recreate it in a clean and effective manner.

• Create multiple resources at the same time:

Since you can declare multiple resources in the same YAML file, you can have entire
applications and all of their dependencies in the same place. Additionally, you get
to create and recreate complex applications with just one command. Later, you'll
discover a tool called Helm that can achieve templating on top of the Kubernetes
YAML files. Thanks to this tool, it's going to be easier to manage resources through
YAML files.

There is no better way to use kubectl; these are just two ways to interact with it, and you
need to master both. This is because some features are not available with the imperative
syntax, while some others are not available with the declarative syntax. For example,
you cannot create a multi-container pod from the imperative syntax, and you cannot list
running pods from the declarative syntax. That's why you need to master both.

Remember that, in the end, both call the kube-apiserver component by using the
HTTP protocol.

kubectl should be installed on any machine that needs
to interact with the cluster
From a technical point of view, you must install and configure a kubectl runtime
whenever and wherever you want to interact with a Kubernetes cluster.

Of course, it should be on your local machine, since this is where you are going to work
with Kubernetes because you have to be able to communicate with your cluster from your
own workstation. However, in larger projects, it's also a good idea to install kubectl in the
agents/runner of your continuous integration platform.

50 Kubernetes Architecture – From Docker Images to Running Pods

Indeed, you will probably want to automate maintenance or deployment tasks to run
against your Kubernetes cluster, and you will probably use a continuous integration (CI)
platform such as GitLab CI or Jenkins to do that.

If you want to be able to run Kubernetes commands in a CI pipeline, you will need to
install kubectl on your CI agents and have a properly configured kubeconfig file
written on the CI agent filesystem. This way, your CI/CD pipelines will be able to issue
commands against your Kubernetes cluster and update the state of your cluster, too.

Just to add, kubectl should not be seen as a Kubernetes client for human users only. It
should be viewed as a generic tool to communicate with Kubernetes: install it wherever
you want to communicate with your cluster.

Remember that the golden rule is very simple: you never do anything in Kubernetes
without going through kubectl. It doesn't matter if it's made by you as a human
administrator or as part of an automation script: make use of kubectl.

The Etcd datastore
We explained that kube-apiserver is a stateless API that can be scaled horizontally.
However, it is necessary for kube-apiserver to store the state of the cluster
somewhere, such as the number of containers created, on which machines, the names of
the pods, which Docker images they use, and more. To achieve that, it uses the
Etcd database.

The role of the Etcd datastore
Etcd is part of the control plane. The kube-apiserver component relies on a
distributed NoSQL database called Etcd. Strictly speaking, Etcd is not a component
of the Kubernetes project. As you might have gathered, Etcd is not named according to
the same nomenclature as the other components (kube*). This is because Etcd is not
actually a Kubernetes project but a project completely independent of Kubernetes.

The Etcd datastore 51

Instead of using a full-featured relational database such as MySQL or PostgreSQL,
Kubernetes relies on this NoSQL distributed datastore called Etcd to store its state
persistently. Etcd can be used independently on any project, but Kubernetes cannot work
without Etcd. This is something that you have to understand: Kubernetes has an external
dependence. Instead of rewriting a database engine from scratch, Kubernetes developers
decided to use Etcd. The good news is that Etcd is an open source project too, which is
available on GitHub under license Apache 2.0, written in Go (just like Kubernetes). You
can locate it at https://github.com/etcd-io/etcd. It's also a project incubated
by the Cloud Native Computing Foundation (CNCF), which is the organization that
maintains Kubernetes.

Important Note
Don't expect to be able to use another database engine with Kubernetes. It is
not possible to replace Etcd with MySQL or another datastore. Kubernetes
was really built to rely specifically on Etcd.

So, to sum up, Etcd is the database that Kubernetes uses to keep its state. When you call
the kube-apiserver, each time you implement a read or write operation by calling the
Kubernetes API, you will read or write data from or to Etcd. So, this is the main memory
of your Kubernetes cluster, and the kube-apiserver can be seen as a proxy in front
of Etcd.

Let's zoom into what is inside the master node:

Figure 2.6 – The kube-apiserver component is in front of the Etcd datasore and acts as a proxy in front of
it; kube-apiserver is the only component that can read or write from and to etcd

Etcd is the most sensitive point of your cluster. This is because if you were to lose the
data inside it, your Kubernetes cluster would become completely unusable. It's even
more sensitive than the kube-apiserver component. The reason is simple; after all, if
kube-apiserver crashes, you can still relaunch it. However, if you lose the data in your
Etcd datastore, or it somehow gets corrupted, and you don't have a backup to restore it,
your Kubernetes cluster is dead.

https://github.com/etcd-io/etcd

52 Kubernetes Architecture – From Docker Images to Running Pods

Fortunately, you do not need to master Etcd in depth to use Kubernetes. It is even
strongly recommended that you do not touch it at all if you do not know what you
are doing. This is because a bad operation could corrupt the data stored in Etcd and,
therefore, the state of your cluster.

Remember, the general rule in Kubernetes architecture says that every component has
to go through the kube-apiserver to read or write in Etcd. This is because, from a
technical point of view, the kubectl authenticates itself against the kube-apiserver
through a TLS client certificate that only the kube-apiserver has. Therefore, it is the
only component of Kubernetes that has the right to read or write in Etcd. This is a very
important notion in the architecture of Kubernetes. All of the other components won't be
able to read or write anything to or from Etcd without calling the kube-apiserver
endpoints through HTTP.

Important Note
Please note that Etcd is also designed as a REST API. By default, it listens to
port 2379.

Let's go back to the command that we mentioned earlier:

$ kubectl run nginx --restart Never --image nginx

When you execute the preceding command, the kubectl tool will forge an HTTP
POST request that will be executed against the kube-apiserver specified in the
kubeconfig file. The kube-apiserver will write a new entry in Etcd, which will be
persistently stored on disk.

At that point, the state of the Kubernetes changes: it will then be the responsibility of the
other Kubernetes component to reconcile the actual state of the cluster to the desired state
of the cluster (that is, the one in Etcd).

Unlike Redis or Memcached, Etcd is not in-memory storage. If you reboot your machine,
you do not lose the data because it is kept on disk.

Where do you install Etcd?
As with the kube-apiserver, cloud services such as Amazon EKS or Google GKE will
install and configure a pool of servers running Etcd for you, without giving you much
information about the machines. They offer you a working Kubernetes cluster without
letting you know too much about the underlying resources.

The Kubelet and worker node components 53

If you were to run an Etcd datastore on-premises, or if you intend to manage it by
yourself, you should know that Etcd is part of the Kubernetes control plane and should
run on a master node.

It can be run as part of a systemd unit file, just as we saw with the kube-apiserver,
but also as a Docker container, too. Etcd has the ability to natively include features,
allowing you to deploy them in a distributed way. Therefore, it is also natively ready to
be scaled horizontally since it's capable of spreading its dataset through multiple servers:
Etcd is built as a clustering solution on its own.

In general, you can decide on the following:

• Install Etcd on a machine that is dedicated to it.

• Group Etcd on the same machines running other control plane components.

The first solution is better because you reduce the risk of the unavailability of your cluster
in the event of an outage. Having a set of machines dedicated to running Etcd also
reduces any security risks.

The problem is that it will always cost more than the first solution since it involves more
machines, more planning, and also more maintenance. It's fine to run Etcd on the same
machines as the kube-apiserver; however, if you can afford it, don't hesitate to use
dedicated machines for Etcd.

The Kubelet and worker node components
So far, we have described key Kubernetes control plane components: the kube-
apiserver component and the Etcd datastore. You also know that in order to
communicate with the kube-apiserver component, you have to use the kubectl
command-line utility to get data to and from the Etcd datastore through the help of
kube-apiserver.

However, all of this is not telling us where and how these instructions result in running
containers on worker nodes. We will dedicate this part of the chapter to explain the
anatomy of a worker node by explaining the three components running on it:

• The container engine

The first component that should be installed on a worker node is the Docker daemon.
Kubernetes is not limited to Docker; it can manage other container engines, such as
rkt. However, in this book, we will be using Kubernetes with Docker, which is the most
common setup.

54 Kubernetes Architecture – From Docker Images to Running Pods

Therefore, any Linux machine running Docker can be used as a base on which to build a
Kubernetes worker node. Please note that a Kubernetes worker node can also run Docker
containers that were not launched by Kubernetes. That is no problem.

The Docker daemon running on a Kubernetes worker node is a plain old Docker
installation; it has nothing special compared to the one you might run on your
local machine.

The Kubelet agent
As its name suggests (Kube*), the Kubelet is a component of Kubernetes, which is part of
the worker node. In fact, it is the most important component of the worker node since it is
the one that will interact with the local Docker daemon installed on the worker node.

The Kubelet is a daemon running on the system. It cannot run as a Docker container itself.
Running it on the host system is mandatory; that's why we usually set up using systemd.
The Kubelet differs from the other Kubernetes components because it is the only one that
cannot run as a Docker container. The Kubelet strictly requires you to run on the host
machine.

When the Kubelet gets started, by default, it reads a configuration file located at /etc/
kubernetes/kubelet.conf.

This configuration specifies two values that are really important for the Kubelet to work:

• The endpoint of the kube-apiserver component

• The local Docker daemon UNIX socket

When the worker node launches, it will join the cluster by issuing an HTTP request
against the kube-apiserver component to add a Node entry to the Etcd datastore.
After that, running this kubectl command should list the new worker node:

$ kubectl get nodes

Note that kube-apiserver keeps a registry of all the worker nodes that are part of
the Kubernetes cluster. You can retrieve a list of all your nodes by simply running this
command.

Once the machine has joined the cluster, the Kubelet will act as a bridge between kube-
apiserver and the local Docker daemon. Kubelet is constantly running HTTP requests
against kube-apiserver to retrieve pods it has to launch. By default, every 20 seconds,
the Kubelet runs a GET request against the kube-apiserver component to list the
pods created on Etcd that are destined to it.

The Kubelet and worker node components 55

Once it receives a pod specification in the body of an HTTP response from kube-
apiserver, it can convert this into Docker containers specification that will be executed
against the specified UNIX socket. The result is the creation of your containers on your
local Docker daemon.

Important note
Remember that Kubelet does not read directly from Etcd, rather it interacts
with the kube-apiserver that exposes what is inside the Etcd data
layer. Kubelet is not even aware that an Etcd server runs behind the kube-
apiserver it polls.

These polling mechanisms, called watch mechanisms in Kubernetes terminology
are precisely how Kubernetes proceeds to run and delete containers against your
worker nodes at scale. Each Kubelet instance on each worker node is watching kube-
apiserver to get noticed when a change occurs in the Etcd datastore. And once a
change is noticed, Kubelet is capable of converting the changes into corresponding Docker
instructions and communicating with the local Docker daemon using the Docker UNIX
socket specified in the Kubelet configuration file. There are two things to pay attention
to here:

• Kubelet and the kube-apiserver must be able to communicate with each other
through HTTP. That's why HTTPS port 6443 must be opened between the worker
and master nodes.

• Because they are both running on the same machine, Kubelet and the Docker
daemon are interfaced through the usage of UNIX sockets.

Each worker node must have its own Kubelet, which means more HTTP polling against
the kube-apiserver as you add more worker nodes to your cluster. If your Kubernetes
cluster has hundreds of machines, it could result in a negative performance impact on the
kube-apiserver. Ultimately, you can even DDoS your kube-apiserver by having
too many worker nodes. That's why it's important to make the kube-apiserver and
the other control plane component highly available by scaling them efficiently.

If you create Docker containers manually on a worker node, the Kubelet won't be able to
manage it. You can completely bypass Kubernetes and create containers on your worker
nodes without having to use the Kubelet. Running a plain old docker run command
would work. Just bear in mind that the Kubelet is only capable of managing the Docker
containers it created. The reason for this is that the containers won't be created as part of
a pod in the Etcd datastore, and the sole job of Kubelet is that its local Docker daemon
reflects the configuration that is stored in Ectd.

56 Kubernetes Architecture – From Docker Images to Running Pods

Important Note
Please note that the container engine running on the worker node has no clue
that it is managed by Kubernetes through a local Kubelet agent. A worker
node is nothing more than a Linux machine running a Docker daemon with a
Kubelet agent installed next to it, executing raw Docker instructions. You can
execute the same with the Docker client manually.

The kube-proxy component
This is the last of the three components running on a worker node. An important part
of Kubernetes is networking. We will have to opportunity to dive into networking later;
however, you need to understand that Kubernetes has tons of mechanics when it comes
to exposing pods to the outside world or exposing pods to one another in the Kubernetes
cluster.

These mechanics are implemented at the kube-proxy level; that is, each worker node
requires an instance of a running kube-proxy so that the pods running on them are
accessible. We will explore a Kubernetes feature called Service, which is implemented at
the level of the kube-proxy component. Just like the Kubelet, the kube-proxy component
also communicates with the kube-apiserver component.

There are also several other sub-components or extensions that are operating at the
worker node level, such as cAdvisor or Container Network Interface (CNI). However,
they are advanced topics that we will discuss later.

The kube-scheduler component
The kube-scheduler component is a control plane component. It should run on the
master node.

This is a component that is responsible for electing a worker node out of those available to
run a newly created pod.

The role of the kube-scheduler component
Similar to the Kubelet, kube-scheduler queries the kube-apiserver at regular
intervals in order to list the pods that have not been scheduled. At creation, pods are not
scheduled, which means that no worker node has been elected to run them. A pod that
is not scheduled will be registered in Etcd but without any worker node assigned to it.
Therefore, no running Kubelet will ever be aware that this pod needs to get launched, and
ultimately, no container described in the pod specification will ever run.

The kube-scheduler component 57

Internally, the pod object, as it is stored in Etcd, has a property called nodeName. As the
name suggests, this property should contain the name of the worker node that will host
the pod. When this property is set, we say that the pod has been scheduled; otherwise, the
pod is pending for schedule.

We need to find a way to fill this value, and that is the role of the kube-scheduler.
To do this, the kube-scheduler poll continues the kube-apiserver at regular
intervals. It searches for pod resources with an empty nodeName property. Once it finds
such pods, it will execute an algorithm to elect a worker node. Then, it will update the
nodeName property in the pod by issuing an HTTP request to the kube-apiserver
component. While electing a worker node, the kube-scheduler component will take
into account some configuration values that you can pass:

Figure 2.7 – The kube-scheduler component polls the kube-apiserver component to find unscheduled
pods; it then schedules the pods by setting a nodeName property and updates the entry. Then, the pod

gets launched on the proper worker node by the local Kubelet

The kube-scheduler component will take into account some configuration values that
you can pass optionally. By using these configurations, you can precisely control how the
kube-scheduler component will elect a worker node. Here are some of the features to
bear in mind when scheduling pods on your preferred node:

• Node selector

• Node affinity and anti-affinity

• Taint and toleration

There are also advanced techniques for scheduling that will completely bypass the kube-
scheduler component. We will examine these features later.

58 Kubernetes Architecture – From Docker Images to Running Pods

Important Note
The kube-scheduler component can be replaced by a custom one. You
can implement your own kube-scheduler component with your own
custom logic to select a node and use it on your cluster. It's one of the strengths
of the distributed nature of the Kubernetes components.

Where do you install kube-scheduler?
Cloud providers such as Amazon EKS and Google GKE will create a highly available
installation of the kube-scheduler component without exposing you to much
information regarding the underlying machines that execute it.

Since the kube-scheduler component is part of the Kubernetes control plane,
you should not install it on a worker node. Again, you can choose to install kube-
scheduler on a dedicated machine or the same machine as kube-apiserver. It's
a short process and won't consume many resources, but there are some things to pay
attention to.

The kube-scheduler component should be highly available. That's why you should
install it on at least two different machines. If your cluster does not have a working kube-
scheduler component, new pods won't be scheduled, and the result will be a lot of
pending pods. If no kube-scheduler component is present, it won't have an impact on
the already scheduled pods. However, newly created pods won't result in new containers.

The kube-controller-manager component
This is the last Kubernetes component that we will review in this chapter. We will go
through it very quickly because some notions might appear too abstract to you at
that point.

The kube-controller-manager component is part of the Kubernetes control plane,
too. It's a binary that runs what we call the reconciliation loop . It tries to maintain
the actual state of the cluster with the one described in the Etcd so that there are no
differences between the states.

The kube-controller-manager component 59

The role of the kube-controller-manager component
Historically, the kube-controller-manager component is a big binary that
implements a lot of things. Essentially, it embeds what is called a Controller. Kubernetes
developers tend to break the different controllers being executed as part of the kube-
controller-manager component into multiple smaller binaries. This is because, with
time, kube-controller-manager holds multiple and diverse responsibilities that are
not compliant with the microservice philosophy.

Sometimes, the actual state of the cluster differs from the desired state that is stored on
Etcd. The reason for this could be because of a pod failure and more. Therefore, the role
of the kube-controller-manager component is to reconcile the actual state with the
desired state.

For example, let's take ReplicationController, which is one of the controllers
running as part of the kube-controller-manager binary.

Later, you'll observe that it's possible to tell Kubernetes to create and maintain a specific
number of pods across the different worker nodes. If for some reason, the actual number
of pods differs from the number you asked for, ReplicationController will start
running requests against the kube-apiserver component in order to recreate a new
pod in Etcd so that the failed one is replaced on a worker node.

Here is a list of the few controllers that are part of it:

• NodeController

• NamespaceController

• EndpointsController

• ServiceaccountController

As you can gather, the kube-controller-manager component is quite big. But
essentially, it's a binary that is responsible for reconciling the actual state of the cluster
with the desired state of the cluster that is stored in etcd.

Where do you install kube-controller-manager?
The kube-controller-manager component is part of the Kubernetes control plane.
Cloud providers such as Amazon EKS or Google GKE will create and configure a kube-
controller-manager component for you.

60 Kubernetes Architecture – From Docker Images to Running Pods

Since it's a control plane component, it should run on a master node. The kube-
controller-manager component can run as a Docker container or a systemd
service similarly to kube-apiserver. Additionally, you can decide to install the kube-
controller-manager component on a dedicated machine.

How to make Kubernetes highly available
As you've observed earlier, Kubernetes is a clustering solution. Its distributed nature
allows it to run on multiple machines. By splitting the different components across
different machines, you'll be able to make your Kubernetes cluster highly available. Next,
we will have a brief discussion on the different Kubernetes setups.

The single-node cluster
Installing all Kubernetes components on the same machine is the worst possible idea if
you want to deploy Kubernetes in production. However, it is perfectly fine for testing your
development. The single-node way consists of grouping all of the different Kubernetes
components on the same host or a virtual machine:

Figure 2.8 – All of the components are working on the same machine

How to make Kubernetes highly available 61

In general, this setup is considered a good way to start your journey with Kubernetes
using local testing. There is a project called Minikube that will help you set up a single-
node Kubernetes on your local machine by running a virtual machine from a pre-built
image with all of the components properly configured inside it. Minikube is good for
testing locally, but of course, all of the features requiring multiple nodes won't be available
with Minikube. Please note that it is, in fact, possible to run Minikube as a multi-node
cluster but should absolutely not be used in production. However, still, it's a good way
to start. Just remember to never deploy such clusters in production since it's a really
terrible idea:

Overall, this setup is the best way to start experimenting with Kubernetes, although
it prevents us from experimenting with multi-node scenarios. However, it's the worst
process for production. We recommend that you do not ever deploy such a setup for a
production workload.

The single-master cluster
This setup consists of having one node executing all of the control plane components with
as many worker nodes as you want:

Figure 2.9 – A single master node rules all of the worker nodes (here, it is three)

This setup is quite good, and the fact that there are multiple worker nodes will
enable high availability for your containerized application. However, there is still room
for improvement.

62 Kubernetes Architecture – From Docker Images to Running Pods

There is a single point of failure since there is only one master node. If this single master
node fails, you won't be able to manage your running Docker containers in a Kubernetes
way anymore. Your containers will become orphans, and the only way to stop/update
them would be to SSH on the worker node and run plain old Docker commands.

Also, there is a major problem here: by using a single Etcd instance, there is a huge risk
that you lose your dataset if the master node gets corrupted. If this happens, your cluster
will be impossible to recover.

Lastly, your cluster will encounter an issue if you start scaling your worker nodes. Each
worker node brings its own Kubelet agent, and periodically, Kubelet polls the kube-
apiserver every 20 seconds. If you start adding dozens of servers, you might DDoS
your kube-apiserver, resulting in an outage of your control plane. Remember that
your master node/control plane must be able to scale in parallel with your worker nodes:

Overall, this setup will always be better than a single-node Kubernetes; however, it's still
not highly available.

The multi-master multi-node cluster
This is the best way to achieve a highly available Kubernetes cluster. Both your running
containers and your control plane are replicated to avoid a single point of failure.

Figure 2.10 – This time, the cluster is highly available

How to make Kubernetes highly available 63

By using such a cluster, you are eliminating all the risks because you are running multiple
instances of your worker nodes and your master nodes. Both of the control plane
components that are your running containers will be scalable, and since the kube-
apiserver component is a stateless API, it's also ready to be scaled.

You will need a load balancer on top of your kube-apiserver instances in order to
spread the load evenly between all of them, which will require a little bit more planning.
Even though we don't have much information about this, it is almost certain that cloud
providers such as Amazon EKS or Google GKE are provisioning Kubernetes clusters that
are multi-master multi-worker clusters. If you wish to take it a step further, you can also
split all of the different control plane components across a dedicated host. It's better but
not mandatory, though. The cluster described in the preceding diagram is perfectly fine.

Before we end this chapter, I'd like to sum up all of the Kubernetes components. This table
will help you to memorize all of their responsibilities:

64 Kubernetes Architecture – From Docker Images to Running Pods

These components are the default ones and are officially supported as part of the
Kubernetes project. Remember that other Kubernetes distributions might bring additional
components, or they might change the behavior of these ones.

These components are the strict minimum that you need to have a working
Kubernetes cluster.

Summary
This was quite a big chapter, but at least, now, you have a list of all of the Kubernetes
components. Everything we will do later on will be related to these components: they
are the core of Kubernetes. This chapter was full of technical details too, but it was still
relatively theoretical. Don't worry if things are still not very clear to you. You will gain a
better understanding through practice.

The good news is that you are now completely ready to install your first Kubernetes cluster
locally and things are going to be a lot more practical from now on. It is the next step, and
that's what we will do in the next chapter. After the next chapter, you'll have a running
Kubernetes cluster locally on your workstation, and you will be ready to run your first
pods using Kubernetes!

3
Installing Your First
Kubernetes Cluster

In the previous chapter, we had the opportunity to explain what Kubernetes is, its
distributed architecture, the anatomy of a working cluster, and how it can manage your
Docker containers on multiple Linux machines. Now, we are going to get our hands dirty
because it's time to install Kubernetes. The main objective of this chapter is to get you a
working Kubernetes for the coming chapters. This is so that you have your own cluster to
work on, practice with, and learn about while reading this book.

All Kubernetes installations require two steps. First, you need to install the Kubernetes
cluster itself, and second, you need to configure your kubectl HTTP client so that it can
perform API calls to the kube-apiserver component installed on your master node.

Installing Kubernetes means that you have to get the different components to work
together. Of course, we won't do that the hard way with systemd; instead, we will use
automated tools.These tools have the benefit of launching and configuring all of the
components for us locally.

66 Installing Your First Kubernetes Cluster

If you don't want to have a Kubernetes cluster on your local machine, we're also going
to set up a minimalist yet full-featured production-ready Kubernetes cluster on Google
Kubernetes Engine (GKE), Amazon Elastic Kubernetes Service (EKS), and Azure
Kubernetes Service (AKS). These are cloud-based and production-ready solutions. In this
way, you will be able to practice and learn on a real-world Kubernetes cluster hosted on
the cloud.

Whether you want to go local or on the cloud, it is your choice. You'll have to choose the
one that suits you best by considering each solution's benefits and drawbacks. In both
cases, however, you'll require a working Kubectl installed on your local workstation to
communicate with the resulting Kubernetes cluster. Installation instructions for Kubectl
are available in the previous chapter, Chapter 2, Kubernetes Architecture – From Docker
Images to Running Pods.

In this chapter, we're going to cover the following main topics:

• Installing a single-node cluster using Minikube

• Installing a multi-node local cluster using Kind

• Installing a full-featured Kubernetes cluster on GKE

• Installing a full-featured Kubernetes cluster on Amazon EKS

• Installing a full-featured Kubernetes cluster on AKS

Technical requirements
To follow along with the examples in this chapter, you will require the following:

• Kubectl installed on your local machine

• Reliable internet access

• A Google Cloud Platform (GCP) account with a valid payment method to follow
the Installing a full-featured Kubernetes cluster on Google GKE section

• An AWS account with a valid payment method to follow the Installing a full-
featured Kubernetes cluster on Amazon EKS section

• An Azure account with a valid payment method to follow the Installing a full-
featured Kubernetes cluster on Azure AKS section

Installing a single-node cluster with Minikube 67

Installing a single-node cluster with Minikube
In this section, we are going to learn how to install a local Kubernetes cluster using
Minikube. It's probably the easiest way to get a working Kubernetes installation locally. By
the end of this section, you're going to have a working single-node Kubernetes installation
on your local machine.

Minikube is easy to use and completely free. It's going to install all of the Kubernetes
components on your local machine and configure all of them. Uninstalling all of the
components through Minikube is easy too, so you won't be stuck with it if, one day, you
want to destroy your local cluster.

Minikube has one big advantage: it's a super useful tool in which to test Kubernetes
scenarios quickly. However, its major drawback is that it prevents you from running a
multi-node Kubernetes cluster and, therefore, all of the multi-node scenarios we will
discuss later won't be testable for you. That being said, if you do not wish to use Minkube,
you can completely skip this section and choose another method described in this chapter.

Launching a single-node Kubernetes cluster using
Minikube
The main purpose of Minikube is to launch the Kubernetes components on your local
system and have them communicate with each other. To do this, Minikube can work with
two different methods:

• A virtual machine

• A Docker container

The first method requires you to install a hypervisor on top of your local system. Then,
Minikube will wrap all of the Kubernetes components onto a virtual machine that will be
launched. This method is fine, but it requires you to install a hypervisor such as KVM on
Linux or HyperKit on macOS to work.

The other method is simpler. Instead of using a virtual machine, Minikube uses a local
Docker daemon to launch the Kubernetes components inside a big Docker container. This
method is simpler since you just need to have Docker installed on your system. That's the
solution we will use.

If you do not have Docker installed on your system, make sure that you install it following
the instructions at https://docs.docker.com/get-docker/. The installation
process is easy, but the steps are slightly different depending on your operating system.

https://docs.docker.com/get-docker/

68 Installing Your First Kubernetes Cluster

After Docker has been installed, we need to install Minikube itself. Here, again, the
process is slightly different depending on your operating system:

• Use the following commands for Linux:

$ curl -Lo minikube https://storage.googleapis.com/
minikube/releases/latest/minikube-linux-amd64

$ chmod +x minikube

$ mkdir -p /usr/local/bin

$ sudo install minikube /usr/local/bin

• Use the following commands for macOS:

$ curl -Lo minikube https://storage.googleapis.com/
minikube/releases/latest/minikube-linux-amd64

$ chmod +x minikube

$ mkdir -p /usr/local/bin

$ sudo install minikube /usr/local/bin

• You can also install it from Homebrew using the following command:

$ brew install minikube

• For Windows, once Minikube has been installed on your system, you can
immediately run your first Kubernetes cluster using the following command:

$ minikube start --driver="docker"

minikube v1.8.2 on Darwin 10.14.5

Using the docker driver based on user configuration

Appending --driver might not be required. If you do not have any hypervisor such
as VirtualBox or HyperKit, then Minikube should automatically fall back to Docker.
However, if you do have multiple hypervisors on your system, you can set the Docker
value explicitly, as shown in the previous example. The result of this command will be a
working Kubernetes cluster on your localhost. It's actually as simple as that; you now have
a Kubernetes cluster on your system with literally just one command.

Once the command is complete, you can run the following command to check the state of
the Kubernetes components installed by Minikube:

$ minikube status

host: Running

kubelet: Running

Installing a single-node cluster with Minikube 69

apiserver: Running

kubeconfig: Configured

The preceding output shows that the cluster is up and running, and we can now start
interacting with it.

Now, we need to create a kubeconfig file for our local Kubectl CLI to be able to
communicate with this new Kubernetes installation. The good news is that Minikube also
generated one on the fly for us when we launched the minikube start command. The
kubeconfig file generated by Minikube is pointing to the local kube-apiserver
endpoint, and your local Kubectl was configured to call this cluster by default. So,
essentially, there is nothing to do: the kubeconfig file is already formatted and in the
proper location.

Use the following command to display the current kubeconfig file. You should observe
a cluster, named minikube, that points to a local IP address:

$ kubectl config view

Following this, you can run this command, which will show the Kubernetes cluster your
Kubectl is pointing to right now:

$ kubectl config current-context

minikube

Now, let's try to issue a real Kubectl command to list the nodes that are part of our
Minikube cluster. If everything is okay, this command should reach the kube-
apiserver component launched by Minikube, which will return only one node since
Minikube is a single-node solution. Let's list the nodes with the following command:

$ kubectl get nodes

NAME STATUS ROLES AGE VERSIO

m01 Ready master 2m41 v1.17.3

If you don't view any errors when running this command, it means that your Minikube
cluster is ready to be used and is fully working!

This is the very first real kubectl command you ran as part of this book. Here, a real
kube-apiserver component received your API call and answered back with an HTTP
response containing data coming from a real Etcd datastore. In our scenario, this is the
list of the nodes in our cluster. Good job! You just set up your first ever Kubernetes cluster!

70 Installing Your First Kubernetes Cluster

Important note
Since Minikube creates a single-node Kubernetes cluster, this command only
outputs one node. This node is both a master node and a worker node at the
same time. It will run both Kubelet and the control plane components. It's good
for local testing, but do not deploy such a setup in production.

What we can do now is list the status of the control plane components so that you can
start familiarizing yourself with kubectl. In fact, they are both the same; the second one
is just an alias for the first one. There are a lot of aliases in kubectl along with more than
one way to type the same command:

$ kubectl get componentstatuses

$ kubectl get cs # The exact same command, "cs" is an alias

NAME STATUS MESSAGE ERROR

scheduler Healthy ok

controller-manager Healthy ok

etcd-0 Healthy {"health":"true"}

This command should output the status of the control plane components. You should see
the following:

• A running Etcd datastore

• A running kube-scheduler component

• A running kube-controller-manager component

Stopping and deleting the local Minikube cluster
You might want to stop or delete your local Minikube installation. To proceed, do not kill
the Docker container directly, but rather, use the Minikube command-line utility. Here are
the two commands to do so:

$ minikube stop

Stopping "minikube" in docker ...

Node "m01" stopped.

Launching a multi-node Kubernetes cluster with Kind 71

The preceding command will stop the cluster. However, it will continue to exist; its
state will be kept, and you will be able to resume it later using the following minikube
start command again. You can check it by calling the minikube status command
again:

$ minikube status

host: Stopped

kubelet: Stopped

apiserver: Stopped

kubeconfig: Stopped

If you want to completely destroy the cluster, use the following command:

$ minikube delete

If you use this command, the cluster will be completely destroyed. Its state will be lost and
impossible to recover.

Now that your Minikube cluster is operational, it's up to you to decide whether you want to
use it to follow the next chapters or pick another solution. Minikube is fine, but you won't
be able to practice when we get to multi-node scenarios. If you are fully aware of this and
you still wish to continue, you can skip the next sections of this chapter. Otherwise, let's
examine another tool in which to set up a local Kubernetes cluster, called Kind.

Launching a multi-node Kubernetes cluster
with Kind
In this section, we are going to discuss another tool called Kind, which is far less known
than Minikube, but which resembles it a lot. This tool is also designed to run a Kubernetes
cluster locally just like Minikube. The main difference is that Kind is capable of launching
multi-node Kubernetes clusters contrary to Minikube, which is a single-node solution.

The whole idea behind Kind is to use Docker containers such as Kubernetes worker nodes
thanks to the Docker-in-Docker (DIND) model. By launching Docker containers, which
themselves contain the Docker daemon and the Kubelet, you can manage to make them
behave as Kubernetes worker nodes.

This is exactly the same as when you use the Docker driver for Minikube, except that
there, it will not be done in a single container but in several. The result is a local multi-
node cluster. Similar to Minikube, Kind is free, and you don't have to pay to use it.

72 Installing Your First Kubernetes Cluster

Important Note
Similar to Minikube, Kind is a tool that is used for local development and
testing. Please never use it in production because it is not designed for it.

Installing Kind onto your local system
Since Kind is a tool entirely built around Docker, you need to have the Docker daemon
installed and working on your local system. If you do not have Docker installed on your
system, make sure that you install it by following the instructions at https://docs.
docker.com/get-docker/. The installation process is easy, but the steps are slightly
different depending on your operating system.

After Docker has been installed, we need to install Kind itself. Again, the process will be
different depending on your operating system:

• Use the following commands for Linux:

$ curl -Lo ./kind https://kind.sigs.k8s.io/dl/v0.8.1/
kind-$(uname)-amd64

$ chmod +x ./kind

$ mv ./kind /usr/local/bin/kind

• Use the following commands for macOS:

$ curl -Lo ./kind https://kind.sigs.k8s.io/dl/v0.8.1/
kind-$(uname)-amd64

$ chmod +x ./kind

$ mv ./kind /usr/local/bin/kind

• You can also install it with Homebrew:

$ brew install kind

• Use the following commands for Windows:

$ curl.exe -Llo kind-windows-amd64.exe https

• You can also install it with Chocolatey:

$ choco install kind

https://docs.docker.com/get-docker/
https://docs.docker.com/get-docker/

Launching a multi-node Kubernetes cluster with Kind 73

Once Kind has been installed on your system, you can immediately proceed to launch a
new Kubernetes cluster using the following command:

$ kind create cluster

Creating cluster "kind" ...

When you run this command, Kind will start to build a Kubernetes cluster locally by
pulling a Docker image containing all of the control plane components. The result will be
a single-node Kubernetes cluster with a Docker container acting as a master node. That
being said, we do not want this setup since we can already achieve it with Minikube. What
we want is a multi-node cluster. To do this, we must write a very small configuration file
and tell Kind to use it as a template to build the local Kubernetes cluster. So, let's get rid of
the single-node Kind cluster that we just built, and let's rebuild it as a multi-node cluster:

1. Run this command to delete the cluster:

$ kind delete cluster

Deleting cluster "kind" ...

2. Then, we need to create a config file that will serve as a template for Kind to build
our cluster. Simply copy the following content to a local file in this directory, for
example, ~/.kube/kind_cluster:

Kind: Cluster

apiVersion: kind.sigs.k8s.io/v1alpha3

nodes:

- role: control-plane

- role: worker

- role: worker

- role: worker

Please note that this file is in YAML format. Pay attention to the nodes array, which
is the most important part of the file. This is where you tell Kind how many nodes
you want in your cluster. The role key can take two values: control plane and worker.

Depending on which role you chose, a different node will be created.
3. Let's relaunch the kind create command with this config file to build our multi-

node cluster. For the given file, the result will be a one-master three-worker
Kubernetes cluster:

$ kind create cluster --config ~/.kube/kind_cluster

Creating cluster "kind" ...

74 Installing Your First Kubernetes Cluster

Following this, you should have four new Docker containers: one running as a master
node and the other three as worker nodes of the same Kubernetes cluster.

Now, as always with Kubernetes, we need to write a kubeconfig file in order for our
Kubectl utility to be able to interact with the new cluster. And guess what, Kind already
generated the proper configuration and appended it to our ~/.kube/config file,
too. Additionally, Kind set the current context to our new cluster, so there is essentially
nothing left to do. We can immediately start querying our new cluster. Let's list the node
using the kubectl get nodes command. If everything is okay, we should view four
nodes:

$ kubectl get nodes

Everything seems to be perfect. Your Kind cluster is working!

Just as we did with Minikube, you can also check for the component's statuses using the
following command:

$ kubectl get cs

Stopping and deleting the local Kind cluster
You might want to stop or remove everything Kind created on your local system to clean
the place after your practice. To do so, you can use the following command:

$ kind stop

This command will stop the Docker containers that Kind is managing. You will achieve
the same result if you run the Docker stop command on your containers manually.
Doing this will stop the containers but will keep the state of the cluster. That means your
cluster won't be destroyed, and simply relaunching it using the following command will
get the cluster back to its state before you stopped it.

If you want to completely remove the cluster from your system, use the following
command. Running this command will result in removing the cluster and its state from
your system. You won't be able to recover the cluster:

$ kind delete cluster

Installing a Kubernetes cluster using Google GKE 75

Now that your Kind cluster is operational, it's up to you to decide whether you want to
use it to practice while reading the coming chapters. You can also decide whether to pick
another solution described in the following sections of this chapter. Kind is particularly
nice because it's free to use and allows you to install a multi-node cluster. However,
it's not designed for production and remains a development and testing solution for a
non-production environment. Kind makes use of Docker containers to create Kubernetes
nodes, which, in the real world, are supposed to be Linux machines.

Installing a Kubernetes cluster using
Google GKE
Google GKE is a cloud offering that is part of GCP, which is Google's cloud offering. If you
do not want to install anything on your local system, this solution might be good for you.
Indeed, Google GKE is a cloud-based solution, meaning that the resulting Kubernetes
won't run on your own system.

Google GKE allows you to set up a full-featured Kubernetes cluster on the cloud that is
built for production. The result of the service will be a Kubernetes cluster that runs on
Google's machines on their cloud platform, not on your own local machine. Your local
machine will only serve as a Kubernetes client thanks to Kubectl pointing to a remote
endpoint exposed by Google.

The main advantage is that you will have a real production-ready and full-featured
Kubernetes cluster to practice with, which is ideal in which to train and improve your
skill. However, Google GKE is a commercial product, so you'll have to spend some dollars
in order to use it, as well as having a valid payment method linked to your GCP account.
Indeed, Google requires you to link your credit card to your GCP account prior to
accessing any of their services.

Here, we assume you already have a GCP account with a valid payment method linked,
and you are ready to set up a Kubernetes cluster on Google GKE.

76 Installing Your First Kubernetes Cluster

Launching a multi-node Kubernetes cluster on Google
GKE
There are different ways in which to set up a Kubernetes cluster on Google GKE. The
easiest way is through the gcloud command-line utility. Indeed, GCP exposes all its
cloud services as a command-line utility called gcloud. This tool can literally set up a
Kubernetes cluster on the GCP cloud using just one command. So, let's proceed to install
the gcloud utility onto your local system:

• Use the following commands for Linux:

$ curl https://sdk.cloud.google.com | bash

$ exec -l $SHELL

$ gcloud init

• Use the following commands for macOS:

$ curl https://sdk.cloud.google.com | bash

$ exec -l $SHELL

$ gcloud init

• On Windows, you need to download the ZIP file at https://dl.google.com/
dl/cloudsdk/channels/rapid/google-cloud-sdk.zip. Then, unzip it,
run the google-cloud-sdk\install.bat script, and follow the instructions.
Restart your command line and run the following command:

C:\> gcloud init

The gcloud init command is an interactive command. Simply follow the instructions
it outputs and it should be fine. At some point, gcloud will require you to authenticate
to your GCP account by opening your default web browser. Simply proceed, and gcloud
should notice that you are successfully authenticated.

Then, gcloud will require you to create a new project. To explain a little bit about how
GCP works, the platform is divided into projects that are logical units used to organize
your workloads.

https://dl.google.com/dl/cloudsdk/channels/rapid/google-cloud-sdk.zip
https://dl.google.com/dl/cloudsdk/channels/rapid/google-cloud-sdk.zip

Installing a Kubernetes cluster using Google GKE 77

With GCP, the first thing to do is create a project that will contain your resources. So, let's
create a project that will host our Kubernetes cluster on GKE. There is a little problem
here: project IDs are meant to be unique across all GCP accounts. That means if someone
in the world ever uses a project ID, you can't use it anymore. In order to find a free project
ID, you can add some random values to it. I named mine gke-cluster-0123456789:

1. Use the following command to create your project:

$ gcloud create projects gke-cluster-0123456789

Please choose a unique name, and then try to append some random
characters to it to find a free project ID. Use this command and replace my
gke-cluster-0123456789 ID with your own project ID.

2. Once the project has been created, select it from the drop-down menu on the GCP
web console:

Figure 3.1 – The GCP web console

3. Now that the project is ready, let's define it as our current project at the gcloud
level, too:

$ gcloud config set project gke-cluster-0123456789

Updated property [core/project].

78 Installing Your First Kubernetes Cluster

4. The last thing you need to do is to enable billing on your GCP account. To do
that, open the Google GKE console on the menu on the left-hand side and select
Clusters:

Figure 3.2 – The GCP web console GKE clusters menu
On this screen, you should see an Enable Billing button. Click on this button
and enter your billing information. Once done, GCP will proceed in enabling the
Kubernetes Engine API for your project. This can take a few minutes, but after that,
you will be able to create your first cluster on GKE.

To create the cluster, there are two ways you can use, as follows:

• You can use the web console.

• You can use the gcloud command-line tool.

Installing a Kubernetes cluster using Google GKE 79

Let's use the gcloud command line. The good news is that gcloud can literally
bootstrap a GKE cluster and configure Kubectl afterward in just one command:

1. Run the following command:

$ gcloud container clusters create mygkecluster
--num-nodes 3 --machine-type e2-medium --europe-west1

This command will create a Kubernetes cluster on GKE, called mygkecluster,
that will have three worker nodes. These worker nodes will be run as e2-medium
instances, which are two CPU virtual machines.

The cluster is going to be created in the europe-west1 region of the GCP cloud.
You should pick the nearest region to where you are in order to reduce network
latency. In my case, europe-west-1 is fine, but you should pick us-west-1
if you live in the US, for example. The complete list of available regions for GCP
is available at https://cloud.google.com/compute/docs/regions-
zones.

2. After you have launched the command, the new cluster should appear on the
Google GKE screen, as shown in Figure 3.3:

Figure 3.3 – The GCP web console
Good job! Wait a little bit for the cluster creation to complete; it can take a few
minutes. Bear in mind that you will be billed the moment the cluster gets launched!

After a few minutes, the Kubernetes cluster is launched on Google GKE and is ready
to use. Remember, the gcloud command we ran also generated a kubeconfig
file for our local environment. So, we will not have to write the configuration file by
ourselves.

3. Run the following command to make sure your Kubernetes cluster is up and
running and the Kubectl command line is properly configured to query it:

$ kubectl get nodes

https://cloud.google.com/compute/docs/regions-zones
https://cloud.google.com/compute/docs/regions-zones

80 Installing Your First Kubernetes Cluster

This command should authenticate against the Kubernetes cluster running on Google
GKE and retrieve the list of the nodes running as part of the cluster. Good job! You have
successfully set up a Kubernetes cluster on GKE!

Stopping and deleting a Kubernetes cluster on
Google GKE
Cloud providers bill you when you use their services. Every second a Kubernetes cluster
is in the running state in GKE is a second that you will be charged for at the end of the
month. So, it's a good idea to stop cloud services when they are not being used and
resume them when needed.

Unfortunately, you can't stop a GKE cluster the way you can with Minikube or Kind. We
are forced to completely destroy it and recreate it, meaning that we will lose the state of the
cluster each time. It's not a big deal, though, as, for now, we're just looking for a practice
cluster that we can break and recreate at will. To proceed with cluster removal, type in the
following command:

$ gcloud container clusters delete mygkecluster --region
europe-west-1

You are all set to go! If you are happy with GKE, you can proceed to the next chapter and
use your brand-new cluster to practice while reading this book. Otherwise, you can pick
another solution. Bear in mind that GKE is not free; you are charged $0.1 per hour to use
it, resulting in a $72/month if the cluster is running the whole month. Add to this price
the cost of the worker nodes, which are instances that are billed independently based on
their instance types.

Installing a Kubernetes cluster using
Amazon EKS
If you do not wish to have a local Kubernetes cluster nor use Google GKE, you can also
set up a remote cluster on the AWS cloud. This solution is ideal if AWS is your preferred
cloud provider. This section will demonstrate how to get a Kubernetes cluster using
Amazon EKS, which is the public cloud offering by AWS.

Using this solution is not free. Amazon EKS is a commercial product that is a competitor
to Google GKE. Amazon EKS offers to manage a Kubernetes control plane just for
you. That means the service will set up some nodes running all of the control plane
components without exposing you to these machines. You will get an endpoint for
a remote kube-apiserver component and that's all.

Installing a Kubernetes cluster using Amazon EKS 81

Once done, you'll have to set up a few Amazon EC2 instances (which are virtual
machines), and you'll have them join the control plane. These Amazon EC2 instances
will be your worker nodes. In this way, you'll have a multi-node Kubernetes cluster with
a multi-worker setup. This result of this lab will be a full-featured multi-node Kubernetes
cluster, which is an ideal solution with which to enter the coming chapters. Of course,
we won't set up all of this ourselves; a lot of solutions exist in which to provision a
fully configured Amazon EKS instance, and we will examine one of these solutions.
Additionally, we will try not to spend a lot money on AWS ideally.

The cost of the infrastructure will depend on the AWS region where your cluster is going
to be deployed:

• The control plane, which costs $0.74/hour

• 3 x t3.medium worker nodes (around 0.42 USD per instance depending on the AWS
region where you'll deploy your cluster)

Because it's an hourly pricing model, remember to destroy everything from your AWS
account when you are not using it in order to save money.

There is a prerequisite when it comes to working with Amazon EKS. You need to have an
AWS account with a properly linked payment method. Indeed, similarly to GCP, AWS
requires you to link a valid payment method prior to gaining access to their services.
In this section, we assume that you already have an AWS account with a valid payment
method linked to it.

Launching a multi-node Kubernetes cluster on
Amazon EKS
There are multiple ways in which to get a working cluster with Amazon EKS. You can
use CloudFormation, Terraform, AWS CLI commands, or even the web AWS console.
Additionally, AWS offers a CLI tool to communicate with the Amazon EKS service, called
eksctl, which can be used to set up Kubernetes clusters on Amazon EKS with just one
or two commands. However, we're not going to use this solution because it would require
you to install another tool on your machine dedicated to AWS, which is not the purpose
of our discussion here.

Instead, in this tutorial, we are going to use AWS CloudFormation for the sake of
simplicity. AWS has already put together a working CloudFormation template that
allows you to deploy a Kubernetes cluster. You can find this template on the GitHub
repository, called AWS Quickstart, at https://github.com/aws-quickstart/
quickstart-amazon-eks.

https://github.com/aws-quickstart/quickstart-amazon-eks
https://github.com/aws-quickstart/quickstart-amazon-eks

82 Installing Your First Kubernetes Cluster

AWS makes use of something called virtual private clouds (VPCs). In fact, everything
you deploy on AWS is deployed inside of a VPC, and Amazon EKS is no exception. There
are two possible solutions, as follows:

• You deploy your EKS cluster onto an existing VPC.

• You deploy your EKS cluster in a new VPC.

The first choice will work, but there is a risk that deploying the cluster into an existing
VPC will overlap with existing resources. To not impact any applications that might
already exist on your AWS account, we are going to deploy the Amazon EKS cluster on a
new VPC. Fortunately for us, the CloudFormation template allows us to create a new VPC
while provisioning the Amazon EKS cluster. I encourage you to create a new VPC since
VPC creation is free. Bear in mind that you are still limited to five VPCs per AWS region
when using them.

Let's sum up all of the different steps required to bootstrap a cluster on Amazon EKS:

1. Create a key pair on the Amazon EC2 service.
2. Launch the CloudFormation template in the Amazon CloudFormation service.
3. Create an IAM user in the Amazon IAM service.
4. Install and configure the AWS CLI with the IAM user created earlier.
5. Generate a kubeconfig file with the AWS CLI.

First, you need to create an EC2 key pair:

1. Please sign in to the AWS web console and open the Amazon EC2 service. You can
find the service by searching for it in the search bar under the Compute menu on
the home page:

Figure 3.4 – The EC2 menu in the AWS web console

Installing a Kubernetes cluster using Amazon EKS 83

2. Once you have opened the EC2 service, select the Key Pairs tab on the
left-hand side:

Figure 3.5 – The Key Pairs menu in the EC2 web console

3. From this screen, click on the Create Key button. Give the new key pair an arbitrary
name and then download the .pem file. This key pair is going to be useful for you to
SSH to your worker nodes later.

4. The next step is to create the Kubernetes cluster itself. We are going to do that
through the CloudFormation template that we talked about earlier. To do that,
enter the CloudFormation web console that is accessible under the Management &
Governance menu on the home page:

Figure 3.6 – The CloudFormation menu in the AWS web console

84 Installing Your First Kubernetes Cluster

5. Select Create a stack from an Amazon S3 URL and enter the following URL into
the input: https://s3.amazonaws.com/aws-quickstart/quickstart-
amazon-eks/templates/amazon-eks-entrypoint-new-vpc.
template.yaml. Please refer to the following screenshot:

Figure 3.7 – The S3 URL displayed in the CloudFormation stack creation web view

6. The next screen will enable you to define some variables and parameters that are
needed by the CloudFormation template to launch your Amazon EKS cluster. You'll
observe that a lot of variables are declared with a default value, but some of them
must be set by you. Pay attention to the following input that should be displayed in
the console:

 � Stack name: Set a logical name for CloudFormation to keep track of the resources
created by the template. For example, you can set eks_cluster.

 � Availability Zone: Pick at least two availability zones available in your current
AWS region.

 � Allowed external access CIDR: You can define your own IP address followed by
a /32 to allow your IP address to communicate with the EKS cluster. Otherwise,
you can set 0.0.0.0/0 to allow remote communication from the whole internet
if you do not know your IP address.

https://s3.amazonaws.com/aws-quickstart/quickstart-amazon-eks/templates/amazon-eks-entrypoint-new-vpc.template.yaml
https://s3.amazonaws.com/aws-quickstart/quickstart-amazon-eks/templates/amazon-eks-entrypoint-new-vpc.template.yaml
https://s3.amazonaws.com/aws-quickstart/quickstart-amazon-eks/templates/amazon-eks-entrypoint-new-vpc.template.yaml

Installing a Kubernetes cluster using Amazon EKS 85

 � Number of Availability Zones: Set 2 or 3 availability zones so that your EKS
cluster will be highly available.

 � Provision bastion host: You should set enabled if you do want to deploy a bastion
host on your VPC. The bastion host will be an SSH jump machine to access the
instances that will be launched deeper into your VPC.

 � SSH key name: Select the name of the SSH key pair that you created in the
previous step.

7. After you have filled in all of these options, select the Next button until you are
asked to start the new stack creation. CloudFormation will begin provisioning your
new Amazon EKS cluster; it can take approximately 15 minutes to complete, as the
process is quite long. There is nothing left to do in CloudFormation. Please wait for
the cluster to be fully provisioned before going any further.

8. After a few minutes, your new clusters will enter the ready state. We need to
generate a new kubeconfig file in our local machine to be able to interact with
the Amazon EKS cluster. Unfortunately for us, CloudFormation cannot do that.
There are additional steps to take, and they require the usage of the AWS CLI
command-line utility in order to generate a kubeconfig file. That's why we must
install the AWS CLI:

• Use the following commands for Linux:

$ sudo apt-get update

$ sudo apt-get install awscli

• Use the following commands for macOS:

$ sudo apt-get update

$ sudo apt-get install awscli

• On Windows, download and launch the MSI installer accessible at https://
awscli.amazonaws.com/AWSCLIV2.msi.

https://awscli.amazonaws.com/AWSCLIV2.msi
https://awscli.amazonaws.com/AWSCLIV2.msi

86 Installing Your First Kubernetes Cluster

9. Once the AWS CLI has been installed, we need to retrieve AWS access keys from
the AWS console in order to configure the AWS CLI. To get those keys, we must
create a new IAM user in the Amazon IAM web console. Go to the AWS web
console and open the IAM service that is underneath the Security, Identity, &
Compliance category:

Figure 3.8 – The IAM menu in the AWS web console

10. Once you are in the AWS IAM console, select Users from the tab on the
left-hand side:

Figure 3.9 – The Users menu in the IAM web console

Installing a Kubernetes cluster using Amazon EKS 87

11. In this new screen, click on the Add user button and fill in the different options as
follows:

 � User Name: Select an arbitrary name. Let's name it eks_user.

 � Access Type: Select programmatic access.

12. Now you should be at the permission selection screen. AWS recommends that you
respect the least privileged principle: that is, each user should strictly have access
to the resource it needs to interact with. However, for the sake of simplicity, we will
violate this principle and grant the AdministratorAccess policy to our eks_
user.

13. Pick the Attach existing policy directly option and select AdministratorAccess,
which should be displayed first in the drop-down list. From the next screen, you can
set tags for the new user. Following this, review and create it.

14. When the user has been created, AWS gives you an access key ID and a secret access
key. Grab these two values because we are going to need them. Run the following
command to start the configuration of the AWS CLI:

$ aws configure –profile eks_user

AWS Access Key ID [None]: [Access Key ID]

AWS Secret Access Key [None]: [Secret access key]

Default region name [None]: [Your current AWS region]

Default output format [None]: json

15. Once you have configured the AWS CLI, export a new variable in your local shell to
authenticate AWS CLI calls against your AWS account:

$ export AWS_PROFILE=eks_user

16. Now, you can run your first AWS CLI command. Let's list the Kubernetes clusters
created in the Amazon EKS service. You should see the Kubernetes cluster created
by the CloudFormation template:

$ aws eks list-clusters

{

 "clusters": [

 "EKS-XXXXXX"

]

}

88 Installing Your First Kubernetes Cluster

17. Now that the AWS CLI has been fully configured, we can use it to generate the
kubeconfig file. Run the following command. The name of the cluster required is
the value that was outputted in the previous command:

$ aws eks update-kubeconfig --name EKS-XXXXX

Added new context arn:aws:eks:eu-west-1:XXX:cluster/
EKS-XXX to /root/.kube/config

18. As you can see, this command generates a kubeconfig file and directly places it
in the correct directory, which is $HOME/.kube/config. You can now run your
first kubectl command, which will list the nodes that are part of the Amazon EKS
clusters:

$ kubectl get nodes

The preceding command should output the master and worker nodes running on the
Amazon EKS cluster. This was challenging! But you have successfully set up a Kubernetes
cluster using Amazon EKS.

This cluster is a production-ready, multi-node cluster. You can use it to practice on a real-
world Kubernetes setup. However, bear in mind that it is not free, and you are spending
money each second the service is running. That is why you should understand how to
delete the Kubernetes cluster when it is not being used. We will explore this next.

Deleting the Kubernetes cluster on Amazon EKS
Unfortunately for us, there is no way to stop and resume a Kubernetes cluster running
on the Amazon EKS service. The feature does not exist. The only thing we can do is to
completely destroy it and then recreate it. This will work, but destroying it will result in a
state loss. This means that you won't be able to restore the cluster to the state it had before
its removal.

Deleting a cluster is super easy since we created it with a CloudFormation template.
The easiest way to get rid of the cluster is to go to the stack list in the CloudFormation
web console and remove the stack. As a result, CloudFormation will remove all of the
resources that were created.

If you want to recreate the cluster, you can simply recreate it using the CloudFormation
template once more. You won't have to reconfigure the AWS CLI since you have already
done it once, but of course, you will need to regenerate a new kubeconfig file using the
aws eks update-kubeconfig command, as demonstrated earlier in this chapter.

Installing a Kubernetes cluster using Azure AKS 89

Bear in mind that you should destroy the cluster when you are not using it, for example,
during nighttime. Removing the resources that you are not using is the best way to save
money on your cloud bill.

Installing a Kubernetes cluster using
Azure AKS
Lastly, I'd like to show you how you can provision a Kubernetes cluster on the Azure AKS
service. Azure AKS is a service that is part of the Azure cloud provider, which is offered by
Microsoft. AKS is the third major Kubernetes cloud offering around and is a competitor
to Amazon EKS and Google GKE. Mostly, the service does the same job as the other
two: it allows you to create Kubernetes clusters in just a few clicks directly on the Azure
cloud. This solution might be good for you if you are willing to install a Kubernetes cluster
without using your own machine or if Azure is simply your preferred cloud provider.

Launching a multi-node Kubernetes cluster on
Azure AKS
Bootstrapping a cluster on Azure AKS is very easy. Similar to Google GKE, it has
a command-line utility, called az, which can start a Kubernetes cluster in just one
command. The az command line can also generate a kubeconfig file for us to allow
Kubectl to communicate with our Kubernetes cluster on AKS:

1. Let's install the AKS command-line utility:

• Use the following commands for Linux:

$ sudo apt-get update

$ sudo apt-get install ca-certificates curl
apt-transport-https lsb-release gnupg

$ curl -sL https://packages.microsoft.com/keys/microsoft.
asc | gpg --dearmor |sudo tee /etc/apt/trusted.gpg.d/
microsoft.gpg > /dev/null

$ AZ_REPO=$(lsb_release -cs)

$ echo "deb [arch=amd64] https://packages.microsoft.com/
repos/azure-cli/ $AZ_REPO main" | sudo tee /etc/apt/
sources.list.d/azure-cli.list

$ sudo apt-get update

$ sudo apt-get install azure-cli

90 Installing Your First Kubernetes Cluster

• Use the following commands for macOS:

$ brew update && brew install azure-cli

• On Windows, you need to download and launch the MSI installer that is available
in the official documentation from Microsoft. You can locate it at https://
docs.microsoft.com/fr-fr/cli/azure/install-azure-cli-
windows?view=azure-cli-latest&tabs=azure-cli.

2. Once the az command line has been installed, you need to configure it. The first
thing to do is to configure authentication against your Azure account so that the az
command line can issue a query against your Azure cloud:

$ az login

3. This command will open your default web browser and ask you to authenticate your
Azure web console again. Once authenticated, the az command line will detect it.
The next step is to create a resource group.

The Azure cloud works in the following way: everything you create in Azure must
be created inside a logical unit called a resource group. Resource groups are a bit
like projects in GCP. Additionally, the AWS cloud has something called resource
groups, but they have a less important role in the AWS world.

4. Let's create a resource group in our Azure cloud in order to create our AKS cluster.
Run the following command to create a resource group that is called az_cluster:

$ az group create --name az_cluster --location
francecentral

This command will create a resource, called az_cluster, at the
francecentral location. This location is fine to me, but you should pick one
that is closer to your location. If you need to access all of the possible locations that
Azure has, run the following command:

$ az account list-locations

https://docs.microsoft.com/fr-fr/cli/azure/install-azure-cli-windows?view=azure-cli-latest&tabs=azure-cli
https://docs.microsoft.com/fr-fr/cli/azure/install-azure-cli-windows?view=azure-cli-latest&tabs=azure-cli
https://docs.microsoft.com/fr-fr/cli/azure/install-azure-cli-windows?view=azure-cli-latest&tabs=azure-cli

Installing a Kubernetes cluster using Azure AKS 91

Once the resource group has been created, you can check for its presence in the
Azure web console:

Figure 3.10 – The az_cluster resource group displayed in the Azure web console

5. Now, we are ready to create the AKS cluster. Again, the az command line can
achieve that with just one command:

$ az aks create --resource-group aks_cluster --name my_
aks_cluster --node-count 3 --generate-ssh-keys

6. The following command will create an AKS cluster, called my_aks_cluster, with
three nodes in the resource group, called az_cluster, that we created earlier. We
also ask Azure to generate SSH keys for us to SSH to our nodes. That command
can take a few minutes to complete. However, after its completion, you will have a
working Kubernetes cluster created on Azure AKS:

Figure 3.11 – The AKS cluster displayed in the Azure web console

7. The last thing to do now is to configure a kubeconfig file in order to get Kubectl
to communicate with the cluster on the AKS cluster. Fortunately for us, the az
command line can do that easily. Run the following command to generate a
kubeconfig file and place it in the correct directory:

$ az aks get-credentials --resource-group az_cluster
--name my_aks_cluster

8. Now, everything is ready for us to issue our first command to the AKS cluster. Let's
run the following command to list the nodes that are part of the cluster:

$ kubectl get nodes

If everything is okay, you should be able to view the three nodes that we created earlier.

92 Installing Your First Kubernetes Cluster

Stopping and deleting a Kubernetes cluster on
Azure AKS
Like all cloud offerings, Azure AKS is not free. It's a commercial product. You should stop
it and resume it when you are not using your cluster in order to avoid being billed too
much. Unfortunately, it is impossible to stop and resume a cluster on AKS without losing
its state. You must destroy it and then recreate it.

To remove an AKS cluster, we prefer to remove the resource group itself since a resource's
life cycle is bound to its parent resource group. Deleting the resource group should delete
the cluster. The following command will get rid of the AKS cluster:

$ az group delete --name az_cluster --yes --no-wait

Summary
This chapter was quite intense! You require a Kubernetes cluster to follow this book, and
so, we examined five ways in which to set up Kubernetes clusters on different platforms.
You learned about Minikube, which is the most common way to set up a cluster on a
local machine. You also discovered Kind, which is a tool that can set up multi-node local
clusters, which is a limitation of Minikube. Then, we looked at the three major Kubernetes
cloud services, which are Google GKE, Amazon EKS, and Azure AKS. These three
services allow you to create a Kubernetes cluster on the cloud for your practice and train
with. This was just a quick introduction to these services, and we will have the opportunity
to dive deeper into these services later. For the moment, simply pick the solution that is
the best for you. Personally, I use both Kind and Amazon EKS, as they are my preferred
tools.

In the next chapter, we are going to dive into Kubernetes by exploring the concept of Pods.
The Pod resource is the most important resource that Kubernetes manages. We will learn
how to create, update, and delete Pods. Additionally, we will look at how to provision
them, how to get information from them, and how to update the containers they are
running. We will deploy an NGINX Pod on a Kubernetes cluster and examine how we can
access it from the outside. By the end of the next chapter, you will be capable of launching
your first containers on your Kubernetes cluster through the usage of Pods. The cluster
that you installed here will be very useful when you follow the real-world examples that
are coming in the next chapter.

Section 2:
Diving into

Kubernetes Core
Concepts

This section is the most important one since it is the first time that you will be introduced
to Kubernetes core objects, also called primitives. You are going to be taught how
Kubernetes manages its containerized applications. At the end of this section, you should
be able to run Kubernetes-based workloads.

This part of the book comprises the following chapters:

• Chapter 4, Running Your Docker Containers

• Chapter 5, Using Multi-Container Pods and Design Patterns

• Chapter 6, Configuring Your Pods Using ConfigMaps and Secrets

• Chapter 7, Exposing Your Pods with Services

• Chapter 8, Managing Namespaces in Kubernetes

• Chapter 9, Persistent Storage in Kubernetes

4
Running Your

Docker Containers
This chapter is probably the most important one in this book. Here, we are going to
discuss the concept of Pods, which are the objects Kubernetes uses to launch your Docker
containers. Pods are at the heart of Kubernetes and mastering them is essential.

In Chapter 3, Installing Your First Kubernetes Cluster, we said that the Kubernetes API
defines a set of resources representing a computing unit. Pods are resources that are
defined in the Kubernetes API that represent one or several Docker containers. We never
create containers directly with Kubernetes, but we always create Pods, which will be
converted into Docker containers on a worker node in our cluster.

At first, it can be a little difficult to understand the connection between Kubernetes Pods
and Docker containers, which is why we are going to explain what Pods are and why we
use them rather than Docker containers directly. A Kubernetes Pod can contain one or
more Docker containers. In this chapter, however, we will focus on Kubernetes Pods,
which contain only one Docker container. We will then have the opportunity to discover
the Pods that contain several containers in the next chapter.

96 Running Your Docker Containers

We will create, delete, and update Pods using the BusyBox image, which is a Linux-based
image containing many utilities useful for running tests. We will also launch a Pod based
on the NGINX Docker image to launch an HTTP server, before accessing the default
NGINX home page via a feature kubectl exposes called port forwarding. It's going to
be useful to access and test the Pods running on your Kubernetes cluster from your web
browser.

Then, we will discover how to label and annotate our Pods to make them easily accessible.
This will help us organize our Kubernetes cluster so that it's as clean as possible. Finally,
we will discover two additional resources, which are jobs and Cronjobs. By the end of this
chapter, you will be able to launch your first Docker containers managed by Kubernetes,
which is the first step in becoming a Kubernetes master!

In this chapter, we're going to cover the following main topics:

• Let's explain the notion of Pods

• Launching your first BusyBox Pod

• Labeling and annotating your Pods

• Launching your first job

• Launching your first Cronjob

Technical requirements
Having a properly configured Kubernetes cluster is recommended to follow this chapter
so that you can practice the commands shown as you read. Whether it's a minikube,
Kind, GKE, EKS, or AKS cluster is not important. You also need a working kubectl
installation on your local machine. Running the kubectl get nodes commands
should output you at least one node:

$ kubectl get nodes

NAME STATUS ROLES AGE VERSION

10.0.103.186.internal Ready <none> 6m v1.17.12

You can have more than one node if you want, but at least one Ready node is required to
have a working Kubernetes setup.

Let's explain the notion of Pods 97

Let's explain the notion of Pods
In this section, we will explain the concept of Pods from a theoretical point of view. Pods
have certain peculiarities that must be understood if you wish to master them well.

What are Pods?
When you want to create, update, or delete a container through Kubernetes, you do so
through a Pod – you never interact with the containers directly. A Pod is a group of one
or more containers that you want to launch on the same machine, in the same Linux
namespace. That's the first rule to understand about Pods: they can be made up of one or
more containers but all the containers that belong to the same Pod will be launched on the
same worker node. A Pod cannot and won't ever span across multiple worker nodes: that's
an absolute rule.

But why do we bother delegating the management of our Docker containers to this
intermediary resource? After all, Kubernetes could have a container resource that would
just launch a single container. The reason is that containerization invites you to think in
terms of Linux processes rather than in terms of virtual machines. You may already know
about the biggest and most recurrent Docker anti-pattern, which consists of using Docker
containers as virtual machine replacements: in the past, you used to install and deploy all
your processes on top of a virtual machine. But Docker containers are no virtual machine
replacements, and they are not meant to run multiple processes.

Docker invites you to follow one golden rule: there should be a one-to-one relationship
between a Docker container and a Linux process. That being said, modern applications are
often made up of multiple processes, not just one, so in most cases, using only one Docker
container won't suffice to run a full-featured microservice. This implies that the processes,
and thus the containers, should be able to communicate with each other by sharing
filesystems, networking, and so on. That's what Kubernetes Pods offer you: the ability to
group your containers logically. All the containers/processes that make up a microservice
should be grouped in the same Pod. That way, they'll be launched together and benefit
from all the features when it comes to facilitating inter-process and inter-container
communications.

To help you understand this, imagine you have a working WordPress blog on a virtual
machine and you want to convert that virtual machine into a WordPress Pod to deploy
your blog on your Kubernetes cluster. WordPress is one of the most common pieces of
software and is a perfect example to illustrate the need for Pods. This is because WordPress
requires multiple processes to work properly.

98 Running Your Docker Containers

WordPress is a PHP application that requires both an HTTP server and a PHP interpreter
to work. Let's list what Linux processes WordPress needs to work on:

• An NGINX HTTP server: It's a web application, so it needs an HTTP server
running as a process to receive and serve server blog pages. NGINX is a good HTTP
server that will do the job perfectly.

• The FPM PHP interpreter: It's a blog engine written in PHP, so it needs a PHP
interpreter to work.

NGINX and PHP-FPM are two processes: they are two binaries that you need to launch
separately, but they need to be able to work together. On a virtual machine, the job is
simple: you just install NGINX and PHP-Fast CGI Process Manager (FPM) on the
virtual machine and have both of them communicate through UNIX sockets. You can do
this by telling NGINX that the Linux socket PHP-FPM is accessible thanks to the /etc/
nginx.config configuration file.

In the Docker world, things become harder because running these two processes in the
same container is an anti-pattern: you have to run two containers, one for each process,
and you must have them communicate with each other and share a common directory
so that they can both access the application code. To solve this problem, you have to use
the Docker networking layer to have the NGINX container able to communicate with the
PHP-FPM one. Then, you must use a volume mount to share the WordPress code between
the two containers. You can do this with some Docker commands but imagine it now in
production at scale, on multiple machines, on multiple environments, and so on. As you
can imagine, that's the kind of problem the Kubernetes Pod resource solves.

Achieving inter-process communication is possible with bare Docker, but that's difficult
to achieve at scale while keeping all the production-related requirements in mind. With
tons of microservices to manage and spread on different machines, it would become
a nightmare to manage all these Docker networks, volume mounts, and so on. That's
why Kubernetes has the Pod resource. Pods are very useful because they wrap multiple
containers and enable easy inter-process communication. The following are the core
benefits Pods brings you:

• All the containers in the same Pod can reach each other through localhost.

• All the containers in the same Pod share the same network namespace.

• All the containers in the same Pod share the same port space.

• You can attach a volume to a Pod, and then mount the volume to underlying
containers, allowing them to share directories and file locations.

Let's explain the notion of Pods 99

With these benefits Kubernetes brings you, it would become super easy to provision
your WordPress blog as you can create a Pod that will run two containers: NGINX
and PHP-FPM. Since they both can access each other on localhost, having them
communicating is super easy. You can then use a volume to expose WordPress's code to
both containers.

The most complex applications will forcibly require several containers, so it's a good
idea to group them in the same Pod to have Kubernetes launch them together. Keep in
mind that the Pod is here for only one reason: to ease inter-container (or inter-process)
communications at scale.

Important Note
That being said, it is not uncommon at all to have Pods that are only made up
of one container. But in any case, you'll always have to use the Pod Kubernetes
object to be able to interact with your containers in Kubernetes.

Lastly, please note that a Docker container that was launched manually on a machine
managed by a Kubernetes cluster won't be seen by Kubernetes as a container it manages.
It becomes a kind of orphan container outside of the scope of the orchestrator. Kubernetes
only manages the container it has launched through its Pod object.

Each Pod gets an IP address
Containers inside a single Pod are capable of communicating with each other through
localhost, but Pods are also capable of communicating with each other. At launch time,
each Pod gets a single private IP address. Each Pod can communicate with any other Pod
in the cluster by calling it through its IP address.

Kubernetes networking models allow Pods to communicate with each other directly
without the need for a Network Address Translation (NAT) device. Keep in mind that
they are not NAT gateways between Pods in your cluster.

Kubernetes uses a flat network model that is implemented by components called
Container Network Interface (CNIs).

100 Running Your Docker Containers

How you should design your Pods
Here is the second golden rule about Pods: they are meant to be destroyed and recreated
easily. Pods can be destroyed voluntarily or not. For example, if a given worker node
running four Pods were to fail, each of the underlying containers would become
inaccessible. Because of this, you should be able to destroy and recreate your Pods at will,
without it affecting the stability of your application. The best way to achieve this is to
respect two simple design rules when building your Pods:

• A Pod should contain everything required to launch a microservice.

• A Pod should be stateless (when possible).

When you start designing Pods on Kubernetes, it's hard to know exactly what a Pod
should and shouldn't contain. It's pretty straightforward to explain: a Pod has to contain
an application or a microservice. Take the example of our WordPress Pod, which we
mentioned earlier: the Pod should contain the NGINX and PHP FPM containers, which
are required to launch WordPress. If such a Pod were to fail, our WordPress would
become inaccessible, but recreating the Pod would make WordPress accessible again
because the Pod contains everything necessary to run WordPress.

That being said, every modern application makes use of database storage, such as Redis or
MySQL. WordPress on its own does that too – it uses MySQL to store and retrieve your
post. So, you'll also have to run a MySQL container somewhere. Two solutions are possible
here:

• You run the MySQL container as part of the WordPress Pod.

• You run the MySQL container as part of a dedicated MySQL Pod.

Both solutions can be used, but the second is preferred. It's a good idea to decouple your
application (here, this is WordPress, but tomorrow, it could be a microservice) from its
database layer by running them in two separate Pods. Remember that Pods are capable of
communicating with each other. You can benefit from this by dedicating a Pod to running
MySQL and then giving its IP address to your WordPress blog.

By separating the database layer from the application, you improve the stability of the
setup: the application Pod crashing will not affect the database.

To summarize, grouping the layers in the same Pods would cause three problems:

• Data durability

• Availability

• Stability

Launching your first Pods 101

That's why you should keep your application Pods stateless, by storing their states in an
independent Pod. The data layer can be considered an application on its own and has its
own treatment decoupled from the application code itself. To achieve that, you should run
them in separate Pods.

Now, let's launch our first Pod. Creating a WordPress Pod would be too complex for now,
so let's start easy by launching some NGINX Pods and see how Kubernetes manages the
Docker container.

Launching your first Pods
In this section, we will explain how to create our first Pods in our Kubernetes cluster. Pods
have certain peculiarities that must be understood to master them well.

We are not going to create a resource on your Kubernetes cluster at the moment; instead,
we are simply going to explain what Pods are. In the next section, we'll start building our
first Pods.

Creating a Pod with imperative syntax
In this section, we are going to create a Pod based on the NGINX image. We need two
parameters to create a Pod:

• The Pod's name, which is arbitrarily defined by you

• The Docker image(s) to build its underlying container(s)

As with almost everything on Kubernetes, you can create Pods using either of the two
syntaxes available: the imperative syntax and the declarative syntax. As a reminder, the
imperative syntax is to run kubectl commands directly from a terminal, while with
declarative syntax, you must write a YAML file containing the configuration information
for your Pod, and then apply it with the kubectl create -f command.

To create a Pod on your Kubernetes cluster, you have to use the kubectl run
command. That's the simplest and fastest way to get a Pod running on your Kubernetes
cluster. Here is how the command can be called:

 $ kubectl run nginx-Pod --image nginx:latest

In this command, the Pod's name is set to nginx-Pod. This name is important because it
is a pointer to the Pod: when you need to run the update or delete command on this
Pod, you'll have to specify that name to tell Kubernetes which Pod the action should run
on. The --image flag will be used to build the Docker container that this Pod will run.

102 Running Your Docker Containers

Here, you are telling Kubernetes to build a Pod based on the nginx:latest Docker
image hosted on Docker Hub. This nginx-Pod Pod contains only one container based
on this nginx:latest image: you cannot specify multiple images here; this is
a limitation of the imperative syntax.

If you want to build a Pod containing multiple containers built from several different
Docker images, then you will have to go through the declarative syntax and write
a YAML file.

Creating a Pod with declarative syntax
Creating a Pod with declarative syntax is simple too. You have to create a YAML file
containing your Pod definition and apply it against your Kubernetes cluster using the
kubectl create -f command.

Here is the content of the nginx-Pod.yaml file, which you can create on your local
workstation:

apiVersion: v1

kind: Pod

metadata:

 name: nginx-Pod

spec:

 containers:

 - name: nginx-container

 image: nginx:latest

Try to read this file and understand its content. YAML files are only key/value pairs. The
Pod's name is nginx-Pod, and then we have an array of containers in the spec: part
of the file containing only one container created from the nginx:latest image. The
container itself is named nginx-container.

Once the nginx-Pod.yaml file has been saved, run the following command to create
the Pod:

$ kubectl create -f nginx-Pod.yaml

Pod/nginx-Pod created

$ kubectl apply -f nginx-Pod.yaml # this command works too!

Launching your first Pods 103

If a Pod called nginx-Pod already exists in your cluster, this command will fail.
Remember that Kubernetes cannot run two Pods with the same name: the Pod's name is
the unique identifier and is used to identify the Pods. Try to edit the YAML file to update
the Pod's name and then apply it again.

Reading the Pod's information and metadata
At this point, you should have a running Pod on your Kubernetes cluster. Here, we are
going to try to read its information. At any time, we need to be able to retrieve and read
information regarding the resources that were created on your Kubernetes cluster; this
is especially true for Pods. Reading the Kubernetes cluster can be achieved using two
kubectl commands: kubectl get and kubectl describe. Let's take a look at
them:

• kubectl get: The kubectl get command is a list operation; you use this
command to list a set of objects. Do you remember when we listed the nodes of
your cluster after all the installation procedures described in the previous chapter?
We did this using kubectl get nodes. The command works by requiring
you to pass the object type you want to list. In our case, it's going to be the
kubectl get Pods operation. In the upcoming chapters, we will discover other
objects, such as configmaps. To list them, you'll have to type kubectl get
configmaps; the same goes for the other object types. kubectl get does not
require you to know the name of a precise resource, because it's intended to list.

• kubectl describe: The kubectl describe command is quite different. It's
intended to retrieve a complete set of information for one specific object that's been
identified from both its kind and object name. You can retrieve the information of
our previously created Pod by using kubectl describe Pods nginx-Pod.

Calling this command will return a full set of information available about that
specific Pod, such as its IP address and so on.

Now, let's look at some more advanced options about listing and describing objects
in Kubernetes.

104 Running Your Docker Containers

Listing the objects in JSON or YAML
The -o option is one of the most useful options offered by the kubectl command line.
This one has some benefits you must be aware of. That option allows you to customize
the output of the kubectl command line. By default, using the kubectl get Pods
command will return a list of the Pods in your Kubernetes cluster in a formatted way so
that the end user can see it easily. You can also retrieve this information in JSON format or
YAML format by using the -o option:

$ kubectl get Pods -o yaml # In YAML format

$ kubectl get Pods -o json # In JSON format

If you know the Pod name, you can also get a specific Pod

$ kubectl get Pods <POD_NAME> -o yaml

OR

$ kubectl get Pods <POD_NAME> -o json

This way, you can retrieve and export data from your Kubernetes cluster in a scripting-
friendly format.

Backing up your resource using the list operation
You can also use these flags to back up your Kubernetes cluster. Imagine a situation where
you created a Pod using the imperative way, so you don't have the YAML declaration file
stored in your computer. If the Pod fails, it's going to be hard to recreate it. The -o option
helps us retrieve the YAML declaration file of a resource that's been created in Kubernetes,
even if we created it using the imperative way. To do this, run the following command:

$ kubectl get Pods/nginx-Pod -o yaml > nginx-Pod.yaml

This way, you have a YAML backup of the nginx-Pod resource as it is running on your
cluster. If someone goes wrong, you'll be able to recreate your Pod easily. Pay attention to
the nginx-Pod section of this command. To retrieve the YAML declaration, you need to
specify which resource you are targeting. By redirecting the output of this command to a
file, you get a nice way to retrieve and back up the configuration of the object inside your
Kubernetes cluster.

Launching your first Pods 105

Getting more information from the list operation
It's also worth mentioning the -o wide format, which is going to be very useful for you:
using this option allows you to expand the default output to add more data. By using it on
the Pods object, for example, you'll get the name of the worker node where the Pod
is running:

$ kubectl get Pods -o wide

The worker node name is displayed

Keep in mind that the -o option can take a lot of different parameters and that some
of them are much more advanced, such as jsonpath, which allows you to directly
execute kind of sort operations on top of a JSON body document to retrieve only specific
information, just like the jq library you used previously if you have already written some
Bash scripts that deal with JSON parsing.

Accessing a Pod from the outside world
At this point, you should have a Pod containing an NGINX HTTP server on your
Kubernetes cluster. You should now be able to access it from your web browser. However,
this is a bit complicated.

By default, your Kubernetes cluster does not expose the Pod it runs to the internet. For
that, you will need to use another resource called a service, which we will cover in more
detail in Chapter 7, Exposing Your Pods with Services. However, kubectl does offer a
command for quickly accessing a running container on your cluster called kubectl
port-forward. This is how you can use it:

$ kubectl port-forward Pod/nginx-Pods 8080:80

Forwarding from 127.0.0.1:8080 -> 80

Forwarding from [::1]:8080 -> 80

This command is quite easy to understand: I'm telling kubectl to forward port 8080 on
my local machine (the one running kubectl) to port 80 on the Pod identified by Pod/
nginx-Pod.

Kubectl then outputs a message, telling me that it started to forward my local 8080 port
to the 80 one of the Pod. If you get an error message, it's probably because your local port
8080 is currently being used. Try to set a different port or simply remove the local port
from the command to let kubectl choose a local port randomly:

$ kubectl port-forward Pod/nginx-Pods :80

106 Running Your Docker Containers

Now, you can launch your browser and try to reach the http://
localhost:<localport> address, which in my case is http://localhost:80:

Figure 4.1 – The NGINX default page running in a Pod and accessible on localhost, which indicates the
port-forward command worked!

Entering a container inside a Pod
When a Pod is launched, you can access the Pods it contains. Under Docker, the
command to execute a command in a running container is called docker exec.
Kubernetes copies this behavior via a command called kubectl exec. Use the
following command to access our NGINX container inside nginx-Pod, which we
launched earlier:

$ kubectl exec -ti Pods nginx-Pod bash

After running this command, you will be inside the NGINX container. You can do
whatever you want here, just like with any other container. The preceding command
assumes that the bash binary is installed in the container you are trying to access.
Otherwise, the sh binary is generally installed on a lot of containers and might be used to
access the container. Don't be afraid to path a full binary path, like so:

$ kubectl exec -ti Pods nginx-Pod /bin/bash

Now, let's discover how to delete a Pod from a Kubernetes cluster.

Labeling and annotating the Pods 107

Deleting a Pod
Deleting a Pod is super easy. You can do so using the kubectl delete command.
You need to know the name of the Pod you want to delete. In our case, the Pod's name is
nginx-Pod. Run the following command:

$ kubectl delete Pods nginx-Pod

$ # or...

$ kubectl delete Pods/nginx-Pod

If you do not know the name of the Pod, remember to run the kubectl get Pods
command to retrieve the list of the Pod and find the one you want to delete.

There is also something you must know: if you have built your Pod with declarative syntax
and you still have its YAML configuration file, you can delete your Pod without having to
know the name of the container because it is contained in the YAML file.

Run the following command to delete the Pod using the declarative syntax:

$ kubectl delete -f nginx-Pod.yaml

After you run this command, the Pod will be deleted in the same way.

Important Note
Remember that all containers belonging to the Pod will be deleted. The
container's life cycle is bound to the life cycle of the Pod that launched it. If the
Pod is deleted, the containers it manages will be deleted. Remember to always
interact with the Pods and not with the containers directly.

With that, we have reviewed the most important aspects of Pod management, such as
launching a Pod with the imperative or declarative syntax, deleting a Pod, and also listing
and describing them. Now, I will introduce one of the most important aspects of Pod
management in Kubernetes: labeling and annotating.

Labeling and annotating the Pods
We will now discuss another key concept of Kubernetes: labels and annotations. Labels
are key/value pairs that you can attach to your Kubernetes objects. Labels are meant to
tag your Kubernetes objects with key/value pairs defined by you. Once your Kubernetes
objects have been labeled, you can build a custom query to retrieve specific Kubernetes
objects based on the labels they hold. In this section, we are going to discover how to
interact with labels through kubectl by assigning some labels to our Pods.

108 Running Your Docker Containers

What are labels and why do we need them?
Labels are key/value pairs that you can attach to your created objects, such as Pods. What
label you define for your objects is up to you – there is no specific rule regarding this.
These labels are attributes that will allow you to organize your objects in your Kubernetes
cluster: once your objects have been labeled, you can list and query them using the
labels they hold. To give you a very concrete example, you could attach a label called
environment = prod to some of your Pods, and then use the kubectl get Pods
command to list all the Pods within that environment. So, you could list all the Pods that
belong to your production environment in one command:

$ kubectl get Pods --label "environment=production"

As you can see, it can be achieved using the --label parameter, which can be shortened
using its -l equivalent:

$ kubectl get Pods --l "environment=production"

This command will list all the Pods holding a label called environment with a value of
production. Of course, in our case, no Pods will be found since none of the ones we
created earlier are holding this label. You'll have to be very disciplined about labels and
not forget to set them every time you create a Pod or another object, and that's why we
are introducing them quite early in this book: not only Pods but almost every object in
Kubernetes can be labeled, and you should take advantage of this feature to keep your
cluster organized and clean.

You use labels not only to organize your cluster but also to build relationships between
your different Kubernetes objects: you will notice that some Kubernetes objects will read
the labels that are carried by certain Pods and perform certain operations on them based
on the labels they carry. If your Pods don't have labels or they are misnamed or contain
the wrong values, some of these mechanisms might not work as you expect.

On the other hand, using labels is completely arbitrary: there is no particular naming
rule, nor any convention Kubernetes expects you to follow. Thus, it is your responsibility
to use the labels as you wish and build your own convention. If you are in charge of the
governance of a Kubernetes cluster, you should enforce the usage of mandatory labels and
build some monitoring rules to quickly identify non-labeled resources.

Keep in mind that labels are limited to 63 characters: they are intended to be short. Here
are some label ideas you could use:

• environment (prod, dev, uat, and so on)

• stack (blue, green, and so on)

Labeling and annotating the Pods 109

• tier (frontend and backend)

• app_name (wordpress, magento, mysql, and so on)

• team (business and developers)

Labels are not intended to be unique between objects. For example, perhaps you would
like to list all the Pods that are part of the production environment. Here, several Pods
with the same label key and value pair can exist in the cluster at the same time without
posing any problem – it's even recommended if you want your list query to work. For
example, if you want to list all the resources that are part of the prod environment, a label
environment such as = prod should be created on multiple resources. Now, let's look at
annotations, which are another way we can assign metadata to our Pods.

What are annotations and how do they differ from
labels?
Kubernetes also uses another type of metadata called annotations. Annotations are
very similar to labels as they are also key/value pairs. However, annotations do not have
the same use as labels. Labels are intended to identify resources and build relationships
between them, while annotations are used to provide contextual information about the
resource that they are defined on.

For example, when you create a Pod, you could add an annotation containing the email of
the support team to contact if this app does not work. This information has its place in an
annotation but has nothing to do with a label.

While it is highly recommended that you define labels wherever you can, you can omit
annotations: they are less important to the operation of your cluster than labels. Be aware,
however, that some Kubernetes objects or third-party applications often read annotations
and use them as configuration. In this case, their usage of annotations will be explained
explicitly in their documentation.

Adding a label
In this section, we will learn how to add and remove labels and annotations from Pods.
We will also learn how to modify the labels of a Pod that already exists on a cluster.

You can add a label when creating a Pod. Let's take the Pod based on the NGINX image
that we used earlier. We will recreate it here with a label called tier, which will contain
the frontend value. Here is the kubectl command to run for that:

$ kubectl run nginx-Pod --image nginx --label "tier=frontend"

110 Running Your Docker Containers

As you can see, a label can be assigned using the --label parameter. You can add
multiple labels by repeatedly using the --label parameter, like this:

$ kubectl run nginx-Pod --image nginx --label "tier=frontend"
--label "environment=prod"

Here, the nginx Pod will be created with two labels.

The --label flag has a short version called -l. You can use this to make your command
shorter and easier to read. Here is the same command with the -l parameter used instead
of --label:

$ kubectl run nginx-Pod --image nginx -l "tier=frontend" -l
"environment=prod"

Another important thing to notice is that labels can be defined with declarative syntax.
Labels can be appended to a YAML Pod definition. Here is the same Pod, holding the two
labels we created earlier, but this time, it's been created with the declarative syntax:

~/labelled_Pod.yaml

apiVersion: v1

kind: Pod

metadata:

 name: nginx-Pod

 labels:

 environment: prod

 tier: frontend

spec:

 containers:

 - name: nginx-container

 image: nginx:latest

Consider the file that was created at ~/labelled_Pod.yaml. The following kubectl
command would create the Pod the same way as it was created previously:

$ kubectl create -f ~/labelled_Pod.yaml

Labeling and annotating the Pods 111

Consider the file created at ~/labelled_Pod.yaml. The following kubectl
command would create the Pod the same way as it was created previously. This time,
running the command we used earlier should return at least one Pod – the one we
just created:

$ kubectl get Pods --label "environment=production"

Now, let's learn how we can list the labels attached to our Pod.

Listing labels attached to a Pod
$ kubectl get Pods --show-labels

There is no dedicated command to list the labels attached to a Pod, but you can make the
output of kubectl get Pods a little bit more verbose. By using the --show-labels
parameter, the output of the command will include the labels attached to the Pods.

This command does not run any kind of query based on the labels; instead, it displays
the labels themselves as part of the output. It can be useful for debugging. Of course, this
option can be chained with other options, such as -o wide:

$ kubectl get Pods --show-labels -o wide

This command would then show you the list of the Pods and their labels, as well as the
node that the Pod has been scheduled to run on.

Adding or updating a label to/of a running Pod
Now that we've learned how to create Pods with labels, we'll learn how to add labels to a
running Pod. You can add, create, or modify the labels of a resource at any time using the
kubectl label command. Here, we are going to add another label to our nginx Pod.
This label will be called stack and will have a value of blue:

$ kubectl label Pods nginx-Pod stack=blue

This command only works if the Pod has no label called stack. When the command is
executed, it can only add a new tag and not update it. This command will update the Pod
by adding a label called stack with a value of blue. Run the following command to see
that the change was applied:

$ kubectl get Pods nginx-Pod --show-labels

112 Running Your Docker Containers

To update an existing label, you must append the --overwrite parameter to the
preceding command. Let's update the stack=blue label to make it stack=green; pay
attention to the overwrite parameter:

$ kubectl label Pods nginx-Pod stack=green --overwrite

Here, the label should be updated. The stack label should now be equal to green. Run
the following command to show the Pod and its labels again:

$ kubectl get Pods nginx-Pod --show-labels

That command will only list nginx-Pod and display its label as part of the output in
the terminal.

Important Note
Adding or updating labels using the kubectl label command might be
dangerous. As we mentioned earlier, you'll build relationships between different
Kubernetes objects based on labels. By updating them, you might break some
of these relationships and your resources might start to behave not as expected.
That's why it's better to add labels when a Pod is created and keep your
Kubernetes configuration immutable. It's always better to destroy and recreate
rather than update an already running configuration.

The last thing we must do is learn how to delete a label attached to a running Pod.

Deleting a label attached to a running Pod
Just like we added and updated labels of a running Pod, we can also delete them. The
command is a little bit trickier. Here, we are going to remove the label called stack,
which we can do by adding a minus symbol (-) right after the label name:

$ kubectl label nginx-Pod stack-

Adding that minus symbol at the end of the command might be quite strange, but
running kubectl get Pods --show-labels again should show that the stack
label is now gone:

$ kubectl get Pods nginx-Pod --show-labels

Launching your first job 113

Adding an annotation
Let's learn how to add annotations to a Pod. It won't take long to cover this because it
works just like it does with labels:

~/annotated_Pod.yaml

apiVersion: v1

kind: Pod

metadata:

 annotations:

 tier: webserver

 name: nginx-Pod

 labels:

 environment: prod

 tier: frontend

spec:

 containers:

 - name: nginx-container

 image: nginx:latest

Here, I simply added the tier=webserver annotation, which can help me identify
that this Pod is running an HTTP server. Just keep in mind that it's a way to add
additional metadata.

The name of an annotation can be prefixed by a DNS name. This is the case for Kubernetes
components such as kube-scheduler, which must indicate to cluster users that this
component is part of the Kubernetes core. The prefix can be omitted completely, as shown
in the preceding example.

Launching your first job
Now, let's discover another Kubernetes resource that is derived from Pods: the Job
resource. In Kubernetes, a computing resource is a Pod, and everything else is just an
intermediate resource that manipulates Pods.

This is the case for the Job object, which is an object that will create one or multiple Pods
to complete a specific computing task, such as running a Linux command.

114 Running Your Docker Containers

What are jobs?
A job is another kind of resource that's exposed by the Kubernetes API. In the end, a job
will create one or multiple Pods to execute a command defined by you. That's how jobs
work: they launch Pods. You have to understand the relationship between the two: jobs
are not independent of Pods, and they would be useless without Pods. In the end, the
two things they are capable of are launching Pods and managing them. Jobs are meant
to handle a certain task and then exit. Here are some examples of typical use cases for a
Kubernetes job:

• Taking a backup of a database

• Sending an email

• Consuming some messages in a queue

These are tasks you do not want to run forever. You expect the Pods to be terminated once
they have completed their task. This is where the Jobs resource will help you.

But why bother using another resource to execute a command? After all, we can create
one or multiple Pods directly that will run our command and then exit.

This is true. You can use a Pod based on a Docker image to run the command you want
and that would work fine. However, jobs have mechanisms implemented at their level that
allow them to manage Pods in a more advanced way. Here are some things that jobs are
capable of:

• Running Pods multiple times

• Running Pods multiple times in parallel

• Retrying to launch the Pods if they encountered any errors

• Killing a Pod after a specified number of seconds

Another good point is that a job manages the labels of the Pods it will create so that you
won't have to manage the labels on those Pods directly.

All of this can be done without using jobs, but this would be very difficult to manage.
Fortunately for us, the Jobs resource exists, and we are going to learn how to use it now.

Launching your first job 115

Creating a job with restartPolicy
Since creating a job might require some advanced configurations, we are going to focus on
declarative syntax here. This is how you can create a Kubernetes job through YAML. We
are going to make things simple here; the job will just echo Hello world:

~/hello-world-job.yaml

apiVersion: batch/v1

kind: Job

metadata:

 name: hello-world-job

spec:

 template:

 metadata:

 name: hello-world-job

 spec:

 restartPolicy: OnFailure

 containers:

 - name: hello-world-container

 image: busybox

 command: ["/bin/sh", "-c"]

 args: ["echo 'Hello world'"]

Pay attention to the kind resource, which tells Kubernetes that we need to create a job
and not a Pod, as we did previously. Also, notice apiVersion:, which also differs from
the one that's used to create the Pod. You can create the job with the following command:

$ kubectl create -f hello-world-job.yaml

As you can see, this job will create a Pod based on the Docker busybox image. This will
run the echo 'Hello World' command. Lastly, the restartPolicy option is set
to OnFailure, which tells Kubernetes to restart the Pod or the container in case it fails.
If the entire Pod fails, a new Pod will be relaunched. If the container fails (the memory
limit has been reached or a non-zero exit code occurs), the individual container will be
relaunched on the same node because the Pod will remain untouched, which means it's
still scheduled on the same machine.

The restartPolicy parameter can take two options:

• Never

• OnFailure

116 Running Your Docker Containers

Setting it to Never will prevent the job from relaunching the Pods, even if it fails. When
debugging a failing job, it's a good idea to set restartPolicy to Never to help with
debugging. Otherwise, new Pods might be recreated over and over, making your life
harder when it comes to debugging.

In our case, there is little chance that our job was not successful since we only want to
run a simple Hello world. To make sure that our job worked well, we can read its log.
To do that, we need to retrieve the name of the Pod it created using the kubectl get
Pods command. Then., we can use the kubectl logs command, as we would do with
any Pods:

$ kubectl logs

Here, we can see that our job has worked well since we can see the Hello world
message displayed in the log of our Pod. However, what if it had failed? Well, this depends
on restartPolicy – if it's set to Never, then nothing would happen and Kubernetes
wouldn't try to relaunch the Pods.

However, if restartPolicy was set to OnFailure, Kubernetes would try to restart
the job after 10 seconds and then double that time on each new failure. 10 seconds, then
20 seconds, then 40 seconds, then 80 seconds, and so on. After 6 minutes, Kubernetes
would give up.

Understanding the job's backoffLimit
By default, the Kubernetes job will try to relaunch the failing Pod 6 times during
the next 6 minutes after its failure. You can change this limitation by changing the
backoffLimit option. Here is the updated YAML file:

~/hello-world-job.yaml

apiVersion: batch/v1

kind: Job

metadata:

 name: hello-world-job

spec:

 backoffLimit: 3

 template:

 metadata:

 name: hello-world-job

 spec:

 restartPolicy: OnFailure

Launching your first job 117

 containers:

 - name: hello-world-container

 image: busybox

 command: ["/bin/sh", "-c"]

 args: ["echo 'Hello world'"]

This way, the job will only try to relaunch the Pods twice after its failure.

Running a task multiple times using completions
You can also instruct Kubernetes to launch a job multiple times using the Job object.

You can do this by using the completions option to specify the number of times you
want a command to be executed. The number of completions will create five different
Pods that will be launched one after the other. Once one Pod has finished, the next one
will be started. Here is the updated YAML file:

apiVersion: batch/v1

kind: Job

metadata:

 name: hello-world-job

spec:

 completions: 10

 template:

 metadata:

 name: hello-world-job

 spec:

 restartPolicy: OnFailure

 containers:

 - name: hello-world-container

 image: busybox

 command: ["/bin/sh", "-c"]

 args: ["echo 'Hello world'; sleep 3"]

118 Running Your Docker Containers

The completions option was added here. Also, please notice that the args section was
updated by us adding the sleep 3 option. Using this option will make the task sleep for
3 seconds before completing, giving us enough time to notice the next Pod being created.
Once you've applied this configuration file to your Kubernetes cluster, you can run the
following command:

$ kubectl get Pods --watch

The watch mechanism will update your kubectl output when something new arrives,
such as the creation of the new Pods being managed by your Kubernetes. If you want
to wait for the job to finish, you'll see 10 Pods being created with a 3-second delay
between each.

Running a task multiple times in parallel
The completions option ensures that the Pods are created one after the other. You can
also enforce parallel execution using the parallelism option. If you do that, you can
get rid of the completions option. Here is the updated YAML file:

apiVersion: batch/v1

kind: Job

metadata:

 name: hello-world-job

spec:

 parallelism: 5

 template:

 metadata:

 name: hello-world-job

 spec:

 restartPolicy: OnFailure

 containers:

 - name: hello-world-container

 image: busybox

 command: ["/bin/sh", "-c"]

 args: ["echo 'Hello world'; sleep 3"]

Please notice that the completions option is now gone and that we replaced it with
parallelism. The job will now launch five Pods at the same time and will have them
run in parallel.

Launching your first job 119

Terminating a job after a specific amount of time
You can also decide to terminate a Pod after a specific amount of time. This can be very
useful when you are running a job that is meant to consume a queue, for example. You
could poll the messages for 1 minute and then automatically terminate the processes. You
can do that using the activeDeadlineSeconds parameter. Here is the updated
YAML file:

apiVersion: batch/v1

kind: Job

metadata:

 name: hello-world-job

spec:

 backoffLimit: 3

 activeDeadlineSeconds: 60

 template:

 metadata:

 name: hello-world-job

 spec:

 restartPolicy: OnFailure

 containers:

 - name: hello-world-container

 image: busybox

 command: ["/bin/sh", "-c"]

 args: ["echo 'Hello world'"]

Here, the job will terminate after 60 seconds, no matter what happens. It's a good idea to
use this feature if you want to keep a process running for an exact amount of time and
then terminate it.

120 Running Your Docker Containers

What happens if a job succeeds?
If your job is completed, it will remain created in your Kubernetes cluster and will not
be deleted automatically: that's the default behavior. The reason for this is that you can
read its logs a long time after its completion. However, keeping your jobs created on your
Kubernetes cluster that way might not suit you. You can delete the jobs automatically and
the Pods they created by using the ttlSecondsAfterFinished option, but keep in
mind that this feature is still in alpha as of Kubernetes version 1.12. Here is the updated
YAML file for implementing this solution:

apiVersion: batch/v1

kind: Job

metadata:

 name: hello-world-job

spec:

 ttlSecondsAfterFinished: 30

 template:

 metadata:

 name: hello-world-job

 spec:

 restartPolicy: OnFailure

 containers:

 - name: hello-world-container

 image: busybox

 command: ["/bin/sh", "-c"]

 args: ["echo 'Hello world'"]

Here, the jobs are going to be deleted 30 seconds after their completion. If you do not
want to use this option or it's not available in your Kubernetes version – for example, you
are running a Kubernetes version before 1.12 – then you'll need to delete them manually.
This is what we are going to discover now.

Deleting a job
Let's learn how to delete a Kubernetes job manually. Keep in mind that the Pods that are
created are bound to the life cycle of their parent. Deleting a job will result in deleting the
Pods they manage.

Launching your first Cronjob 121

Start by getting the name of the job you want to destroy. In our case, it's hello-world-
job. Otherwise, use the kubectl get jobs command to retrieve the correct name.
Then, run the following command:

$ kubectl delete jobs hello-world-job

If you want to delete the jobs but not the Pods it created, you need to add the
--cascade=false parameter to the delete command:

$ kubectl delete jobs hello-world-job --cascade=false

Thanks to this command, you can get rid of all the jobs that will be kept on your
Kubernetes cluster once they've been completed.

Launching your first Cronjob
To close this first chapter on Pods, I suggest that we discover another new Kubernetes
resource called Cronjob.

What are Cronjobs?
The name Cronjob can mean two different things and it is important to not get confused:

• The UNIX cron feature

• The Kubernetes Cronjob resource

Historically, Cronjobs are command scheduled using the cron UNIX feature, which is the
most robust way to schedule the execution of a command in UNIX systems. This idea was
later taken up in Kubernetes.

In Kubernetes, you are not going to schedule the execution of a command but the
execution of a Pod. You can do that using the Cronjob resource.

Be careful because even though the two ideas are similar, they don't work the same at
all. On UNIX and other derived systems such as UNIX, you schedule commands by
editing a file called Crontab, which is usually found in /etc/crontab. In the world of
Kubernetes, things are different: you are not going to schedule the execution of commands
but the execution of Job resources, which themselves will create Pod resources. You can
achieve this by manipulating a new kind of resource called Cronjob. Keep in mind that the
Cronjob object you'll create will create Jobs objects.

122 Running Your Docker Containers

Think of it as a kind of wrapper around the Job resource: in Kubernetes, we call that a
controller. Cronjob can do everything the Job resource is capable of because it is nothing
more than a wrapper around the Job resource, according to the cron expression specified.

The good news is that the Kubernetes Cronjob resource is using the cron format
inherited from UNIX. So, if you have already written some Cronjobs on a Linux system,
mastering Kubernetes Cronjobs will be super straightforward.

But first, why would you want to execute a Pod? The answer is simple; here are some
concrete use cases:

• Taking database backups regularly every Sunday at 1 A.M.

• Clearing cached data every Monday at 4 P.M.

• Sending a queued email every 5 minutes

• Various maintenance operations to be executed regularly

The use cases of Kubernetes Cronjobs do not differ much from their UNIX counterparts –
they are used to answer the same need, but they do provide the massive benefit of
allowing you to use your already configured Kubernetes cluster to schedule regular jobs
using your Docker images and your already existing Kubernetes cluster. In the end, the
whole idea is to schedule the execution of your commands thanks to Jobs and Pods in a
Kubernetes way.

Creating your first Cronjob
It's time to create your first Cronjob. Let's do this using declarative syntax. First, let's create
a cronjob.yaml file and place the following YAML content into it:

apiVersion: batch/v1beta1

kind: CronJob

metadata:

 name: hello-world-cronjob

spec:

 schedule:

 ttlSecondsAfterFinished: 30

 template:

 metadata:

 name: hello-world-job

 spec:

 restartPolicy: OnFailure

Launching your first Cronjob 123

 containers:

 - name: hello-world-container

 image: busybox

 command: ["/bin/sh", "-c"]

 args: ["echo 'Hello world'"]

Before applying this file to the Kubernetes cluster, let's start to explain it. There are two
important things to notice here:

• The schedule key, which lets you input the cron expression

• The jobTemplate section, which is exactly what you would input in a job YAML
manifest

Let's explain these two keys quickly before applying the file.

Understanding the schedule
The schedule key allows you to insert an expression in a cron format such as Linux. Let's
explain how these expressions work: if you already know these expressions, you can skip
these explanations.

A cron expression is made up of five entries separated by white space. From left to right,
these entries correspond to the following:

• Minutes

• Hour

• Day of the month

• Month

• Day of the week

Each entry can be filled with an asterisk, which means every. You can also set several
values for one entry by separating them with a ,. You can also use a – to input a range of
values. Let me show you some examples:

• "10 11 * * *" means "At 11:10 every day of every month."

• "10 11 * 12 *" means "At 11:10 every day of December."

• "10 11 * 12 1" means "At 11:10 of every Monday of December."

• "10 11 * * 1,2" means "At 11:10 of every Monday and Tuesday of every month."

• "10 11 * 2-5 *" means "At 11:10 every day from February to May."

124 Running Your Docker Containers

Here are some examples that should help you understand how cron works. Of course,
you don't have to memorize the syntax: most people help themselves with documentation
or cron expression generators online. If this is too complicated, feel free to use this kind
of tool; it can help you confirm that your syntax is valid before you deploy the object to
Kubernetes.

Understanding the role of the jobTemplate section
We will cover this shortly to make you understand an important concept regarding
Kubernetes. If you've been paying attention to the structure of the YAML file, you may
have noticed that the jobTemplate key contains the definition of a Job object. The
reason is simple: when we use the Cronjob object, we are simply delegating the creation
of a Job object to the Cronjob object. This is why the YAML file of the Cronjob object
requests that we provide it with a jobTemplate.

Therefore, the Cronjob object is a resource that only manipulates another resource.

In Kubernetes, a lot of things work like this, and this is important to remember. Later, we
will discover many objects that will allow us to create Pods so that we don't have to do it
ourselves. These special objects are called controllers: they manipulate other Kubernetes
resources by obeying their own logic. Moreover, when you think about it, the Job object
is itself a controller since, in the end, it only manipulates Pods by providing them with its
own features, such as the possibility of running Pods in parallel.

In a real context, you should always try to create Pods using these intermediate objects as
they provide additional and more advanced management features.

Try to remember this rule: the basic unit in Kubernetes is a Pod, but you can delegate
the creation of Pods to many other objects. In the rest of this section, we will continue to
discover naked Pods. Later, we will learn how to manage their creation and management
via controllers.

Controlling the Cronjob execution deadline
For some reason, a Cronjob may fail to execute. In this case, Kubernetes cannot execute
the Job at the moment it is supposed to start.

Managing the history limits of jobs
When a Cronjob completes, whether it's successful or not, history is kept on your
Kubernetes cluster. The history setting can be set at the Cronjob level, so you can decide
whether to keep the history of each Cronjob or not, and in case you want to keep it, how
many entries should be kept for succeeded and failed jobs.

Summary 125

Let's learn how to do this.

Creating a Cronjob
If you already have the YAML manifest file, creating a Cronjob object is easy. You can do
so using the kubectl create command:

$ kubectl create -f ~/cronjob.yaml

cronjob/hello-world-cronjob created

With that, the Cronjob has been created on your Kubernetes cluster. It will launch a
scheduled Pod, as configured in the YAML file.

Deleting a Cronjob
Like any other Kubernetes resource, deleting a Cronjob can be achieved through the
kubectl delete command. Like before, if you have the YAML manifest, it's easy:

$ kubectl delete -f ~/cronjob.yaml

cronjob/hello-world-cronjob deleted

With that, the Cronjob has been destroyed by your Kubernetes cluster. No scheduled jobs
will be launched anymore.

Summary
We have come to the end of this chapter on Pods and how to create them; I hope you
enjoyed it. You've learned how to use the most important objects in Kubernetes: Pods.

The knowledge you've developed in this chapter is part of the essential basis for mastering
Kubernetes: all you will do in Kubernetes is manipulate Pods, label them, and access them.
In addition, you saw that Kubernetes behaves like a traditional API, in that it executes
CRUD operations to interact with the resources on the cluster. In this chapter, you learned
how to launch Docker containers on Kubernetes, how to access these containers using
kubectl port forwarding, how to add labels and annotations to Pods, how to delete
Pods, and how to launch and schedule jobs using the Cronjob resource.

126 Running Your Docker Containers

Just remember this rule about Docker container management: any container that will be
launched in Kubernetes will be launched through the object. Mastering this object is like
mastering most of Kubernetes: everything else will consist of automating things around
the management of Pods, just like we did with the Cronjob object; you have seen that the
Cronjob object only launches Job objects that launch Pods. If you've understood that some
objects can manage others, but in the end, all containers are managed by Pods, then you've
understood the philosophy behind Kubernetes, and it will be very easy for you to move
forward with this orchestrator.

Also, I invite you to add labels and annotations to your Pods, even if you don't see the
need for them right away. Know that it is essential to label your objects well to keep a
clean, structured, and well-organized cluster.

However, you still have a lot to discover when it comes to managing Pods because so
far, we have only seen Pods that are made up of only one Docker container. The greatest
strength of Pods is that they allow you to manage multiple containers at the same time,
and of course, to do things properly, there are several design patterns that we can follow to
manage our Pods when they are made of several containers.

In the next chapter, we will learn how to manage Pods that are composed of several
containers. While this will be very similar to the Pods we've seen so far, you'll find that
some little things are different and that some are worth knowing. First, you will learn how
to launch multi-container Pods using kubectl (hint: kubectl will not work), then how
to get the containers to communicate with each other. After that, you will learn how to
access a specific container in a multi-container Pod, as well as how to access logs from
a specific container. Finally, you will learn how to share volumes between containers in
the same Pod.

As you read the next chapter, you will learn about the rest of the fundamentals of Pods
in Kubernetes. So, you'll get an overview of Pods while we keep moving forward by
discovering additional objects in Kubernetes that will be useful for deploying applications
in our clusters.

5
Using Multi-

Container Pods and
Design Patterns

Running complex applications on Kubernetes will require that you run not one but several
containers in the same Pods. The strength of Kubernetes lies in its ability to create Pods
made up of several containers: these Pods are capable of managing multiple containers
at once. We will focus on those Pods in this chapter by studying the different aspects of
hosting several containers in the same Pod, as well as having these different containers
communicate with each other.

So far, we've only created Pods running a single container: those were the simplest
forms of Pods, and you'll use them Pods to manage the simplest of applications. We also
discovered how to update and delete them by running simple Create, Read, Update,
Delete (CRUD) operations against those Pods using the kubectl command-line tool.

Besides mastering the basics of CRUD operations, you also learned how to access
a running Pod inside a Kubernetes cluster.

128 Using Multi-Container Pods and Design Patterns

In this chapter, we will push all of this one step forward and discover how to manage
Pods when they are meant to launch not one but several containers: the good news is
that everything you learned previously will also be valid for multi-container Pods. Things
won't differ much in terms of raw Pod management because updating and deleting Pods is
not different, no matter how many containers the Pod contains.

Besides those basic operations, we are also going to cover how to access a specific
container inside a multi-container Pod and how to access its logs. When a given Pod
contains more than one container, you'll have to run some specific commands with
specific arguments to access it, and that's something we are going to cover in this chapter.

We will also discover some important design patterns such as ambassador, sidecar, and
adapter containers. You'll need to learn these architectures to effectively manage multi-
container Pods. You'll also learn how to deal with volumes from Kubernetes. Docker
also provides volumes, but in Kubernetes, they are used to share data between containers
launched by the same Pod, and this is going to be an important part of this chapter.
After this chapter, you're going to be able to launch complex applications inside
Kubernetes Pods.

In this chapter, we're going to cover the following main topics:

• Understanding what multi-container Pods are

• Sharing volumes between containers in the same pod

• The ambassador design pattern

• The sidecar design pattern

• The adapter design pattern

Technical requirements
You will require the following prerequisites for this chapter:

• A working kubectl command-line utility

• A local or cloud-based Kubernetes cluster to practice with

Understanding what multi-container Pods are
In this section, we'll learn about the core concepts of Pods for managing several containers
at once by discussing some concrete examples of multi-container Pods.

Understanding what multi-container Pods are 129

Then, we will create and delete a Pod made up of at least two and discover how to access
its logs. After that, we'll learn how to access a specific container within a Pod containing
multiple containers. Finally, we will learn how to access the logs of a specific container
within a running Pod.

Concrete scenarios where you need multi-container
Pods
You should group your containers into a Pod when they need to be tightly linked. More
broadly, a Pod must correspond to an application or a process running in your Kubernetes
cluster. If your application requires multiple containers to function properly, then those
containers should be launched and managed through a single Pod.

When the containers are supposed to work together, you should group them into a single
Pod. Keep in mind that a Pod cannot span across multiple worker nodes. So, if you create
a Pod containing several containers, then all these containers will be created on the same
worker node and the same Docker daemon installation.

To understand where and when to use multi-container Pods, take the example of two
simple applications:

• A log forwarder: In this example, imagine that you have deployed a web server such
as NGINX that stores its logs in a dedicated directory. You might want to collect and
forward these logs. For that, you could deploy something like a Splunk forwarder
as a container within the same Pod as your NGINX server. These log forwarding
tools are used to forward logs from a source to a destination location, and it is very
common to deploy agents such as Splunk, Fluentd, or Filebeat to grab logs from a
container and forward them to a central location such as an ElasticSearch cluster. In
the Kubernetes world, this is generally achieved by running a multi-container Pod
with one container dedicated to running the application, and another one dedicated
to grabbing the logs and sending them elsewhere. Having these two containers
managed by the same Pod would ensure that they are launched on the same node as
the log forwarder and at the same time.

130 Using Multi-Container Pods and Design Patterns

• A proxy server: Another typical use case of a multi-container Pod would be an
application where you have an NGINX web server acting as a reverse proxy in
front of an application. It is very common to use middleware such as NGINX to
route web traffic to your actual web application by following some custom rules.
By bundling the two containers in the same Pod, you'll get two Pods running in the
same node. You could also run a third container in the same Pod to forward the
logs that are emitted by the two others to a central logging location! This is because
Kubernetes has no limit on the number of containers you can have in the same Pod,
so long as you have enough computing resources to run them all.

In general, every time several of your containers work together and are tightly coupled,
you should have them in a multi-container Pod. Just with these two examples, it's easy
to understand why such Pods as so powerful. Most of the Pods you'll launch in while
working with Kubernetes will probably handle more than one container.

Now, let's discover when to not create a multi-container Pod.

When not to create a multi-container Pod
Pods are especially useful when they are managing several containers, but they should not
be seen as the go-to solution every time you need to set up a container.

The really basic golden rule when designing a multi-container is to keep in mind that all
the containers that are declared in the Pod will be scheduled on the same worker node.

Now, let's discover how to create multi-container Pods. As you can imagine, we will have
to use the kubectl command-line tool!

Creating a Pod made up of two containers
In the previous chapter, we discovered two syntaxes for manipulating Kubernetes in
the past:

• The imperative syntax

• The declarative syntax

Most of the Kubernetes objects we are going to discover in this book can be created
or updated using these two methods, but unfortunately, this is not the case for multi-
container Pods.

Understanding what multi-container Pods are 131

When you need to create a Pod containing multiple containers, you will need to go
through the declarative syntax. This means that you will have to create a YAML file
containing the declaration of your Pods and all the containers it will manage, and then
apply it through kubectl create -f file.yaml or kubectl apply -f file.
yaml.

You cannot create Pods with multiple containers with kubectl create or
kubectl run.

Consider the following YAML manifest file stored in ~/multi-container-Pod.
yaml:

~/multi-container-Pod.yaml

apiVersion: v1

kind: Pod

metadata:

 name: nginx-Pod

spec:

 containers:

 - name: nginx-container

 image: nginx:latest

 - name: busybox-container

 image: busybox:latest

This YAML manifest will create a Kubernetes Pod made up of two containers: one based
on the nginx:latest image and the other one based on the busybox:latest image.

As you can see, there is no dedicated kind: resource for multi-container Pods – just
like when we created a single-container Pod, we are only using kind: Pod.

To create it, use the following command:

$ kubectl create -f multi-container-Pod.yaml

Pods/multi-container-Pod created

This will result in the Pod being created. The kubelet on the elected worker node will have
the Docker daemon to pull both images and instantiate two Docker containers.

To check if the Pod was correctly created, we can run kubectl get Pods:

$ kubectl get Pods

132 Using Multi-Container Pods and Design Patterns

Do you remember the role of kubelet from Chapter 2, Kubernetes Architecture – From
Docker Images to Running Pods? This component runs on each node that is part of your
Kubernetes cluster and is responsible for converting pod manifests received from kube-
apiserver into actual containers.

This kubelet launches your actual Docker containers on the worker nodes, and it is the
only component of Kubernetes that is directly interacting with the Docker daemon.

Important Note
Keep this important note in mind because this is one is extremely important:
all the containers that are declared in the same Pod will be scheduled, or
launched, on the same worker node or Docker daemon. Pods cannot span
multiple machines. All containers that are part of a Pod will be launched on the
same worker node!

This is something extremely important: containers in the same Pod are meant
to live together. If you terminate a Pod, all its containers will be killed together,
and when you create a Pod, Kubelet will, at the very least, attempt to create all
its containers together.

High availability is generally achieved by replicating multiple Pods over
multiple nodes.

From a Kubernetes perspective, applying this file results in a fully working multi-container
Pod made up of two containers, and we can make sure that the Pod is running with the
two containers by running a standard kubectl get Pods command to fetch the Pod
list from kube-apiserver.

Do you see the column that states 2/2? This is the number of containers inside the Pod.
Here, this is saying that the two containers that are part of this Pod were successfully
launched!

What happens when Kubernetes fails to launch one
container in a Pod?
Kubernetes keeps track of all the containers that are launched in the same Pod. But it often
happens that a specific container cannot be launched. One of the most popular causes for
this issue is when a typo is introduced on one of the Docker images or tags specified in
the Pod definition. Let's introduce such a typo in the YAML manifest to demonstrate how
Kubernetes reacts when some containers of a specific Pod cannot be launched.

Understanding what multi-container Pods are 133

In the following example, I have defined a Docker image that does not exist at all for the
NGINX container; note the nginx:i-do-not-exist Docker tag:

~/failed-multi-container-Pod.yaml

apiVersion: v1

kind: Pod

metadata:

 name: failed-multi-container-Pod

spec:

 containers:

 - name: nginx-container

 image: nginx:i-do-not-exist

 - name: busybox-container

 image: busybox:latest

Now, we can apply the following container using the kubectl create -f failed-
multi-container-Pod.yaml command:

$ kubectl create -f failed-multi-container-Pod.yaml

Pod/failed-multi-container-Pod created

Here, you can see that the Pod was effectively created. This is because even if there's
a failing Docker tag, the YAML remains valid from a Kubernetes perspective. So,
Kubernetes simply creates the Pod and persists the entry into etcd, but we can easily
imagine that kubelet will encounter an error when it launches the docker pull
command to retrieve the image from Docker Hub.

Let's check the status of the Pod using kubectl get Pods:

$ kubectl create -f failed-multi-container-Pod.yaml

NAME READY STATUS
RESTARTS AGE

failed-multi-container-Pod 0/2 CrashLoopBackOff 4
2m23s

134 Using Multi-Container Pods and Design Patterns

As you can see, the status of the pod is CrashLoopBackOff. This means that
Kubernetes is constantly crashing when trying to launch the pod and retries again and
again. To find out why it's crashing, you have to describe the Pod using the kubectl
describe Pods/failed-multi-container-Pod command:

$ kubectl describe Pods/failed-multi-container-Pod

Warning Failed 3m59s (x2 over 4m19s) kubelet
Failed to pull image "nginx:i-do-not-exist": rpc error: code
= Unknown desc = Error response from daemon: manifest for
nginx:i-do-not-exist not found: manifest unknown: manifest
unknown

 Warning Failed 3m59s (x2 over 4m19s) kubelet
Error: ErrImagePull

 Normal Pulling 3m59s (x3 over 4m19s) kubelet
Pulling image "busybox:latest"

 Normal Created 3m58s (x3 over 4m17s) kubelet
Created container busybox-container

It's a little bit hard to read, but by following this log, you can see that busybox-
container is okay since kubelet has succeeded in creating it, as shown by the last line
of the preceding output. But there's a problem with the other container; that is, nginx-
container.

Here, you can see that the output error is ErrImagePull and as you can guess, it's
saying that the container cannot be launched because the docker pull command fails
to retrieve the nginx:i-do-not-exist Docker tag.

So, Kubernetes does the following:

1. First, it creates the entry in etcd if the Pod of the YAML file is valid.
2. Then, it simply tries to launch the container.
3. If an error is encountered, it will try to launch the failing container again and again.

If any other container works properly, it's fine. But your Pod will never enter the Running
status because of the crashing container. After all, your app certainly needs the failing
container to work properly; otherwise, that container should not be there at all!

Now, let's learn how to delete a multi-container Pod.

Understanding what multi-container Pods are 135

Deleting a multi-container Pod
When you want to delete a Pod containing multiple containers, you have to go through
the kubectl delete command, just like you would for a single-container Pod.

Them, you have two choices:

• You specify the path to the YAML manifest file that's used by using the -f option.

• You delete the Pod without using its YAML path if you know its name.

The first way consists of specifying the path to the YAML manifest file. You can do so
using the following command:

$ kubectl delete -f multi-container-Pod.yaml

Otherwise, if you already know the Pod's name, you can do this as follows:

$ kubectl delete Pods/multi-Pod

$ # or equivalent

$ kubectl delete Pods multi-Pod

To figure out the name of the Pods, you can use the kubectl get commands:

$ kubectl get Pods

NAME READY STATUS
RESTARTS AGE

failed-multi-container-Pod 0/2 CrashLoopBackOff 9
22m

When I ran them, only failed-multi-container-Pod was created in my cluster, so
that's why you can just see one line in my output. Keep in mind that these commands are
working at the Pods level, not the containers level. Do not pass the name of a container as
this wouldn't work at all.

Here is how you can delete failed-multi-container-Pod imperatively without
specifying the YAML file that created it:

$ kubectl delete Pods/failed-multi-container-Pod

Pod "failed-multi-container-Pod" deleted

After a few seconds, the Pod is removed from the Kubernetes cluster and all its containers
are removed from the Docker daemon and the worker node.

136 Using Multi-Container Pods and Design Patterns

The amount of time that's spent before the command is issued and the Pod's name being
deleted and released is called the grace period. Let's discover how to deal with it!

Understanding the Pod deletion grace period
One important concept related to deleting Pods is what is called the grace period. It is
a concept that has something to do with how Kubernetes releases the name of the Pod
during Pod deletion. Both single-container Pods and multi-container Pods have this grace
period, which can be observed when you delete them. This grace period can be ignored by
passing the --grace-period=0 --force option to the delete command.

The whole idea is that you cannot have two Pods with the same name running at the same
time on your cluster, because the Pods' names are unique identifiers: that's why we use this
as a parameter to identify a specific Pod when running the kubectl delete command,
for example.

When the deletion is forced by setting a grace period to 0 with the --force flag, the
Pod's name is immediately released and becomes available for another Pod to take it.
While during an unforced deletion, the grace period is respected, and the Pod's name is
released after it is effectively deleted:

$ kubectl delete Pods/multi-container-Pods --grace-period=0 –
force

warning: Immediate deletion does not wait for confirmation that
the running resource has been terminated. The resource may
continue to run on the cluster indefinitely.

Pod "multi-container-Pod" force deleted

Keep in mind that this command should be used carefully if you don't know what
you are doing. Forcefully deleting a Pod shouldn't be seen as the norm because as the
output states, kubectl you cannot be sure that the Pod was effectively deleted. If, for
some reason, the Pod could not be deleted, it might run indefinitely, so do not run this
command if you are not sure of what to do.

Now, let's discover how to access a specific container that is running inside a multi-
container Pod.

Understanding what multi-container Pods are 137

Accessing a specific container inside
a multi-container Pod
When you have several containers in the same Pod, you can access each of them
individually. Here, we will access the NGINX container of our multi-container Pods. Let's
start by recreating it because we deleted it in our previous example:

$ kubectl create -f multi-container-Pod.yaml

Pod/multi-container-Pod created

To access a running container, you need to use the kubectl exec command, just like
you need to use docker exec to launch a command in an already created container
when using Docker without Kubernetes.

This command will ask for two important parameters:

• The Pod that wraps the container you want to target

• The name of the container itself, as entered in the YAML manifest file

We already know the name of the Pod because we can easily retrieve it with the kubectl
get command. In our case, the Pod is named multi-container-Pod.

However, we don't have the container's name because there is no kubectl get
containers command that would allow us to list the running containers. This is why we
will have to use the kubectl describe Pods/multi-container-Pod command
to find out what is contained in this Pod:

$ kubectl describe Pods/multi-container-Pod

This command will show the names of all the containers contained in the targeted
Pod. Here, we can see that our Pod is running two containers: one called busybox-
container and another called nginx-container. The one we need is nginx-
container.

Additionally, the following is a little command for listing all the container names
contained in a dedicated Pod:

$ kubectl get Pods/multi-container-Pod -o jsonpath="{.items[*].
spec.containers[*].name}"

This command will spare you from using the describe command. However, it makes
use of jsonpath, which is an advanced feature of kubectl: this command might look
strange but it mostly consists of a sort filter that's applied against the command.

138 Using Multi-Container Pods and Design Patterns

jsonpath filters are not easy to get right, so feel free to add this command as a bash alias
or note it somewhere because it's a useful one.

In any case, we can now see that we have those two containers inside the multi-
container-Pod Pod:

• nginx-container

• busybox-container

Now, let's access nginx-container. You have the name of the targeted container in the
targeted Pod, so use the following command to access the Pod:

$ kubectl exec -ti multi-container-Pod --container nginx-
container -- /bin/bash

After running this command, you'll be inside nginx-container. Let's explain this
command a little bit. kubectl exec does the same as docker exec.

When you run this command, you get the shell of the container, called nginx-
container, inside the multi-container Pod, at which point you will be ready to run
commands inside this very specific container on your Kubernetes cluster.

The main difference from the single container Pod situation is the --container option
(the -c short option works too). You need to pass this option to tell kubectl what
container you want to reach.

Now, let's discover how to run commands in the containers running in your Pods!

Running commands in containers
One powerful aspect of Kubernetes is that you can, at any time, access the containers
running on your Pods to execute some commands. We did this previously, but did
you know you can also execute any command you want directly from the kubectl
command-line tool?

First, we are going to recreate the Pod containing the NGINX and Busybox containers:

$ kubectl create -f multi-container-Pod.yaml

Pod/multi-container-Pod created

To run a command in a container, you need to use kubectl exec, just like we did
previously. But this time, you have to remove the -ti parameter to prevent kubectl
from attaching to your running terminal session.

Understanding what multi-container Pods are 139

Here, I'm running the ls command to list files in nginx-container from the multi-
container-Pod Pod:

$ kubectl exec Pods/multi-container-Pod --container nginx-
container-1 -- ls

This command will ask for two important parameters:

• The name of the container, as specified in the YAML file

• The name of the Pod that contains it

You can omit the container name but if you do so, kubectl will use the default first one.
In our case, the default one will be nginx-container because it was the first one to be
declared in the YAML manifest file.

Once you have entered all these parameters, you have to input the command you want to
run from the rest with a double dash (--).

The name of the container, as well as the name of the Pod that contains it, will need to be
provided. We already know the name of the Pod because we can easily retrieve it with the
kubectl get command. In our case, the Pod is called multi-container-Pod.

We will now discover how to override the commands that are run by your containers.

Overriding the default commands run by your
containers
When using Docker, you have the opportunity to write files called Dockerfile to build
Docker images. Dockerfile makes use of two keywords to tell us what commands and
arguments the containers that were built with this image will launch when they're created
using the docker run command.

These two keywords are ENTRYPOINT and CMD:

• ENTRYPOINT is the main command the Docker container will launch.

• CMD is used to replace the parameters that are passed to the ENTRYPOINT
command.

140 Using Multi-Container Pods and Design Patterns

For example, a classic Dockerfile that should be launched to run the sleep command
for 30 seconds would be written like this:

~/Dockerfile

FROM busybox:latest

ENTRYPOINT ["sleep"]

CMD ["30"]

This is just plain old Docker and you should be familiar with these concepts. As you may
already know, the CMD argument is what you can pass to the docker run command.
If you build this image using this Dockerfile using the docker build command,
you'll end up with a Busybox image that just runs the sleep command (ENTRYPOINT)
when docker run for 30 seconds (the CMD argument).

Thanks to the CMD instruction, you can override the default 30 seconds like so:

$ docker run my-custom-ubuntu:latest 60

$ docker run my-custom-ubuntu:latest # Just sleep for 30
seconds

Kubernetes, on the other hand, allows us to override both ENTRYPOINT and CMD thanks
to YAML pod definition files. To do so, you must append two optional keys to your YAML
configuration file: command and args.

This is a very big benefit Kubernetes brings you because you can decide to append
arguments to the command that's run by your container's Dockerfile, just like the CMD
arguments does with bare Docker, or completely override ENTRYPOINT!

Here, I'm going to write a new manifest file that will override the default ENTRYPOINT
and CMD parameters of the busybox image to make the busybox container sleep for 60
seconds. Here is how to proceed:

~/nginx-busybox-with-custom-command-and-args.yaml

apiVersion: v1

kind: Pod

metadata:

 name: nginx-busybox-with-custom-command-and-args

spec:

 initContainers:

 - name: my-init-container

 image: busybox:latest

 command: ["sleep", "15"]

Understanding what multi-container Pods are 141

 containers:

 - name: nginx-container

 image: nginx:latest

 - name: busybox-container

 image: busybox:latest

 command: ["sleep"] # Corresponds to the ENTRYPOINT

 args: ["60"] # Corresponds to CMD

This is a bit tricky to understand because what Dockerfile calls ENTRYPOINT
corresponds to the command argument in the YAML manifest file, and what
Dockerfile calls CMD corresponds to the args configuration key in the YAML
manifest file.

What if you omit one of them? Kubernetes will default to what is inside the Docker
image. If you omit the args key in the YAML, then Kubernetes will go for the CMD
provided in the Dockerfile , while if you omit the command key, Kubernetes will go
for the ENTRYPOINT declated in the Dockerfile. Most of the time, or at least if you're
comfortable with your container's ENTRYPOINT, you're just going to override the args
file (the CMD Dockerfile instruction).

Now, let's discover another feature: initContainers! In the next section, you'll see
another way to execute some additional side containers in your Pod to configure the main
ones.

Introducing initContainers
initContainers is a feature provided by Kubernetes Pods to run setup scripts before
the actual containers start. You can think of them as additional sides containers you can
define in your Pod YAML manifest file: they will run first when the Pod is created. Then,
once they complete, the Pod starts creating its main containers.

You can execute not one but several initContainers in the same Pod, but when you
define lots of them, keep in mind that they will run one after another, not in parallel.
Once an initContainer completes, the next one starts, and so on. In general,
initContainers are used to pull application code from a Git repository and expose it
to the main containers using volume mounts or to run start-up scripts.

142 Using Multi-Container Pods and Design Patterns

Since initContainers can have their own Docker images. You can offload some
configuration to them by keeping your main containers images as small as possible, thus
increasing the whole security of your setup by removing unnecessary tools from your
main container images. Here is a YAML manifest that introduces an initContainer:

~/nginx-with-init-container.yaml

apiVersion: v1

kind: Pod

metadata:

 name: nginx-with-init-container

spec:

 initContainers:

 - name: my-init-container

 image: busybox:latest

 command: ["sleep", "15"]

 containers:

 - name: nginx-container

 image: nginx:latest

As you can see from this YAML file, initContainer runs the busybox:latest
image, which will sleep for 15 seconds before completing. Once the execution of
initContainer is complete, Kubernetes will create the NGINX container.

Important Note
Note that Kubernetes cannot launch the main containers if
initContainer fails. That's why it is really important to not see
initContainer as something optional or that could fail. They will be
forcibly executed if they are specified in the YAML manifest file, and if they fail,
the main containers will never be launched!

Let's create the Pod. After, we will run the kubectl get Pods -w command for
kubectl to watch for a change in the Pod list. The output of the command will be
updated regularly, showing the change in the Pod's status. Please note the status
command, which is saying that an initContainer is running!

$ kubectl create -f nginx-with-init-container.yaml

Pod/nginx-with-init-container created

$ kubectl get Pods -w

Understanding what multi-container Pods are 143

NAME READY STATUS RESTARTS AGE

nginx-with-init-container 0/1 Init:0/1 0 3s

nginx-with-init-container 0/1 PodInitializing 0
17s

nginx-with-init-container 1/1 Running 0
19s

As you can see, Init:0/1 indicates that initContainer is being launched. After its
completion, the Init: prefix disappears for the next statuses, indicating that we are done
with initContainer and that Kubernetes is now creating the main container – in our
case, the NGINX one!

Use initContainer wisely when you're building your Pods! And remember: if you
can avoid using them, do so. You are not forced to use them, but they can be really helpful
for running configuration scripts or to pull something from external servers before
you launch your actual containers! Now, let's learn how to access the logs of a specific
container inside a running Pod!

Accessing the logs of a specific container
When using multiple containers in a single Pod, you can retrieve the logs of a dedicated
container inside the Pod. The proper way to proceed is by using the kubectl logs
command.

The most common way a containerized application exposes its logs is by sending them
to stdout, which is basically what Docker displays when you run the kubectl logs
command.

The kubectl logs command is capable of streaming the stdout property of a
dedicated container in a dedicated Pod and retrieving the application logs from the
container. For it to work, you will need to know the name of both the precise container
and its parent Pod, just like when we used kubectl exec to access a specific container.

Please read the previous section, Accessing a specific container inside a multi-container Pod,
to discover how:

$ kubectl logs -f Pods/multi-container-Pods --container nginx-
container

Please note the --container option (the -c short option works too), which specifies
the container you want to retrieve the logs for. Note that it also works the same for
initContainers: you have to pass its name to this option to retrieve its logs.

144 Using Multi-Container Pods and Design Patterns

Important Note
Remember that if you do not pass the --container option, you will
retrieve all the logs from all the containers that have been launched inside the
Pod. Not passing this option is useful in the case of a single-container Pod, but
you should consider this option every time you use a multi-container Pod.

There are other multiple useful options you need to be aware of when it comes to
accessing the logs of a container in a Pod. You can decide to retrieve the logs written in the
last 2 hours by using the following command:

$ kubectl logs --since=2h Pods/multi-container-Pods --container
nginx-container

Also, you can use the --tail option to retrieve the most recent lines of a log's output.
Here's how to do this:

$ kubectl logs --tail=30 Pods/multi-container-Pods --container
nginx-container

Here, we are retrieving the 30 most recent lines in the log output of nginx-container.

Now, you are ready to read and retrieve the logs from your Kubernetes Pods, regardless of
whether they are made up of one or several containers!

In this section, we discovered how to create, update, and delete multi-container Pods.
We also discovered how to force the deletion of a Pod. We then discovered how to access
a specific container in a Pod, as well as how to retrieve the logs of a specific container
in a Pod. Though we created an NGINX and a Busybox container in our Pod, they are
relatively poorly linked since they don't do anything together. To remediate that, we will
now learn how to deal with volumes so that we can share files between our two containers.

Sharing volumes between containers in the
same Pod
In this section, we'll learn what volumes are from a Kubernetes point of view and how to
use them. Docker also has a notion of volumes but it differs from Kubernetes volumes:
they answer the same need but they are not the same.

In this section, we will discover what Kubernetes volumes are, why they are useful, and
how they can help us when it comes to Kubernetes volumes.

Sharing volumes between containers in the same Pod 145

What are Kubernetes volumes?
We are going to answer a simple problem. Our multi-container Pods are currently made
up of two containers: an NGINX one and a Busybox one. We are going to try to share the
log directory in the NGINX container with the Busybox container by mounting the log
directory of NGINX in the directory of the Busybox container. This way, we will create a
relationship between the two containers to have them share a directory.

Kubernetes has two kinds of volumes:

• Volumes, which we will discuss here.

• PersistentVolume, which is a more advanced feature we will discuss later in
Chapter 9, Persistent Storage in Kubernetes.

Keep in mind that these two are not the same. PersistentVolume is a resource
of its own, whereas "volumes" is a Pod configuration. As the name suggests,
PersistentVolume is persistent, whereas volumes are not supposed to be. But keep in
mind that this is not always the case!

Simply put, volumes are storage-bound to the Pod's life cycle: when you create a Pod,
you'll have the opportunity to create volumes and attach them to the container(s) inside
the Pods. Volumes are nothing more than storage attached to the life cycle of the Pod. As
soon as the Pod is deleted, the volumes that were created with it are deleted too.

Even though they are not limited to this use case and this is not always true, you can
consider volumes as a particularly great way to share a directory and files between
containers running in the same Pod.

Important Note
Remember that volumes are bound to the Pod's life cycle, not the container's
life cycle. If a container crashes, the volume would survive because if a
container crashes, it won't cause its parent Pod to crash, and thus, no volume
will be deleted. So long as a Pod is alive, its volumes are too.

When Docker introduced the concept of volumes, it was just shared directories you could
mount to a container. Kubernetes also built its volume feature around this idea and used
volumes as shared directories.

146 Using Multi-Container Pods and Design Patterns

But Kubernetes also brought support for a lot of drivers, which helps integrate Pods'
volumes with external solutions. For example, an AWS EBS volume can be used as a
Kubernetes volume. Here are some solutions among the most common ones that can be
used as Kubernetes volumes:

• awsElasticBlockStore

• azureDisk

• gcePersistentDisk

• glusterfs

• hostPath

• emptyDir

• nfs

• persistentVolumeClaim (when you need to use a PersistentVolume,
which is outside the scope of this chapter)

That is why I said it is not true to say that a volume is fully bound to the life cycle of a Pod.
For example, a pod volume backed by an AWS EBS could survive a Pod being deleted
because the backend provider (here, this is AWS) might have its own way of managing the
storage life cycle. That is why we are going to purely focus on the simplest form of volumes
for now.

Important Note
Please note that using external solutions to manage your Kubernetes volumes
will require you to follow those external solutions' requirements. For example,
using an AWS EBS volume as a Kubernetes volume will require your Pods to be
executed on a Kubernetes worker node, which would be an EC2 instance. The
reason for this is that AWS EBS volumes can only be attached to EC2 instances.
Thus, a Pod exploiting such a volume would need to be launched on an EC2
instance.

We are going to discover the two most common volume drivers here: emptyDir and
hostPath. We will also talk about persistentVolumeClaim because this one is
going to a little be special compared to the other volumes and will be fully discovered in
Chapter 9, Persistent Storage in Kubernetes

Now, let's start discovering how to share files between containers in the same Pod using
volumes with the emptyDir volume type!

Sharing volumes between containers in the same Pod 147

Creating and mounting an emptyDir volume
The emptyDir volume type is certainly the most common volume type that's used. As
the name suggests, it is simply an empty directory that is initialized at Pod creation that
you can mount to the location of each container running in the Pod.

It is certainly the easiest and simplest way to have your container share data between
them. Let's create a Pod that will manage two containers.

In the following example, I am creating a Pod that will launch two containers, and just
like we had previously, it's going to be an NGINX container and a Busybox container.
I'm going to override the command that's run by the Busybox container when it starts to
prevent it from completing. That way, we will get it running indefinitely as a long process
and we will be able to launch additional commands to check if our emptyDir has been
initialized correctly.

Both containers will have a common volume mounted at /var/i-am-empty-dir-
volume/, which will be our emptyDir volume, initialized in the same Pod. Here is the
YAML file for creating the Pod:

 # ~/two-nginx-with-emptydir-Pod.yaml

apiVersion: v1

kind: Pod

metadata:

 name: two-containers-with-empty-dir

spec:

 containers:

 - name: nginx-container

 image: nginx:latest

 volumeMounts:

 - mountPath: /var/i-am-empty-dir-volume

 name: empty-dir-volume

 - name: busybox-container

 image: busybox:latest

 command: ["/bin/sh"]

 args: ["-c", "while true; do sleep 30; done;"] # Prevents
busybox from exiting after completion

 volumeMounts:

 - mountPath: /var/i-am-empty-dir-volume

 name: empty-dir-volume

 volumes:

148 Using Multi-Container Pods and Design Patterns

 - name: empty-dir-volume # name of the volume

 emptyDir: {} # Initialize an empty directory # The path on
the worker node.

Note that the object we will create in our Kubernetes cluster will become more and more
complex as we go through this example, and as you can imagine, most complex things
cannot be achieved with just imperative commands. That's why you are going to see more
and more examples relying on the YAML manifest file: you should start to take up the
habit of trying to read them to figure out what they do.

That being said, we can now apply the manifest file using the following kubectl
create -f command:

$ kubectl create -f two-containers-with-emptydir-Pod.yaml

Pod/two-containers-with-empty-dir created

Now, we can check that the Pod is successfully running by issuing the kubectl get
Pods command:

$ kubectl get Pods

NAME READY STATUS RESTARTS
AGE

two-containers-with-empty-dir 2/2 Running 0
47s

Now that we are sure the Pod is running and that both the NGINX and Busybox
containers have been launched, we can check that the directory can be accessed in both
containers by issuing the ls command.

If the command is not failing, as we saw previously, we can run the ls command in the
containers by simply running the kubectl exec command. As you may recall, the
command takes the Pod's name and the container's name as arguments. We are going to
run it twice to make sure the volume is mounted in both containers:

$ kubectl exec two-containers-with-empty-dir --container nginx-
container -- ls /var

i-am-empty-dir-volume

$ kubectl exec two-containers-with-empty-dir --container
busybox-container -- ls /var

i-am-empty-dir-volume

Sharing volumes between containers in the same Pod 149

As you can see, the ls /var command is showing the name in both containers! This
means that emptyDir was initialized and mounted in both containers correctly.

Now, let's create a file in one of the two containers. The file should be immediately visible
in the other container, proving that the volume mount is working properly!

In the following command, I am simply creating a .txt file called hello-world.txt
in the mounted directory:

$ kubectl exec two-containers-with-empty-dir --container nginx-
container -- /bin/sh -c "echo 'hello world' >> /var/i-am-empty-
dir-volume/hello-world.txt"

$ kubectl exec two-containers-with-empty-dir --container nginx-
container -- cat /var/i-am-empty-dir-volume/hello-world.txt

hello world

$ kubectl exec two-containers-with-empty-dir --container
busybox-container -- cat /var/i-am-empty-dir-volume/hello-
world.txt

hello world

As you can see, I used nginx-container to create the /var/i-am-empty-dir-
volume/hello-world.txt file, which contains the hello-world string. Then,
I simply used the cat command to access the file from both containers; you can see
that the file is accessible in both cases. Again, remember that emptyDir volumes are
completely tied to the life cycle of the Pod. If the Pod declaring it is destroyed, then
the volume is destroyed too, along with all its content, and it will become impossible
to recover!

Now, we will discover another volume type: the hostPath volume. As you can imagine,
it's going to be a directory that you can mount on your containers that is backed by a path
on the host machine – the worker node running the Pod!

150 Using Multi-Container Pods and Design Patterns

Creating and mounting a hostPath volume
The hostPath volume is also a common volume type. As its name suggests, it will
allow you to mount a directory in the host machine to containers in your Pod! The host
machine is the Kubernetes worker node executing the Pod. Here are some examples:

• If your cluster is based on Minikube (a single-node cluster), the host is your
local machine.

• On Amazon EKS, the host machine will be an EC2 instance.

• In a Kubeadm cluster, the host machine is generally a standard Linux machine.

The host machine is the machine running the Pod, and you can mount a directory from
the filesystem of the host machine to the Kubernetes Pod!

In the following example, I'll be working on a Kubernetes cluster based on Minikube,
so hostPath will be a directory that's been created on my computer that will then be
mounted in a Kubernetes Pod.

Important Note
Using the hostPath volume type can be useful, but you have to keep in
mind that it creates a strong relationship between the worker node and the
Pods running on top of it. In the Kubernetes world, you can consider it as an
anti-pattern.

The whole idea behind Pods is that they are supposed to be easy to delete and
rescheduled on another worker node without problems. Using hostPath
will create a tight relationship between the Pod and the worker node, and that
could lead to major issues if your Pod were to fail and be rescheduled on a
node where the required path on the host machine is not present.

Now, let's discover how to create hostPath.

Let's imagine that I have a file on my worker node on worker-node/nginx.conf and
I want to mount it on /var/config/nginx.conf on the nginx container.

Here is the YAML file to create the setup. As you can see, I declared a hostPath
volume at the bottom of the file that defines a path that should be present on my host
machine. Now, I can mount it on any container that needs to deal with the volume in the
containers block:

~/multi-container-Pod-with-host-path.yaml

apiVersion: v1

kind: Pod

Sharing volumes between containers in the same Pod 151

metadata:

 name: multi-container-Pod-with-host-path

spec:

 containers:

 - name: nginx-container

 image: nginx:latest

 volumeMounts:

 - mountPath: /var/config

 name: my-host-path-volume

 - name: busybox-container

 image: busybox:latest

 command: ["/bin/sh"]

 args: ["-c", "while true; do sleep 30; done;"] # Prevents
busybox from exiting after completion

 volumes:

 - name: my-host-path-volume

 hostPath:

 path: /tmp # The path on the worker node.

As you can see, mounting the value is just like what we did with the emptyDir volume
in the previous section regarding the emptyDir volume type. By using a combination
of volumes at the Pod level and volumeMounts at the container level, you can mount a
volume on your containers.

You can also mount the directory on the busybox container so that it gets access to the
directory on the host.

Before running the YAML manifest file, though, you need to create the path on your host
and create the necessary file:

$ echo "Hello World" >> /tmp/hello-world.txt

Now that the path exists on the host machine, we can apply the YAML file to our
Kubernetes cluster and, immediately after, launch a kubectl get Pods command to
check that the Pod was created correctly:

$ kubectl create -f multi-container-Pod-with-host-path.yaml

Pod/multi-container-Pod-with-host-path

$ kubectl get Pods

152 Using Multi-Container Pods and Design Patterns

NAME READY STATUS RESTARTS
AGE

multi-container-Pod-with-host-path 2/2 Running 0
92s

Everything seems good! Now, let's echo the file that should be mounted at /var/
config/hello-world.txt.

At beginning of this chapter, we discovered the different aspects of multi-container
Pods! We discovered how to create, update, and delete multi-container Pods, as well as
initContainers, access logs, override Docker commands directly from the pod's
resources, and how to share directories between containers using the most two basic
volumes. Now, we are going to put a few architecting principles together and discover
some notions related to multi-container Pods called "patterns."

The ambassador design pattern
When designing a multi-container Pod, you can decide to follow some architectural
principles to build your Pod. Some typical needs are answers by these design principles,
and the ambassador pattern is one of them.

Here, we are going to discover what the ambassador design pattern is, how to build an
ambassador container in Kubernetes Pods, and look at a concrete example of them.

What is the ambassador design pattern?
In essence, the ambassador design pattern applies to multi-container Pods. We can define
two containers in the same Pod:

• The first container will be called the main container.

• The other container will be called the ambassador container.

In this design pattern, we assume that the main container might have to access external
services to communicate with them. For example, you can have an application that must
interact with a SQL database that is living outside of your Pod, and you need to reach this
database to retrieve data from it.

The ambassador design pattern 153

This is the typical use case where you can deploy an adapter container alongside the main
container, next to it, in the same Pod. The whole idea is to get the ambassador to proxy the
requests ran by the main container to the database server. The ambassador container will
be essentially a SQL proxy. Every time the main container wants to access the database,
it won't access it directly but rather create a connection to the ambassador container that
will play the role of a SQL proxy.

Important Note
Running an ambassador container is fine, but only if the external API is
not living in the same Kubernetes cluster. To run requests on another pod,
Kubernetes provides strong mechanics called services. We will have the
opportunity to discover them in Chapter 7, Exposing Your Pods with Services.

But why would you need a proxy to access external databases? Here are some concrete
benefits this design pattern can bring you:

• Offloading SQL configuration

• Management of SSL/TLS certificates

Please note that having an ambassador proxy is not limited to a SQL proxy but this
example is demonstrative of what this design pattern can bring you. Note that the
ambassador proxy is only supposed to be called for outbound connections from your
main container to something else, such as data storage or an external API. It should not
be seen as an entry point to your cluster! Now, let's quickly discover how to create an
ambassador SQL with a YAML file.

A simple example of an ambassador multi-container
Pod
Note that we know about ambassador containers, let's learn how to create one with
Kubernetes. The following YAML manifest file creates a Pod that makes creates two
containers:

• nginx-app, derived from the nginx:latest image

• Sql-ambassador-proxy, created from the mysql-proxy:latest Docker
image:

~/ nginx-with-ambassador.yaml

apiVersion: v1

kind: Pod

154 Using Multi-Container Pods and Design Patterns

metadata:

 name: nginx-with-ambassador

spec:

 containers:

 - name: mysql-proxy-ambassador-container

 image: mysql-proxy:latest

 ports:

 - containerPort: 3306

 env:

 - name: DB_HOST

 value: mysql.xxx.us-east-1.rds.amazonaws.com

 - name: nginx-container

 image: nginx:latest

As you can imagine, it's going to be the developer's job to get the application code running
in the NGINX container to query the ambassador instead of the Amazon RDS endpoint.
As the ambassador container can be configured from environment variables, it's going to
be easy for you to just input the configuration variables in ambassador-container.

Important Note
Do not get tricked by the order of the containers in the YAML file. The fact that
the ambassador container appears first does not make it the main container
of the Pod. This notion of the main container does not exist at all from a
Kubernetes perspective – both are plain Docker containers that run in parallel
with no concept of a hierarchy between them. Here, we just access the Pod
from the NGINX container, which makes it the most important one.

Remember that the ambassador running in the same Pod as the NGINX container makes
it accessible from NGINX on localhost:3306!

The sidecar design pattern
The sidecar design pattern is an extremely useful one. It is good for when you want to
extend the features of your main containers with features it would normally not be able to
achieve on its own.

Just like we did for the ambassador container, we're going to explain exactly what it is by
covering some examples. Then, we're going to discover some concrete examples.

The adapter design pattern 155

What is the sidecar design pattern?
Think of the sidecar container as an extension or a helper for your main container. Its
main purpose is to extend the main container to bring it a new feature, but without
changing anything about it. Unlike the ambassador design pattern, the main container
may even not be aware of the presence of a sidecar.

Just like the ambassador design pattern, the sidecar design pattern makes use of at least
two containers:

• The main container, the one that is running the application

• The sidecar container, the one that is bringing something additional to the first one

You may have already guessed, but this pattern is especially useful when you want to run
monitoring or log forwarder agents.

There are three things to understand when you want to build a sidecar that is going to
forward your logs to another location:

• You must locate the directory where your main containers write their logs.

• You must create a volume to make this directory accessible to the log
forwarder sidecar.

• You must launch the sidecar container with the proper configuration.

Based on these concepts, the main container remains unchanged, and even if the sidecar
fails, it wouldn't have an impact on the main container, which could continue to work.

Now, we're going to use an example YAML file for the sidecar design pattern.

A simple example of a sidecar multi-container Pod
Just like the ambassador design pattern, the sidecar makes use of multi-container Pods.
We will define two containers in the same Pod.

The adapter design pattern
The last design pattern that we are going to discover here is the adapter design pattern. As
its name suggests, it's going to adapt an entry from a source format to a target format.

156 Using Multi-Container Pods and Design Patterns

What is the adapter design pattern?
The adapter design pattern is the last paradigm we are going to discover in this chapter.
As with the ambassador and sidecar design patterns, this one expects that you run at least
two containers:

• The first one is the main container.

• The second one is the adapter container.

This design pattern is helpful and should be used whenever the main containers emit data
in a format, A, that should be sent to another application that is expecting the data in
another format, B. As the name suggests, the adapter container is here to adapt.

Again, this design pattern is especially well-suited for log or monitoring management.
Imagine a Kubernetes cluster where you have dozens of applications running; they are
writing logs in Apache format that you need to convert into JSON so that they can be
indexed by a search engine. This is exactly where the adapter design pattern comes into
play. Running an adapter container next to the application containers will help you get
these logs adapted to the source format before they are sent somewhere else.

Just like for the sidecar design pattern, this one can only work if both the containers in
your Pod are accessing the same directory using volumes.

A simple example of an adapter multi-container Pod
In this example, I'm going to use a Pod that is using an adapter container with a shared
directory mounted as a Kubernetes volume.

This Pod is going to run two containers:

• nginx-app, derived from the nginx:latest image

• adapter-container, created from the ubuntu:latest Docker image:

~/ nginx-with-ambassador.yaml

apiVersion: v1

kind: Pod

metadata:

 name: nginx-with-ambassador

spec:

 containers:

 - name: mysql-proxy-ambassador-container

 image: mysql-proxy:latest

Summary 157

 ports:

 - containerPort: 3306

 env:

 - name: DB_HOST

 value: mysql.xxx.us-east-1.rds.amazonaws.com

 - name: nginx-container

 image: nginx:latest

Please note that the container is mounting the same directory to provide access to both
containers.

Summary
This chapter was quite a big one, but you should now have a good understanding of what
pods are and how to use them, especially when it comes to managing multiple Docker
containers in the same Pod. Since microservice applications are often made up of several
containers and not just one, it's going to be difficult to manage only a single-container Pod
in your cluster.

I recommend that you focus on mastering the declarative way of creating Kubernetes
resources. As you have noticed in this chapter, the key to achieving the most complex
things with Kubernetes resides in writing YAML files. One example is that you simply
cannot create a multi-container Pod without writing YAML files.

This chapter completes the previous one: Chapter 4, Running Your Docker Containers. You
need to understand that everything we will do with Kubernetes will be Pod management
because everything in Kubernetes revolves around them. Keep in mind that containers are
never created directly, but always through a pod object, and that all the containers within
the same Pod are created on the same worker node. If you understand that, then you can
continue to the next chapter!

The next chapter is going to introduce two of the most important objects, ConfigMaps
and Secrets, as we continue to dig into the core concepts of Kubernetes. In Kubernetes, we
consider that applications and their configurations should be treated as two completely
distinct things to improve application portability: that is why we have the pod resource,
which lets us create the application container, and the ConfigMaps and Secrets objects,
which are there to help us inject configuration data into our pods.

6
Configuring

Your Pods Using
ConfigMaps
and Secrets

The last two chapters, entitled Chapter 4, Running Your Docker Containers, and Chapter
5, Using Multi-Container Pods and Design Patterns, introduced you to launching Docker
containers using Kubernetes. At this point, you know that whenever you need to launch a
container on Kubernetes, you will need to do so using Pods. This was the key concept for
you to understand and assimilate. We also learned that Kubernetes is nothing more than
a REST API that describes resources types we call Kind. When created against an API,
each instance of a Kind will result in a computing resource being provisioned on a worker
node. A Pod is one of these resources, and when they're created against the worker node,
this results in Docker containers.

In this chapter, we'll learn about two new Kubernetes objects: ConfigMaps and Secrets.

160 Configuring Your Pods Using ConfigMaps and Secrets

These are two very important objects or resources that allow you to configure the apps
that run in your Pods. ConfigMaps and Secrets enable you to decouple the applications
running in your Pods from their configuration values. Kubernetes has its own way of
managing configuration values and that's what we will learn in this chapter. We will also
explain why it is so important to treat application code and configuration values as two
different and independent things, and the benefit you'll gain from doing so.

ConfigMaps and Secrets have a ton of mechanisms, such as being able to be injected into
containers running in Pods in the form of environment variables or volumes to mount on
your Pods. That's what we're going to look at in this chapter. Modern applications require
you to treat application configuration as a first-class citizen to make applications blind
to the environment they are running on. This way, you'll be able to build super-portable
applications in a Kubernetes-friendly way by discovering how to expose configuration
values to your running Pods.

In this chapter, we're going to cover the following main topics:

• Understanding what ConfigMaps and Secrets are

• Configuring your Pods using the ConfigMap object

• Managing sensitive configuration with the Secret object

Technical requirements
For this chapter, you will need the following:

• A working Kubernetes cluster (local or cloud-based, though this is not important)

• A working kubectl CLI configured to communicate with the Kubernetes cluster

You can get these two prerequisites by following Chapter 2, Kubernetes Architecture – From
Docker Images to Running Pods, and Chapter 3, Installing Your First Kubernetes Cluster, to
get a working Kubernetes cluster and a properly configured kubectl client, respectively.

Understanding what ConfigMaps and
Secrets are
Configuration management is a consideration that must always be taken seriously in any
IT project. Kubernetes has made configuration a first-class passenger by creating two
resources specifically designed to manage configuration: ConfigMaps and Secrets.

Understanding what ConfigMaps and Secrets are 161

In the next section, we will explain what ConfigMaps and Secrets are and how they are
used to manage configuration in Kubernetes.

Decoupling your application and your configuration
When we use Kubernetes, we want our applications to be as portable as possible. A good
way to achieve this is to decouple the application from its configuration. Back in the old
days, configuration and application were the same things: since the application code was
designed to work only on one environment, configuration values were often bundled
within the application code itself, so the configuration and application code were tightly
coupled.

Having both application code and configuration values treated as the same thing reduces
the portability of an application. Nowadays, things have changed a little bit and we must
be able to update the application configuration because we want to make our application
as portable as possible, enabling us to deploy applications in multiple environments
flawlessly.

Consider the following problem:

1. You deploy a Java application to the development environment for testing.
2. After the tests, the app is ready for production, and you need to deploy it. However,

the MySQL endpoint for production is different from the one in development.

There are two possibilities here:

• The configuration and application code are not decoupled, and the MySQL is
hardcoded and bundled within the application code: you are stuck and need to
rebuild the whole app after editing the application code.

• The configuration and application code are decoupled. That's good news for you as
you can simply override the MySQL endpoint as you deploy to production.

That's the key to the concept of portability: the application code should be independent
of the infrastructure it is running on. The best way to achieve this is to decouple the
application code from its configuration.

Let's look at some typical examples of the types of configuration values you should
decouple from the app:

• API keys to access an Amazon S3 bucket

• The password of the MySQL server used by your application

162 Configuring Your Pods Using ConfigMaps and Secrets

• The endpoint of a Redis cluster used by your application

• Pre-computed values such as JWT token private keys

All of these values are likely to change from one environment to another, and
the applications that are launched in your Pods should be able to load a different
configuration, depending on the environment they are launched on. This is why we will
seek to systematically maintain a barrier between our applications and the configurations
they consume. By doing this, we can treat them as two completely different entities in our
Kubernetes cluster. The best way to achieve this is by considering our application and the
configurations it uses as two different entities.

This is why Kubernetes suggests using the ConfigMap and Secrets objects, which are
designed to carry your configuration data. Then, you will need to attach these ConfigMaps
and Secrets when you create your Pods.

Important Note
Please avoid including your configuration values as part of your Docker
images. Your Dockerfile should build your application but not configure it.
By including the container configuration at build time, you create a strong
relationship between your application and how it's configured, which reduces
the portability of your container.

ConfigMaps are meant to hold non-critical configuration values, whereas Secrets are
globally the same but meant to hold sensitive configuration values, such as database
passwords and so on.

So, you can imagine a ConfigMap and Secret for each environment and for each
application, which would contain the parameters that the application needs to function
in a specific context and environment. The whole idea to understand is that ConfigMaps
and Secrets behave like repositories for key/value pairs. These key/value pairs can contain
plain values called literal or full configuration files such as YAML, TOML, and so on. Then,
on Pod creation, you can pick the name of a ConfigMap or a Secret and link it to your Pod
so that the configuration values are exposed to the containers running into it.

You always proceed in this order:

1. Create a ConfigMap or a Secret.
2. Fill it with your configuration values.
3. Create a Pod referencing the ConfigMap or Secret.

By following these steps, you can make your Pods portable between environments, which
means you are fully compliant with a common DevOps good practice.

Understanding what ConfigMaps and Secrets are 163

Now that we've explained why it is important to decouple application code and
configuration values, it is time to explain why and how to achieve this in a Kubernetes-
friendly way.

Understanding how Pods consume ConfigMaps and
Secrets
Outside of Kubernetes, modern containerized applications consume their configuration in
two ways:

• As OS environment variables

• As configuration files

The reason for this is that overriding an environment variable is super easy with Docker
and all programming languages offer functions to easily read environment variables.
Configuration files can easily be shared and mounted as Docker volumes between
containers.

Back in the Kubernetes world, ConfigMaps and Secrets are following these two methods.
Once created in your Kubernetes cluster, these items can be consumed in one of two ways:

• Included as environment variables in the container running in your Pods

• Mounted as Kubernetes volumes, just like any other volume

You can decide to inject one value from a ConfigMap or a Secret as an environment
variable or inject all the values into a ConfigMap as environment variables; the same goes
for Secrets.

ConfigMap and Secrets can also behave as volume mounts. When you mount a
ConfigMap as a volume, you can inject all the values it contains in a directory into your
container. If you store the full configuration files in your ConfigMap, using this feature to
override a configuration directory becomes incredibly easy.

After this introduction to ConfigMap and Secrets, you should now understand why they
are so important when it comes to configuring an application. Mastering them is crucial
if you intend to work with Kubernetes cleanly and solidly. As we mentioned earlier in this
chapter, ConfigMaps are used to store unsecured configuration values, whereas Secrets are
used for more sensitive configuration data such as hashes or database passwords.

Since the two objects don't behave the same, let's look at them separately. First, we are
going to discover how ConfigMaps work. We will discover Secrets after.

164 Configuring Your Pods Using ConfigMaps and Secrets

Configuring your Pods using ConfigMaps
In this section, we will learn how to list, create, delete, and read ConfigMaps. Then, we will
learn how to attach them to our Pods so that their values are injected into our Pods in the
form of environment variables or volumes.

Listing ConfigMaps
Listing the ConfigMaps that were created in your cluster is fairly straightforward and can
be accomplished using kubectl , just like any other object in Kubernetes. You can do
this by using the full resource name, which is configmaps:

$ kubectl get configmaps

Alternatively, you can use the shorter alias, which is cm:

$ kubectl get cm

These two commands are equivalent. At this point, kubectl may return a few default
ConfigMaps or an error message saying that no configmaps were found. This
is because some cloud services create default ConfigMaps for internal operations while
others don't – it depends on where your Kubernetes cluster is running.

Creating a ConfigMap
Like other Kubernetes objects, ConfigMaps can be created imperatively or declaratively.
Just like we did to create Pods, imperative methods consist of issuing a command, whereas
declarative methods consist of creating a YAML file and then applying it to the cluster to
create the resource. Nothing changes here.

You can decide to create an empty ConfigMap and then add values to it, or create a
ConfigMap directly initialized with values. The following command will create an empty
ConfigMap called my-first-configmap via the imperative method:

$ kubectl create configmap my-first-configmap

configmap/my-first-configmap created

$ # kubectl create cm my-first-configmap also works...

Configuring your Pods using ConfigMaps 165

Once this command has been executed, you can type the kubectl get cm command
once again to see your new configmap:

$ kubectl get cm

NAME DATA AGE

my-first-configmap 0 42s

Now, we are going to create a new empty ConfigMap, but this time, we are going to create
it with the declarative method. This way, we're going to have to create a YAML file and
apply it through kubectl .

The following content should be placed in a file called ~/my-second-configmap.
yaml:

~/my-second-configmap.yaml

apiVersion: v1

kind: ConfigMap

metadata:

 name: my-second-configmap

Once this file has been created, you can apply it to your Kubernetes cluster using the
kubectl create -f command:

$ kubectl create -f ~/my-second-configmap.yaml

configmap/my-second-configmap created

You can type the kubectl get cm command once more to see your new configmap
added next to the one you created earlier:

$ kubectl get cm

NAME DATA AGE

my-fist-configmap 0 106s

my-second-configmap 0 18s

Please note that the output of the kubectl get cm command also returns the number
of keys each configmap contains in the DATA column. For now, it's zero, but in the
following examples, you'll see that we can fill a configmap when it's created, so DATA
will reflect the number of keys we put in configmap.

166 Configuring Your Pods Using ConfigMaps and Secrets

Creating a ConfigMap from literal values
Having an empty ConfigMap is quite useless, so let's learn how to create a ConfigMap
with values inside it. Let's do this imperatively: adding the –from-literal flag to the
kubectl create cm command.

Here, I'm going to create a ConfigMap called my-third-configmap with a key named
color and its value set to blue:

$ kubectl create cm my-third-configmap --from-
literal=color=blue

configmap/my-third-configmap created

Also, be aware that you can create a ConfigMap with multiple parameters at once: you just
need to add as much configuration data as you want to configmap by chaining several
from-literals as you need in your command:

$ kubectl create cm my-fourth-configmap --from-
literal=color=blue --from-literal=version=1 --from-
literal=environment=prod

configmap/my-fourth-configmap created

Here, we are creating a ConfigMap with three configuration values inside it. Now, you can
list your ConfigMaps once more using this command. You should see the few additional
ones you just created.

Please note that the DATA column in the return of kubectl get cm is now reflecting
the number of configuration values inside each configmap:

$ kubectl get cm

NAME DATA AGE

my-first-configmap 0 9m30s

my-fourth-configmap 3 6m23s

my-second-configmap 0 8m2s

my-third-configmap 1 7m9s

It is also possible to create the same configmap declaratively. Here is the equivalent of
this as a YAML configuration file that is ready to be applied against the cluster. Please note
the new data YAML key, which contains all the configuration values:

~/my-fifth-configmap.yaml

apiVersion: v1

kind: ConfigMap

Configuring your Pods using ConfigMaps 167

metadata:

 name: my-fifth-configmap

data:

 color: "blue"

 version: "1"

 environment: "prod"

Now, let's learn how to store entire configuration files inside a ConfigMap.

Storing entire configuration files in a ConfigMap
As we mentioned earlier, it's also possible to store complete files inside a ConfigMap –
you are not restricted to literal values. The trick is to give the path of a file stored in your
filesystem to the kubectl command line. The content of the file will then be taken by
kubectl and used to populate a parameter in configmap.

Having the content of a configuration file stored in a ConfigMap is super useful because
you'll be able to mount your ConfigMaps in your Pods, just like you can do with volumes.

The good news is that you can mix literal values and files inside a ConfigMap. Literal
values are meant to be short strings, whereas files are just treated as longer strings: they
are not two different data types. Here, a sixth ConfigMap is created with a literal value,
just like it was previously, but now, we are also going to store the content of a file in it.

Let's create a file called configfile.txt in the $HOME/configfile.txt location
with arbitrary content:

$ echo "I'm just a dummy config file" >> $HOME/configfile.txt

Here, that configuration file has the .txt extension but it could be a .yaml, .toml,
.rb, or any other configuration format your application can use.

Now, we need to import that file into a ConfigMap, so let's create a brand new ConfigMap
to demonstrate this. You can do this using the --from-file flag, which can be used
together with the --from-literal flag in the same command:

$ kubectl create cm my-sixth-configmap --from-
literal=color=yellow --from-file=$HOME/configfile.txt

configmap/my-sixth-configmap created

168 Configuring Your Pods Using ConfigMaps and Secrets

Let's run the kubectl get cm command once more to make sure our sixth
configmap is created. The command will show that it contains two configurations
values; in our case, the one created from a literal and the other one created from the
content of a file:

$ kubectl get cm

NAME DATA AGE

my-fifth-configmap 3 11m

my-first-configmap 0 25m

my-fourth-configmap 3 16m

my-second-configmap 0 24m

my-sixth-configmap 2 38s

my-third-configmap 1 23m

As you can see, my-sixth-configmap contains two pieces of data: the literal and
the file.

Now, let's create a seventh ConfigMap. Just like the sixth one, it's going to contain a literal
and a file, but this time, we're going to create it declaratively.

The YAML format allows you to use multiple lines with the | symbol. We're using this
syntax as part of our declaration file:

~/my-seventh-configmap.yaml

apiVersion: v1

kind: ConfigMap

metadata:

 name: my-seventh-configmap

data:

 color: "green"

 configfile.txt: |

 I'm another configuration file.

Let's apply this YAML file to create our configmap with the kubectl create
command:

$ kubectl create -f my-seventh-configmap.yaml

configmap/my-seventh-configmap created

Configuring your Pods using ConfigMaps 169

Just to make sure, let's list the ConfigMaps in our cluster using kubectl get cm to
make sure our seventh configmap has been created and contains two values. So, let's
run the kubectl get cm command once more:

$ kubectl get cm

NAME DATA AGE

my-fifth-configmap 3 91m

my-first-configmap 0 105m

my-fourth-configmap 3 96m

my-second-configmap 0 104m

my-seventh-configmap 2 49s

my-sixth-configmap 2 80m

my-third-configmap 1 103m

Now, let's discover the last possible way to create a ConfigMap; that is, from an env file.

Creating a ConfigMap from an env file
As you can guess, you can create a ConfigMap from an env file imperatively using the
--from-env-file flag.

An env file is a key=value format file where each key is separated by a line break. This
is a configuration format that's used by some applications, so Kubernetes brought a way
to generate a ConfigMap from an existing env file. This is especially useful if you have an
already existing application you want to migrate into Kubernetes.

Here is a typical env file:

~/my-env-file.txt

hello=world

color=blue

release=1.0production=true

By convention, env files are named .env, but it's not mandatory. So long as the file is
formatted correctly, Kubernetes will be able to generate a ConfigMap based on
the parameters.

170 Configuring Your Pods Using ConfigMaps and Secrets

You can use the following command to import the configuration in the env file as
a ConfigMap into your Kubernetes cluster:

$ kubectl create cm my-eigth-configmap --from-env-file=my-env-
file.txt

configmap/my-eight-configmap created

Lastly, let's list the ConfigMaps in our cluster to check that our new ConfigMap was
created with three configuration values:

$ kubectl get cm my-eight-configmap

NAME DATA AGE

My-eight-configmap 3 1m

my-fifth-configmap 3 91m

my-first-configmap 0 105m

my-fourth-configmap 3 96m

my-second-configmap 0 104m

my-seventh-configmap 2 49s

my-sixth-configmap 2 80m

my-third-configmap 1 103m

As you can see, the new configmap is now available in the cluster, and it was created
with the three parameters that were present in the env file. That's a solid way to import
your env files into Kubernetes ConfigMaps.

Important Note
Remember that ConfigMaps are not meant to contain sensitive values. Data in
ConfigMaps are not encrypted and that's why you can view them with just a
kubectl describe cm command. For anything that requires privacy,
you'll have to use the Secret object and not the ConfigMap one.

Now, let's discover how to read the values inside a ConfigMap.

Reading values inside a ConfigMap
So far, we've only listed the ConfigMaps to retrieve the number of keys in them. Let's
take this a little bit further: you can read actual data inside a ConfigMap, not just get
the number of them. This is useful if you want to debug a ConfigMap or if you're not
confident about what kind of data is stored in them.

Configuring your Pods using ConfigMaps 171

The data in a ConfigMap is not meant to be sensitive so that you can read and retrieve it
easily from kubectl: it will be displayed in the terminal's output.

You can read the value in a ConfigMap with the kubectl describe command. I will
run this command against the my-fourth-configmap ConfigMap since it's the one
that contains the most data. The output is quite big, but as you can see, the two pieces of
configuration data are displayed clearly:

$ kubectl describe cm my-fourth-configmap

Name: my-fourth-configmap

Namespace: default

Labels: <none>

Annotations: <none>

Data

====

color:

blue

environment:

prod

version:

1

Events: <none>

The kubectl describe cm command returns these kinds of results. Expect to
receive results similar to this one and not results in a computer-friendly format such as
JSON or YAML.

As the data is displayed clearly in the terminal output, keep in mind that any user of
the Kubernetes cluster will be able to retrieve this data directly by typing the kubectl
describe cm command, so be careful to not set any sensitive value into a ConfigMap.

Now, let's discover how we can inject ConfigMap data into running Pods as
environments variables.

172 Configuring Your Pods Using ConfigMaps and Secrets

Linking ConfigMaps as environment variables
In this section, we're going to bring our ConfigMaps to life by linking them to Pods.
First, we will focus on injecting ConfigMaps as environment variables. Here, we want the
environment variables of a container within a Pod to come from the values of
a ConfigMap.

You can do this in two different ways:

• One given value in a given ConfigMap: You can set the value of an environment
variable based on the parameters contained in one or multiple ConfigMaps.

• All the values contained in a given ConfigMap: You take one ConfigMap and
inject all the values it contains into an environment at once.

The first method brings you flexibility, but it can become more difficult to manage and
harder to keep things organized.

The second way is good if you are creating one ConfigMap per Pod specification or
application so that each app has a ConfigMap ready to be deployed with.

Important Note
Please note that it's impossible to link a ConfigMap to a Pod with the kubectl
imperative method. The reason is that it's impossible to create a Pod
referencing a ConfigMap directly from the kubectl run command. You
will have to write some YAML files to use your ConfigMaps in your Pods.

Earlier in this chapter, we created a ConfigMap called my-third-configmap that
contains a parameter called color with a value of blue. In this example, we will create
a Pod with the nginx:latest image, and we will link my-third-configmap to the
Pod so that the NGINX container is created with an environment variable called COLOR
with a value set to blue, according to what we have in the ConfigMap. Here is the YAML
manifest to achieve that. Pay attention to the env: key in the container spec:

~/nginx-Pod-with-configmap.yaml

apiVersion: v1

kind: Pod

metadata:

 name: nginx-Pod-with-configmap

spec:

 containers:

 - name: nginx-container-with-configmap

Configuring your Pods using ConfigMaps 173

 image: nginx:latest

 env:

 - name: COLOR #Any other name works here.

 valueFrom:

 configMapKeyRef:

 name: my-third-configmap

 key: color

Now, we can create this Pod using the kubectl create command:

$ kubectl create -f ~/nginx-Pod-with-configmap.yaml

Pod/nginx-Pod-with-configmap created

Now that our NGINX Pod has been created, let's launch the env command in it to list all
the environments variables that are available in the container. As you may have guessed,
we will issue the env Linux command in this specific container by calling the kubectl
exec command. Here is the command and the output to expect:

$ kubectl exec Pods/nginx-Pod-with-configmap -- env

PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/
bin

HOSTNAME=nginx-Pod-with-configmap

COLOR=blue

KUBERNETES_PORT_443_TCP_PROTO=tcp

KUBERNETES_PORT_443_TCP_PORT=443

KUBERNETES_PORT_443_TCP_ADDR=172.20.0.1

KUBERNETES_SERVICE_HOST=172.20.0.1

KUBERNETES_SERVICE_PORT=443

KUBERNETES_SERVICE_PORT_HTTPS=443

KUBERNETES_PORT=tcp://172.20.0.1:443

KUBERNETES_PORT_443_TCP=tcp://172.20.0.1:443

NGINX_VERSION=1.19.2

NJS_VERSION=0.4.3

PKG_RELEASE=1~buster

HOME=/root

You should see the COLOR environment variable in the output if your ConfigMap has
been linked to your Pod correctly.

174 Configuring Your Pods Using ConfigMaps and Secrets

Now, we are going to remove the Pod and discover the second way of injecting configmaps
as environment variables. We're going to inherit all the parameters from a ConfigMap, not
a single one. Start by removing the nginx-Pod-with-configmap Pod:

$ kubectl delete Pods/nginx-Pod-with-configmap

Pod/nginx-Pod-with-configmap deleted

Now, we are going to link another ConfigMap, the one called my-fourth-configmap.
This time, we don't want to retrieve a single value in this ConfigMap, but all the values
inside of it. Here is the updated YAML Pod manifest. This time, we don't use individual
env keys, but an envFrom key in our container spec:

~/nginx-Pod-with-configmap.yaml

apiVersion: v1

kind: Pod

metadata:

 name: nginx-Pod-with-configmap

spec:

 containers:

 - name: nginx-container-with-configmap

 image: nginx:latest

 envFrom:

 - configMapRef:

 name: my-fourth-configmap

Once the manifest file is ready, you can recreate the NGINX Pod:

$ kubectl create -f nginx-Pod-with-configfile.yaml

Pod/nginx-Pod-with-configmap created

Now, let's run the env command once more in the nginx container using the kubectl
exec command to list the environment variables:

$ kubectl exec Pods/nginx-Pod-with-configmap -- env

PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/
bin

HOSTNAME=nginx-Pod-with-configmap

color=blue

environment=prod

Configuring your Pods using ConfigMaps 175

version=1

KUBERNETES_PORT=tcp://172.20.0.1:443

KUBERNETES_PORT_443_TCP=tcp://172.20.0.1:443

KUBERNETES_PORT_443_TCP_PROTO=tcp

KUBERNETES_PORT_443_TCP_PORT=443

KUBERNETES_PORT_443_TCP_ADDR=172.20.0.1

KUBERNETES_SERVICE_HOST=172.20.0.1

KUBERNETES_SERVICE_PORT=443

KUBERNETES_SERVICE_PORT_HTTPS=443

NGINX_VERSION=1.19.2

NJS_VERSION=0.4.3

PKG_RELEASE=1~buster

HOME=/root

Note that the three parameters that were declared in the my-fourth-configmap
ConfigMap have been set as environment variables in the container, but this time, you
don't have control over how the environment variables are named in the container: their
names are directly inherited from the parameter key names in the ConfigMap.

Now, it's time to learn how to mount a ConfigMap as a volume in a container.

Mounting a ConfigMap as a volume mount
Earlier in this chapter, we created two ConfigMaps that store dummy configuration files.
Kubectl allows you to mount a ConfigMap inside a Pod as a volume. This is especially
useful when the ConfigMap contains the content of a file that you want to inject into a
container's filesystem.

Just like when we injected environment variables, we can't do this imperatively: we
need to write a YAML manifest file. Here, we are going to mount a ConfigMap called
my-sixth-configmap as a volume mount to the nginx-Pod-with-configmap
Pod we used earlier.

Start by deleting the Pod from the cluster, if it still exists:

$ kubectl delete Pods/nginx-Pod-with-configmap

Pod "nginx-Pod-with-configmap" deleted

176 Configuring Your Pods Using ConfigMaps and Secrets

Now, let's update our Pod manifest file and add the ConfigMap as a volume mount to our
nginx Pod:

~/nginx-Pod-with-configmap-volume.yaml

apiVersion: v1

kind: Pod

metadata:

 name: nginx-Pod-with-configmap-volume

spec:

 volumes:

 - name: configuration-volume

 configMap:

 name: my-sixth-configmap # Configmap name goes here

 containers:

 - name: nginx-container-with-configmap

 image: nginx:latest

 volumeMounts:

 - name: configuration-volume # match the volume name

 mountPath: /etc/conf

Here, we declared a volume named configuration volume at the same level as the
containers, and we told Kubernetes that this volume was built from a ConfigMap. The
referenced ConfigMap (here, my-sixth-configmap) must be present in the cluster
when we apply this file. Then, at the container level, we mounted the volume we declared
earlier on path /etc/conf:. The parameter in the ConfigMap should be present at the
specified location.

Let's apply this file to create a new ConfigMap with the volume attached to our cluster:

$ kubectl create -f nginx-Pod-with-configmap-volume.yaml

Pod "nginx-Pod-with-configmap-volume" created

Run the ls command in the container to make sure that the directory has been mounted:

$ kubectl exec Pods/nginx-Pod-with-configmap-volume -- ls /etc/
conf

color

configfile.txt

Configuring your Pods using ConfigMaps 177

Here, the directory has been successfully mounted and both parameters that were created
in the ConfigMap are available in the directory as plain files.

Let's run the cat command to make sure both files hold the correct values:

$ kubectl exec Pods/nginx-Pod-with-configmap-volume -- cat /
etc/conf/color

yellow

$ kubectl exec Pods/nginx-Pod-with-configmap-volume -- cat /
etc/conf/configfile.txt

I'm just a dummy config file

Good! Both files contain the values that were declared earlier when we created the
ConfigMap! For example, you could store a virtual host NGINX configuration file and
have them mounted to the proper directory so that NGINX could serve your website
based on the configuration values hosted in a ConfigMap. That's how you can override the
default configuration and cleanly manage your app in Kubernetes. Now, you have a really
strong and consistent interface for managing and configuring the containers running
in Kubernetes.

Next, we will learn how to delete and update a ConfigMap.

Deleting a ConfigMap
Deleting a ConfigMap is very easy. However, be aware that you can delete a ConfigMap
even if its values are used by a container. Once the Pod has been launched, it's
independent of the ConfigMap object:

$ kubectl delete cm my-first-configmap

configmap "my-first-configmap" deleted

Regardless of whether the ConfigMap's values are used by the container, it will be deleted
as soon as this command is entered. Note that the ConfigMap cannot be recovered, so
please think twice before removing a ConfigMap you have created imperatively since you
won't be able to recreate it. Unlike declaratively created ConfigMaps, its content is not
stored in a YAML file.

Also, I recommend that you are careful when removing your ConfigMaps, especially if
you delete ConfigMaps that are used by running Pods. If your Pod were to crash, you
won't be able to relaunch it without updating the manifest file: the Pods would look for the
missing ConfigMap you deleted.

178 Configuring Your Pods Using ConfigMaps and Secrets

Updating a ConfigMap
There is no real way to update a ConfigMap once it's been created. To update a
ConfigMap, you'll have to delete it, update its declarative YAML file by adding or
removing the parameters you want, and then recreate it.

We are now done with ConfigMaps. You should be able to manage them like a pro now!

Managing sensitive configuration with the
Secret object
The Secret object is a resource that allows you to configure applications running on
Kubernetes. Secrets are extremely similar to ConfigMaps and can be used together.
The difference is that Secrets are encoded and intended to host sensitive data such
as passwords, tokens, or private API keys, while ConfigMaps are intended to host
non-sensitive configuration data. Other than that, Secrets and ConfigMaps mostly behave
the same.

Let's start by discovering how to list the Secrets that are available in your Kubernetes
cluster.

Listing Secrets
Like any other Kubernetes resource, you can list secrets using the kubectl get
command. The resource identifier is a secret here:

$ kubectl get secret

Just like with ConfigMaps, the DATA column tells you the number of sensitive parameters
that have been hashed and saved in your secret.

The --from-literal flag can be used to fill a Secret object at creation time, the same
as for ConfigMaps.

Managing sensitive configuration with the Secret object 179

Creating a Secret imperatively with --from-literal
You can create a Secret imperatively or declaratively – both methods are supported.
Let's start by discovering how to create a Secret imperatively. Here, we want to store a
database password, my-db-password, in a Secret object in our Kubernetes cluster. You
can achieve that imperatively with kubectl by adding the --from-literal flag to the
kubectl create secret command:

$ kubectl create secret generic my-first-secret --from-
literal='db_password=my-db-password'

Now, run on the kubectl get secrets command to retrieve the list of Secrets in
your Kubernetes cluster. The new Secret should be displayed:

$ kubectl create secret generic my-first-secret --from-
literal='db_password=my-db-password'

Now, let's figure out how to create a Secret declaratively.

Creating a Secret declaratively with a YAML file
It is also possible to create a secret declaratively from a YAML file. However, you will have
to include an additional step: you will have to encode your secret parameter in a base64.
The reason is we would need to include your secret value in a YAML file, and since these
values are supposed to be sensitive, we do not want the hardcoded value to appear in the
YAML file.

When you use --from-literal, Kubernetes will encode your strings in base64
itself, but when you create a Secret from a YAML manifest file, you will have to handle this
step yourself.

So, let's start by converting the my-db-password string into base64:

$ echo 'my-db-password' | base64

bXktZGItcGFzc3dvcmQK

bXktZGItcGFzc3dvcmQK is the base64 representation of the my-db-password
string. And that's what we will need to write in our YAML file. Here is the content of the
YAML file for creating the Secret object properly:

~/secret-from-file.yaml

apiVersion: v1

kind: Secret

metadata:

180 Configuring Your Pods Using ConfigMaps and Secrets

 name: my-second-secret

type: Opaque

data:

 db_password: bXktZGItcGFzc3dvcmQK

Once this file has been stored on your system, you can create the secret using the
kubectl create command:

$ kubectl create -f ~/secret-from-file.yaml

Now, we can make sure that the secret has been created properly by listing the secrets in
our Kubernetes cluster:

$ kubectl get secret

Now, let's discover another Kubernetes feature: the ability to create a secret with values
from a file.

Creating a Secret with content from a file
We can create a Secret with values from a file, the same as we did with ConfigMaps. We
start by creating a file that will contain our secret value. Let's say that we have to store a
password in a file and import it as a Secret object in Kubernetes:

echo -n 'mypassword' > ./password.txt

After running this command, we have a file called password.txt that contains a string,
mypassword, that is supposed to be our secret value. The -n flag is being used here to
ensure that password.txt does not contain any extra blank lines at the end of the text.

Now, let's run the kubectl create secret command by passing the location of
password.txt to the --from-file flag. This will result in a new secret containing a
base64 representation of the mypassword string being created:

$ kubectl create secret generic mypassword –from-file=./
password.txt

secret/mypassword created

This new secret is now available in your Kubernetes cluster! Now, let's learn how to read a
Kubernetes Secret.

Managing sensitive configuration with the Secret object 181

Reading a Secret
Because Secrets are supposed to host sensitive data, the kubectl output won't show you the
secret decoded data. You'll simply have access to the key. Why? Let's take a look:

• To prevent the secret from being accidentally opened by someone who shouldn't be
able to open it

• To prevent the secret from being displayed as part of a terminal output, which could
result in it being logged somewhere

Because of these securities, you simply won't be able to retrieve the actual content of a
secret, but you can still grab information about its size and so on.

You can do this using the kubectl describe command, just like we did earlier for
ConfigMaps. As we mentioned previously, ConfigMaps and Secrets are very similar; they
almost behave the same:

$ kubectl describe secret/mypassword

Name: db-user-pass

Namespace: default

Type: Opaque

Data

===

password: 10 bytes

Do not get confused if your output is a little different than this one. If you receive
something similar, it means that the new secret is available in your Kubernetes cluster
and that you successfully retrieved its data!

Now that we know how to create and read a secret, let's learn how to inject one into
our Pods.

182 Configuring Your Pods Using ConfigMaps and Secrets

Consuming a Secret as an environment variable
In the same way that we could inject the values of a ConfigMap into a Pod in the form
of environment variables, we can do the same with secrets. Returning to the example
with our NGINX container, we are going to retrieve the db_password value of the
my-first-secret secret and inject it as an environment variable into the Pod. Here is
the updated YAML manifest. Again, everything occurs under env: key:

~/nginx-Pod-with-secret-env-variable.yaml

apiVersion: v1

metadata:

 name: nginx-Pod-with-secret-env-variable

 namespace: default

spec:

 containers:

 - name: nginx-container

 image: nginx:latest

 env:

 - name: PASSWORD_ENV_VAR # Name of env variable

 valueFrom:

 secretKeyRef:

 name: mypassword # Name of secret object

 key: password # Name of key in secret object

Now, you can apply this file using the kubectl create command:

kubectl create -f nginx-Pod-with-secret-env-variable.yaml

Pod/nginx-Pod-with-secret-env-variable created

Now, run the env command to list the environment variables in your container:

$ kubectl exec Pods/nginx-Pod-with-secret-env-variable – env /

...

PASSWORD_ENV_VAR=mypassword

...

As you can see, the mypassword string is available as the environment variable. Now,
let's how to consume a secret as a volume mount.

Managing sensitive configuration with the Secret object 183

Another example to know about when reading a secret from a Pod is the envFrom
YAML key. When using this key, you'll read all the values from a Secret and get them
as environment variables in the Pod all at once. It works the same as for the ConfigMap
object. Here is the preceding example but updated with an envFrom key:

~/nginx-Pod-with-secret-envfrom.yaml

apiVersion: v1

metadata:

 name: nginx-Pod-with-secret-env-variable

 namespace: default

spec:

 containers:

 - name: nginx-container

 image: nginx:latest

 envFrom:

 - secretRef:

 name: mysecret # Name of the secret object

Using this, all the keys in the Secret object will be used as environment variables within
the Pod. Note that if a key name cannot be used as an environment variable name, then it
will be simply ignored!

Consuming a Secret as a volume mount
You can mount secrets as volume to your Pods, but you can only do so declaratively. So,
you'll have to write some YAML files to do this successfully.

You have to start from a YAML manifest file that will create a Pod. Here is a YAML file
that mounts a secret called mypassword in the /etc/passwords-mounted-path/
password location:

~/nginx-Pod-with-secret-volume.yaml

ApiVersion: v1

Metadata:

 Name: nginx-Pod-with-secret-volume

Spec:

 containers:

 - name: nginx-container

 Image: nginx:latest

 VolumeMounts:

184 Configuring Your Pods Using ConfigMaps and Secrets

 - name: mysecretVolume # Name of the volume

 MountPath: /etc/password-mounted-path

 Volumes:

 - name: mysecretVolume # Name of the volume

 Secret:

 SecretName: mypassword # name of secret

Once you have created this file on your filesystem, you can apply the YAML file using
kubectl:

kubectl create -f nginx-Pod-with-secret-volume.yaml

Pod/nginx-Pod-with-secret-volume created

Please make sure that the mypassword secret exists before you attempt to create the
secret.

Finally, you can run a command inside nginx-container using the kubectl exec
command to check if the volume containing the secret was set up correctly:

$ kubectl exec Pods/nginx-Pod-with-secret-volume -- cat /etc/
password-mounted-path/password

mypassword

As you can see, the mypassword string is displayed correctly: the secret was correctly
mounted as a volume!

Deleting a Secret
Deleting a secret is very simple and can be done via the kubectl delete command:

$ kubectl delete secret my-first-secret

secret "my-first-secret" deleted

Now, let's learn how to update an existing secret in a Kubernetes cluster.

Updating a Secret
Lastly, note that there is no clean and consistent way to modify a secret once it has been
created through kubectl.

To update a secret, you will need to delete it and then recreate it with the new values
you need by following the examples given previously. Make sure that the volume is not
referenced by the YAML manifest file as it may result in an error when you create Pods.

Summary 185

Summary
This chapter was one of the most important ones because we discovered how to properly
configure our contained applications in Kubernetes.

In particular, we explained why it is so important to decouple your applications from their
configuration. Kubernetes in particular emphasizes this principle by differentiating the
applications, which are Pods, and their configurations, which are ConfigMaps and Secrets.
Use these three objects wisely to build portable applications between environments.

In the next chapter, we will continue discovering Kubernetes by tackling another central
concept of Kubernetes, which are Services. Services are Kubernetes objects that allow you
to expose your Pods to each other, but also the internet: this is a very important network
concept for Kubernetes, and mastering it is essential to use the orchestrator correctly.
Fortunately, mastering Services is not very complicated and the next chapter will explain
how to achieve this. You will learn how to associate ports of the container with the ports
of the worker node it is running on, and also how to associate a static IP with your Pods so
that they can always be reached at the same address for other Pods in the cluster.

7
Exposing Your Pods

with Services
After reading the previous chapters, you now know how to deploy Docker applications
on Kubernetes by building Pods that can contain one container or multiple containers for
more complex applications. You also know that it is possible to decouple applications from
their configuration by using Pods and configmaps together, and Kubernetes is also capable
of storing your sensitive configurations thanks to Secret objects.

The good news is that with these three resources, you can start deploying applications on
Kubernetes properly and get your first app running on Kubernetes. However, you are still
missing something important: you need to be able to expose Pods to end users or even to
other Pods within the Kubernetes cluster. This is where Kubernetes services come in, and
that's the concept we're going to discover now!

In this chapter, we'll learn about a new Kubernetes resource kind called Service. Since
Kubernetes services are a quite big topic with a lot of things to cover, this chapter is going
to be quite big with a lot of information. But after you master these services, you're going
to be able to expose your Pods and get your end users to your apps!

188 Exposing Your Pods with Services

Services are also a key concept to master high availability (HA) and redundancy in your
Kubernetes setup. In a word: it is crucial to master them to be effective with Kubernetes!

In this chapter, we're going to cover the following main topics:

• Why would you want to expose your Pods?

• The NodePort service

• The ClusterIP service

• The LoadBalancer service

• Implementing ReadinessProbe

• Securing your Pods using the NetworkPolicy object

Technical requirements
To follow along with the examples in this chapter, make sure you have the following:

• A working Kubernetes cluster (whether this is local or cloud-based has no
importance)

• A working kubectl command-line interface (CLI) configured to communicate
with the Kubernetes cluster

Why would you want to expose your Pods?
In the previous chapters, we discussed the microservice architecture, which offers to
expose your functionality through REpresentational State Transfer (REST) application
programming interfaces (APIs). These APIs rely completely on the HyperText Transfer
Protocol (HTTP) protocol, which means that your microservices must be accessible via
the web, and thus via an Internet Protocol (IP) address on the network.

In this section, we will explain what Services are in Kubernetes. Next, we'll explain what
they're used for and how they can help you expose your Pod-launched microservices.

Understanding Pod IP assignment
To understand what Services are, we need to talk about Pods for a moment once again. On
Kubernetes, everything is Pod management: Pods host your applications, and they have a
special property. Kubernetes assigns them a private IP address as soon as they are created
on your cluster. Keep that in mind because it is super important: each Pod created in your
cluster has its unique IP address assigned by Kubernetes.

Why would you want to expose your Pods? 189

To illustrate this, we'll start by creating an nginx Pod. We're using an nginx Pod here, but
in fact, it would be the same for any type of Pod, no matter which Docker image is used to
create it.

Let's do that using the declarative way with the following YAML Ain't Markup Language
(YAML) definition:

~/new-nginx-pod.yaml

apiVersion: v1

kind: Pod

metadata:

 name: new-nginx-pod

spec:

 containers:

 - image: nginx:latest

 name: new-nginx-container

 ports:

 - containerPort: 80

As you can see from the previous YAML, this Pod called new-nginx-pod has nothing
special and will just launch a container named new-nginx-container based on the
nginx:latest Docker image.

Once we have this YAML file, we can apply it using the following command to get the Pod
running on our cluster:

$ kubectl create -f ~/new-nginx-pod.yaml

pod/new-nginx-pod.yaml created

As soon as this command is called, the Pod gets created on the cluster, and as soon as the
Pod is created on the cluster, Kubernetes will assign it an IP address that will be unique.

Let's now retrieve the IP address Kubernetes assigned to our Pod. To do that, we can
use the kubectl get pods command to list the Pods. In the following code snippet,
please note the usage of the -o wide option that will display the IP address as part of
the output:

$ kubectl get pods -o wide

NAME READY STATUS AGE IP NODE

new-nginx-pod 1/1 Running 5s 10.0.102.212 wkn1

190 Exposing Your Pods with Services

Please note that the IP address is added to the output of the command only because we're
adding the -o wide option. Otherwise, the IP address is not present in the shorter
output version. In our case, the IP address is 10.0.102.212. This IP will be unique on
my cluster and is assigned to this unique Pod.

Of course, if you're following along on your cluster, you will have a different IP. This IP is
a private IP version 4 (v4). It only exists in the Kubernetes cluster. If you try to type this
IP into your web browser, you won't get anything because this idea does not exist on the
public internet—it only exists within your Kubernetes cluster.

Depending on the cloud platform and container network interface (CNI) you use, this
network might be an Amazon Web Services (AWS), Google Cloud Platform (GCP), or
Azure virtual private cloud (VPC), or the basic flat network used by Kubernetes. In all
cases, this principle is the same: each Pod is assigned its own IP address, and that is an
absolute rule.

At this point, you must understand that all Pods get a unique IP address as soon as they
are created on the cluster and that this IP address is a private one. If that sounds clear to
you, we can move on with this important topic: we will now discover that this IP address
assignment is dynamic, and the issues it can cause at scale.

Understanding Pod IP assignment is dynamic
Now that you're aware that Kubernetes assigns an IP address to each Pod when it is
created, you must know that its IP address assignment is a dynamic one.

Indeed, these IP addresses are not static, and if you delete and recreate a Pod, you're going
to see that the Pod will get a new IP address that's totally different from the one used
before. And if that is the case, even if the Pod is recreated with the exact same YAML
configuration.

To demonstrate that, let's delete the Pod and recreate it using the same YAML file,
as follows:

$ kubectl delete -f ~/new-nginx-pod.yaml

pod/new-nginx-pod.yaml deleted

$ kubectl create -f ~/new-nginx-pod.yaml

pod/new-nginx-pod.yaml created

Why would you want to expose your Pods? 191

We can now run once more the kubectl get pods -o wide command to figure out
that the new IP address is not the same as before, as follows:

$ kubectl get pods -o wide

NAME READY STATUS AGE IP NODE

new-nginx-pod 1/1 Running 5s 10.0.102.104 wkn1

Now, the IP address is 10.0.102.104. This IP is different from the one we had before,
10.0.102.212.

As you can see, when a Pod is destroyed and then recreated, even if you recreate it with
the same name and the same configuration, it's going to have a different IP address.

The reason is that technically, it is not really the same Pod but two different Pods: that is
why Kubernetes assigns two completely different IP addresses. Now, imagine you wrote a
script to do some actions on that nginx Pod using its IP address to communicate with it. If
that Pod gets deleted and recreated for some reason, then your script is broken.

Never hardcode a pod's IP addresses in your
application code
In a world where you were in a production environment, this would be a real problem:
microservice applications are designed to interact with each other through the HTTP
protocol, which relies on Transmission Control Protocol (TCP)/IP.

So, in any form, you need to be able to find a way to establish a reliable way to retrieve a
pod's IP addresses at any time.

The golden rule here is to never rely on the IP address of a Pod to access it directly. As
Pods can be easily deleted, recreated, or rescheduled to another worker node, hardcoding
IP addresses is a bad idea: if a Pod is destroyed and then recreated, any application that
needs to communicate with it would no longer be able to call it because the IP assigned
would resolve nothing.

There are very concrete cases that we can give where this problem can arise, as follows:

• A Pod running an A microservice has a dependency and calls a B microservice that
is running as another Pod on the same Kubernetes cluster.

• An application running as a Pod needs to retrieve some data from a MySQL server
also running as a Pod on the same Kubernetes cluster.

• An application uses a Redis cluster as a caching engine deployed in multiple Pods
on the same cluster.

192 Exposing Your Pods with Services

• Your end users access an application by calling an IP address, and that IP changes
because of a Pod failure.

• You set up a Domain Name System (DNS) server that uses a pod's IP address as
DNS entries.

Any time you have an interconnection between services or—more widely—any network
communication, this problem will arise.

The solution to this issue is the usage of the Service resource kind.

This new object will act as an intermediate object that will remain on your cluster. Services
are not meant to be destroyed, and they recreate often. In fact, they can remain on your
cluster long-term without causing any issue. They are meant to act as a proxy in between.
In fact, they are the core object for networking and load balancing in Kubernetes.

Understanding how services route traffic to Pods
Kubernetes services are not Docker containers or Pods. Kubernetes services are resources
running within your Kubernetes cluster, and they are used to create appropriate
IPTABLES to ensure the traffic is properly redirected to backend Pods.

The idea is simple: just as Pods get a dynamic IP address at creation time, each service gets
a static DNS that can be resolved from anywhere on the cluster. That static DNS entry will
never change if the service remains on the cluster. You'll simply tell each service which
Pod they should serve traffic to, and that's pretty much it.

In one word: you can consider a service as a proxy with a static DNS name you place in
front of your Pods to serve traffic to. This way, you get a static and reliable way to access
your Pods, as depicted in the following screenshot:

Figure 7.1 – Service A is exposing Pods A, B, and D, whereas Service B is exposing Pods C and E

In fact, Services are deployed to Kubernetes as a resource kind, and just as with most
Kubernetes objects, you can deploy them to your cluster using interactive commands or
declarative YAML files.

Why would you want to expose your Pods? 193

To keep things simple and to sum up: you can consider Services to be load balancers
internal to your Kubernetes cluster, built to provide a consistent and static network
gateway to your Pod.

When you create a Service, you'll have to give it a name. This name will be used by
Kubernetes to build a DNS name that all Pods on your cluster will be able to call. This
DNS entry will resolve to your Service, which is supposed to remain on your cluster.
The only part that is quite tricky at your end will be to give a list of Pods to expose to
your services: we will discover how to do that in this chapter. Don't worry—it's just
configuration based on labels and selectors.

Once everything is set up, you can just reach the Pods by calling the service. This service
will receive the requests and forward them to the Pods. And that's pretty much it!

Understanding round-robin load balancing in
Kubernetes
Kubernetes services, once configured properly, can expose one or several Pods. When
multiple Pods are exposed by the same Pod, the requests are evenly load-balanced to the
Pods behind the service using the round-robin algorithm, as illustrated in the following
screenshot:

Figure 7.2 – Service A proxies three requests to the three Pods behind it. At scale, each service will
receive 33% of the requests received by the service

Scaling applications becomes easy. Adding more Pods behind the service will be enough.
As the Kubernetes service has round-robin logic implemented, it can proxy requests
evenly to the Pods behind it.

194 Exposing Your Pods with Services

If the preceding Pod had four Pods, then, each of them would receive roughly 25% of all
the requests the service received. If 50 Pods were behind the service, each of them would
receive roughly 2% of all the requests received by the service. That's pretty much it. All
you need to understand is that services are behaving like load balancers you can find on
the cloud by following the round-robin algorithm.

Let's now discover how you can call a service in Kubernetes from another Pod.

Understanding how to call a service in Kubernetes
When you create a Service in Kubernetes, it will be attached two very important things, as
follows:

• An IP address that will be unique and specific to it (just as Pods get their own IP)

• An automatically generated DNS name that won't change and is static

You'll be able to use any of the two in order to reach the service, which will then forward
your request to the Pod it is attached to. Most of the time, though, you'll call the service
by its generated domain, which is easy to determine and predictable. Let's discover how
Kubernetes assigns DNS names to services.

Understanding how DNS names are generated for
services
The DNS name generated for a service is derived from its name. For example, if you
create a Service named my-app-service, its DNS name will be my-app-service.
default.svc.cluster.local.

This one is quite complicated, so let's break it into smaller parts, as follows:

Why would you want to expose your Pods? 195

This table should help you distinguish all the parts of the domain name. The two moving
parts are the two first ones, which are basically the service name and the namespace where
it lives. The DNS name will always end with the .svc.local string.

So, at any moment, from anywhere on your cluster, if you try to use curl or wget to
call the my-app-service.default.svc.cluster.local address, you know that
you'll reach your service.

That name will resolve to the service as soon as it's executed from a Pod within your
cluster. But by default, services won't proxy to anything if they are not configured to
retrieve a list of Pods they will proxy. We will now discover how to do that!

How services get a list of the Pods they service
traffic to
When working with services in Kubernetes, you will often come across the idea of
exposing your Pods.

Indeed, this is the terminology Kubernetes uses to tell that a service is proxying network
traffic to Pods. We say a service is exposing Pods. That terminology is everywhere: your
colleagues may ask you one day: "Which service is exposing that Pod?" The following
screenshot shows Pods being exposed:

Figure 7.3 – Here, Pods A, B, and C are exposed by service A, whereas Pods D and E are exposed by
service B

That terminology is also the one used by kubectl and the one used in Kubernetes
official documentation in general. You can successfully create a Pod and a service to
expose it using kubectl in literally one command, using the --expose parameter. The
following example will create an nginx Pod with a service exposing it.

196 Exposing Your Pods with Services

For the sake of this example, we will also need to provide a port to the command to tell on
which port the service will be accessible:

$ kubectl run nginx --image nginx:latest --expose --port 80

service/nginx created

pod/nginx created

Let's now list the Pods and the services using kubectl to demonstrate that the following
command created both objects:

$ kubectl get pods

NAME READY STATUS RESTARTS AGE

nginx 1/1 Running 0 2m44s

$ kubectl get services

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

nginx ClusterIP 10.98.191.187 <none> 80/TCP
2m28s

nginx ClusterIP 10.98.191.187
<none> 80/TCP 2m9s

As you can see based on the output of the command, both objects were created.

We've said earlier that Services can find Pods they have to expose based on Pods' labels.
That being said, the nginx Pod we just created surely has some labels. To show them, let's
run the kubectl get pods nginx --show-labels command. In the following
snippet, pay attention to the --show-labels parameter, which will display the labels as
part of the output:

$ kubectl get pods nginx --show-labels

NAME READY STATUS RESTARTS AGE LABELS

nginx 1/1 Running 0 3m27s run=nginx

As you can see, an nginx Pod was created with a label called run, with a value of nginx.
Let's now describe the nginx service. It should have a selector that matches this label. The
code is illustrated here:

$ kubectl describe svc nginx

Name: nginx

Namespace: default

Labels: <none>

Why would you want to expose your Pods? 197

Annotations: <none>

Selector: run=nginx

Type: ClusterIP

IP: 10.98.191.187

Port: <unset> 80/TCP

TargetPort: 80/TCP

Endpoints: 172.17.0.8:80

I did remove some lines of the output to make it shorter. But you can clearly see that the
service has a line called Selector that matches the label assigned to the nginx Pod.
This way, the link between the two objects is made. We're now 100% sure that the service
can reach the nginx Pod and that everything should work normally.

Though it works, I strongly advise you to never do that in production. Indeed, services are
very customizable objects, and the --expose parameter is hiding a lot of their features.
Instead, you should really use declarative syntax and tweak the YAML to fit precise needs.

Let's demonstrate that by using the dnsutils Docker image.

Using the dnsutils Docker image to debug your
services
One very nice image to discover is the dnsutils one. It is extremely useful to debug
your service.

Indeed, as your services are created within your cluster, it is often hard to access them,
especially if our Pod is meant to remain accessible only within your cluster, or if your
cluster has no internet connectivity, and so on.

In this case, it is good to deploy a Pod in your cluster with just some binaries installed
into it to run basic networking commands such as wget, nslookup, and so on. One
image that meets this need well is the dnsutils one. You can easily test your services
using this image.

Here, we're going to curl the nginx Pod home page by calling the service that is
exposing the Pod. That service's name is just nginx. Hence, we can forge the DNS name
Kubernetes assigned to it: nginx.default.svc.cluster.local.

198 Exposing Your Pods with Services

If you try to reach this Uniform Resource Locator (URL) from a Pod with your cluster,
you should successfully reach the nginx home page. Let's run the following command to
launch the dnsutils Pod on our cluster:

$ kubectl apply -f https://k8s.io/examples/admin/dns/dnsutils.
yaml

pod/dnsutils created

Let's now run a kubectl get pods command in order to verify the Pod was launched
successfully, as follows:

$ kubectl get pods/dnsutils

NAME READY STATUS RESTARTS AGE

dnsutils 1/1 Running 0 56s

That's perfect! Let's now run a nslookup command against the service DNS name,
as follows:

$ kubectl exec -ti dnsutils -- nslookup nginx.default.svc.
cluster.local

Server: 10.96.0.10

Address: 10.96.0.10 # This address is only resolvable from
within the Kubernetes cluster, via local kube-dns or CoreDNS.

Name: nginx.default.svc.cluster.local

Address: 10.98.191.187

Everything looks good. Let's now run a wget command to check if we can retrieve the
nginx home page, as follows:

$ kubectl exec -ti dnsutils -- wget nginx.default.svc.cluster.
local

Connecting to nginx.default.svc.cluster.local
(10.98.191.187:80)

index.html 100% |*******************************|
615 0:00:00 ETA

The wget command seems to have downloaded the index.html file properly. I can
now display its content using cat, like this:

$ kubectl exec -ti dnsutils -- cat index.html

<html>

Why would you want to expose your Pods? 199

<head>

<title>Welcome to nginx!</title>

<style>

html { color-scheme: light dark; }

body { width: 35em; margin: 0 auto;

font-family: Tahoma, Verdana, Arial, sans-serif; }

</style>

</head>

<body>

<h1>Welcome to nginx!</h1>

Everything is perfect here! We successfully called the nginx service by using the
dnsutils service, as illustrated in the following screenshot:

Figure 7.4 – The dnsutils Pod is used to run wget against the nginx service to communicate with the
nginx Pod behind the service

Keep in mind that you need to deploy a dnsutils Pod inside the cluster to be able to
debug the service. Indeed, the nginx.default.svc.cluster.local DNS name is
not a public one and can be only accessible from within the cluster.

Let's explain why you should not use the --expose flag to expose your Pods now.

Why you shouldn't use the --expose flag
The --expose flag should not be used to create services because you won't get much
control over how the service gets created. By default, --expose will create a ClusterIP
service, but you may want to create a NodePort service.

200 Exposing Your Pods with Services

Defining the service type is also possible using the imperative syntax, but in the end, the
command you'll have to issue is going to be very long and complex to understand. That's
why I encourage you to not use the --expose flag and stick with declarative syntax for
complex objects such as services.

Let's now discuss how DNS names are generated in Kubernetes when using services.

Understanding how DNS names are generated for
services
If you understood everything we said before, you now know that Kubernetes
services-to-pod communication relies entirely on labels on the Pod side and selectors
on the service side.

If you don't use both correctly, communication cannot be established between the two.

The workflow goes like this:

1. You create some Pods and you set some labels arbitrarily.
2. You create a service and configure its selector to match the Pods' labels.
3. The service starts and looks for Pods that match its selector.
4. You call the service through its DNS or its IP (DNS is way easier).
5. The service forwards the traffic to one of the Pods that matches its labels.

If you look at the previous example achieved using the imperative style with the
--expose parameter, you'll notice that the Pod and the services were respectively
configured with proper labels (on the Pod side) and selector (on the service side),
which is why the Pod is successfully exposed.

We're almost done with Services theory, but I strongly advise you to not use the
--expose parameter. The reason is that services are complex objects with a lot of
configurations accessible behind the scenes, and to access all the possible options, it is
better to write YAML files.

Besides that, you must understand now that there is not one but several types of services
in Kubernetes. Indeed, the Service object can be configured to achieve different types
of Pod exposure, and the --expose parameter only allows for the simplest one. Using
the --expose parameter is good for tests, but do remember that you should always use
YAML files to really have access to all features of Kubernetes.

That being said, let's now explain the different types of services in Kubernetes.

Why would you want to expose your Pods? 201

Understanding the different types of services
There are several types of services in Kubernetes.

Although there is only one kind called Service in Kubernetes, that kind can be configured
differently to achieve different results.

Fortunately for us, no matter which type of service you choose, the goal remains the same:
to expose your Pods using a single static interface.

Each type of service has its own function and its own use, so basically, there's one service
for each use case. A service cannot be of multiple types at once, but you can still expose
the same Pods by two services' objects with different types… as long as the services'
objects are named differently so that Kubernetes can assign different DNS names.

In this chapter, we will discover the three main types of services, as follows:

• NodePort: This one binds a port from an ephemeral port range of the host
machine (the worker node) to a port on the Pod, making it available publicly. By
calling the port of the host machine, you'll reach the associated Kubernetes Pod.
That's the way to reach your Pods for traffic coming from outside your cluster.

• ClusterIP: The ClusterIP service is the one that should be used for private
communication between Pods within the Kubernetes cluster. This is the one we
experimented with in this chapter and is the one created by the --expose flag
by default. This is certainly the most used of them all because it allows inter-
communication between Pods: as its name suggests, it has a static IP that is set
cluster-wide. By reaching its IP address, you'll be redirected to the Pod behind it.
If more than one Pod is behind it, the ClusterIP service will provide a load-
balancing mechanism following the round-robin algorithm. Even if this service type
is called ClusterIP, we generally call it by its generated DNS name.

• LoadBalancer: The service of the LoadBalancer type is quite complex. It
will detect the cloud computing platform the Kubernetes cluster is running on and
will create a load balancer on the cloud. If you're running on AWS, it will create
an Elastic Load Balancer (ELB). If you run vanilla Kubernetes, it will just create
nothing… This service is useless outside of a cloud platform. In general, people
tend to prefer to use other services such as Terraform to provision their cloud
infrastructure, making this service certainly the least used of them all.

As all of this might seem a little bit unclear to you, let's immediately dive into the first type
of service—the NodePort one.

As mentioned earlier, this one is going to be super useful to access our Pods from outside
the cluster, by attaching Pods to the worker node's port.

202 Exposing Your Pods with Services

The NodePort service
Now that we are aware of the theory behind the concept of services in Kubernetes, we will
start by discovering the first type, which is NodePort.

NodePort is a Kubernetes service type designed to make Pods reachable from a port
available on the host machine, the worker node. In this section, we're going to discover
this type of port and be fully focused on NodePort services!

Why do you need NodePort services?
We're now going to discover exactly where the NodePort services sit and what they do in
your Kubernetes cluster.

The first thing to understand is that NodePort services allow us to access a Pod running
on a worker node, on a port of the worker node itself. After you expose Pods using the
worker node, you'll be able to reach the Pods if you know the IP address of your worker
node and the port of the NodePort service in this format:

<WORKER_NODE_IP_ADDRESS>:<PORT_DECLARED_IN_NODE_PORT_SVC>.

Let's illustrate all of this by declaring some Kubernetes objects.

Most of the time, the NodePort service is used as an entry point to your Kubernetes
cluster. In the following example, I will create two Pods based on the containous/
whoami Docker image available on the Docker Hub, which is a very nice Docker image
that will simply print the container hostname.

I'll create two Pods so that I get two containers with different hostnames, and I'll expose
them using a NodePort service.

Creating two containous/whoami Pods
Let's start by creating two Pods without forgetting about adding one or more labels
because we will need labels to tell the service which Pods it's going to expose.

I'm also going to open the port on the Pod side. That won't make it exposed on its own,
but it will open a port the service will be able to reach. The code is illustrated here:

$ kubectl run whoami1 –image=containous/whoami –port 80 –
labels="app=whoami"

pod/whoami1 created

The NodePort service 203

$ kubectl run whoami1 –image=containous/whoami –port 80 –
labels="app=whoami"

pod/whoami2 created

Now, I can run a kubectl get pods command in order to verify that our two Pods
are correctly running. I can also add the --show-labels parameter in order to display
the labels as part of the command output, as follows:

$ kubectl get pods --show-labels

NAME READY STATUS RESTARTS AGE LABELS

whoami1 1/1 Running 0 5m4s app=whoami

whoami2 1/1 Running 0 4m59s app=whoami

Everything seems to be okay! Now that we have two Pods created with a label set for each
of them, we will be able to expose them using a service. We're now going to discover the
YAML manifest file that will create the NodePort service to expose these two Pods.

Understanding NodePort YAML definition
Unlike most Kubernetes clusters, it is impossible to create services of the NodePort type
using the declarative way. And since services are quite complex resources, it is better to
create them using a YAML file rather than direct command input.

Here is the YAML file that will expose the whoami1 and whoamo2 Pods using a
NodePort service:

~/nodeport-whoami.yaml

apiVersion: v1

kind: Service

metadata:

 name: nodeport-whoami

spec:

 type: NodePort

 selector:

 app: whoami

 ports:

 - nodePort: 30001

 port: 80

 targetPort: 80

204 Exposing Your Pods with Services

This YAML can be difficult to understand because it refers to three different ports as well
as a selector block.

Before explaining the YAML file, let's apply it and check if the service was correctly
created afterward, as follows:

$ kubectl create -f nodeport-whoami.yaml

service/nodeport-whoami created

$ kubectl get services

NAME TYPE CLUSTER-IP EXTERNAL-IP
PORT(S) AGE

nodeport-whoami NodePort 10.98.159.88 <none>
80:30001/TCP 77s

The previous kubectl get services command indicated that the service was
properly created!

Now, let's discuss the selector block, which is an important one: it basically instructs
the NodePort service which Pods it will expose. selector stands for label selector.
Without it, your service won't do anything. Here, we're telling the service to expose all the
Pods that have a label with an key app containing the whoami value, which makes our
two whoami1 and whoami2 Pods exposed through this service.

Then, we have under the key type as a child key of spec. This is where we specify the
type of our service. When we create ClusterIP or LoadBalancer services, we will
have to update this line. Here, we're creating a NodePort service, so that's fine for us.

The last thing that is quite hard to understand is that ports block. Here, we define a map
of multiple port combinations. We indicated three ports, as follows:

• nodePort

• port

• targetPort

The NodePort service 205

The first one is the easiest one to understand. It is basically the port on the host
machine/worker node you want this NodePort service to be accessible from. Here,
we're specifying port 30001, which makes this NodePort service accessible from
port 30001 on the IP address of the worker node. You'll be reaching this NodePort
service and the Pods it exposes by calling the following address: <WORKER_NODE_IP_
ADDRESS>:30001.

This NodePort setting cannot be set arbitrarily. Indeed, on default Kubernetes
installation, it can be a port from the 30000 - 32767 range.

The second port specified in YAML is just called port: this setting indicates the port of
the NodePort service itself. It can be hard to understand, but NodePort services do
have a port of their own too, and this is where you specify it. You can put whatever you
want here if it is a valid port.

The third and last one is called targetPort. As you can imagine, targetPort is the
port of the targeted Pods. It is where the application runs: the port where the NodePort
will forward traffic to the Pod found by the selector mentioned previously.

Here is a quick diagram to sum all of this up:

Figure 7.5 – The three ports involved for NodePort setup—nodePort is on the worker node, port is on
the service itself, whereas targetPort is on the top

That setup is complex because of the naming. Pay attention to where the three open ports
sit to make sure to not confuse the three of them.

For convenience and to reduce complexity, the NodePort service port and target port
(the Pods' port) are often defined to the same value.

206 Exposing Your Pods with Services

Making sure NodePort works as expected
To try out your NodePort setup, the first thing to do is to retrieve the public IP of your
machine running it. In my example, I'm running a single-machine Kubernetes setup with
minikube locally. On AWS, GCP, or Azure, your worker node might have a public IP
address or a private one if you access your node with a virtual private network (VPN).

Based on your setup, keep in mind that the IP address you use must be the one of the
worker nodes directly.

On minikube, the easiest way to retrieve the IP address is to issue the
following command:

$ minikube ip

192.168.64.2

Now that I have the IP address of my worker node, I must retrieve the worker node's port
used by the NodePort service.

Now that I have all the information, I can open a web browser and enter the following
URL to access the NodePort service and the Pods running. You should see the round-
robin algorithm in place and reaching whoami1 and then whoami2, and so on. The
NodePort service is doing its job!

Is this setup production-ready?
There's no answer to this question because it depends on your setup.

NodePort provides a way to expose Pods to the outside world by exposing them on a
worker node port. With the current setup, you have no HA: if our two Pods were to fail,
you have no way to relaunch them automatically, so your service won't be able to forward
traffic to anything, resulting in a poor experience for your end user.

Another problem is the fact that the choice of port is limited. Indeed, by default, you
are just forced to use a port in the 30000-32767 range, and as it's forced, it will be
inconvenient for a lot of people. Indeed, if you want to expose an HTTP application, you'll
want to use port 80 or 443 of your frontal machine and not a port for 30000-32767,
because all web browsers are configured with port 80 and 443 as standard HTTP and
HTTP Secure (HTTPS) ports.

The NodePort service 207

The solution to this consists of using a tiered architecture. Indeed, a lot of Kubernetes
architects tend to not expose a NodePort service as the first layer in an architecture
but to put the Kubernetes cluster behind a reverse proxy, such as the AWS Application
Load Balancer, and so on. Two other concepts of Kubernetes are Ingress and
IngressController objects: these two objects allow you to configure a reverse proxy
such as nginx or HAProxy directly from Kubernetes objects and help you in making your
application publicly accessible as the first layer of entry to Kubernetes. But this is way
beyond the scope of Kubernetes services.

Listing NodePort services
Listing NodePort services is achieved through the usage of the kubectl command-line
tool. You must simply issue a kubectl get services command to fetch the services
created within your cluster.

Please note that the plural form services, as well as the shorter alias svc, works too
for all operations related to services. Unfortunately, there is currently no command that
allows us to fetch services based on their type.

That being said, let's now discover how we can update NodePort services to have them
do what we want.

Adding more Pods to NodePort services
If you want to add a Pod to the pool served by your Services, things are very easy. In fact,
you just need to add a new Pod that matches the label selector defined on the Service—
Kubernetes will take care of the rest. The Pod will be part of the pool served by the
Service. In case you delete a Pod, it will be deleted from the pool of services as soon as it
enters the Terminating state.

Kubernetes handles service traffic based on Pods' availability—for example, if you have
three replicas of a web server and one goes down, creating an additional replica that
matches the label selector on the service will be enough. You'll discover later in
Chapter 11, Deployment – Deploying Stateless Applications, that this behavior can be
entirely automated.

Describing NodePort services
Describing NodePort services is super easy and is achieved with the kubectl
describe command, just as with any other Kubernetes object.

208 Exposing Your Pods with Services

Deleting NodePort services
Deleting a service, whether it is a NodePort service or not, should not be done
recurrently. Indeed, whereas Pods are supposed to be easy to delete and recreate, services
are supposed to be for the long term. Indeed, they provide a consistent way to expose your
Pod, and deleting them will impact how your applications can be reached.

Therefore, you should be careful when deleting services: it won't delete the Pods behind it,
but they won't be accessible anymore!

Here is the command to delete the service created to expose the whoami1 and
whoami2 Pods:

$ kubectl delete svc/nodeport-whoami

deleted

You can run a kubectl get svc command now to check that the service was properly
destroyed, and then access it once more through the web browser by refreshing it. You'll
notice that the application is not reachable anymore, but the Pods will remain on the
cluster. Pods and services have completely independent life cycles. If you want to delete
Pods, then you'll need to delete them separately.

You probably remember the kubectl port-forward command we already used
when we created an nginx Pod and tested it to display the home page. You may think
NodePort and kubectl port-forward are the same thing, but they are not. Let's
explain quickly the difference between the two.

NodePort or kubectl port-forward?
It might be tempting to compare NodePort services with the kubectl port-
forward command because so far, we used these two methods to access a running Pod
in our cluster using a web browser. But still, these two methods are completely different
things—they have nothing to do one with another and shouldn't be confused.

The kubectl port-forward command is a testing tool, whereas NodePort services
are for real use cases and are a production-ready feature.

Keep in mind that kubectl port-forward must be kept open in your terminal
session for it to work. As soon as the command is killed, the port forwarding is stopped
too, and your application becomes inaccessible from outside the cluster once more. It is
only a testing tool meant to be used by the kubectl user and is just one of the useful
tools bundled into the kubectl CLI.

The ClusterIP service 209

NodePort, on the other hand, is really meant for production use and is a long-term
production-ready solution. It doesn't require kubectl to work and makes your
application accessible to anyone calling the service, provided the service is properly
configured and Pods correctly labeled.

Simply put: if you just need to test your app, go for kubectl port-forward. If you
need to expose your Pod to the outside world for real, go for NodePort. Don't create
NodePort for testing, and don't try to use kubectl port-forward for production!
Stick with one tool for each use case!

Now, we will discover another type of Kubernetes service called ClusterIP. This one is
probably the most used of them all, even more than the NodePort type!

The ClusterIP service
We're now going to discover another type of service called ClusterIP.

ClusterIP is, in fact, the simplest type of service Kubernetes provides. With a
ClusterIP service, you can expose your Pod so that other Pods in Kubernetes can
communicate with it via its IP address or DNS name.

Why do you need ClusterIP services?
The ClusterIP service type greatly resembles the NodePort service type, but they
have one big difference: NodePort services are meant to expose Pods to the outside
world, whereas ClusterIP services are meant to expose Pods to other Pods inside the
Kubernetes cluster.

Indeed, ClusterIP services are the services that allow different Pods in the same cluster
to communicate with each other through a static interface: the ClusterIP Service
object itself.

ClusterIP answers the exact same need for static DNS name or IP address we had with
the NodePort service: if a Pod fails, is recreated, deleted, relaunched, and so on, then
Kubernetes will assign it another IP address. ClusterIP services are here to remediate
this issue, by providing an internal DNS name only accessible from within your cluster
that will resolve to the Pods defined by the label selector.

As the name ClusterIP suggests, this service grants a static IP within the cluster!
Let's now discover how to expose our Pods using ClusterIP! Keep in mind that
ClusterIP services are not accessible from outside the cluster—they are only meant
for inter-Pod communication.

210 Exposing Your Pods with Services

How do I know if I need NodePort or ClusterIP services
to expose my Pods?
Choosing between the two types of services is extremely simple, basically because they are
not meant for the same thing.

If you need your app to be accessible from outside the cluster, then you'll need a
NodePort service, but if you need your app to be accessible from inside the cluster, then
you'll need a ClusterIP service. It's as simple as that! ClusterIP services are also
good for stateless applications that can be scaled, destroyed, recreated, and so on.
The reason is that the ClusterIP service will maintain a static entry point to a whole
pool of Pods without being constrained by a port on the worker node, unlike the
NodePort service.

Contrary to NodePort services, ClusterIP services will not take one port of the
worker node, and thus it is impossible to reach it from outside the Kubernetes cluster.

Keep in mind that nothing prevents you from using both types of services for the same
pool of Pods. Indeed, if you have an app, that should be publicly accessible, but also
privately exposed to other Pods, then you can simply create two services, one NodePort
service and one ClusterIP service.

In this specific use case, you'll simply have to name the two services differently so that
they won't conflict when creating them against kube-apiserver. Nothing else prevents
you from doing so!

Listing ClusterIP services
Listing ClusterIP services is easy. It's basically the same command as the one used for
NodePort services. Here is the command to run:

$ kubectl get svc

As always, this command lists the services with their type added to the output.

Creating ClusterIP services using the imperative way
Creating ClusterIP services can be achieved with a lot of different methods. Since it is
an extremely used feature, there are lots of ways to create these, as follows:

• Using the --expose parameter (the imperative way)

• Using a YAML manifest file (the declarative way)

The ClusterIP service 211

The imperative way consists of using the –expose method. This will create a
ClusterIP service directly from a kubectl run command, for example. In the
following example, I will create an nginx-clusterip Pod as well as a ClusterIP Pod
to expose them both at the same time. Using the –expose parameter will also require
defining a ClusterIP port. ClusterIP will listen to make the Pod reachable. The code
is illustrated here:

$ kubectl run nginx-clusterip --image nginx --expose --port 80

service/nginx-clusterip created

pod/nginx-clusterip created

As you can see, I get both a Pod and a service to expose it. Let's describe the service.

Describing ClusterIP services
Describing ClusterIP services is the same process as describing any type of object in
Kubernetes and is achieved using the kubectl describe command. You just need to
know the name of the service to describe to achieve that.

Here, I'm going to the ClusterIP service created previously:

$ kubectl describe svc/nginx-clusterip

Name: nginx-clusterip

Namespace: default

Labels: <none>

Annotations: <none>

Selector: run=nginx-clusterip

Type: ClusterIP

IP Family Policy: SingleStack

IP Families: IPv4

IP: 10.96.89.255

IPs: 10.96.89.255

Port: <unset> 80/TCP

TargetPort: 80/TCP

Endpoints: 10.244.120.79:80

Session Affinity: None

Events: <none>

212 Exposing Your Pods with Services

What I really like here is that the output of this command shows us the Selector block,
which shows that the ClusterIP service was created by the --expose parameter with
the proper label configured. This label matches the nginx-clusterip Pod we created
at the same time. To be sure about that, let's display the labels of the said Pod, as follows:

$ kubectl get pods/nginx-clusterip --show-labels

NAME READY STATUS RESTARTS AGE LABELS

nginx-clusterip 1/1 Running 0 4m1s
run=nginx-clusterip

As you can see, the selector on the service matches the labels defined on the Pod.
Communication is thus established between the two. I'll now call the ClusterIP service
directly from another Pod on my cluster.

Since my ClusterIP service is named nginx-clusterip, I know that it is reachable
at this address: nginx-clusterip.default.svc.cluster.local.

Let's reuse the dnsutils container, as follows:

$ kubectl exec -ti dnsutils -- wget nginx.default.svc.cluster.
local

Connecting to nginx.default.svc.cluster.local
(10.98.191.187:80)

index.html 100% |*******************************|
615 0:00:00 ETA

Using the wget command, we have downloaded the index.html file properly. I can
now display its content using cat, as follows:

$ kubectl exec -ti dnsutils -- cat index.html

<html>

<head>

<title>Welcome to nginx!</title>

<style>

html { color-scheme: light dark; }

body { width: 35em; margin: 0 auto;

font-family: Tahoma, Verdana, Arial, sans-serif; }

</style>

</head>

<body>

<h1>Welcome to nginx!</h1>

The ClusterIP service 213

Looks good! The ClusterIP service correctly forwarded my request to the nginx Pod,
and I do have the nginx default home page. The service is working!

We did not use containous/whoami as a web service this time, but keep in mind that
the ClusterIP service is also doing load balancing internally following the round robin
algorithm. If you have 10 Pods behind a ClusterIP service and your service received
1,000 requests, then each Pod is going to receive 100 requests.

Let's now discover how to create a ClusterIP service using YAML.

Creating ClusterIP services using the declarative way
ClusterIP services can also be created using the declarative way by applying YAML
configuration files against kube-apiserver.

Here's a YAML manifest file we can use to create the exact same ClusterIP service we
created before using the imperative way:

~/clusterip-service.yaml

apiVersion: v1

kind: Service

metadata:

 name: nginx-clusterip

spec:

 type: ClusterIP # Indicates that the service is a ClusterIP

 ports:

 - port: 80 # The port exposed by the service

 protocol: TCP

 targetPort: 80 # The destination port on the pods

 selector:

 run: nginx-clusterip

Take some time to read the comments in the YAML, especially the port and
targetPort ones.

214 Exposing Your Pods with Services

Indeed, ClusterIP services have their own port independent of the one exposed on the
Pod side. You reach the ClusterIP service by calling its DNS name and its port, and the
traffic is going to be forwarded to the destination port on the Pods matching the labels
and selectors.

Keep in mind that no worker node port is involved here. The ports we are mentioning
when it comes to ClusterIP scenarios have absolutely nothing to do with the
host machine!

Deleting ClusterIP services
Deleting ClusterIP services is the same process as deleting any type of object in
Kubernetes. You just need to know the name of the service and to pass it to the kubectl
delete svc command, as follows:

$ kubectl delete svc/my-service

service/my-service deleted

This way, the service gets deleted from the Kubernetes cluster. Keep in mind that
deleting the cluster won't delete the Pods exposed by it. It is a different process; you'll
need to delete Pods separately. We will now discover one additional resource related to
ClusterIP services, which are headless services.

Understanding headless services
Headless services are derived from the ClusterIP service. They are not technically a
dedicated type of service (such as NodePort), but they are an option from ClusterIP.

Headless services can be configured by setting the .spec.clusterIP option to None
in a YAML configuration file for the ClusterIP service. Here is an example derived
from our YAML file previously:

~/clusterip-headless.yaml

apiVersion: v1

kind: Service

metadata:

 name: nginx-clusterip-headless

spec:

 clusterIP: None

 type: ClusterIP # Indicates that the service is a ClusterIP

 ports:

The LoadBalancer service 215

 - port: 80 # The port exposed by the service

 protocol: TCP

 targetPort: 80 # The destination port on the pods

 selector:

 run: nginx-clusterip

A headless service roughly consists of a ClusterIP service without load balancing and
without a pre-allocated ClusterIP address. Thus, the load-balancing logic and the
interfacing with the Pod are not defined by Kubernetes.

Since a headless service has no IP, you are going to reach the Pod behind it directly,
without the proxying and the load-balancing logic. What the headless service does is
return you the DNS names of the Pods behind it so that you can reach them directly.
There is still a little load-balancing logic here, but it is implemented at the DNS level, not
as a Kubernetes logic.

When you use a normal ClusterIP service, you'll always reach one static IP address
allocated to the service and this is going to be your proxy to communicate with the Pod
behind it. With a headless service, the ClusterIP service will just return the DNS names
of the Pods behind it and the client will have the responsibility to establish a connection
with the DNS name of its choosing.

It can be hard to think of a concrete use case for this, and honestly, headless services are
not used as much as normal ClusterIP services. They are still helpful when you want to
build connectivity with clustered stateful services such as Lightweight Directory Access
Protocol (LDAP). In that case, you may want to use an LDAP client that will have access
to the different DNS names of the Pods hosting the LDAP server, and this can't be done
with a normal ClusterIP service since it will bring both a static IP and Kubernetes'
implementation of load balancing. That's the kind of scenario when headless services
are helpful.

Let's now briefly introduce another type of service called LoadBalancer.

The LoadBalancer service
LoadBalancer services are a very interesting service to explain because this service
relies on the cloud platform where the Kubernetes cluster is provisioned. For it to work, it
is thus required to use Kubernetes on a cloud platform that supports the LoadBalancer
service type.

216 Exposing Your Pods with Services

Explaining the LoadBalancer services
Not all cloud providers support the LoadBalancer service type, but we can name a few
that do support it, as follows:

• AWS

• GCP

• Azure

• OpenStack

The list is not exhaustive, but it's good to know that all three major public cloud providers
are supported.

If your cloud provider is supported, keep in mind that the load-balancing logic will be the
one implemented by the cloud provider: you cannot control how the traffic will be routed
to your Pods from Kubernetes; you will have to know how the load-balancer component
of your cloud provider works. Consider it as a third-party component implemented as a
Kubernetes kind.

Should I use the LoadBalancer service type?
This question is difficult to answer but a lot of people tend to not use a LoadBalancer
service type for a few reasons.

The main reason is that LoadBalancer services are near impossible to configure from
Kubernetes. Indeed, if you must use a cloud provider, it is better to configure it from the
tooling provided by the provider rather than from Kubernetes.

The LoadBalancer service type is a generic way to provision a LoadBalancer service
but does not expose all the advanced features that the cloud provider may provide. Let's
take the example of AWS. This cloud provider has three LoadBalancer components,
as follows:

• Classic Load Balancer

• Application Load Balancer

• Network Load Balancer

All these three offerings differ. Their usage, configurations, and behaviors are not the
same from one to another. The LoadBalancer service type, when used on an
AWS-backed Kubernetes cluster, will create a Classic Load Balancer: you have no way to
create an Application Load Balancer or a Network Load Balancer from the Kubernetes
Service object.

Implementing ReadinessProbe 217

Just to Say
A lot of configurations are hidden, and you won't have access to all the
features your cloud provider offers. That's why you should avoid using the
LoadBalancer service and stick to different tooling such as Terraform or
the CLI.

Implementing ReadinessProbe
ReadinessProbe, along with LivenessProbe, is an important aspect to master if
you want to provide the best possible experience to your end user. We will first discover
how to implement ReadinessProbe and how it can help you to ensure your containers
are fully ready to serve traffic.

Why do you need ReadinessProbe?
Readiness probes are technically not part of services, but I think it is important to discover
this feature alongside Kubernetes services.

Just as with everything in Kubernetes, ReadinessProbe was implemented to bring a
solution to a problem. This problem is this: how to ensure a Pod is fully ready before it can
receive traffic, possibly from a service?

Indeed, Services obey a simple rule: they serve traffic to every Pod that matches their
label selector. As soon as a Pod gets provisioned, if this pod's labels match the selector of a
service in your cluster, then this service will immediately start forwarding traffic to it. This
can lead to a simple problem: if the app is not fully launched, because it has a slow launch
process or requires some configuration from a remote API, and so on, then it might
receive traffic from services before being ready for it. The result would be a poor user
experience (UX).

To make sure this scenario never happens, we can use what we call a readiness probe,
which is an additional configuration to add to Pods' configuration.

When a Pod is configured with a readiness probe, it can send a signal to the control plane
that it is not ready to receive traffic, and when a Pod is not ready, services won't forward
any traffic to it. Let's see how we can implement a readiness probe.

218 Exposing Your Pods with Services

Implementing ReadinessProbe
ReadinessProbe implementation is achieved by adding some configuration data to a
Pod YAML manifest. It has nothing to do with the Service object itself. By adding some
configuration to the container spec in the Pod object, you can basically tell Kubernetes to
wait for the Pod to be fully ready before it can receive traffic from services.

ReadinessProbe can be of three different types, as outlined here:

• Command—You issue a command that should complete with exit code 0,
indicating the Pod is ready.

• HTTP—You issue an HTTP request that should complete with a response code >=
200 and < 400, which indicates the Pod is ready.

• TCP—You issue a TCP connection attempt. If the connection is established, the Pod
is ready.

Here is a YAML file configuring a nginx Pod with a readiness probe of type HTTP:

~/nginx-pod-with-readiness-http.yaml # ~/nginx-pod-with-
readiness-http.yaml

apiVersion: v1

kind: Pod

metadata:

 name: nginx-pod-with-readiness-http

spec:

 containers:

 - name: nginx-pod-with-readiness-http

 image: nginx

 readinessProbe:

 initialDelaySeconds: 5

 periodSeconds: 5

 httpGet:

 path: /ready

 port: 80

Implementing ReadinessProbe 219

As you can see, we have two important inputs under the readinessProbe key,
as follows:

• initialDelaySeconds, which indicates the number of seconds the probe will
wait before running the first health check.

• periodSeconds, which indicates the number of seconds the probe will wait
between two consecutive health checks.

Indeed, the readiness probe will be replayed regularly, and the interval between two
checks will be defined by the periodSeconds parameter.

In our case, our ReadinessProbe will run an HTTP call against the /ready path. If
this request receives an HTTP response code >= 200 and < 400, then the probe will be a
success and the Pod will be considered healthy.

ReadinessProbe is important. In our example, the endpoint being called should really
test that the application is really in such a state that it can receive traffic. So, try to call an
endpoint that is relevant to the state of the actual application. For example, you can try
to call a page that will open a MySQL connection internally to make sure the application
is capable of communicating with its database if it is using one, and so on. If you're a
developer, do not hesitate to create a dedicated endpoint that will just open connections to
the different backends to be fully sure that the application is ready for real.

The Pod will then join the pool being served by the service and will start receiving traffic.
ReadinessProbe can also be configured as TCP and commands, but we will keep these
examples for LivenessProbe. Let's discover them now!

What is LivenessProbe and why do you need it?
LivenessProbe resembles ReadinessProbe a lot. In fact, if you already used some
cloud providers before, you might already have heard about something called health
checks. So, in other words, LivenessProbe is basically a health check.

220 Exposing Your Pods with Services

Basically, liveness probes are used to determine whether a Pod is in a broken state or not,
and the usage of LivenessProbe is especially suited for long-running processes such
as web services. Indeed, imagine a situation where you have a service forwarding traffic
to three Pods and one of them is broken. Services cannot detect that on their own, and
they will just continue to serve traffic to the three Pods, including the broken one. In such
situations, 33% of your request will inevitably lead to an error response, resulting in a
poor UX, as illustrated in the following screenshot:

Figure 7.6 – One of the Pods is broken but the service will still forward traffic to it

You want to avoid such situations, and to do that, you need a way to detect situations
where Pods are broken, plus a way to kill such a container so that it goes out of the pool of
Pods being targeted by the service.

LivenessProbe is the solution to this problem and is implemented at the Pod level. Be
careful because LivenessProbe cannot repair a Pod: it can only detect that a Pod is not
healthy and command its termination. Let's see how we can implement a Pod
with LivenessProbe.

Implementing LivenessProbe
LivenessProbe is a health check that will be executed on a regular schedule to keep
track of the application state in the long run. These health checks are executed by the
kubelet component and can be of three types, as outlined here:

• Command, where you issue a command in the container and its result will tell
whether the Pod is healthy or not (exit code = 0 means healthy)

• HTTP, where you run an HTTP request against the Pod, and its result tells whether
the Pod is healthy or not (HTTP response code >= 200 and < 400 means the Pod
is healthy)

Implementing ReadinessProbe 221

• TCP, where you define a TCP call (a successful connection means the Pod
is healthy)

Each of these three liveness probes will require you to input a parameter called
periodSeconds, which must be an integer. This will tell the kubelet component
the number of seconds to wait before performing a new health check. You can also use
another parameter called initialDelaySeconds, which will indicate the number of
seconds to wait before performing the very first health check. Indeed, in some common
situations, a health check might lead to flagging an application as unhealthy just because
it was performed too early. That's why it might be a good idea to wait a little bit before
performing the first health check, and that parameter is here to help.

LivenessProbe configuration is achieved at the Pod YAML configuration manifest, not
at the service one. Each container in the Pod can have its own livenessProbe.

Here is a configuration file that checks if a Pod is healthy by running an HTTP call against
a /healthcheck endpoint in an nginx container:

~/nginx-pod-with-liveness-http.yaml

apiVersion: v1

kind: Pod

metadata:

 name: nginx-pod-with-liveness-http

spec:

 containers:

 - name: nginx-pod-with-liveness-http

 image: nginx

 livenessProbe:

 initialDelaySeconds: 5

 periodSeconds: 5

 httpGet:

 path: /healthcheck

 port: 80

 httpHeaders:

 - name: My-Custom-Header

 value: My-Custom-Header-Value

222 Exposing Your Pods with Services

Please pay attention to all sections after the livenessProbe blocks. If you understand
this well, you can see that we will wait 5 seconds before performing the first health check,
and then, we will run one HTTP call against the /healthcheck path on port 80 every
5 seconds. One custom HTTP header was added. Adding such a header will be useful
to identify our health checks in the access logs. Be careful because the /healthcheck
path probably won't exist in our nginx container and thus, this container will never be
considered healthy because the liveness probe will result in a 404 HTTP response. Keep
in mind that for an HTTP health check to succeed, it must answer an HTTP >= 200 and
< 400. 404 being out of this range, the answer Pod won't be healthy.

You can also use a command to check if a Pod is healthy or not. Let's grab the same YAML
configuration, but now, we will use a command instead of an HTTP call in the liveness
probe, as follows:

~/nginx-pod-with-liveness-command.yaml

apiVersion: v1

kind: Pod

metadata:

 name: nginx-pod-with-liveness-command

spec:

 containers:

 - name: nginx-pod-with-liveness-command

 image: nginx

 livenessProbe:

 initialDelaySeconds: 5

 periodSeconds: 5

 exec:

 command:

 - cat

 - /hello/world

If you check this example, you can see that this one is much simpler than the HTTP one.
Here, we are basically running a cat /hello/world command every 5 seconds. If the
file exists and the cat command completes with an exit code equal to 0, then the health
check will succeed. Otherwise, if the file is not present, the health check will fail, and the
Pod will never be considered healthy and will be terminated.

Implementing ReadinessProbe 223

We will now complete this section by discovering one last example with a TCP
livenessProbe. In this situation, we will attempt a connection to a TCP socket on port
80. If the connection is successfully established, then the health check will pass, and the
container will be considered ready. Otherwise, the health check will fail, and the Pod will
be terminated eventually. The code is illustrated in the following snippet:

~/nginx-pod-with-liveness-tcp.yaml

apiVersion: v1

kind: Pod

metadata:

 name: nginx-pod-with-liveness-tcp

spec:

 containers:

 - name: nginx-pod-with-liveness-tcp

 image: nginx

 livenessProbe:

 initialDelaySeconds: 5

 periodSeconds: 5

 tcpSocket:

 port: 80

Using TCP health checks greatly resembles HTTP ones since HTTP is based on TCP
anyway. But having TCP as a liveness probe is nice especially if you want to keep track of
an application that is not based on using HTTP as protocol and using that command is
irrelevant to you, such as health-checking an LDAP connection, for example.

Using ReadinessProbe and LivenessProbe together
You can use ReadinessProbe and LivenessProbe together in the same Pod. There
is nothing wrong with that since ReadinessProbe is here for you to prevent a Pod from
joining a service before being ready to serve traffic, and LivenessProbe is here to kill a
Pod that has become unhealthy.

So, they are configured almost the same way—they don't have the exact same purpose,
and it is fine to use them together. Please note that both probes share these parameters:

• initialDelaySeconds: The number of seconds to wait before the first
probe execution

• periodSeocnds: The number of seconds between two probes

• timeoutSeconds: The number of seconds to wait before timeout

224 Exposing Your Pods with Services

• successThreshold: The number of successful attempts to consider a Pod is
ready (for ReadinessProbe) or healthy (for LivenessProbe)

• failureThreshold : The number of failed attempts to consider a Pod is not
ready (for ReadinessProbe) or ready to be killed (for LivenessProbe)

We now have discovered ReadinessProbe and LivenessProbe, and we can now
move on to our final section, which introduces the control of network flow in Kubernetes
using the NetworkPolicy object. You will see that you can build a kind of network
firewall directly in Kubernetes so that you can prevent Pods from being able to reach
one another.

Securing your Pods using the
NetworkPolicy object
The NetworkPolicy object is the last resource kind we need to discover as part of this
chapter to have an overview of services in this chapter. NetworkPolicy will allow you
to define network firewalls directly implemented in your cluster.

Why do you need NetworkPolicy?
When you have to manage a real Kubernetes workload in production, you'll have to
deploy more and more applications onto it, and it is possible that these applications will
have to communicate with each other.

Achieving communication between applications is really one of the fundamental
objectives of a microservice architecture. Most of this communication will be done
through the network, and the network is forcibly something that you want to secure by
using firewalls.

Kubernetes has its own implementation of network firewalls called NetworkPolicy.
This is a new resource kind we are going to discover. Say that you want one nginx resource
to be accessible on port 80 from a particular IP address and to block any other traffic that
doesn't match these requirements. To do that, you'll need to use NetworkPolicy and
attach it to that Pod.

NetworkPolicy brings three benefits, as follows:

• You can build egress/ingress rules based on Classless Inter-Domain Routing
(CIDR) blocks.

• You can build egress/ingress rules based on Pods labels and selectors (just as we've
seen before with services' and Pods' association).

Securing your Pods using the NetworkPolicy object 225

• You can build egress/ingress rules based on namespaces (a notion we will discover
in the next chapter).

Lastly, keep in mind that for NetworkPolicy to work, you'll need to have a Kubernetes
cluster with a CNI plugin installed. CNI plugins are generally not installed by default on
Kubernetes. If you're using minikube, the good news is that it has an integration with
Calico, which is a CNI plugin with NetworkPolicy support implemented out of the
box. You just need to relaunch minikube this way:

$ minikube start --network-plugin=cni --cni=calico

If you're using Kubernetes on top of a cloud platform, I suggest you read the
documentation of your cloud provider in order to verify which CNI options your cloud
platform offers and whether it implements NetworkPolicy support.

Understanding Pods are not isolated by default
This is something extremely important to understand. By default, in Kubernetes,
Pods are not isolated. It means that any Pod can be reached by any other Pod without
any constraint.

All Pods you have deployed so far can be reached by any other Pod in the cluster. If you
don't use NetworkPolicy, Pods will remain just like that: accessible by everything
without any constraint. Once you attach the NetworkPolicy to a Pod, the rules
described on the NetworkPolicy will be applied to the Pod.

To establish communication between two Pods associated with network policies, both
sides must be open. It means Pod A must have an egress rule to Pod B, and Pod B must
have an ingress rule from Pod A; otherwise, the traffic will be denied. The following
screenshot illustrates this:

Figure 7.7 – One of the Pods is broken but the service will still forward traffic to it

Keep that in mind that you'll have to troubleshoot NetworkPolicy because it can be the
root cause of a lot of issues. Let's now configure a NetworkPolicy between two Pods by
using labels and selectors.

226 Exposing Your Pods with Services

Configuring NetworkPolicy with labels and selectors
First, let's create two nginx Pods to demonstrate our example. I'll create the two Pods
with two distinct labels so that they become easier to target with the NetworkPolicy,
as follows:

$ kubectl run nginx-1 --image nginx --labels 'app=nginx-1'

pod/nginx-1 created

$ kubectl run nginx-2 --image nginx --labels 'app=nginx-2'

pod/nginx-2 created

$ kubectl get pods -o wide

nginx-1 1/1
Running 0 30s 172.17.0.12 minikube

nginx-2 1/1
Running 0 30s 172.17.0.13 minikube

Now that the two Pods are created with distinct labels. I could use the -o wide flag to get
the IP address of both Pods. If you follow along, your IP addresses will be different. Now, I
can run a curl command from the nginx-1 Pod to reach the nginx-2 Pod, to confirm
that by default, network traffic is allowed because no NetworkPolicy is created at this
point. The code is illustrated here:

$ kubectl exec nginx-1 -- curl 172.17.0.13

<html>

<head>

<title>Welcome to nginx!</title>

<style>

html { color-scheme: light dark; }

body { width: 35em; margin: 0 auto;

font-family: Tahoma, Verdana, Arial, sans-serif; }

</style>

</head>

<body>

<h1>Welcome to nginx!</h1>

…

Securing your Pods using the NetworkPolicy object 227

As you can see, I correctly receive the nginx home page from the nginx-2 Pod. Now,
I'll add NetworkPolicy to nginx-2 to explicitly allow traffic coming from nginx-1.
Here is how to proceed with the YAML code:

~/nginx-2-networkpolicy.yaml

apiVersion: networking.k8s.io/v1

kind: NetworkPolicy

metadata:

 name: nginx-2-networkpolicy

spec:

 podSelector:

 matchLabels:

 app: nginx-2 # Applies to which pod

 policyTypes:

 - Ingress

 ingress:

 - from:

 - podSelector:

 matchLabels:

 app: nginx-1 # Allows calls from which pod

 ports:

 - protocol: TCP

 port: 80

Let's apply this NetworkPolicy, as follows:

$ kubectl create -f nginx-2-networkpolicy.yaml

networkpolicy.networking.k8s.io/nginx-2-networkpolicy created

Now, let's run the same curl command we did before, as follows:

$ kubectl exec nginx-1 -- curl 172.17.0.13

<html>

<head>

<title>Welcome to nginx!</title>

<style>

html { color-scheme: light dark; }

body { width: 35em; margin: 0 auto;

font-family: Tahoma, Verdana, Arial, sans-serif; }

228 Exposing Your Pods with Services

</style>

</head>

<body>

<h1>Welcome to nginx!</h1>

…

As you can see, it works just like it did before. Why? For the following two reasons:

• nginx-2 now explicitly allows ingress traffic on port 80 from nginx-1;
everything else is denied.

• nginx-1 has no NetworkPolicy, and thus, egress traffic to everything is
allowed for it.

Keep in mind that if no NetworkPolicy is set on the Pod, the default behavior
applies—everything is allowed for the Pod. Now, let's update the NetworkPolicy
attached to the Pod to change the allowed port from 80 to 8080 by updating the file and
applying it against the cluster, as follows:

$ kubectl apply -f nginx-2-networkpolicy.yaml

networkpolicy.networking.k8s.io/nginx-2-networkpolicy
configured

Now, let's run the curl command from the nginx-1 Pod once more, as follows:

$ kubectl exec nginx-1 -- curl 172.17.0.13:80

curl: (28) Failed to connect to 10.244.120.77 port 80:
Connection timed out

command terminated with exit code 28

As you can see, the curl command failed with a timeout. The reason is that the traffic
is blocked by the NetworkPolicy, and thus, the curl command never reaches the
nginx-2 Pod.

Again, there are two reasons for that, as outlined here:

• There is still no NetworkPolicy set to the nginx-1 Pod, so egress is opened.

• We have a NetworkPolicy on the nginx-2 Pod, allowing ingress traffic on port
8080 from Pod nginx-1.

Summary 229

Since curl is trying to reach the nginx-2 Pod on port 80, the traffic is blocked. Let's
now try to run curl to make a call against port 8080, which is the one allowed by the
NetworkPolicy, to see what happens. Here's the code we need to execute:

$ kubectl exec nginx-1 -- curl 172.17.0.13:8080

curl: (7) Failed to connect to 172.17.0.13 port 8080:
Connection refused

command terminated with exit code 7

As you can see, no timeout this time. The traffic reaches the nginx-2 Pod, but since
nothing is listening on port 8080 on nginx-2, then we have a Connection refused
error.

I strongly encourage you to take the habit of using NetworkPolicy along with your
Pod. Lastly, please be aware that NetworkPolicy can also be used to build firewalls
based on CIDR blocks. It might be useful especially if your Pods are called from
outside the cluster. Otherwise, when you need to configure firewalls between Pods, it is
recommended to proceed with labels and selectors as you already did with the services'
configuration.

Summary
This chapter was dense and contained a huge amount of information on networking in
general when applied to Kubernetes. Services are just like Pods: they are the foundation of
Kubernetes, and mastering them is crucial to being successful with the orchestrator.

Overall, in this chapter, we discovered that Pods have dynamic IP assignment, and they
get a unique IP address when they're created. To establish a reliable way to connect to
your Pods, you need a proxy called Service in Kubernetes. We've also discovered
that Kubernetes services can be of multiple types and that each type of service is
designed to address a specific need. We've also discovered what ReadinessProbe and
LivenessProbe are and how they can help you in designing health checks to ensure
your pods gets traffic when they are ready and live.

Lastly, we discovered how to control traffic flow between Pods by using an additional
object called NetworkPolicy that behaves like a networking firewall within the cluster.

We've now discovered most of the Kubernetes fundamentals, but there are still some
missing pieces that you need to discover. In the next chapter, we're going to cover another
important aspect of Kubernetes called namespaces. We've already discussed them a little
bit during this chapter, and if you've read it carefully, you should be aware that up to now,
we have somehow used a namespace called default.

8
Managing

Namespaces in
Kubernetes

So far, we've learned about Kubernetes' key concepts by launching objects into our
clusters and observing their behavior. As you deployed all of these objects, such as Pods,
ConfigMaps, Secrets, and more, you may have noticed that, in the long run, it would be
difficult to maintain a cleanly organized cluster. As your clusters grow, it's going to become
more and more difficult to maintain the ever-increasing number of resources that are
managed in your cluster. That's when Kubernetes namespaces come into play.

In this chapter, we will learn about namespaces. They help us keep our clusters well
organized by grouping our resources by application or environment. Kubernetes
namespaces are another key aspect of Kubernetes management and it's really important to
master them!

In this chapter, we're going to cover the following main topics:

• Introduction to Kubernetes namespaces

• How namespaces impact your resources and services

• Configuring ResourceQuota at the namespace level

232 Managing Namespaces in Kubernetes

Technical requirements
For this chapter, you will need the following:

• A working Kubernetes cluster (local or cloud-based, but this is not important)

• A working Kubectl CLI configured to communicate with the cluster

If you do not have these technical requirements, please read Chapter 2, Kubernetes
Architecture – from Docker Images to Running Pods, and Chapter 3, Installing Your First
Kubernetes Cluster, to get them.

Introduction to Kubernetes namespaces
The more applications you deploy on your Kubernetes clusters, the more you will feel the
need to keep your cluster organized. You can already use labels and annotations to tidy up
the objects inside your cluster, but you can go even further by using namespaces, which
are presented by Kubernetes as virtual clusters within your cluster.

Using namespaces in Kubernetes allows you to split your cluster into smaller parts that
will be logically isolated. Once namespaces have been created, you can launch Kubernetes
objects such as Pods, which will only exist in that namespace. So, all the operations that
are run against the cluster with kubectl will be scoped to that individual namespace:
you can perform as many operations as possible while eliminating the risk of impacting
resources that are in another namespace.

Lastly, namespaces allow you to define resources limits and quotas for the Pods running in
them.

Let's start by finding out what exactly namespaces are and why they were created.

Why do you need namespaces?
As we mentioned previously, namespaces in Kubernetes are a way to help the cluster
administrator keep everything clean and organized, while providing resource isolation
when running kubectl commands.

The biggest Kubernetes clusters can run hundreds or even thousands of applications in
Pods. Very often, those Pods come with services, ConfigMaps, volumes, and more. When
everything is deployed in the same namespace, it can become very complex to know
which particular resource belongs to which application.

Introduction to Kubernetes namespaces 233

If, by misfortune, you update the wrong resource using kubectl, you might end up
breaking an app running in your cluster. To resolve that, you can use labels and selectors
but even then, as the number of resources grows, managing the cluster will quickly
become chaotic if you don't start using namespaces.

Let's learn how namespaces are used to split Kubernetes clusters.

How namespaces are used to split resources into
chunks
Right after you've installed Kubernetes, when your cluster is brand new, it is created with
namespaces. So, even if you didn't notice previously, you are already using namespaces.

You can freely add new namespaces: the whole idea is to deploy your Pods and other
objects in Kubernetes, making sure to always define a namespace of your choosing. This
way, you will maintain a clean and well-organized cluster. We will discover right after that
by default, Kubernetes is created with a namespace, and it is the one that is used if you do
not specify another explicitly.

A key architecting rule is that an application should not be aware of the Kubernetes
namespace that it is running in. This means that you should think of Kubernetes
namespaces as objects for cluster administrators, not developers or application users.
It shouldn't have any impact on how the application works, and an application should
be able to deploy on any namespace. If an app is running on namespace A and is then
redeployed on namespace B, it should not have any impact on any of its features.

More generally, Kubernetes namespaces will help you achieve the following as an
administrator:

• Cluster partitioning to ease resource organization

• Scoping resource names

• Hardware sharing and consumption limitation

• Permissions access

234 Managing Namespaces in Kubernetes

I recommend that you create one namespace per microservice and deploy all the
resources that belong to a microservice within its namespace. However, be aware that
Kubernetes does not impose any specific rules on you. For example, you could decide to
use namespaces in these ways:

• Differentiate environments

For example, one namespace for a production environment and another one for a
development environment.

• Differentiate the tiers

One namespace for databases, one for application Pods, and another for middleware
deployment.

• Just using the default namespaces

For the smallest clusters that only deploy a few resources, you can go for the
simplest setup and just use one big default namespace and deploy everything into it.

Either way, keep in mind that even though two Pods are deployed in different namespaces
and exposed through services, they can still interact and communicate with each other.
Even though Kubernetes services are created in a given namespace, they'll receive a
fully qualified domain name (FQDN) that will be accessible on the whole cluster. So,
even if an application running on namespace A needs to interact with an application in
namespace B, it will have to call the service exposing app B by its FQDN. You don't need
to worry about cross-namespace communication.

Now, let's learn about the default namespace.

Understanding default namespaces
Most Kubernetes clusters are created with a few namespaces by default. You can list your
namespaces using kubectl get namespaces, as follows:

$ kubectl get namespaces # Or kubectl get ns

You can use "ns" as an alias for namespaces

NAME STATUS AGE

default Active 5m31s

kube-public Active 5m33s

kube-system Active 5m33s

Introduction to Kubernetes namespaces 235

For instance, I'm using a Minikube cluster. By reading this command's output, we can see
that the cluster I'm currently using was set up with three namespaces from the start:

• default

• kube-public

• kube-system

These namespaces are the ones provided by default in Kubernetes.

The most important of them is default: it is in this namespace that, up until now, all
your resources have been created, and it is also the namespace that's used by default when
no other one is specified.

The other default namespaces are also interesting, especially the one called kube-
system. It is in this namespace that Kubernetes deploys the objects it needs to function.
In most Kubernetes distributions, components such as kube-scheduler are deployed
in the form of Pods and are themselves by the Kubernetes cluster that they are running for.
They are then launched in this namespace. So, it is better to leave this namespace alone
and not touch it because it is a very important namespace, and changing something could
damage your cluster.

A third namespace is usually created by default when the cluster is set up, and this is
called kube-public. It is a namespace where public objects are accessible. It is not used
at the moment, so you can leave it alone.

Important Note
Depending on which Kubernetes distribution you use, the default namespaces
can change. But most of the time, these three different ones will be created by
default.

If your cluster is small, you can continue to use the default namespace – this is not a
problem. However, let's leave this namespace aside for now because we are going to get
to the heart of the matter a little more and start creating namespaces. We will look at the
impacts that these can have on your Pods, particularly at the level of the DNS resolution of
your services.

236 Managing Namespaces in Kubernetes

How namespaces impact your resources and
services
Previously, we learned what namespaces are and we will continue to discover them. In this
section, we'll learn how to create, update, and delete namespaces, as well as the impacts
that namespaces have on services and Pods.

We will also learn how to create ConfigMaps and Pods by specifying a custom namespace
so that we don't rely on the default one.

Listing namespaces inside your cluster
We saw this in the previous section but here is how to list the namespaces that have been
created in your Kubernetes cluster:

$ kubectl get namespaces #kubectl get ns works too

NAME STATUS AGE

default Active 5m31s

kube-public Active 5m33s

kube-system Active 5m33s

Keep in mind that all the commands that make use of the namespaces resource Kind
can also use the ns alias to benefit from a shorter format.

Retrieving the data of a specific namespace
Retrieving the data of a specific namespace can be achieved using the kubectl
describe command. Here is how to grab the data from that command:

$ kubectl get namespaces default #kubectl get ns works too

NAME STATUS AGE

default Active 13m

You can also use the get command and redirect the YAML format to a file to get the data
from a specific namespace. By reading the output of the describe command, you can
see a field called STATUS. Please note that a namespace can be in one of two statuses:

• Active: The namespace is active; it can be used to place new objects into it.

• Terminating: The namespace is being deleted, along with all its objects. It can't
be used to host new objects while in this status.

Now, let's learn how to create a new namespace imperatively.

How namespaces impact your resources and services 237

Creating a namespace using imperative syntax
You can create a namespace with imperative or declarative syntax. To imperatively create a
namespace, you can use the kubectl create namespaces command by specifying
the name of the namespace to create. Here, I'm going to create a new namespace called
custom-ns. Please notice that all the operations related to namespaces in kubectl can
be written with the shorter ns alias:

$ kubectl create ns custom-ns #kubectl get ns works too

namespace/custom-ns created

The new namespace, called custom-ns, should now be created in your cluster. You can
check it by running the kubectl get command once more:

$ kubectl get ns custom-ns

NAME STATUS AGE

custom-ns Active 35s

As you can see, the namespace has been created and is in the Active state. We can now
place resources in it.

Important Note
Please do avoid naming your cluster with a name starting with the kube-
prefix as this is the terminology for Kubernetes' objects and system
namespaces.

Now, let's learn how to create another namespace using declarative syntax.

Creating a namespace using declarative syntax
Let's discover how to create a namespace using declarative syntax. As always, you must use
a YAML (or JSON) file. Here is a basic YAML file for creating a new namespace in your
cluster. Please pay attention to kind: Namespace in the file. Namespace is a resource
kind, just like Pod:

~/custom-ns-2.yaml

apiVersion: v1

kind: Namespace

metadata:

 name: custom-ns-2

238 Managing Namespaces in Kubernetes

Once this file has been created, you can apply it using the kubectl create command
by defining the YAML file path:

$ kubectl create -f custom-ns.yaml

namespace/custom-ns-2 created

With that, we have created two custom namespaces. The first one, which was created
imperatively, is called custom-ns, while the second one, which was created declaratively,
is called custom-ns-2.

Now, let's remove these two namespaces using kubectl.

Deleting a namespace
You can delete a namespace using kubectl delete, as follows:

$ kubectl delete namespaces custom-ns

namespace "custom-ns" deleted

Please note this can also be achieved using declarative syntax. Let's delete the
custom-ns-2 namespace that was created using the previous YAML file:

$ kubectl delete -f custom-ns-2.yaml

namespace "custom-ns-2" deleted

Running this command will take the namespace out of the Active status: it will enter
the Terminating status. Right after the command, the namespace will be unable to host
new objects, and after a few moments, it should completely disappear from the cluster.

However, I have to warn you about using this command as it is extremely dangerous.
Deleting a namespace is permanent and definitive. All the resources that were created in
the namespace will be destroyed. If you need to use this command, be sure to have YAML
files to recreate the destroyed resources and even the destroyed namespace.

Now, let's discover how to create resources inside a specific namespace.

How namespaces impact your resources and services 239

Creating a resource inside a namespace with the -n
option
Creating a resource within a namespace is very easy. The following code shows how to
create an NGINX Pod by specifying a custom namespace. Here, we are going to recreate a
new custom-ns namespace and launch an NGINX Pod in it:

$ kubectl create ns custom-ns

$ kubectl run nginx --image nginx:latest -n custom-ns

Pod/nginx created

Pay attention to the -n option, which, in its long form, is the --namespace option. This
is used to enter the name of the namespace where you want to create the resource. This
option is supported by all the kind resources that can be scoped in a namespace.

Here is another command to demonstrate this. The following command will create a new
configmap in the custom-ns namespace:

$ kubectl create configmap configmap-custom-ns --from-
literal=Lorem=Ipsum -n custom-ns

configmap/configmap-custom-ns created

You can also specify a namespace when using declarative syntax. Here is how to create a
Pod in a specific namespace with declarative syntax:

~/Pod-in-namespace.yaml

apiVersion: v1

kind: Pod

metadata:

 name: nginx2

 namespace: custom-ns

spec:

 containers:

 - name: nginx

 image: nginx:latest

Please note the namespace key under the metadata section, just under the Pod's name.
Now, we can apply this file using kubectl:

$ kubectl create -f Pod-in-namespace.yaml

Pod/nginx2 created

240 Managing Namespaces in Kubernetes

At this point, we should have a namespace called custom-ns that contains two nginx
Pods, as well as a configmap called configmap-custom-ns.

Important Note
When you're using namespaces, you should always specify the -n flag to
target the specific namespace of your choosing. Otherwise, you might end up
running operations in the wrong namespace. This is a common mistake.

Now that we have created some resources in the custom-ns namespace, we will learn
how to list the resources in a specific namespace using kubectl get Pods. We can do
this by specifying the namespace using the -n option:

$ kubectl get Pods -n custom-ns

NAME READY STATUS RESTARTS AGE

nginx 1/1 Running 0 66m

nginx2 1/1 Running 0 36s

Listing resources inside a specific namespace
To be able to list the resources within a namespace, you must add the -n option, just like
when creating a resource. Use the following command to list the Pods in the custom-ns
namespace:

$ kubectl get Pods -n custom-ns

NAME READY STATUS RESTARTS AGE

nginx 1/1 Running 0 66m

nginx2 1/1 Running 0 36s

Here, you can see that the nginx Pod that we created earlier is present in the namespace.
From now on, all the commands that target this particular Pod should contain the -n
custom-ns option.

The reason for this is that the Pod does not exist in the default namespace, and if you omit
passing the -n option, then the default namespace will be requested. Let's try to remove
-n custom-ns from the get command. We will see that the nginx Pod is not here
anymore:

$ kubectl get Pods -n custom-ns
NAME READY STATUS RESTARTS AGE

nginx 1/1 Running 0 9m17s

How namespaces impact your resources and services 241

$ kubectl get Pods

No resources found in default namespace.

Now, we can also run the get configmap command to check whether configmap is
listed in the output. As you can see, the behavior is the same as when trying to list Pods. If
you omit the -n option, the list operation will run against the default namespace that does
not contain configmap:

$ kubectl get cm

No resources found in default namespace.

$ kubectl get cm -n custom-ns

NAME DATA AGE

configmap-custom-ns 1 76m

With all that has been said so far, the idea is to never forget to add the -n option
when working on a cluster that has multiple namespaces. This little carelessness could
waste your time because if you forget it, everything you do will be done on the default
namespace.

You can also decide to remove the default namespace. So, if you forget to specify the
namespace, an error will occur because if you try to work on a namespace that does not
exist, Kubernetes will give you an explicit error.

Now, let's discover how to list all the resources inside a specific namespace.

Listing all the resources inside a specific namespace
If you want to list all the resources in a specific namespace, there is a very useful
command that you can use called kubectl get all -n custom-ns:

$ kubectl get all -n custom-ns

As you can see, this command can help you retrieve all the resources that are created in
the namespace specified in the -n flag.

Understanding that names are scoped to a namespace
You should know that namespaces bring an additional benefit: they provide scope to the
names of the resources they contain.

242 Managing Namespaces in Kubernetes

Take the example of Pod names. When you work without namespaces, you are interacting
with the default namespace: when you create two Pods with the same name, you get
an error because Kubernetes uses the names of the Pods as their unique identifiers to
distinguish them.

Let's try to create two Pods in the default namespace. Both will be called nginx. Here, we
can simply run the same command twice in a row:

$ kubectl run nginx --image nginx:latest

Pod/nginx created

$ kubectl run nginx --image nginx:latest

Error from server (AlreadyExists): Pods "nginx" already exists

The second command produces an error, saying that the Pod already exists, which it does.
If we run kubectl get Pods, we can see that only one Pod exists:

$ kubectl get Pods

NAME READY STATUS RESTARTS AGE

nginx 1/1 Running 0 64s

Now, let's try to list the Pods again, but this time in the custom-ns namespace:

$ kubectl get Pods --namespace custom-ns

NAME READY STATUS RESTARTS AGE

nginx 1/1 Running 0 89m

nginx2 1/1 Running 0 23m

As you can see, this namespace also has a Pod called nginx, and it's not the same
Pod that is contained in the default namespace. This is one of the major advantages of
namespaces. By using them, your Kubernetes cluster can now define multiple resources
with the same names, so long as they are in different namespaces. You can easily duplicate
microservices or applications by using this element.

Also, note that you can override the key to the namespaces of the resources that you create
declaratively. By adding the -n option to the kubectl create command, you force
a namespace as the context for your command: kubectl will take the namespace that
was passed in the command into account, not the one present in the YAML file. By doing
this, it becomes very easy to duplicate your resources between different namespaces; for
example, a production environment in a production namespace and a test environment
in a test namespace. The possibilities are endless!

How namespaces impact your resources and services 243

Understanding that not all resources are in a
namespace
In Kubernetes, not all objects belong to a namespace. This is the case, for example, with
nodes, which are represented at the cluster level by an entry of the Node kind but that
does not belong to any particular namespace. You can list resources that do not belong to
a namespace using the following command:

$ kubectl api-resources --namespaced false

NAME SHORTNAMES APIGROUP
NAMESPACED KIND

bindings
true Binding

configmaps cm
true ConfigMap

endpoints ep
true Endpoints

events ev
true Event

limitranges limits
true LimitRange

…

You can also list all the resources that belong to a namespace by passing --namespaced
to true:

$ kubectl api-resources --namespaced true

Now, let's learn how namespaces affect services DNSes.

Resolving a service using namespaces
As we discovered in Chapter 7, Exposing Your Pods with Services, Pods can be exposed
through a type of object called Services. When created, services are assigned a DNS record
that allows Pods in the cluster to access them.

244 Managing Namespaces in Kubernetes

However, when a Pod tries to call a service through DNS, it can only reach it if the service
is in the same namespace as the Pod, which is limiting. Namespaces have a solution to this
problem. When a service is created in a particular namespace, the name of its service is
added to its DNS:

<service_name>.<namespace_name>.svc.cluster.local

By querying this domain name, you can easily query any service that is in any namespace
in your Kubernetes cluster. So, you are not limited to that level. Pods are still capable of
achieving inter-communication, even if they are not running in the same namespace.

Switching between namespaces with kubectl
When using kubectl to use Kubernetes, you saw that you have to use the -n or
---namespace option with your kubectl command to tell it the namespace you're
targeting. But it is also possible to define a namespace at the configuration level. This way,
you'll have kubectl always running requests against that namespace, even if you omit
the -n parameter.

Let's create a few more namespaces. Then, we will demonstrate how to switch between
them without the -n flag:

 $ kubectl create ns another-ns

namespace/another-ns created

At the moment, we know that we have three namespaces in our cluster. You can use the
following command to switch to another namespace:

$ kubectl config set-context $(kubectl config current-context)
--namespace=another-ns

Context "minikube" modified.

Running this command will update the current configuration that kubectl is using to
make it point to the specified namespace. At the moment, any command you run will be
executed against the another-ns namespace.

Important Note
Running the kubectl config command and sub-commands will only trigger
modification or read operations against the ~/.kube/config file, which is
the configuration file that kubectl is using.

When you're using the kubectl config set-context command,
you're just updating that file to make it point to another namespace.

How namespaces impact your resources and services 245

Knowing how to switch between namespaces with kubectl is important, but before you
run any write operations such as kubectl delete or kubectl create, make sure
that you are in the correct namespace. Otherwise, you should continue to use the -n flag.
As this switching operation might be executed a lot of times, Kubernetes users tend to
create Linux aliases to make them easier to use. Do not hesitate to define a Linux alias if
you think it can be useful to you.

Now, let's learn how to retrieve the current namespace we're in.

Displaying the current namespace with kubectl
There is no easy way to display the current namespace besides displaying the ~/.kube/
config file where this information is stored, as we mentioned previously. You should
avoid running cat ~/.kube/config and just go for the kubectl config view
~/.kube/config command.

However, the problem is that this command displays a lot of data we don't need because
we're just searching for the current namespace that is in use. That's why I recommend that
you simply run the grep command against the output of kubectl config view to
retrieve just the namespace:

$ kubectl config view | grep -i "namespace"

namespace: another-ns

Let's launch an NGINX Pod in the another-ns namespace. My ~/kube/config is
pointing to it, so I don't have to use the -n flag anymore:

$ kubectl run nginx-Pod -–image nginx # in another-ns

Pod/nginx created

Here, the command is telling me that I'm currently in the another-ns namespace. If I
run kubectl get Pods, I should get no Pods at all:

$ kubectl get Pods

NAME READY STATUS RESTARTS AGE

nginx 1/1 Running 0 10s

246 Managing Namespaces in Kubernetes

Let's switch back to the default namespace. Immediately after, run grep against the
kubectl config view output to see that the context in ~/kube/config was
updated successfully to the default namespace:

$ kubectl config set-context $(kubectl config current-context)
--namespace=default

Context "minikube" modified.

$ kubectl config view | grep -i "namespace"

namespace: default

Everything seems good. Now, let's run the kubectl get Pods command once more:

 $ kubectl get Pods

No resources found in another-ns namespace.

Everything is good! I can't see nginx-Pod in the default namespace because it was
created when the context was set to another-ns! Again, I strongly recommend that
you define Linux aliases to switch and display namespaces quickly because you'll probably
have to run these commands very often!

With that, we're done with the basics of namespaces in Kubernetes. We have learned
what namespaces are, how to create and delete them, how to use them to keep a cluster
clean and organized, and how to update the kubeconfig context to make kubectl
point to a specific namespace. Now, we'll look at a few more advanced options related to
namespaces. I think it is a good moment to introduce ResourceQuota and Limit, which
you can use to limit the computing resources an application deployed on Kubernetes can
access!

Configuring ResourceQuota and Limit at the
namespace level
In this section, we're going to discover that namespaces can not only be used to sort
resources in a cluster but also to limit the computing resources that Pods can access.

Using ResourceQuota and Limits with namespaces, you can create limits regarding
the computing resources your Pods can access. We're going to learn how to proceed and
exactly how to use these new concepts. In general, defining ResourceQuota and Limits
is considered good practice for production clusters – that's why you should use them
wisely.

Configuring ResourceQuota and Limit at the namespace level 247

Understanding why you should set ResourceQuota
Just like applications or systems, Kubernetes Pods will require a certain amount of
computing resources to work properly. In Kubernetes, you can configure two types of
computing resources:

• CPU

• Memory

All your worker nodes work together to provide CPU and memory, and in Kubernetes,
adding more CPU and memory simply consists of adding more worker nodes to make
room for more Pods. Depending on whether your Kubernetes cluster is based on-premises
or in the cloud, adding more worker nodes can be achieved by purchasing the hardware
and setup to do so or simply calling an API to create additional virtual machines.

Understanding how Pods consume these resources
When you launch a Pod on Kubernetes, a control plane component, known as kube-
scheduler, will elect a worker node and assign the Pods to it. Then, the kubelet on the
elected worker node will attempt to launch the containers defined in the Pod.

This process of worker node election is called Pod scheduling in Kubernetes.

When a Pod gets scheduled and launched on a worker node, it has, by default, access to
all the resources the worker node has. Nothing is preventing it from accessing more and
more CPU and memory as the application is used and ultimately, if the Pods run out of
memory or CPU resources to work properly, then it simply crashes.

This can become a real problem because worker nodes can be used to run multiple
applications – and so multiple Pods – at the same time. So, if 10 Pods are launched on the
same worker node but one of them is consuming all the computing resources, then this
will have an impact on all 10 Pods running on the worker node.

This problem means that you have two things you must consider:

• Each Pod should be able to require some computing resource to work.

• The cluster should be able to restrict the Pod's consumption so that it doesn't take
all the resources available and share them with other Pods too.

248 Managing Namespaces in Kubernetes

It is possible to address these two problems in Kubernetes and we will discover how to use
two options that are exposed to the Pod object. The first one is called resources, which is
the option that's used to let a Pod indicate what amount of computing resources it needs,
while the other one is called limit and will be used to indicate the maximum computing
resources the Pod will have access to.

Let's discover these options now.

Understanding how Pods can require computing
resources
The request and limit options will be declared within the YAML definition file of a
Pod resource. Here, we're going to focus on the request option.

request is not a resource kind on its own – it is simply an option you can directly
specify within your YAML definition file. request is simply the minimal amount of
computing resource a Kubernetes Pod will need to work properly, and it is a really good
practice to always define a request option for your Pods, at least for those that are meant to
run in production.

Let's say that you want to launch an NGINX Pod on your Kubernetes cluster. By filling in
the request option, you can tell Kubernetes that your NGINX Pod will need, at the bare
minimum, 512 MiB of memory and 25% of a CPU core to work properly.

Here is the YAML definition file that will create this Pod:

~/Pod-in-namespace-with-request.yaml

apiVersion: v1

kind: Pod

metadata:

 name: nginx-with-request

 namespace: custom-ns

spec:

 containers:

 - name: nginx

 image: nginx:latest

 resources:

 requests:

 memory: "512Mi"

 cpu: "250m"

Configuring ResourceQuota and Limit at the namespace level 249

As you can see, you can define request at the container level and set different ones for
each container.

There are three things to notice about this Pod:

• It is created inside the custom-ns namespace.

• It requires 512Mi of memory.

• It requires 250m of CPU.

But what do these metrics mean?

Memory is expressed in bytes, whereas CPU is expressed in millicores and allows
fractional values. If you want your Pod to consume one entire CPU core, you can set the
cpu key to 1000m. If you want two cores, you must set it to 2000m; for half of a core it
will be 500m or 0.5, and so on. So, to explain, the preceding YAML definition is saying
that the NGINX Pod we will create will forcibly need 512 MiB of memory since memory
is expressed in bytes, and one-quarter of a CPU core of the underlying worker node. There
is nothing related to the CPU or memory frequency here.

When you apply this YAML definition file to your cluster, the scheduler will look for a
worker node that is capable of launching your Pods. This means that you need a worker
node where there is enough room in terms of available CPU and memory to meet your
Pods' requests.

But what if no worker node is capable of fulfilling these requirements? Here, the Pod will
never be scheduled and never be launched. Unless you remove some running Pods to
make room for this one, or unless you add a worker node that is capable of launching this
Pod, it won't ever be launched.

Important Note
Keep in mind that Pods cannot span multiple nodes. So, if you set 8,000 m,
which represents eight CPU cores, but your cluster is made up of two worker
nodes with four cores each, then no worker node will be able to fulfill the
request and your Pod won't be scheduled. That's why it's not good to set
requests with really high values.

250 Managing Namespaces in Kubernetes

So, use the request option wisely – consider it as the minimum amount of resources
your Pod will need to work. You have the risk that your Pod will never be scheduled if
you set too high a request, but on the other hand, if your Pod is scheduled and launched
successfully, this amount of resources is guaranteed.

Understanding how you can limit resource
consumption
When you write a YAML definition file, you can define resource limits regarding what the
Pod will be able to consume.

Setting a request won't suffice to do things properly. You should set a limit each time you
set a resource. Setting a limit will tell Kubernetes to let the Pod consume resources up
to that limit, and never above. This way, you're ensuring that your Pod won't take all the
resources of the worker for itself.

Be careful, though – Kubernetes won't behave the same, depending on what kind of limit
is reached. If the Pod reaches its CPU limit, it is going to be throttled and you'll notice
performance degradation. But if your Pod reaches its memory limit, then it might be
terminated. The reason for this is that memory is not something that can be throttled
and Kubernetes still needs to ensure that other applications are not impacted and remain
stable. So, be aware of that.

Without a limit, the Pod will be able to consume all the resources of the worker node.
Here is an updated YAML file corresponding to the NGINX Pod we saw earlier, but now,
it has been updated to define a limit on memory and CPU.

Here, the Pod will be able to consume up to 1 GiB of memory and up to 1 entire CPU core
of the underlying worker node:

~/Pod-in-namespace-with-request-and-limit.yaml

apiVersion: v1

kind: Pod

metadata:

 name: nginx-with-request-and-limit

 namespace: custom-ns

spec:

 containers:

 - name: nginx

 imaage: nginx:latest

 resources:

Configuring ResourceQuota and Limit at the namespace level 251

 requests:

 memory: "512Mi"

 cpu: "250m"

 limits:

 memory: "1Gi"

 cpu: "1000m"

So, when you set a request, set a limit too. Now that you are aware of this request and limit
consideration, don't forget to add it to your Pods!

Understanding why you need ResourceQuota
The good news is that you can entirely manage your Pod's consumptions by relying
entirely on the Pod's request and limits options. All the applications in Kubernetes are just
Pods, so setting these two options provides you with a strong and reliable way to manage
resource consumption on your cluster, given that you never forget to set these.

It is super easy to forget these two options and deploy a Pod on your cluster that won't
define any request or limit. Maybe it will be you, or maybe a member of your team, but the
risk of deploying such a Pod is high because everyone can forget about these two options.
And if you do so, the risk of application instability is high because a Pod without a limit
can eat all the resources on the worker node is it launched on.

Kubernetes provides a way to mitigate this issue thanks to two objects called
ResourceQuota and LimitRange. These two objects are extremely useful because they can
enforce these constraints at the namespace level.

ResourceQuota is another resource kind, just like Pod or ConfigMap. The workflow is
quite simple and consists of two steps:

1. First, you must create a new namespace.
2. Then, you must create a ResourceQuota and a LimitRange object inside that

namespace.

Then, all the Pods that are launched in that namespace will be constrained by these two
objects.

These quotas are used, for example, to ensure that all the containers that are accumulated
in a namespace do not consume more than 4 GiB of RAM.

Therefore, it is possible and even recommended to set restrictions on what can and cannot
run within Pods. It is strongly recommended that you always define a ResourceQuota and
a LimitRange object for each namespace you create in your cluster!

252 Managing Namespaces in Kubernetes

Without these quotas, the deployed resources could consume as much CPU or RAM as
they want, which could ultimately make your cluster and all the applications running on
it unstable, given that the Pods don't hold requests and limits as part of their respective
configuration.

In general, ResourceQuota is used to do the following:

• Limit CPU consumption within a namespace

• Limit memory consumption within a namespace

• Limit the absolute number of Pods operating within a namespace

There are a lot of use cases and you can discover all of them directly in the Kubernetes
documentation. Now, let's learn how to define ResourceQuota in a namespace.

Creating a ResourceQuota
To demonstrate the usefulness of ResourceQuota, we are going to create one for
a namespace we are going to call custom-ns-with-resource-quota. This
ResourceQuota will be used to create requests and limits that all the Pods within
this namespace combined will be able to use. Here is the YAML file that will create
ResourceQuota; please note the resource kind:

~/resourcequota.yaml

apiVersion: v1

kind: ResourceQuota

metadata:

 name: my-resourcequota

spec:

 hard:

 requests.cpu: "1000m"

 requests.memory: "1Gi"

 limits.cpu: "2000m"

 limits.memory "2Gi"

ResourceQuota is enforcing some requests and limits on all the Pods that will be launched
in the namespace where it is created. Keep in mind that the ResourceQuota object is
scoped to one namespace.

Configuring ResourceQuota and Limit at the namespace level 253

This one is stating that in this namespace, the following will occur:

• All the Pods combined won't be able to request more than one CPU core.

• All the Pods combined won't be able to request more than 1 GiB of memory.

• All the Pods combined won't be able to consume more than two CPU cores.

• All the Pods combined won't be able to consume more than 2 GiB of memory.

You can have as many Pods and containers in the namespace, so long as they are
respecting these constraints. Most of the time, ResourceQuotas are used to enforce
constraints on requests and limits, but they can also be used to enforce these limits per
namespace.

In the following example, the preceding ResourceQuota has been updated to specify that
the namespace where it is created cannot hold more than 10 ConfigMaps and 5 services,
which is pointless but a good example to demonstrate the different possibilities with
ResourceQuota:

~/resourcequota-with-object-count.yaml

apiVersion: v1

kind: ResourceQuota

metadata:

 name: my-resourcequota

spec:

 hard:

 requests.cpu: "1000m"

 requests.memory: "1Gi"

 limits.cpu: "2000m"

 limits.memory "2Gi"

 configmaps: "10"

 services: "5"

Lastly, when you apply a ResourceQuota YAML definition file, don't forget to add the
--namespace setting to set the namespace where ResourceQuota will be applied:

 $ kubectl create -f ~/resourcequota-with-object-count.yaml
--namespace=custom-ns

Now, let's learn how to list ResourceQuotas.

254 Managing Namespaces in Kubernetes

Listing ResourceQuota
ResourceQuota objects can be accessed through kubectl using the quota's resource
name option. The kubectl get command will do this for us:

 $ kubectl get quotas -n custom-ns

Now, let's learn how to delete ResourceQuota from a Kubernetes cluster.

Deleting ResourceQuota
To remove a ResourceQuota object from your cluster, use the kubectl delete
command:

 $ kubectl delete -f quotas/resourcequota-with-object-count -n
custom-ns

Now, let's introduce the notion of LimitRanges.

Introducing LimitRange
LimitRange is another object that is similar to ResourceQuota as it is created at the
namespace level. The LimitRange object is used to enforce default requests and limit
values to individual containers. Even by using the ResourceQuota object, you could create
one object that consumes all the available resources in the namespace, so the LimitRange
object is here to prevent you from creating too small or too large containers within a
namespace.

Here is a YAML file that will create LimitRange:

~/limitrange.yaml

apiVersion: v1

kind: LimitRange

metadata:

 name: my-limitrange

spec:

 limits:

 - default:

 memory: 256Mi

 cpu: 500m

 defaultRequest:

Introducing LimitRange 255

 memory: 128Mi

 cpu: 250Mib

 max:

 memory: 1000Mi

 cpu: 1Gib

 min:

 memory: 128Mi

 cpu: 250m

 type: Container

As you can see, the LimitRange object consists of four important keys that all contain
memory and cpu configuration. These keys are as follows:

• default: This helps you enforce default values for the memory and cpu limits of
containers if you forget to apply them at the Pod level. Each container that is set up
without limits will inherit these default ones from the LimitRange object.

• defaultRequest: This is the same as default but for the request option. If you
don't set a request option to one of your containers in a Pod, the ones from this key
in the LimitRange object will be automatically used by default.

• max: This value indicates the maximum limit (not request) a Pod can set. You
cannot configure a Pod with a limit value that is higher than this one. It is the same
as the default value in that it cannot be higher than the one defined here.

• min: This value works like max but for requests. It is the minimum amount of
computing resources a Pod can request, and the defaultRequest option cannot
be lower than this one.

Finally, note that if you omit the default and defaultRequest keys, then the max
key will be used as the default key, and the min key will be used as the default key.

Defining LimitRange is a good idea if you want to protect yourself from forgetting to set
requests and limits on your Pods. At least with LimitRange, these objects will have default
limits and requests!

Just like the ResourceQuota object, don't forget to set the -n option to create LimitRange
inside a namespace:

 $ kubectl create -f ~/limitrange.yaml --namespace=custom-ns

Now, let's learn how to list LimitRanges.

256 Managing Namespaces in Kubernetes

Listing LimitRange
The kubectl command line will help you list your LimitRanges. Don't forget to add the
-n flag to scope your request to a specific namespace:

 $ kubectl get limit -n custom-ns

Now, let's learn how to delete LimitRange from a namespace.

Deleting LimitRange
Deleting LimitRange can be achieved using the kubectl command-line tool. Here is
how to proceed:

$ kubectl delete limit/my-limitrange -n custom-ns

As always, don't forget to add the -n flag to scope your request to a specific namespace;
otherwise, you may target the wrong one!

Summary
This chapter introduced you to namespaces, which are extremely important in
Kubernetes. You cannot manage your cluster effectively without using namespaces
because they provide logical resource isolation in your cluster. Most people use
production and development namespaces, for example, or one namespace for each
application. It is generally not rare to see clusters where dozens of namespaces are created.

We discovered that most Kubernetes resources are scoped to a namespace, though some
are not. Keep in mind that, by default, Kubernetes is set up with a few default namespaces,
such as kube-system, and that it is generally a bad idea to change the things that run in
these namespaces, especially if you do not know what you are doing.

We also discovered that namespaces can be used to set quotas and limit the resources that
Pods can consume, and it is a really good practice to set these quotas and limits at the
namespace level using the ResourceQuota and LimitRange objects to prevent your Pods
from consuming too many computing resources. Overall, you'll improve the stability of all
the applications running on your cluster by setting these options and using them wisely.

Summary 257

In the next chapter, we'll continue to discover the basics of Kubernetes by discovering the
concepts of PersistentVolume and PersistentVolumeClaims, which are the
methods Kubernetes uses to deal with persistent data. It is going to be a very interesting
chapter if you want to build and provision stateful applications on your Kubernetes
clusters, such as database or file storage solutions.

9
Persistent Storage

in Kubernetes
So far, we've learned about Kubernetes' key concepts, and this chapter is going to be the
last one about Kubernetes' core concepts. So far, you've understood that Kubernetes
is all about creating an object in the etcd datastore that will be converted into actual
computing resources on the Nodes that are part of your cluster.

This chapter will focus on a concept called PersistentVolume. This is going to be
another object that you will need to master in order to get persistent storage on your
cluster. Persistent storage is achieved in Kubernetes by using the PersistentVolume
resource kind, which has its own mechanics. Honestly, these can be relatively difficult to
approach at first, but we are going to discover all of that!

In this chapter, we're going to cover the following main topics:

• Why you would want to use PersistentVolume

• Understanding how to mount PersistentVolume to your Pod claims

• Understanding the life cycle of PersistentVolume in Kubernetes

• Static and dynamic PersistentVolume provisioning

260 Persistent Storage in Kubernetes

Technical requirements
• A working Kubernetes cluster (either local or cloud-based)

• A working kubectl CLI configured to communicate with the cluster

If you do not meet these technical requirements, you can follow Chapter 2, Kubernetes
Architecture – From Docker Images to Running Pods, and Chapter 3, Installing Your
Kubernetes Cluster, to get these two prerequisites.

Why you would want to use PersistentVolume
When you're creating your Pods, you have the opportunity to create volumes in order to
share files between the containers created by them. However, these volumes can represent
a massive problem: they are bound to the life cycle of the Pod that created them.

That is why Kubernetes offers another object called PersistentVolume, which is a way
to create storage in Kubernetes that will not be bound to the life cycle of a Pod.

Introducing PersistentVolumes
Just like the Pod of ConfigMap, PersistentVolume is a resource kind that is exposed
through kube-apiserver: you can create, update, and delete persistent volumes using
YAML and kubectl just like any other Kubernetes object.

The following command will demonstrate how to list the PersistentVolume resource
kind currently provisioned within your Kubernetes cluster:

$ kubectl get persistentvolume

No resource found

The persistentvolume object is also accessible with the plural form of
persistentvolumes along with the alias of pv. The following three commands are
essentially the same:

$ kubectl get persistentvolume

No resource found

$ kubectl get persistentvolumes

No resource found

$ kubectl get pv

No resource found

Why you would want to use PersistentVolume 261

You'll find that the pv alias is very commonly used in the Kubernetes world, and a lot
of people refer to persistent volumes as simply pv, so be aware of that. As of now, no
PersistentVolume object has been created within my Kubernetes cluster, and that is
why I don't see any resource listed in the output of the preceding command.

PersistentVolume is the object and, essentially, represents a piece of storage that you
can attach to your Pod. That piece of storage is referred to as a Persistent one because it is
not supposed to be tied with the life cycle of a Pod.

Indeed, as mentioned in Chapter 5, Using Multi-Container Pods and Design Patterns,
Kubernetes Pods uses the notion of volumes. Additionally, we discovered the emptyDir
and hostPath volumes, which, respectively, initiate an empty directory that your Pods
can share. It also defines a path within the worker Node filesystem that will be exposed
to your Pods. Both of these volumes were supposed to be attached to the life cycle of the
Pod. This means that once the Pod is destroyed, the data stored within the volumes will be
destroyed as well.

However, sometimes, you don't want the volume to be destroyed. You just want it to have
its life cycle to keep both the volume and its data alive even if the Pod fails. That's where
PersistentVolumes comes into play: essentially, they are volumes that are not tied to
the life cycle of a Pod. Since they are a resource kind just like the Pods themselves, they
can live on their own!

Important Note
Bear in mind that PersistentVolumes objects are just entries within the
etcd datastore, and they are not an actual disk on their own.

PersistentVolume is just a kind of pointer within Kubernetes to an
external piece of storage, such as an NFS, a disk, an Amazon EBS volume, and
more. This is so that you can access these technologies from within Kubernetes
and in a Kubernetes way.

Simply put, PersistentVolume is essentially made up of two different things:

• A backend technology called a PersistentVolume type

• An access mode, such as ReadWriteOnce

You need to master both concepts in order to understand how to use
PersistentVolumes. Let's begin by explaining what PersistentVolume types are.

262 Persistent Storage in Kubernetes

Introducing PersistentVolume types
Kubernetes is supposed to be able to run on as much infrastructure as possible, and even
though it started as a Google project, it can be used on many platforms, whether they are
public clouds or private solutions.

As you already know, the simplest Kubernetes setup consists of a simple minikube
installation, whereas the most complex Kubernetes setup can be made of dozens of
servers on massively scalable infrastructure. All of these different setups will forcibly have
different ways in which to manage persistent storage. For example, the three biggest public
cloud providers have a lot of different solutions. Let's name a few, as follows:

• Amazon AWS EBS volumes

• Amazon AWS EFS filesystems

• Google GCE Persistent Disk (PD)

• Microsoft Azure disks

These solutions have their own design and set of principles along with their own logic
and mechanics. Kubernetes was built with the principle that all of these setups should
be abstracted using just one object to abstract all of the different technologies. And that
single object is the PersistentVolume resource kind. The PersistentVolume
resource kind is the object that is going to be attached to a running Pod. Indeed, a Pod is
a Kubernetes resource and does not know what an EBS or a PD is; Kubernetes Pods only
play well with PersistentVolumes, which is also a Kubernetes resource.

Whether your Kubernetes cluster is running on Google GKE, Amazon EKS, or
whether it is a single Minkube cluster on your local machine has no importance.
When you wish to manage persistent storage, you are going to create, use, and deploy
PersistentVolumes objects, and then bind them to your Pods!

Here are some of the backend technologies supported by Kubernetes out of the box:

• awsElasticBlockStore: Amazon EBS volumes

• gcePersistentDisk: Google Cloud PD

• azureDisk: Azure Disk

• azureFile: Azure File

• cephfs: Ceph-based filesystems

• csi: Container storage interface

Why you would want to use PersistentVolume 263

• glusterfs: GlusterFS-based filesystems

• nfs: Regular network file storage

The preceding list is not exhaustive: Kubernetes is extremely versatile and can be used
with many storage solutions that can be abstracted as PersistentVolume objects in
your cluster.

When you create a PersistentVolume object, essentially, you are creating a YAML file.
However, this YAML file is going to have a different key/value configuration based on the
backend technology used by the PersistentVolume objects.

The benefits brought by PersistentVolume
There are three major benefits of PersistentVolume:

• PersistentVolume is not bound to the life cycle of a Pod. If you want to remove
a Pod that is attached to a PersistentVolume object, then the volume will
survive.

• The preceding statement is also valid when a Pod crashes: the
PersistentVolume object will survive the fault and not be removed from the
cluster.

• PersistentVolume is cluster-wide; this means that it can be attached to any Pod
running on any Node.

Bear in mind that these three statements are not always 100% valid. Indeed, sometimes, a
PersistentVolume object can be affected by its underlying technology.

To demonstrate this, let's consider a PersistentVolume object that is, for example, a
pointer to an Amazon EBS volume created on your AWS cloud. In this case, the worker
Node will be an Amazon EC2 instance. In such a setup, PersistentVolume won't be
available to any Node.

The reason is that AWS has some limitations around EBS volumes, which relates to
the fact that an EBS volume can only be attached to one instance at a time, and that
instance must be provisioned in the same availability zones as the EBS volume. From a
Kubernetes perspective, this would only make PersistentVolume (EBS volumes)
accessible from EC2 instances (that is, worker Nodes) in the same AWS availability zone,
and several Pods running on different Nodes (EC2 instances) won't be able to access the
PersistentVolume object at the same time.

264 Persistent Storage in Kubernetes

However, if you take another example, such as an NFS setup, it wouldn't be the
same. Indeed, you can access an NFS from multiple machines at once; therefore, a
PersistentVolume object that is backed by an NFS would be accessible from several
different Pods running on different Nodes without much problem. To understand how
to make a PersistentVolume object on several different Nodes at a time, we need to
consider the concept of access modes.

Introducing access modes
As the name suggests, access modes are an option you can set when you create a
PersistentVolume type that will tell Kubernetes how the volume should be mounted.

PersistentVolumes supports three access modes, as follows:

• ReadWriteOnce: This volume allows read/write by only one Node at the same
time.

• ReadOnlyMany: This volume allows read-only mode by many Nodes at the same
time.

• ReadWriteMany: This volume allows read/write by multiple Nodes at the same
time.

It is necessary to set at least one access mode to a PersistentVolume type, even if said
volume supports multiple access modes. Indeed, not all PersistentVolume types will
support all access modes.

Understanding that not all access modes are available
to all PersistentVolume types
As mentioned earlier, PersistentVolume types are only a pointer to an external piece
of storage. And that piece of storage is constrained by the backend technology that is
providing it.

As mentioned earlier, one good example that we can use to explain this is the Amazon
EBS volume technology that is accessible within the AWS cloud. When you create a
PersistentVolume in Kubernetes, which is a pointer to an Amazon EBS volume,
then that PersistentVolume will only support the ReadWriteOnce access mode,
whereas NFS supports all three. This is because of the hard limitation mentioned earlier:
an EBS volume can only be attached to one Amazon EC2 instance at a time, and it is
a hard limit set by AWS. So, in the Kubernetes world, it can only be represented by a
PersistentVolume type with an access mode set to ReadWriteOnce.

Why you would want to use PersistentVolume 265

Simply put, these PersistentVolume types, and the concepts surrounding them, are
simply Kubernetes concepts that are only valid within the Kubernetes scope and have
absolutely no meaning outside of Kubernetes.

Some PersistentVolume objects will be permissive, while others will have a lot of
constraints. And all of this is determined by the underlying technology they are pointing
to. No matter what you do with PersistentVolume, you'll have to deal with the
restrictions set by your cloud provider or underlying infrastructure.

Now, let's create our first PersistentVolume object.

Creating our first PersistentVolume
So, let's create a PersistentVolume on your Kubernetes cluster using the declarative
way. Since this is a kind of complex resource, I heavily recommend that you try not to use
the imperative way to create such resources:

~/pv-hostpath.yaml

apiVersion: v1

kind: PersistentVolume

metadata:

 name: pv-hostpath

 spec:

 volumeMode: Filesystem

 accessModes:

 - ReadWriteOnce

 capacity:

 storage: 1Gi

This is the simplest form of PersistentVolume. Essentially, this YAML file
creates a PersistentVolume entry within the Kubernetes cluster. So, this
PersistentVolume will be a hostPath type.

It could be a more complex volume such as a cloud-based disk, or an NFS, but in its
simplest form, a PersistentVolume can simply be a hostPath type on the worker
Node running your Pod.

266 Persistent Storage in Kubernetes

How does Kubernetes PersistentVolumes handle
cloud-based storage?
A bare PersistentVolume entry in our cluster can do nothing on its own and
must be seen as a layer of abstraction on the Kubernetes level: outside Kubernetes, the
PersistentVolume resource kind has no meaning.

That being said, the PersistentVolume resource kind is a pointer to something
else, and that something else can be, for example, a disk, an NFS drive, a Google
Cloud PD, or an Amazon EBS volume. All of these different technologies are managed
differently. However, fortunately for us, in Kubernetes, they are all represented by the
PersistentVolume object.

Simply put, the YAML file to build a PersistentVolume will be a little bit different
depending on the backend technology that the PersistentVolume is backed by. For
example, if you want your PersistentVolume to be a pointer to an Amazon EBS
volume, you have to meet the following two conditions:

• The Amazon EBS volume must already be provisioned in your AWS cloud.

• The YAML file for your PersistentVolume must include the ID of the EBS
volume, as it will be displayed in the AWS console.

And the same logic goes for everything else. For a PersistentVolume to work
properly, it needs to forcibly be able to make the link between Kubernetes and the actual
storage. So, you need to create a piece of storage or provision it outside of Kubernetes and
then create the PersistentVolume entry by including the unique ID of the disk, or the
volume, that is backed by a storage technology that is external to Kubernetes. Next, let's
take a closer look at some examples of PersistentVolume YAML files.

Amazon EBS PersistentVolume YAML
This example displays a PersistentVolume object that is pointing to an Amazon EBS
volume on AWS:

~/persistent-volume-ebs.yaml

apiVersion: v1

kind: PersistentVolume

metdata:

 name: persistent-volume-ebs

spec:

 capacity:

Why you would want to use PersistentVolume 267

 storage: 2Gi

 accessModes:

 - ReadWriteOnce

 awsElasticBlockStore:

 volumeId: vol-xxxx

 fsType: ext4

As you can see, in this YAML file, awsElasticBlockStore is indicating that this
PersistentVolume object is pointing to a volume on my AWS account. The exact
Amazon EBS volume is identified by the volumeId key. And that's pretty much it. With
this YAML file, Kubernetes is capable of finding the proper EBS volume and maintaining a
pointer to it thanks to this PersistentVolume entry.

Of course, since EBS volumes are pure AWS, they can only be mounted on EC2 instances,
which means this volume will never work if you attempt to attach it to something else.
Now, let's examine a very similar YAML file; however, this time, it's going to point to a
GCE PD.

GCE PersistentDisk PersistentVolume YAML
Here is the YAML file that is creating a PersistentVolume object that is pointing to an
existing GCE PD:

~/persistent-volume-pd.yaml

apiVersion: v1

kind: PersistentVolume

metdata:

 name: persistent-volume-pd

spec:

 capacity:

 storage: 2Gi

 accessModes:

 - ReadWriteOnce

 gcePersistentDisk:

 pdName: xxxx

 fsType: ext4

268 Persistent Storage in Kubernetes

Once again, please note that it is the same kind: PersistentVolume object as the
one used by the Amazon EBS PersistentVolume object. In fact, it is the same object
and the same interface from the Kubernetes side. The only difference is the configuration
under gcePersistentDisk, which, this time, points to a PD created on Google Cloud.
Kubernetes is so versatile that it can fetch and use different cloud storage solutions just
like that.

Next, let's explore one last example in YAML, this time using NFS.

NFS PersistentVolume YAML
Here is an example YAML file that can create a PersistentVolume object that is
backed by an NFS drive:

~/persistent-volume-nfs.yaml

apiVersion: v1

kind: PersistentVolume

metdata:

 name: persistent-volume-nfs

spec:

 capacity:

 storage: 2Gi

 accessModes:

 - ReadWriteMany

 nfs:

 path: /opt/nfs

 server: nfsxxxx

 fsType: ext4

Again, note that this time, we're still using the kind: PersistentVolume entry.
Additionally, we are now specifying an nfs path configuration with the path as well
as the server address. Now, let's discuss a little bit about the provisioning of the storage
resources.

Can Kubernetes handle the provisioning or creation of
the resource itself?
The fact that you need to create the actual storage resource separately and then create a
PersistentVolume in Kubernetes might be tedious.

Understanding how to mount a PersistentVolume to your Pod claims 269

Fortunately for us, Kubernetes is also capable of communicating with the APIs
of your cloud provider in order to create the volumes or disk on the fly. There
is something called dynamic provisioning that you can use when it comes to
managing PersistentVolume. It makes things a lot simpler when dealing with
PersistentVolume provisioning, but it only works on supported cloud providers.

However, this is an advanced topic, so we will discuss it, in more detail, later in this
chapter.

Now that we know how to provision PersistentVolume objects inside our cluster, we
can try to mount them. Indeed, in Kubernetes, once you create a PersistentVolume,
you need to mount it to a Pod so that it becomes in use. Things will get slightly more
advanced and conceptual here; this Kubernetes uses an intermediate object in order
to mount a PersistentVolume to Pods. And this intermediate object is called
PersistentVolumeClaim. Let's focus on it next.

Understanding how to mount a
PersistentVolume to your Pod claims
So far, we've learned that Kubernetes makes use of two objects to deal with persistent
storage technologies. The first one is PersistentVolumes, which represents a piece of
storage, and we quoted Google Cloud PD and Amazon EBS volumes as possible backends
for PersistentVolume. Additionally, we discovered that depending on the technology
that PersistentVolume is relying on, it is going to be exposed to one or more Pods
using access modes.

That being said, we can now try to mount a PersistentVolume object to a Pod. To do
that, we will need to use another object, which is the second object we need to explore in
this chapter, called PersistentVolumeClaim.

Introducing PersistentVolumeClaim
Just like PersistentVolume and ConfigMap, PersistentVolumeClaim is
another independent resource kind living within your Kubernetes cluster and is the
second resource kind that we're going to examine in this chapter.

This object can appear to be a little bit more complex to understand compared
to the others. First, bear in mind that even if both names are almost the same,
PersistentVolume and PersistentVolumeClaim are two distinct resources that
represent two different things.

270 Persistent Storage in Kubernetes

You can list the PersistentVolumeClaim resource kind created within your cluster
using kubectl, as follows:

$ kubectl get persistentvolumeclaims

No resources found in default namespace.

The following output is telling me that I don't have any PersistentVolumeClaim
resources created within my cluster. Please note that the pvc alias works, too:

$ kubectl get pvc

No resources found in default namespace.

You'll quickly find that a lot of people working with Kubernetes refer to the
PersistentVolumeClaim resources simply with pvc. So, don't be surprised if you see
the term pvc here and there while working with Kubernetes. That being said, let's explain
what PersistentVolumeClaim resources are in Kubernetes.

Splitting storage creation and storage consumption
The key to understanding the difference between PersistentVolume and
PersistentVolumeClaims is to understand that one is meant to represent the storage
itself, whereas the other one represents the request for storage that a Pod makes to get the
actual storage.

The reason is that Kubernetes is supposed to be used by two types of people:

• Kubernetes administrator: This person is supposed to maintain the cluster, operate
it, and also add computation resources and persistent storage.

• Kubernetes application developer: This person is supposed to develop and deploy
an application, so put simply, consume the computation resource and storage
offered by the administrator.

In fact, there is no problem if you handle both roles in your organization; however, this
information is crucial to understand the workflow to mount PersistentVolume
to Pods.

Kubernetes was built with the idea that a PersistentVolume object should belong
to the cluster administrator scope, whereas PersistentVolumeClaims objects
belong to the application developer scope. It is up to the cluster administrator to add
PersistentVolumes since they might be hardware resources, whereas developers have
a better understanding of what amount of storage and what kind of storage is needed, and
that's why the PersistentVolumeClaim object was built.

Understanding how to mount a PersistentVolume to your Pod claims 271

Essentially, a Pod cannot mount a PersistentVolume object directly. It
needs to explicitly ask for it. And that asking action is achieved by creating a
PersistentVolumeClaim object and attaching it to the Pod that needs a
PersistentVolume object.

This is the only reason why this additional layer of abstractions exists.

The summarized PersistentVolume workflow
Once the developer has built the application, it is their responsibility to ask for a
PersistentVolume object if needed. To do that, the developer will write two YAML
manifest files:

• One file is for the Pod application.

• The other file is for PersistentVolumeClaim.

The Pod application must be written so that the PersistentVolumeClaim object is
mounted as a volumeMount configuration key in the YAML file. Please note that for it to
work, the PersistentVolumeClaim object needs to be in the same namespace as the
application Pod that is mounting it. The PersistentVolume object is never mounted
directly to the Pod.

When both YAML files are applied and both resources are created in the cluster, the
PersistentVolumeClaim object will look for a PersistentVolume object that
matches the criteria required in the claim. Supposing that a PersistentVolume
object capable of fulfilling the claim is created and ready in the Kubernetes cluster, the
PersistentVolume object will be attached to the PersistentVolumeClaim object.

If everything is okay, the claim is considered fulfilled, and the volume is correctly
mounted to the Pod: if you understand this workflow, essentially, you understand
everything related to PersistentVolume usage.

Let's summarize this as follows:

1. A Kubernetes administrator created a PersistentVolume object.
2. A Kubernetes developer requests a PersistentVolume object for their

application using the PersistentVolumeClaim object.
3. The developer writes its YAML file so that the PersisentVolumeClaim object is

configured as a volume mount to the Pod.

272 Persistent Storage in Kubernetes

4. Once the Pod and its PersisentVolumeClaim are created, Kubernetes fetches a
PersisentVolume object that answers what is requested in the PVC.

5. Then, the PersisentVolume object is accessible from the Pod and is ready to
receive read or write operations based on the PersisentVolume access mode.

This setup might seem complex to understand at first, but you will quickly become used
to it.

Creating a Pod with a PersistentVolumeClaim object
In this section, I will create a Pod that mounts PersisentVolume within a minikube
cluster. This is going to be a kind of PersisentVolume object, but this time, it will
not be bound to the life cycle of the Pod. Indeed, since it will be managed as a real
PersisentVolume object, the hostPath type will get its life cycle independent of the
Pod.

The very first thing to do is to create the PersisentVolume object that will be
a hostPath type. Here is the YAML file to do that. Please note that I created this
PersisentVolume object with some arbitrary labels in the metadata section. This is
so that it will be easier to fetch it from the PersistentVolumeClaim object later:

~/pv.yaml

apiVersion: v1

kind: PersistentVolume

metadata:

 name: my-hostpath-pv

 labels:

 type: hostpath

 env: prod

spec:

 capacity:

 storage: 1Gi

 accessModes:

 - ReadWriteOnce

 hostPath:

 path: "/Users/me/test"

Understanding how to mount a PersistentVolume to your Pod claims 273

We can now list the PersisentVolume entries available in our cluster, and we should
observe that this one exists. Please note that the pv alias works, too:

$ kubectl create -f pv.yaml

persistentvolume/my-hostpath-pv created

$ kubectl get pv

NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS
CLAIM STORAGECLASS REASON AGE

my-hostpath-pv 1Gi RWO Retain
Available 49s

We can see that the PersisentVolume was successfully created.

Now, we need to create two things in order to mount the PersisentVolume object:

• A PersistentVolumeClaim object that targets this specific
PersisentVolume object

• A Pod to use the PersistentVolumeClaim object

Let's proceed, in order, with the creation of the PersistentVolumeClaim object:

~/pvc.yaml

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

 name: my-hostpath-pvc

spec:

 resources:

 requests:

 storage: 1Gi

 selector:

 matchLabels:

 type: hostpath

 env: prod

274 Persistent Storage in Kubernetes

The important aspect of this PersisentVolumeClaim object is that it is going to
fetch the proper volume by using its labels, using the selector key. Let's create it and
check that it was successfully created in the cluster. Please note that the pvc alias also
works here:

$ kubectl create -f pvc.yaml

persistentvolumeclaim/my-hostpath-pvc created

$ kubectl get pvc

NAME STATUS VOLUME CAPACITY ACCESS MODES
STORAGECLASS AGE

my-hostpath-pvc Pending
standard 53s

Now that the PersisentVolume object and the PersistentVolumeClaim object
exist, I can create a Pod that will mount the PV using the PVC.

Let's create an NGINX Pod that will do the job:

~/Pod.yaml

apiVersion: v1

kind: Pod

metadata:

 name: nginx

spec:

 containers

 - image: nginx

 name: nginx

 volumeMounts:

 - mountPath: "/var/www/html"

 name: mypersistentvolume

 volumes:

 - name: mypersistentvolume

 persistentVolumeClaim:

 claimName: my-hostpath-pvc

Understanding how to mount a PersistentVolume to your Pod claims 275

As you can see, in the volumeMounts section, the PersistentVolumeClaim object
is referenced as a volume, and we reference the PVC by its name. Note that the PVC
must live in the same namespace as the Pod that mounts it. This is because PVCs are
namespace-scoped resources, whereas PVs are not. There are no labels and selectors for
this one; to bind a PVC to a Pod, you simply need to use the PVC name.

That way, the Pod will become attached to the PersistentVolumeClaim object, which
will find the corresponding PersisentVolume object. This, in the end, will make the
host path available and mounted on my NGINX Pod.

Now we can create the three objects in the following order:

1. The PersisentVolume object
2. The PersistentVolumeClaim object
3. The Pod object

Note that before you go any further, you need to make sure that the /Users/me/test
directory exists on your host machine or your worker Node. This is because this is the
path specified in the PV definition.

You can achieve that using the following commands if you have not already created these
resources in your cluster:

$ kubectl create -f pvc.yaml

persistentvolumeclaim/my-hostpath-pvc created

$ kubectl create -f Pod.yaml

Pod/nginx created

Now, let's check that everything is okay by checking the status of our
PersistentVolumeClaim object:

$ kubectl get pvc

NAME STATUS VOLUME
CAPACITY ACCESS MODES STORAGECLASS AGE

my-hostpath-pvc Bound pvc-f7e322d1-6ac8-45b6-b9b2-
636323e38b55 1Gi RWO standard 3m44s

276 Persistent Storage in Kubernetes

Everything seems to be okay! We have just demonstrated a typical workflow. No matter
what kind of storage you need, it's always going to be the same:

1. First, the storage must be provisioned.
2. Second, you create a PV entry in order to have a pointer to it in Kubernetes.
3. Third, you provision a PVC capable of fetching this PV.
4. Fourth, you mount the PVC (not the PV directly) as a volume mount to a Pod.

And that's it!

So far, we have learned what PersistentVolume and PersistentVolumeClaim
objects are and how to use them to mount persistent storage on your Pods.

Next, we must continue our exploration of the PersistentVolume and
PersistentVolumeClaim mechanics by explaining the life cycle of these two objects.
Because they are independent of the Pods, their life cycles have some dedicated behaviors
that you need to be aware of.

Understanding the life cycle of a
PersistentVolume object in Kubernetes
PersistentVolume objects are good if you want to keep the state of your app without
being constrained by the life cycle of the Pods or containers that are running them.

However, since PersistentVolume objects get their very own life cycle, they have
some very specific mechanics that you need to be aware of when you're using them. We'll
take a closer look at them next.

Understanding that PersistentVolume objects are not
bound to namespaces
The first thing to be aware of when you're using PersistentVolume objects is that they
are not namespaced resources, but PersistentVolumeClaims objects are.

That's something very important to know. This is because when a Pod is using a
PersistentVolume object, it is only exposed to the PersistentVolumeClaims
object. So, its one requirement is that it is created in the same namespace as the Pod that
is using it.

Understanding the life cycle of a PersistentVolume object in Kubernetes 277

That being said, PersistentVolume objects are constrained by namespaces, unlike
PersistentVolumeClaim objects. Indeed, they are created cluster-wide. So, do bear
that in mind: PersistentVolumeClaim needs to be created in the same namespace
resource as the Pods using them, but they are able to fetch PersistentVolume
resources that are not in any namespace resource at all.

To figure this out, I invite you to create the following PersistentVolume object using
the following YAML file, which will create a PersistentVolume called new-pv-
hostpath:

~/new-pv-hostpath.yaml

apiVersion: v1

kind: PersistentVolume

metadata:

 name: new-pv-hostpath

 spec:

 accessModes:

 - ReadWriteOnce

 capacity:

 storage: 1Gi

 hostPath:

 path: "/home/user/mydirectory"

Once the file has been created, we can apply it against our cluster using the kubectl
create -f new-pv-hostpath.yaml command:

$ kubectl create -f new-pv-hostpath

persistentvolume/new-pv-hostpath created

Then, we will run the kubectl get pv/new-hostpath-pv -o yaml |
grep -i "namespace" command, which will output nothing. This means the
PersistentVolume object is not a namespace:

$ kubectl get api-resources –namespaced=false #kubectl

Olala…

As you can see, the PersistentVolume object appears in the output of the command,
which means it is not living in any namespace!

278 Persistent Storage in Kubernetes

Now, let's examine another important aspect of PersistentVolume known as
reclaiming a policy. This is something that is going to be important when you want to
unmount a PVC from a running Pod.

Reclaiming a PersistentVolume object
When it comes to PersistentVolume, there is a very important option that you need
to understand, which is the reclaim policy. But what does this option do?

This option will tell Kubernetes what treatment it should give to your
PersistentVolume object when you delete the corresponding
PersistentVolumeClaim object that was attaching it to the Pods.

Indeed, deleting a PersistentVolumeClaim object consists of deleting the link
between the Pod(s) and your PersistentVolume object, so it's like you unmount
the volume and then the volume becomes available again for another application to
use. However, in some cases, you don't want that behavior; instead, you want your
PersistentVolume object to be automatically removed when its corresponding
PersistentVolumeClaim object has been deleted. That's why the reclaim policy
option exists and it is what you should configure.

The reclaim policy can be set to three statuses, as follows:

• Delete

• Retain

• Recycle

Let's explain these three reclaim policies.

The delete one is the simplest of the three. When you set your reclaim policy to delete,
the PersistentVolume object will be wiped out and the PersistentVolume
entry will be removed from the Kubernetes cluster when the corresponding
PersistentVolumeClaim object is deleted. That's the behavior for sensitive data. So,
use this when you want your data to be deleted and not used by any other application.
Bear in mind that this is a permanent option, so you might want to build a backup
strategy with your underlying storage provider if you need to recover anything.

The retain policy is the second policy and is contrary to the delete policy. If you set
this reclaim policy, the PersistentVolume object won't be deleted if you delete its
corresponding PersistentVolumeClaim object. Instead, the PersistentVolume
object will enter the released status, which means it is still available in the cluster, and all
of its data can be manually retrieved by the cluster administrator.

Understanding the life cycle of a PersistentVolume object in Kubernetes 279

The third policy is the recycle reclaim policy, which is a kind of combination of the
previous two policies. First, the volume is wiped of all its data, such as a basic rm -rf
volume/* volume. However, the volume itself will remain accessible in the cluster, so
you can mount it again on your application.

The reclaim policy can be set in your cluster directly in the YAML definition file at the
PersistentVolume level.

Updating a reclaim policy
The good news with a reclaim policy is that you can change it after the
PersistentVolume object has been created; it is a mutable setting. To do that, you can
simply list the PVs in your cluster and then issue a kubectl patch command to update
the PV of your choice:

$ kubectl get pv

NAME CAPACITY
ACCESS MODES RECLAIM POLICY STATUS CLAIM
STORAGECLASS REASON AGE

my-hostpath-pv 1Gi
RWO Retain Available
24m

As you can see, this PV has a Retain reclaim policy. I'll now update it to Delete using
the kubectl patch command against the my-hostpath-pv PersistentVolume:

$ kubectl patch pv/my-hostpath-pv -p
'{"spec":{"persistentVolumeReclaimPolicy":"Delete"}}'

persistentvolume/my-hostpath-pv patched

$ kubectl get pv

NAME CAPACITY
ACCESS MODES RECLAIM POLICY STATUS CLAIM
STORAGECLASS REASON AGE

my-hostpath-pv 1Gi
RWO Delete Available
3h13m

We can observe that the reclaim policy was updated from Retain to Delete!

Now, let's discuss the different statuses that PVs and PVCs can have.

280 Persistent Storage in Kubernetes

Understanding PersistentVolume and
PersistentVolumeClaims statuses
Just like Pods can be in a different state, such as Pending, ContainerCreating,
Running, and more, PersistentVolume and PersistentVolumeClaim can also
hold different states. You can identify their state by issuing the kubectl get pv and
kubectl get pvc commands.

PersistentVolume has the following different states that you need to be aware of:

• Available

• Bound

• Terminating

On their side, PersistentVolumeClaim can hold one additional status, which is the
Terminating one.

Let's explain these different states in more detail.

The Available status indicates that the PersistentVolume object is created and
ready to be mounted by a PersistentVolumeClaim object. There's nothing wrong
with it, and the PV is just ready to be used.

The Bound status indicates that the PersistentVolume object is currently
mounted to one or several Pods. The PersistentVolume is bound to a
PersistentVolumeClaim object. Essentially, it indicates that the volume is currently
in use. When this status is applied to a PersistentVolumeClaim object, this indicates
that the PVC is currently in use: that is, a Pod is using it and has access to a PV through it.

The Terminating status applies to a PersistentVolumeClaim object. This is the
status the PVC enters after you issue a kubectl delete pvc command. It is during
this phase that the PV the PVC is bound to is destroyed and wiped out. This happens if its
reclaim policy is set to Retain and is destroyed when it is then set to Delete.

We now have all the basics relating to PersistentVolume and
PersistentVolumeClaim that should be enough to start using persistent storage in
Kubernetes. However, there's still something important to know about this topic, and it is
called dynamic provisioning. This is a very impressive aspect of Kubernetes that makes it
able to communicate with cloud provider APIs to create persistent storage on the cloud.
Additionally, it can make this storage available on the cluster by dynamically creating PV
objects. In the next section, we will compare static and dynamic provisioning.

Static and dynamic PersistentVolume provisioning 281

Static and dynamic PersistentVolume
provisioning
So far, we've only provisioned PersistentVolume by doing static provisioning. Now
we're going to discover dynamic PersistentVolume provisioning, which enables
PersistentVolume provisioning directly from the Kubernetes cluster.

Static versus dynamic provisioning
So far, when using static provisioning, you have learned that you have to follow
this workflow:

1. You create the piece of storage against the cloud provider or the
backend technology.

2. Then, you create the PersistentVolume object to serve as a Kubernetes pointer
to this actual storage.

3. Following this, you create a Pod and a PVC to bind the PV to the Pod.

That is called static provisioning. It is static because you have to create the piece of storage
before creating the PV and the PVC in Kubernetes. It works well; however, at scale, it
can become more and more difficult to manage, especially if you are managing dozens
of PV and PVC. Let's say you are creating an Amazon EBS volume to mount it as a
PersistentVolume object, and you would do it like this with static provisioning:

1. Authenticate against the AWS console.
2. Create an EBS volume.
3. Copy/paste its unique ID to a PersistentVolume YAML definition file.
4. Create the PV using your YAML file.
5. Create a PVC to fetch this PV.
6. Mount the PVC to the Pod object.

Again, it should work, but it would become extremely time-consuming to do at scale, with
possibly dozens and dozens of PVs and PVCs.

That's why Kubernetes developers decided that it would be better if Kubernetes was
capable of provisioning the piece of actual storage on your behalf along with the
PersistentVolume object to serve as a pointer to it. This is known as
dynamic provisioning.

282 Persistent Storage in Kubernetes

Introducing dynamic provisioning
When using dynamic provisioning, you configure your Kubernetes cluster so that it
authenticates for you on your AWS account. Then, you issue a command to provision an
EBS volume and automatically create a PersistentVolume claim to bind it to a Pod.

That way, you can save a huge amount of time by getting things automated. Dynamic
provisioning is so useful because Kubernetes supports a wide range of storage
technologies. We already introduced a few of them earlier in this chapter, when we
mentioned NFS, Google PD, Amazon EBS volumes, and more.

But how does Kubernetes achieve this versatility? Well, the answer is that it makes
use of a third resource kind, which we're going to discover in this chapter, that is the
StorageClass object.

Introducing StorageClasses
StorageClass is another resource kind exposed by kube-apiserver. This resource
kind is the one that grants Kubernetes the ability to deal with several underlying
technologies transparently.

You can access and list the storageclasse resources created within your Kubernetes
cluster by using kubectl. Here is the command to list the storage classes:

$ kubectl get storageclass

NAME PROVISIONER RECLAIMPOLICY
VOLUMEBINDINGMODE ALLOWVOLUMEEXPANSION AGE

standard (default) k8s.io/minikube-hostpath Delete
Immediate false 24d

Additionally, you can use the plural form of storageclasses along with the sc alias.
The following three commands are essentially the same:

$ kubectl get storageclass

$ kubectl get storageclasses

$ kubectl get sc

Static and dynamic PersistentVolume provisioning 283

Note that I haven't included the output of the command for simplicity, but it is essentially
the same for the three commands. There are two fields within the command output that
are important to us:

• NAME: This is the name and the unique identifier of the storageclass object.

• PROVISIONNER: This is the name of the underlying storage technology: this is
basically a piece of code the Kubernetes cluster uses to interact with the underlying
technology.

Important Note
Note that you can create multiple StorageClass objects that use the same
provisioner.

As I'm currently using a minikube cluster, I have a storageclass resource called
standard that is using the k8s.io/minikube-hostpath provisioner.

This provider deals with my host filesystem to automatically create provisioned host path
volumes for my Pods, but it could be the same for Amazon EBS volumes or Google PDs.

Here is the same output for a Kubernetes cluster based on Google GKE:

$ kubectl get sc

And here is the same output for a Kubernetes cluster based on Amazon EKS:

$ kubectl get sc

As you might have gathered, by default, we get different storage because all of these
clusters need to access different kinds of storage. In GKE, Google built a storage class
with a provisioner that was capable of interacting with the Google PD's API, which is a
pure Google Cloud feature, In contrast, in AWS, we have a storageclass object with
a provisioner that is capable of dealing with EBS volume APIs. These provisioners are just
libraries that interact with the APIs of these different cloud providers.

The storageclass objects are the reason why Kubernetes is capable of dealing with
so many different storage technologies. From a Pod perspective, no matter if it is an EBS
volume, NFS drive, or GKE volume, the Pod will only see a PersistentVolume object.
All the underlying logic dealing with the actual storage technology is implemented by the
provisioner the storageclass object uses.

284 Persistent Storage in Kubernetes

The good news is that you can add as many storageclass objects with their
provisioner as you want to your Kubernetes cluster in a plugin-like fashion. As of writing,
the following is a list of PersistentVolume types that are supported in Kubernetes:

• awsElasticBlockStore: Amazon EBS volumes

• gcePersistentDisk: Google Cloud PD

• azureDisk: Azure Disk

• azureFile: Azure File

• cephfs: Ceph-based filesystems

• csi: Container storage interface

• glusterfs: GlusterFS-based filesystems

• nfs: Regular network file storage

By the way, nothing is preventing you from expanding your cluster by adding
storageclasses to your cluster. You'll simply add the ability to deal with different
storage technologies from your cluster. For example, I can add an Amazon EBS
storageclass object to my minikube cluster. But while it is possible, it's going to be
completely useless. Indeed, since my minikube setup is not running on an EC2 instance
but my local machine, I won't be able to attach an EBS.

Understanding the role of PersistentVolumeClaim for
dynamic storage provisioning
When using dynamic storage provisioning, the PersistentVolumeClaim object will
get an entirely new role. Since PersistentVolume is gone in this use case, the only
object that will be left for you to manage is the PersistentVolumeClaim one.

Let's demonstrate this by creating an NGINX Pod that will mount a hostPath
type dynamically. In this example, the administrator won't have to provision a
PersistentVolume object at all. This is because the PersistentVolumeClaim
object and the StorageClass object will be able to create and provision it together.

Let's start by creating a new namespace, called dynamicstorage, where we will run
our examples:

$ kubectl create ns dynamicstorage

namespace/dynamicstorage created

Static and dynamic PersistentVolume provisioning 285

Now, let's run a kubectl get sc command to check that we have a storage class that is
capable of dealing with the hostPath that is provisioned in our cluster.

For this specific storageclass object in this specific Kubernetes setup (minikube)
we don't have to do anything to get the storageclass object as it is created by default
at cluster installation. However, this might not be the case depending on your Kubernetes
distribution.

Bear that in mind because it is very important: clusters that have been set up on GKE
might have default storage classes that are capable of dealing with Google's storage
offerings, whereas an AWS-based cluster might have storageclass to communicate
with Amazon's storage offerings and more. With minikube, we have at least one
default storageclass object that is capable of dealing with a hostPath-based
PersistentVolume object. If you understand that, you should understand that the
output of the kubectl get sc command will be different depending on where your
cluster has been set up:

$ kubectl get sc

NAME PROVISIONER RECLAIMPOLICY
VOLUMEBINDINGMODE ALLOWVOLUMEEXPANSION AGE

standard (default) k8s.io/minikube-hostpath Delete
Immediate false 11h

As you can see, we do have a storage class called standard on our cluster that is capable of
dealing with hostPath.

Important Note
Some complex clusters spanning across multiple clouds and or on-premises
might be provisioned with a lot of different storageclass objects to be
able to communicate with a lot of different storage technologies. Bear in mind
that Kubernetes is not tied to any cloud provider and, therefore, does not force
or limit you in your usage of backing storage solutions.

Now, we will create a PersistentVolumeClaim object that will dynamically
create a hostPath type. Here is the YAML file to create the PVC. Please note that
storageClassName is set to standard:

~/pvc-dynamic.yaml

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

286 Persistent Storage in Kubernetes

 name: my-dynamic-hostpath-pvc

spec:

 accessModes:

 - ReadWriteOnce

 storageClassName: standard # VERY IMPORTANT !

 resources:

 requests:

 storage: 1Gi

 selector:

 matchLabels:

 type: hostpath

 env: prod

Following this, we can create it in the proper namespace:

$ kubectl create -f pvc-dynamic.yaml -n dynamicstorage

persistentvolumeclaim/my-dynamic-hostpath-pvc created

Now that this PVC has been created, we can add a new Pod that will mount this
PersistentVolumeClaim object. As soon as this claim has been mounted, it will
create a PersistentVolume object using the provisioner and then bind to it.

That's how dynamic provisioning works, and it is the same behavior no matter if it is
on-premise or in the cloud. Here is a YAML definition file of a Pod that will mount the
PersistentVolumeClaim object created earlier:

~/pvc-dynamic.yaml

apiVersion: v1

kind: Pod

metadata:

 name: nginx-dynamic-storage

spec:

 containers

 - image: nginx

 name: nginx

 volumeMounts:

 - mountPath: "/var/www/html"

 name: mypersistentvolume

 volumes:

Summary 287

 - name: mypersistentvolume

 persistentVolumeClaim:

 claimName: my-dynamic-hostpath-pvc

Now let's create it in the correct namespace:

$ kubectl create -f Pod-dynamic.yaml -n dynamicstorage

Pod/nginx-dynamic-storage created

Next, let's list the PersistentVolume object. If everything worked, we should get a
brand new PersistentVolume object that has been dynamically created and is in the
bound state:

$ kubectl get pv

NAME CAPACITY
ACCESS MODES RECLAIM POLICY STATUS CLAIM
STORAGECLASS REASON AGE

pvc-56b79a65-86f6-4db5-b800-2ec415156097 1Gi RWO
Delete Bound dynamicstorage/my-dynamic-
hostpath-pvc standard 7m19s

Everything is OK! We're finally done with dynamic provisioning! Please note, by default,
the reclaim policy will be set to Delete so that the PV is removed when the PVC that
created it is removed, too. Don't hesitate to change the reclaim policy if you need to retain
sensitive data.

Summary
We have arrived at the end of this chapter, which taught you how to manage persistent
storage on Kubernetes. You discovered that PersistentVolume is a resource kind that
acts as a point to an underlying resource technology, such as hostPath and NFS, along
with cloud-based solutions such as Amazon EBS and Google PDs.

Additionally, you discovered that you cannot use your PersistentVolume object
without PersistentVolumeClaim, and that PersistentVolumeClaim acts as
an object to fetch and mount PersistentVolume to your Pods. You learned that
PersistentVolume can hold different reclaim policies, which makes it possible to
remove, recycle, or retain them when their corresponding PersistentVolumeClaim
object gets removed.

288 Persistent Storage in Kubernetes

Finally, we discovered what dynamic provisioning is and how it can help us. Bear in
mind that you need to be aware of this feature because if you create and retain too many
volumes, it can have a negative impact on your cloud bill at the end of the month.

We're now done with the basics of Kubernetes, and this chapter is also the end of this
section. In the next section, you're going to discover Kubernetes controllers, which are
objects designed to automate certain tasks in Kubernetes, such as maintaining a number
of replicas of your Pods, either using the Deployment resource kind or the StatefulSet
resource kind. There are still a lot of things to learn!

Section 3:
Using Managed Pods

with Controllers

At this point in the book, you know how to use Kubernetes. But now, we want to
familiarize you with cloud excellence. The header was introduced as part of Kubernetes
basics in the previous chapters; we now want it to be able to run Kubernetes workloads
in production for real. You will be taught the concepts and objectives of high availability,
fault tolerance, elasticity, and scaling as well as application life cycle management.

This part of the book comprises the following chapters:

• Chapter 10, Running Production-Grade Kubernetes Workloads

• Chapter 11, Deployment – Deploying Stateless Applications

• Chapter 12, StatefulSet – Deploying Stateful Applications

• Chapter 13, DaemonSet – Maintaining Pod Singletons on Nodes

10
Running Production-

Grade Kubernetes
Workloads

In the previous chapters, we have focused on containerization concepts and the
fundamental Kubernetes building blocks, such as Pods, Jobs, and ConfigMaps. Our
journey so far has covered mostly single-machine scenarios, where the application
requires only one container host or Kubernetes Node. For production-grade Kubernetes
container workloads, you have to consider different aspects, such as scalability, high
availability (HA), and load balancing, and this always requires orchestrating containers
running on multiple hosts.

Briefly, container orchestration is a way of managing multiple containers' life cycles in
large, dynamic environments—this can range from provisioning and deploying containers
to managing networks, providing redundancy and HA of containers, automatically scaling
up and down container instances, automated health checks, and telemetry (log and
metrics) gathering. Solving the problem of efficient container orchestration at cloud scale
is not straightforward—this is why Kubernetes exists!

292 Running Production-Grade Kubernetes Workloads

In this chapter, we will cover the following topics:

• Ensuring HA and fault tolerance (FT) on Kubernetes

• What is ReplicationController?

• What is ReplicaSet and how does it differ from ReplicationController?

Technical requirements
For this chapter, you will need the following:

• A Kubernetes cluster deployed. You can use either a local or a cloud-based cluster,
but in order to fully understand the concepts, we recommend using a multi-node,
cloud-based Kubernetes cluster.

• The Kubernetes command-line interface (CLI) (kubectl) installed on your local
machine and configured to manage your Kubernetes cluster.

Kubernetes cluster deployment (local and cloud-based) and kubectl installation have
been covered in Chapter 3, Installing Your First Kubernetes Cluster.

You can download the latest code samples for this chapter from the official GitHub
repository at https://github.com/PacktPublishing/The-Kubernetes-
Bible/tree/master/Chapter10.

Ensuring HA and FT on Kubernetes
First, let's quickly recap on how we define HA and FT and how they differ. These are
key concepts in cloud applications that describe the ability of a system or a solution to
be continuously operational for a desirably long length of time. From a system end user
perspective, the aspect of availability, alongside data consistency, is usually the most
important requirement.

https://github.com/PacktPublishing/The-Kubernetes-Bible/tree/master/Chapter10
https://github.com/PacktPublishing/The-Kubernetes-Bible/tree/master/Chapter10

Ensuring HA and FT on Kubernetes 293

High Availability
In short, the term availability in systems engineering describes the percentage of time
when the system is fully functional and operation for the end user. In other words, it is
a measure of system uptime divided by the sum of uptime and downtime (which is
basically total time). For example, if, in the last 30 days (720 hours), your cloud
application had 1 hour of unplanned maintenance and was not available to the end user, it
means that the availability measure of your application is 719ℎ

720ℎ = 99.861% . Usually, to

simplify the notation when designing systems, the availability will be expressed in
so-called nines: for example, if we say that a system has availability of five nines, it means
it is available at least 99.999% of the total time. To put this into perspective, such a system
can have only up to 26 seconds per month of downtime! These measures are often the
base indicators for defining service-level agreements (SLAs) for billed cloud services.

The definition of HA, based on that, is relatively straightforward, although not precise—
a system is highly available if it is operational (available) without interruption for long
periods of time. Usually, we can say that five nines availability is considered the gold
standard of HA.

Achieving HA in your system usually involves one or a combination of the following
techniques:

• Eliminating single points of failure (SPOF) in the system: Usually achieved by
components' redundancy.

• Failover setup, which is a mechanism that can automatically switch from the
currently active (possibly unhealthy) component to a redundant one.

• Load balancing, which means managing traffic coming into the system and routing
it to redundant components that can serve the traffic. This will, in most cases,
involve proper failover setup and component monitoring and telemetry.

Let's introduce a related concept of FT, which is also important in distributed systems
such as applications running on Kubernetes.

294 Running Production-Grade Kubernetes Workloads

Fault Tolerance
Now, FT can be presented as a complement to the HA concept: a system is fault-tolerant
if it can continue to be functional and operating in the event of the failure of one or more
of its components. Achieving full FT means achieving 100% HA, which in many cases
requires complex solutions actively detecting faults and remediating the issues in the
components without interruptions. Depending on the implementation, the fault may
result in a graceful degradation of performance that is proportional to the severity of the
fault. This means that a small fault in the system will have a small impact on the overall
performance of the system while serving requests from the end user.

HA and FT for Kubernetes applications
In the previous chapters, you have learned about the concept of Pods and how you
can expose them to external traffic using Services (Chapter 7, Exposing Your Pods
with Services). Services are Kubernetes objects that expose a set of healthy Pods using
a single network address that remains fixed and stable for the lifetime of the Service.
Internally, inside the Kubernetes cluster, the Service will make its Pods addressable
using a cluster Internet Protocol (IP) address. These cluster-internal IP addresses are
virtual IPs managed by a kube-proxy component on each node as a set of iptables
rules on Linux Nodes or Host Networking Service (HNS) policies on Windows Nodes.
Externally, there are multiple approaches offered by Kubernetes that are described in
Chapter 7, Exposing Your Pods with Services, but in cloud environments, you will most
often expose a service behind a cloud load balancer (LB). An external LB integrates with
your cluster using a plugin implementation specific to each cloud service provider, in the
Kubernetes cloud-controller-manager component. In this way, the microservices
or workloads running on Kubernetes can achieve request load balancing to healthy Pods,
which is a necessary building block to HA.

Services are required for load balancing requests to Pods, but we haven't yet covered how
to maintain multiple replicas of the same Pod object definition that are possibly redundant
and allocated on different nodes. Kubernetes offers multiple building blocks to achieve
this goal, outlined as follows:

• A ReplicationController object—the original form of defining Pod replication in
Kubernetes.

• A ReplicaSet object—the successor to ReplicationController. The main difference is
that ReplicaSet has support for set-based requirement selectors for Pods.

• A Deployment object—another level of abstraction on top of ReplicaSet. Provides
declarative updates for Pods and ReplicaSets, including rollouts and rollbacks. Used
for managing stateless microservices and workloads.

What is ReplicationController? 295

• A StatefulSet object—similar to Deployment but used to manage stateful
microservices and workloads in the cluster. Managing state inside a cluster is usually
the toughest challenge to solve in distributed systems design.

• A DaemonSet object—used for running a singleton copy of a Pod on all (or some)
of the nodes in the cluster. These objects are usually used for managing internal
services for log aggregation or Node monitoring.

In the next sections, we will cover ReplicationController and ReplicaSets. The more
advanced objects, such as Deployment, StatefulSet, and DaemonSet, will be covered in the
next chapters.

Important note
This chapter covers HA and FT for Kubernetes workloads and applications.
If you are interested in how to ensure HA and FT for Kubernetes itself, please
refer to the official documentation at https://kubernetes.io/
docs/tasks/administer-cluster/highly-available-
master/. Please note that in managed Kubernetes offerings in the cloud,
such as Azure Kubernetes Service (AKS), Amazon Elastic Kubernetes
Service (EKS), or Google Kubernetes Engine (GKE), you are provided with
highly available clusters and you do not need to manage the master nodes
yourself.

What is ReplicationController?
Achieving HA and FT requires providing redundancy of components and proper load
balancing of incoming traffic between the replicas of components. Let's take a look
at the first Kubernetes object that allows you to create and maintain multiple replicas
of the Pods in your cluster: ReplicationController. Please note that we are discussing
ReplicationController mainly for historical reasons as it was the initial way of creating
multiple Pod replicas in Kubernetes. We advise you to use ReplicaSet whenever possible,
which is basically the next generation of ReplicationController with an extended
specification API.

Tip
The Controller objects in Kubernetes have one main goal: to observe the
current and the desired cluster state that is exposed by the Kubernetes API
server and command changes that attempt to change the current state to the
desired one. They serve as continuous feedback loops, doing all they can to
bring clusters to the desired state described by your object templates.

https://kubernetes.io/docs/tasks/administer-cluster/highly-available-master/
https://kubernetes.io/docs/tasks/administer-cluster/highly-available-master/
https://kubernetes.io/docs/tasks/administer-cluster/highly-available-master/

296 Running Production-Grade Kubernetes Workloads

ReplicationController has a straightforward task—it needs to ensure that a specified
number of Pod replicas (defined by a template) are running and healthy in a cluster at any
time. This means that if ReplicationController is configured to maintain three replicas of
a given Pod, it will try to keep exactly three Pods by creating and terminating Pods when
needed. For example, right after you create a ReplicationController object, it will create
three new Pods based on its template definition. If, for some reason, there are four such
Pods in the cluster, ReplicationController will terminate one Pod, and if by any chance
a Pod gets deleted or becomes unhealthy, it will be replaced by a new, hopefully
healthy, one.

Tip
You can think of ReplicationController as a container analog of process
or service supervisors from operating systems, such as systemd or
supervisor on Linux systems. You just define how many Pod replicas you
want to have in the cluster, and let the ReplicationController object do the job
of keeping them running in all circumstances!

Creating a ReplicationController object
In order to create a ReplicationController object, we will need to use declarative
management of objects using the kubectl command. Imperative commands for
creating ReplicationController objects are not available and even if they were, it would
be not advised to use them—declarative management using YAML files (manifests) for
object configuration is much easier for more complex Kubernetes objects. Additionally, it
perfectly fits all recommended paradigms such as Infrastructure-as-Code (IaC).

Let's first create an example YAML manifest file for our example ReplicationController
object. This ReplicationController object will have a simple task: maintain three replicas of
an nginx Pod with specific metadata labels. The nginx-replicationcontroller.
yaml example file should have the following content:

apiVersion: v1

kind: ReplicationController

metadata:

 name: nginx-replicationcontroller-example

spec:

 replicas: 3

 selector:

 app: nginx

 environment: test

What is ReplicationController? 297

 template:

 metadata:

 labels:

 app: nginx

 environment: test

 spec:

 containers:

 - name: nginx

 image: nginx:1.17

 ports:

 - containerPort: 80

There are three main components of the ReplicationController specification, as
outlined here:

• replicas: Defines the number of Pod replicas that should run using the given
template and matching label selector. Pods may be created or deleted in order
to maintain the required number.

• selector: A label selector, which defines how to identify Pods that the
ReplicationController object owns or acquires. Note that this may have a
consequence of acquiring existing bare Pods by ReplicationController if they
match the selector! By bare Pods, we mean any Pods in the cluster that were created
directly using the kubectl run command.

• template: Defines the template for Pod creation—this has exactly the same
structure as you have already learned about in Chapter 4, Running Your Docker
Containers. Labels used in metadata must match selector.

Now, let's apply the ReplicationController manifest to the cluster using the kubectl
apply command, as follows:

$ kubectl apply -f ./nginx-replicationcontroller.yaml

298 Running Production-Grade Kubernetes Workloads

You can immediately observe the status of your new ReplicationController object named
nginx-replicationcontroller-example using the following command:

$ kubectl get replicationcontroller/nginx-
replicationcontroller-example

NAME DESIRED CURRENT READY
AGE

nginx-replicationcontroller-example 3 3 2
8s

Tip
When using the kubectl commands, you can use the rc abbreviation
instead of typing replicationcontroller.

As you can see, the ReplicationController object has already created three Pods, and two
of them are already in a Ready state.

Similarly, you can describe the state of your ReplicationController object to get more
details by using the kubectl describe command, as follows:

$ kubectl describe rc/nginx-replicationcontroller-example

And if you would like to get the Pods in your cluster, use the following command:

$ kubectl get pods

NAME READY STATUS
...

nginx-replicationcontroller-example-btz5t 1/1 Running
...

nginx-replicationcontroller-example-c6sl6 1/1 Running
...

nginx-replicationcontroller-example-xxl7f 1/1 Running
...

You will see that the ReplicationController object has indeed created three new Pods. If
you are interested, you can use the kubectl describe pod <podId> command
in order to inspect the labels of the Pods and also see that it contains a Controlled
By: ReplicationController/nginx-replicationcontroller-example
property that identifies our example ReplicationController object.

What is ReplicationController? 299

Tip
If you would like to know how the Pods are distributed among the Kubernetes
Nodes, you can use the kubectl get pods -o wide command.

Testing the behavior of ReplicationController
To demonstrate the agility of our ReplicationController object, let's now delete one of
the Pods that are owned by the example ReplicationController object. You can find the
names using the usual kubectl get pods command. In our case, we will be deleting
the nginx-replicationcontroller-example-btz5t Pod using the following
kubectl delete command:

$ kubectl delete pod/nginx-replicationcontroller-example-btz5t

Now, if you are quick enough, you will be able to see from using the kubectl get
pods command that the nginx-replicationcontroller-example-btz5t Pod
is being terminated and ReplicationController is immediately creating a new one in order
to match the target number of replicas!

If you want to see more details about events that happened in relation to our example
ReplicationController object, you can use the kubectl describe command, as
illustrated in the following code snippet:

$ kubectl describe rc/nginx-replicationcontroller-example

...

 Type Reason Age From
Message

 ---- ------ ---- ----

 Normal SuccessfulCreate 33m replication-controller
Created pod: nginx-replicationcontroller-example-c6sl6

 Normal SuccessfulCreate 33m replication-controller
Created pod: nginx-replicationcontroller-example-btz5t

 Normal SuccessfulCreate 33m replication-controller
Created pod: nginx-replicationcontroller-example-xxl7f

 Normal SuccessfulCreate 112s replication-controller
Created pod: nginx-replicationcontroller-example-gf27c

The nginx-replicationcontroller-example-gf27c Pod is a new pod that was
created in place of the terminated nginx-replicationcontroller-example-
btz5t Pod.

300 Running Production-Grade Kubernetes Workloads

Scaling ReplicationController
It is possible to modify an existing ReplicationController object and change the
replicas property in the specification to a different number. This process is called
scaling—if you increase the number of replicas, you are scaling up (or, more precisely,
scaling out), and if you decrease the number of replicas, you are scaling down. This is
a basic building block of rolling upgrades and rollbacks—you will learn more about this
in the next chapters. More generally, this is how horizontal scaling of your component
(packaged as a pod) can be performed.

To illustrate how horizontal scaling of Pods works at a high level, please take a look at the
following diagram:

Figure 10.1 – Horizontal scaling of Kubernetes Pods

Let's first scale up our example ReplicationController object. Open the nginx-
replicationcontroller.yaml file and modify the replicas property to 5,
as follows:

...

spec:

 replicas: 5

...

What is ReplicationController? 301

Now, we need to declaratively apply the changes to the cluster state. Use the following
kubectl apply command to do this:

$ kubectl apply -f ./nginx-replicationcontroller.yaml

To see that the number of Pods controlled by the ReplicationController object has
changed, you can use the kubectl get pods or kubectl describe rc/nginx-
replicationcontroller-example commands.

Tip
You can achieve similar results using the kubectl scale rc/nginx-
replicationcontroller-example --replicas=5 imperative
command. In general, such imperative commands are recommended only for
development or learning scenarios.

Similarly, if you want to scale down, you need to open the nginx-
replicationcontroller.yaml file and modify the replicas property to 2,
as follows:

...

spec:

 replicas: 2

...

Again, declaratively apply the changes to the cluster state. Use the following kubectl
apply command to do this:

$ kubectl apply -f ./nginx-replicationcontroller.yaml

At this point, you can use the kubectl get pods or kubectl describe rc/
nginx-replicationcontroller-example commands to verify that the number of
Pods has been reduced to just 2.

Important note
In real-world scenarios, if you would like to roll out a new version of your
component (Pod), you would need to have two ReplicationController objects
(one for the old version of the component, and another one for the new
version) and scale them up and down in a coordinated manner. As this process
is quite complex, Kubernetes provides more advanced abstractions, such as
Deployment and StatefulSet objects.

302 Running Production-Grade Kubernetes Workloads

Deleting ReplicationController
Lastly, let's take a look at how you can delete a ReplicationController object. There are two
possibilities, outlined as follows:

1. Delete ReplicationController together with Pods that it owns—this is performed by
first scaling down automatically.

2. Delete ReplicationController and leave the Pods unaffected.

To delete the ReplicationController object together with Pods, you can use the regular
kubectl delete command, as follows:

$ kubectl delete rc/nginx-replicationcontroller-example

You will see that the Pods will first get terminated, and then the ReplicationController
object is deleted.

Now, if you would like to delete just the ReplicationController object, you need to use the
--cascade=orphan option for kubectl delete, as follows:

$ kubectl delete rc/nginx-replicationcontroller-example
--cascade=orphan

After this command, if you inspect which Pods are in the cluster, you will still see all
the Pods that were owned by the nginx-replicationcontroller-example
replication controller. These Pods can now, for example, be acquired by another
ReplicationController object that has a matching label selector.

Congratulations — you have successfully created your first ReplicationController object in
a Kubernetes cluster! Now, it is time to introduce a close relative of ReplicationController,
called ReplicaSet.

What is ReplicaSet and how does it differ from ReplicationController? 303

What is ReplicaSet and how does it differ from
ReplicationController?
Let's introduce another Kubernetes object: ReplicaSet. This is very closely related to
ReplicationController, which we have just discussed. In fact, this is a successor to
ReplicationController, which has a very similar specification API and capabilities. The
purpose of ReplicaSet is also the same—it aims to maintain a fixed number of healthy,
identical Pods (replicas) that fulfill certain conditions. So, again, you just specify a
template for your Pod, along with appropriate label selectors and the desired number of
replicas, and Kubernetes ReplicaSetController (this is the actual name of the controller
responsible for maintaining ReplicaSet objects) will carry out the necessary actions to
keep the Pods running.

Now, what are the differences between ReplicaSet and ReplicationController? We have
summarized these here:

• Most importantly, ReplicaSet allows more advanced, set-based (inclusion, exclusion)
label selectors. For example, you can easily define a selector so that it matches when
a Pod has environment=test or environment=dev labels, but exclude those
that have an environment=prod label. For ReplicationController, it is only
possible to use simple equality-based label selectors.

• ReplicaSet is a powerful building block of other Kubernetes objects such as
Deployment and HorizontalPodAutoscaler (HPA) objects. Deployment objects
provide a way of declarative management of ReplicaSets, doing staged rollouts and
rollbacks.

• For ReplicationController, you could achieve a similar Pod update rollout using the
kubectl rolling-update imperative command. However, this command is
now deprecated.

• In general, you can expect that in the future, ReplicationController will be
eventually deprecated.

The bottom line—always choose ReplicaSet over ReplicationController. However, you
should also remember that using bare ReplicaSets is generally not useful in production
clusters, and you should use higher-level abstractions such as Deployment objects for
managing ReplicaSets. We will introduce this concept in the next chapter.

304 Running Production-Grade Kubernetes Workloads

Creating a ReplicaSet object
First, let's take a look at the structure of an nginx-replicaset.yaml example YAML
manifest file that maintains three replicas of an nginx Pod, as follows:

apiVersion: apps/v1

kind: ReplicaSet

metadata:

 name: nginx-replicaset-example

spec:

 replicas: 3

 selector:

 matchLabels:

 app: nginx

 environment: test

 template:

 metadata:

 labels:

 app: nginx

 environment: test

 spec:

 containers:

 - name: nginx

 image: nginx:1.17

 ports:

 - containerPort: 80

There are three main components of the ReplicaSet specification, as follows:

• replicas: Defines the number of Pod replicas that should run using the given
template and matching label selector. Pods may be created or deleted in order
to maintain the required number.

• selector: A label selector that defines how to identify Pods that the ReplicaSet
object owns or acquires. Again, similar to the case of ReplicationController, please
take note that this may have a consequence of existing bare Pods being acquired by
ReplicaSet if they match the selector!

• template: Defines a template for Pod creation. Labels used in metadata must
match the selector label query.

What is ReplicaSet and how does it differ from ReplicationController? 305

These concepts have been visualized in the following diagram:

Figure 10.2 – Kubernetes ReplicaSet

As you can see, the ReplicaSet object uses .spec.template in order to create Pods.
These Pods must match the label selector configured in .spec.selector. Please
note that it is also possible to acquire existing bare Pods that have labels matching the
ReplicaSet object. In the case shown in Figure 10.2, the ReplicaSet object only creates two
new Pods, whereas the third Pod is a bare Pod that was acquired.

In the preceding example, we have used a simple, equality-based selector specified by
spec.selector.matchLabels. A more advanced, set-based selector can be defined
using spec.selector.matchExpressions—for example, like this:

...

spec:

 replicas: 3

 selector:

 matchLabels:

 app: nginx

 matchExpressions:

 - key: environment

 operator: In

 values:

 - test

306 Running Production-Grade Kubernetes Workloads

 - dev

...

This specification would make ReplicaSet still match only Pods with app=nginx, and
environment=test or environment=dev.

Important note
When defining ReplicaSet, .spec.template.metadata.labels
must match spec.selector, or it will be rejected by the API.

Now, let's apply the ReplicaSet manifest to the cluster using the kubectl apply
command, as follows:

$ kubectl apply -f ./nginx-replicaset.yaml

You can immediately observe the status of your new ReplicaSet object named nginx-
replicaset-example using the following command:

$ kubectl describe replicaset/nginx-replicaset-example

...

Replicas: 3 current / 3 desired

Pods Status: 3 Running / 0 Waiting / 0 Succeeded / 0 Failed

...

Similarly, as in the case of ReplicationController, you can use the kubectl get pods
command to observe the Pods that are managed by the ReplicaSet object. If you are
interested, you can use the kubectl describe pod <podId> command in order
to inspect the labels of the Pods and also see that it contains a Controlled By:
ReplicaSet/nginx-replicaset-example property that identifies our example
ReplicaSet object.

Tip
When using kubectl commands, you can use an rs abbreviation instead of
typing replicaset.

Testing the behavior of ReplicaSet
Just as in the previous section about ReplicationController, you can experiment with
the kubectl delete pod command to observe how ReplicaSet reacts to the sudden
termination of a Pod that matches its label selector.

What is ReplicaSet and how does it differ from ReplicationController? 307

Now, let's try something different and create a bare Pod that matches the label selector of
our ReplicaSet object. You can expect that the number of Pods that match the ReplicaSet
will be four, so ReplicaSet is going to terminate one of the Pods to bring the replica count
back to three.

First, let's create a simple bare Pod manifest file named nginx-pod-bare.yaml,
as follows:

apiVersion: v1

kind: Pod

metadata:

 name: nginx-pod-bare-example

 labels:

 app: nginx

 environment: test

spec:

 containers:

 - name: nginx

 image: nginx:1.17

 ports:

 - containerPort: 80

The metadata of Pod must have labels matching the ReplicaSet selector. Now, apply the
manifest to your cluster using the following command:

$ kubectl apply -f nginx-pod-bare.yaml

Immediately after that, check the events for our example ReplicaSet object using the
kubectl describe command, as follows:

$ kubectl describe rs/nginx-replicaset-example

...

Events:

 Type Reason Age From
Message

 ---- ------ ---- ----

...

 Normal SuccessfulDelete 29s replicaset-controller
Deleted pod: nginx-pod-bare-example

308 Running Production-Grade Kubernetes Workloads

As you can see, the ReplicaSet object has immediately detected that there is a new Pod
created matching its label selector and has terminated the Pod.

Tip
Similarly, it is possible to remove Pods from a ReplicaSet object by modifying
their labels so that they no longer match the selector. This is useful in various
debugging or incident-investigation scenarios.

Scaling ReplicaSet
For ReplicaSet, we can do a similar scaling operation as for ReplicationController in the
previous section. In general, you will not perform manual scaling of ReplicaSets in usual
scenarios. Instead, the size of the ReplicaSet object will be managed by another, higher-
level object such as Deployment.

Let's first scale up our example ReplicaSet object. Open the nginx-replicaset.yaml
file and modify the replicas property to 5, as follows:

...

spec:

 replicas: 5

...

Now, we need to declaratively apply the changes to the cluster state. Use the following
kubectl apply command to do this:

$ kubectl apply -f ./nginx-replicaset.yaml

To see that the number of Pods controlled by the ReplicaSet object has changed, you can
use the kubectl get pods or kubectl describe rs/nginx-replicaset-
example commands.

Tip
Exactly as in the case of ReplicationController, you can achieve similar results
using the kubectl scale rs/nginx-replicaset-example
--replicas=5 imperative command. In general, such imperative
commands are recommended only for development or learning scenarios.

What is ReplicaSet and how does it differ from ReplicationController? 309

Similarly, if you would like to scale down, you need to open the nginx-replicaset.
yaml file and modify the replicas property to 2, as follows:

...

spec:

 replicas: 2

...

Again, declaratively apply the changes to the cluster state. Use the following kubectl
apply command to do this:

$ kubectl apply -f ./nginx-replicaset.yaml

At this point, you can use the kubectl get pods or kubectl describe rs/
nginx-replicaset-example commands to verify that the number of Pods has been
reduced to just 2.

Using Pod liveness probes together with ReplicaSet
Sometimes, you may want to consider a Pod unhealthy and requiring a container restart,
even if the main process in the container has not crashed. For such cases, Kubernetes
offers different types of probes for containers to determine whether they need to be
restarted or whether they can serve the incoming traffic. We will quickly demonstrate how
you can use liveness probes together with ReplicaSet to achieve even greater resilience
to failures of containerized components.

Tip
Kubernetes provides more container probes, such as readiness probes
and startup probes. If you want to learn more about them and when
to use them, please refer to the official documentation at https://
kubernetes.io/docs/concepts/workloads/pods/pod-
lifecycle/#container-probes.

https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#container-probes
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#container-probes
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#container-probes

310 Running Production-Grade Kubernetes Workloads

In our example, we will create a ReplicaSet object that runs nginx Pods with an
additional liveness probe on the main container, which checks whether an HTTP GET
request to the / path responds with a successful HTTP status code. You can imagine that,
in general, your nginx process running in the container will always be healthy (until it
crashes), but it doesn't mean that the Pod can be considered healthy. If the web server is
not able to successfully provide content, it means that the web server process is running
but something else might have gone wrong, and this Pod should no longer be used. We
will simulate this situation by simply deleting the /index.html file in the container,
which will cause the liveness probe to fail.

First, let's create a YAML manifest file named nginx-replicaset-livenessprobe.
yaml for our new nginx-replicaset-livenessprobe-example ReplicaSet
object with the following content:

apiVersion: apps/v1

kind: ReplicaSet

metadata:

 name: nginx-replicaset-livenessprobe-example

spec:

 replicas: 3

 selector:

 matchLabels:

 app: nginx

 environment: test

 template:

 metadata:

 labels:

 app: nginx

 environment: test

 spec:

 containers:

 - name: nginx

 image: nginx:1.17

 ports:

 - containerPort: 80

 livenessProbe:

 httpGet:

 path: /

What is ReplicaSet and how does it differ from ReplicationController? 311

 port: 80

 initialDelaySeconds: 2

 periodSeconds: 2

The highlighted part of the preceding code block contains the liveness probe definition
and is the only difference between our earlier ReplicaSets examples. The liveness
probe is configured to execute an HTTP GET request to the / path at port 80 for the
container every 2 seconds (periodSeconds). The first probe will start after 2 seconds
(initialDelaySeconds) from the container start.

Tip
If you are modifying an existing ReplicaSet object, you need to first delete it
and recreate it in order to apply changes to the Pod template.

Now, apply the manifest file to the cluster using the following command:

$ kubectl apply -f ./nginx-replicaset-livenessprobe.yaml

Verify that the Pods have been successfully started using the following command:

$ kubectl get pods

Now, you need to choose one of the ReplicaSet Pods in order to simulate the failure inside
the container that will cause the liveness probe to fail. In the case of our example, we will
be using a Pod with the name nginx-replicaset-livenessprobe-example-
2qbhk.

To simulate the failure, run the following command. This command will remove the
index.html file served by the nginx web server and will cause the HTTP GET request
to fail with a non-successful HTTP status code:

$ kubectl exec -it nginx-replicaset-livenessprobe-example-2qbhk
-- rm /usr/share/nginx/html/index.html

Inspect the events for this Pod using the kubectl describe command, as follows:

$ kubectl describe pod/nginx-replicaset-livenessprobe-example-
2qbhk

...

Events:

 Type Reason Age From
Message

312 Running Production-Grade Kubernetes Workloads

 ---- ------ ---- ----

 ...

 Normal Created 20s (x2 over 3m53s) kubelet
Created container nginx

 Warning Unhealthy 20s (x3 over 24s) kubelet
Liveness probe failed: HTTP probe failed with statuscode: 403

 Normal Killing 20s kubelet
Container nginx failed liveness probe, will be restarted

 Normal Started 19s (x2 over 3m53s) kubelet
Started container nginx

As you can see, the liveness probe has correctly detected that the web server became
unhealthy and restarted the container inside the Pod.

However, please note that the ReplicaSet object itself did not take part in the restart in
any way—the action was performed at a Pod level. This demonstrates how individual
Kubernetes objects provide different features that can work together to achieve improved
FT. Without the liveness probe, the end user could be served by a replica that is not able to
provide content, and this would go undetected!

Deleting a ReplicaSet object
Lastly, let's take a look at how you can delete a ReplicaSet object. There are two
possibilities, outlined as follows:

1. Delete the ReplicaSet object together with the Pods that it owns—this is performed
by first scaling down automatically.

2. Delete the ReplicaSet object and leave the Pods unaffected.

To delete the ReplicaSet object together with the Pods, you can use the regular kubectl
delete command, as follows:

$ kubectl delete rs/nginx-replicaset-livenessprobe-example

You will see that the Pods will first get terminated and then the ReplicaSet object is
deleted.

Summary 313

Now, if you would like to delete just the ReplicaSet object, you need to use the
--cascade=orphan option for kubectl delete, as follows:

$ kubectl delete rs/nginx-replicaset-livenessprobe-example
--cascade=orphan

After this command, if you inspect which Pods are in the cluster, you will still see all
the Pods that were owned by the nginx-replicaset-livenessprobe-example
ReplicaSet object. These Pods can now, for example, be acquired by another ReplicaSet
object that has a matching label selector.

Summary
In this chapter, you have learned about the key building blocks for providing High
Availability (HA) and Fault Tolerance (FT) for applications running in Kubernetes
clusters. First, we have explained why HA and FT are important. Next, you have
learned more details about providing component replication and failover using
ReplicationController and ReplicaSet, which are used in Kubernetes in order to provide
multiple copies (replicas) of identical Pods. We have demonstrated the differences
between ReplicationController and ReplicaSet and eventually explained why using
ReplicaSet is currently the recommended way to provide multiple replicas of Pods.

The next chapters in this part of the book will give you an overview of how to use
Kubernetes to orchestrate your container applications and workloads. You will familiarize
yourself with concepts of the most important Kubernetes objects, such as ReplicaSet,
Deployment, StatefulSet, or DaemonSet, and in the next chapter, we will focus on the next
level of abstraction over ReplicaSets: Deployment objects. You will learn how to deploy
and easily manage rollouts and rollbacks of new versions of your application.

Further reading
For more information regarding ReplicationController and ReplicaSet, please refer to the
following Packt Publishing books:

• The Complete Kubernetes Guide, by Jonathan Baier, Gigi Sayfan, and Jesse White
(https://www.packtpub.com/virtualization-and-cloud/
complete-kubernetes-guide)

• Getting Started with Kubernetes – Third Edition, by Jonathan Baier and Jesse White
(https://www.packtpub.com/virtualization-and-cloud/getting-
started-kubernetes-third-edition)

https://www.packtpub.com/virtualization-and-cloud/complete-kubernetes-guide
https://www.packtpub.com/virtualization-and-cloud/complete-kubernetes-guide
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition

314 Running Production-Grade Kubernetes Workloads

• Kubernetes for Developers, by Joseph Heck (https://www.packtpub.com/
virtualization-and-cloud/kubernetes-developers)

• Hands-On Kubernetes on Windows, by Piotr Tylenda (https://www.packtpub.
com/product/hands-on-kubernetes-on-windows/9781838821562)

You can also refer to the excellent official Kubernetes documentation (https://
kubernetes.io/docs/home/), which is always the most up-to-date source of
knowledge about Kubernetes in general.

https://www.packtpub.com/virtualization-and-cloud/kubernetes-developers
https://www.packtpub.com/virtualization-and-cloud/kubernetes-developers
https://www.packtpub.com/product/hands-on-kubernetes-on-windows/9781838821562
https://www.packtpub.com/product/hands-on-kubernetes-on-windows/9781838821562
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/

11
Deployment –

Deploying Stateless
Applications

The previous chapter introduced two important Kubernetes objects: ReplicationController
and ReplicaSet. At this point, you already know that they serve similar purposes in terms
of maintaining identical, healthy replicas (copies) of Pods. In fact, ReplicaSet is a successor
of ReplicationController and, in the most recent versions of Kubernetes, ReplicaSet should
be used in favor of ReplicationController.

316 Deployment – Deploying Stateless Applications

Now, it is time to introduce the Deployment object, which provides easy scalability,
rolling updates, and versioned rollbacks for your stateless Kubernetes applications and
services. Deployment objects are built on top of ReplicaSets and they provide a declarative
way of managing them – just describe the desired state in the Deployment manifest and
Kubernetes will take care of orchestrating the underlying ReplicaSets in a controlled,
predictable manner. Alongside StatefulSet, which will be covered in the next chapter, it is
the most important workload management object in Kubernetes. This will be the bread
and butter of your development and operations on Kubernetes! The goal of this chapter is
to make sure that you have all the tools and knowledge you need to deploy your stateless
application components using Deployment objects, as well as to safely release new
versions of your components using rolling updates of deployments.

This chapter will cover the following topics:

• Introducing the Deployment object

• How does a Deployment object manage revisions and version rollout?

• Deployment object best practices

Technical requirements
For this chapter, you will need the following:

• A Kubernetes cluster that's been deployed. You can use either a local or cloud-based
cluster, but to fully understand the concepts shown in this chapter, we recommend
using a multi-node, cloud-based Kubernetes cluster.

• The Kubernetes CLI (kubectl) must be installed on your local machine and
configured to manage your Kubernetes cluster.

Kubernetes cluster deployment (local and cloud-based) and kubectl installation were
covered in Chapter 3, Installing Your First Kubernetes Cluster.

You can download the latest code samples for this chapter from the official GitHub
repository: https://github.com/PacktPublishing/The-Kubernetes-
Bible/tree/master/Chapter11.

https://github.com/PacktPublishing/The-Kubernetes-Bible/tree/master/Chapter11
https://github.com/PacktPublishing/The-Kubernetes-Bible/tree/master/Chapter11

Introducing the Deployment object 317

Introducing the Deployment object
Kubernetes gives you out-of-the-box flexibility when it comes to running different types
of workloads, depending on your use cases. Let's have a brief look at the supported
workloads to understand where the Deployment object fits, as well as its purpose. When
implementing cloud-based applications, you will generally need the following types of
workloads:

• Stateless: Applications and services that are stateless, by definition, do not have any
modifiable client data (state) that is needed for further operations or sessions. In the
container-based world, what we mean by stateless containers or Pods is that they
do not store any application state inside the container or attached volume. Imagine
that you have two different nginx containers serving the same purpose: the first
one stores some data coming from user requests in a JSON file inside the container,
while the second one stores data in MongoDB that's running in a separate container.
Both serve the same purpose, but the first one is stateless and the second one is not
stateless (in other words, it's stateful). However, our small application, as a whole,
is not stateless because some of its components are stateful. In the first case, the
nginx container is the stateful component, while in the second case, the MongoDB
container is the stateful component. Stateless workloads are easy to orchestrate,
scale up and down, and, in general, are simple to manage. In Kubernetes,
Deployment objects are used to manage stateless workloads.

• Stateful: In the case of containers and Pods, we call them stateful if they store
any modifiable data inside themselves. A good example of such a Pod is a MySQL
or MongoDB Pod that reads and writes the data to a persistent volume. Stateful
workloads are much harder to manage – you need to carefully manage sticky
sessions or data partitions during rollouts, rollbacks, and when scaling. As a
rule of thumb, try to keep stateful workloads outside your Kubernetes cluster if
possible, such as by using cloud-based Software-as-a-Service database offerings. In
Kubernetes, StatefulSet objects are used to manage stateful workloads. Chapter 12,
StatefulSet – Deploying Stateful Applications, provides more details about these types
of objects.

318 Deployment – Deploying Stateless Applications

• Batch: This type of workload is anything that performs job or task processing, either
scheduled or on demand. Depending on the type of application, batch workloads
may require thousands of containers and a lot of nodes – this can be anything that
happens in the background. Containers that are used for batch processing should
also be stateless, to make it easier to resume interrupted jobs. In Kubernetes, Job
and CronJob objects are used to manage batch workloads. Chapter 4, Running Your
Docker Containers, provides more details about these types of objects.

• Node-local: In many cases, Kubernetes cluster operations require periodic
maintenance of Nodes or system log aggregation for each Node. Usually, such
workloads are not user-facing but are crucial to the proper functionality of each
Node in the cluster. In Kubernetes, DaemonSet objects are used to manage node-
local workloads. Chapter 13, DaemonSet – Maintaining Pod Singletons on Nodes,
provides more details about these types of objects.

With this brief summary regarding the different types of workloads in Kubernetes, we can
dive deeper into managing stateless workloads using Deployment objects. In short, they
provide declarative and controlled updates for Pods and ReplicaSets. You can declaratively
perform operations such as the following by using them:

• Perform a rollout of a new ReplicaSet.

• Change the Pod template and perform a controlled rollout. The old ReplicaSet will
be gradually scaled down, whereas the new ReplicaSet will scale up at the same rate.

• Perform a rollback to an earlier version of the Deployment object.

• Scale ReplicaSet up or down, without needing to make any changes to the Pod
definition.

• Pause and resume the rollout of the new ReplicaSet, if there is a need to introduce
fixes.

In this way, Deployment objects provide an end-to-end pipeline for managing your
stateless components running in Kubernetes clusters. Usually, you will combine them with
Service objects, as presented in Chapter 7, Exposing Your Pods with Services, to achieve
high fault tolerance, health monitoring, and intelligent load balancing for traffic coming
into your application.

Now, let's have a closer look at the anatomy of the Deployment object specification and
how to create a simple example deployment in our Kubernetes cluster.

Introducing the Deployment object 319

Creating a Deployment object
First, let's take a look at the structure of an example Deployment YAML manifest file,
nginx-deployment.yaml, that maintains three replicas of an nginx pod:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: nginx-deployment-example

spec:

 replicas: 3

 selector:

 matchLabels:

 app: nginx

 environment: test

 minReadySeconds: 10

 strategy:

 type: RollingUpdate

 rollingUpdate:

 maxUnavailable: 1

 maxSurge: 1

 template:

 metadata:

 labels:

 app: nginx

 environment: test

 spec:

 containers:

 - name: nginx

 image: nginx:1.17

 ports:

 - containerPort: 80

320 Deployment – Deploying Stateless Applications

As you can see, the structure of the Deployment spec is almost identical to ReplicaSet,
although it has a few extra parameters for configuring the strategy for rolling out new
versions. The specification has four main components:

• replicas: Defines the number of Pod replicas that should run using the given
template and matching label selector. Pods may be created or deleted to
maintain the required number. This property is used by the underlying ReplicaSet.

• selector: A label selector, which defines how to identify Pods that the underlying
ReplicaSet owns. This can include set-based and equality-based selectors. In
the case of Deployments, the underlying ReplicaSet will also use a generated
pod-template-hash label to ensure that there are no conflicts between different
child ReplicaSets when you're rolling out a new version. Additionally, this generally
prevents accidental acquisitions of bare Pods, which could easily happen with
simple ReplicaSets. Nevertheless, Kubernetes does not prevent you from defining
overlapping pod selectors between different Deployments or even other types of
controllers. However, if this happens, they may conflict and behave unexpectedly.

• template: Defines the template for Pod creation. Labels used in metadata must
match our selector.

• strategy: Defines the details of the strategy that will be used to replace existing
Pods with new ones. You will learn more about such strategies in the following
sections. In this example, we showed the default RollingUpdate strategy. In
short, this strategy works by slowly replacing the Pods of the previous version, one
by one, by using the Pods of the new version. This ensures zero downtime and,
together with Service objects and readiness probes, provides traffic load balancing
to pods that can serve the incoming traffic.

Important Note
The Deployment spec provides a high degree of reconfigurability to suit
your needs. We recommend referring to the official documentation for
all the details: https://kubernetes.io/docs/reference/
generated/kubernetes-api/v1.19/#deploymentspec-v1-
apps.

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.19/#deploymentspec-v1-apps
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.19/#deploymentspec-v1-apps
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.19/#deploymentspec-v1-apps

Introducing the Deployment object 321

To better understand the relationship of Deployment, its underlying child ReplicaSet, and
Pods, please look at the following diagram:

Figure 11.1 – Kubernetes Deployment

As you can see, once you have defined and created a Deployment, it is not possible to
change its selector. This is desired because otherwise, you could easily end up with
orphaned ReplicaSets. There are two important actions that you can perform on existing
Deployment objects:

• Modify template: Usually, you would like to change the Pod definition to a new
image version of your application. This will cause a rollout to begin, according to
the rollout strategy.

• Modify replicas number: Just changing the number will cause ReplicaSet to
gracefully scale up or down.

Now, let's declaratively apply our example Deployment YAML manifest file, nginx-
deployment.yaml, to the cluster using the kubectl apply command:

$ kubectl apply -f ./nginx-deployment.yaml --record

Using the --record flag is useful for tracking the changes that are made to the objects,
as well as to inspect which commands caused these changes. You will then see an
additional automatic annotation, kubernetes.io/change-cause, which contains
information about the command.

Immediately after the Deployment object has been created, use the kubectl rollout
command to track the status of your Deployment in real time:

$ kubectl rollout status deployment nginx-deployment-example

Waiting for deployment "nginx-deployment-example" rollout to
finish: 0 of 3 updated replicas are available...

322 Deployment – Deploying Stateless Applications

Waiting for deployment "nginx-deployment-example" rollout to
finish: 0 of 3 updated replicas are available...

Waiting for deployment "nginx-deployment-example" rollout to
finish: 0 of 3 updated replicas are available...

deployment "nginx-deployment-example" successfully rolled out

This is a useful command that can give us a lot of insight into what is happening with an
ongoing Deployment rollout. You can also use the usual kubectl get or kubectl
describe commands:

$ kubectl get deploy nginx-deployment-example

NAME READY UP-TO-DATE AVAILABLE AGE

nginx-deployment-example 3/3 3 3
6m21s

As you can see, the Deployment has been successfully created and all three Pods are now
in the ready state.

Tip
Instead of typing deployment, you can use the deploy abbreviation when
using kubectl commands.

You may also be interested in seeing the underlying ReplicaSets:

$ kubectl get rs

NAME DESIRED CURRENT READY
AGE

nginx-deployment-example-5549875c78 3 3 3
8m7s

Please take note of the additional generated hash, 5549875c78, in the name of our
ReplicaSet, which is also the value of the pod-template-hash label, which we
mentioned earlier.

Lastly, you can see the pods in the cluster that were created by the Deployment object
using the following command:

$ kubectl get pods

NAME READY STATUS
RESTARTS AGE

nginx-deployment-example-5549875c78-5srkn 1/1 Running 0
11m

Introducing the Deployment object 323

nginx-deployment-example-5549875c78-h5n76 1/1 Running 0
11m

nginx-deployment-example-5549875c78-mn5zn 1/1 Running 0
11m

Congratulations – you have created and inspected your first Kubernetes Deployment!
Next, we will take a look at how Service objects are used to expose your Deployment to
external traffic coming into the cluster.

Exposing Deployment Pods using Service objects
Service objects were covered in detail in Chapter 7, Exposing Your Pods with Services, so
in this section, we will provide a brief recap about the role of Services and how they are
usually used with Deployments. Services are Kubernetes objects that allow you to expose
your Pods, whether this is to other Pods in the cluster or end users. They are the crucial
building blocks for highly available and fault-tolerant Kubernetes applications, since they
provide a load balancing layer that actively routes incoming traffic to ready and healthy
Pods.

The Deployment objects, on the other hand, provide Pod replication, automatic restarts
when failures occur, easy scaling, controlled version rollouts, and rollbacks. But there
is a catch: Pods that are created by ReplicaSets or Deployments have a finite life cycle.
At some point, you can expect them to be terminated; then, new Pod replicas with new
IP addresses will be created in their place. So, what if you have a Deployment running
web server Pods that need to communicate with Pods that have been created as a part of
another Deployment such as backend Pods? Web server Pods cannot assume anything
about the IP addresses or the DNS names of backend Pods, as they may change over time.
This issue can be resolved with Service objects, which provide reliable networking for a set
of Pods.

In short, Services target a set of Pods, and this is determined by label selectors. These
label selectors work on the same principle that you have learned about for ReplicaSets
and Deployments. The most common scenario is exposing a Service for an existing
Deployment by using the same label selector. The Service is responsible for providing
a reliable DNS name and IP address, as well as for monitoring selector results and
updating the associated Endpoint object with the current IP addresses of the matching
Pods. For internal cluster communication, this is usually achieved using simple
ClusterIP Services, whereas to expose them to external traffic, you can use the
NodePort Service or, more commonly in cloud deployments, the LoadBalancer
Service.

324 Deployment – Deploying Stateless Applications

To visualize how Service objects interact with Deployment objects in Kubernetes, please
look at the following diagram:

Figure 11.2 – Client Pod performing requests to the Kubernetes Deployment, exposed by the ClusterIP
Service

This diagram visualizes how any client Pod in the cluster can transparently communicate
with the nginx Pods that are created by our Deployment object and exposed using
the ClusterIP Service. ClusterIPs are essentially virtual IP addresses that are managed
by the kube-proxy service (process) that is running on each Node. kube-proxy
is responsible for all the clever routing logic in the cluster and ensures that the routing
is entirely transparent to the client Pods – they do not need to be aware if they are
communicating with the same Node, a different Node, or even an external component.
The role of the Service object is to define a set of ready Pods that should be hidden behind
a stable ClusterIP. Usually, the internal clients will not be calling the Service pods using
the ClusterIP, but they will use a DNS short name, which is the same as Service name;
for example, nginx-service-example. This will be resolved to the ClusterIP by
the cluster's internal DNS service. Alternatively, they may use a DNS Fully Qualified
Domain Name (FQDN) in the form of <serviceName>.<namespaceName>.
svc.<clusterDomain>; for example, nginx-service-example.default.svc.
cluster.local.

Introducing the Deployment object 325

Important Note
For LoadBalancer or NodePort Services that expose Pods to external traffic,
the principle is similar as internally, they also provide a ClusterIP for internal
communication. The difference is that they also configure more components so
that external traffic can be routed to the cluster.

Now that you're equipped with the necessary knowledge about Service objects and their
interactions with Deployment objects, let's put what we've learned into practice!

Creating a Service declaratively
In this section, we are going to expose our nginx-deployment-example Deployment
using the nginx-service-example Service object, which is of the LoadBalancer
type, by performing the following steps:

1. Create an nginx-service.yaml manifest file with the following content:

apiVersion: v1

kind: Service

metadata:

 name: nginx-service-example

spec:

 selector:

 app: nginx

 environment: test

 type: LoadBalancer

 ports:

 - port: 80

 protocol: TCP

 targetPort: 80

The label selector of the Service is the same as the one we used for our Deployment
object. The specification of the Service instructs us to expose our Deployment on
port 80 of the cloud load balancer, and then route the traffic from target port 80 to
the underlying Pods.

326 Deployment – Deploying Stateless Applications

Important Note
Depending on how your Kubernetes cluster is deployed, you may not be able
to use the LoadBalancer type. In that case, you may need to use the
NodePort type for this exercise or stick to the simple ClusterIP type and
skip the part about external access. For local development deployments such
as minikube, you will need to use the minikube service command
to access your Service. You can find more details in the documentation:
https://minikube.sigs.k8s.io/docs/commands/
service/.

2. Now, use the kubectl get or kubectl describe command to gather
information about, and the status of, our new service and associated load balancer:

$ kubectl describe service nginx-service-example

...

LoadBalancer Ingress: 40.88.196.15

…

Events:

 Type Reason Age From
Message

 ---- ------ ---- ----

 Normal EnsuringLoadBalancer 10m service-controller
Ensuring load balancer

 Normal EnsuredLoadBalancer 11m service-controller
Ensured load balancer

Please note that creating the external cloud load balancer may take a bit of time, so
you may not see an external IP address immediately. In this case, the external IP is
40.88.196.15.

Tip
You can use the svc abbreviation in the kubectl commands instead of
typing service.

https://minikube.sigs.k8s.io/docs/commands/service/
https://minikube.sigs.k8s.io/docs/commands/service/

Introducing the Deployment object 327

3. Now, navigate to your favorite web browser and open the address for your Service;
for example http://40.88.196.15 (your address will be different, depending
on the output of the kubectl describe command). With that, we have exposed
port 80, which is a simple HTTP endpoint, not HTTPS, which is a secure version of
HTTP. For demonstration purposes, this is enough, but for production workloads,
you need to ensure you have set up properly HTTPS for your load balancer and
inside the cluster. You should see the default nginx welcome page, served by one of
the three Pods in our Deployment object:

Figure 11.3 – Web page served by nginx running in Deployment pods

This shows how Services are used to expose Deployment Pods to external traffic. Now, let's
perform an experiment that demonstrates how internal traffic is handled by Services for
other client Pods:

1. Create an interactive busybox Pod and start the Bourne shell process. The
following command will create the Pod and immediately attach it to your terminal
so that you can interact with it from within the Pod:

$ kubectl run -i --tty busybox --image=busybox --rm
--restart=Never -- sh

2. When the container shell prompt appears, download the default web page served by
nginx Pods in the deployment. Use the nginx-deployment-example Service
name as the short DNS name:

$ wget http://nginx-service-example && cat index.html

3. Alternatively, you can use DNS FQDN:

$ rm ./index.html

$ wget http://nginx-service-example.default.svc.cluster.
local && cat index.html

328 Deployment – Deploying Stateless Applications

4. In both cases, you will see the same HTML source code for our default web page.
5. Use the exit command to exit the session and automatically remove the

busybox Pod.

Now, we will quickly show you how to achieve a similar result using imperative
commands to create a Service for our Deployment object.

Creating a Service imperatively
A similar effect can be achieved using the imperative kubectl expose command
– a Service will be created for our Deployment object named nginx-deployment-
example. Use the following command:

$ kubectl expose deployment --type=LoadBalancer nginx-
deployment-example

service/nginx-deployment-example exposed

This will create a Service with the same name as the Deployment object; that is, nginx-
deployment-example. If you would like to use a different name, as shown in the
declarative example, you can use the --name=nginx-service-example parameter.
Additionally, port 80, which will be used by the Service, will be the same as the one that
was defined for the Pods. If you want to change this, you can use the --port=<number>
and --target-port=<number> parameters.

Please note that this imperative command is recommended for use in development or
debugging scenarios only. For production environments, you should leverage declarative
Infrastructure-as-Code and Configuration-as-Code approaches as much as possible.

Role of readiness, liveness, and startup probes
In Kubernetes, there are three types of probes that you can configure for each container
running in a Pod:

• Readiness probe: This is used to determine whether a given container is ready to
accept traffic. A Pod is considered ready only if all its containers are ready. Pods
that are not ready will be removed from Service Endpoints until they become ready
again. In other words, such Pods will not be considered while load balancing traffic
via Service. This is the most important probe from the Service object's perspective
– setting it up properly ensures that the end users will experience zero downtime
during rollouts and rollbacks, and also during any failures of individual Pods.

Introducing the Deployment object 329

• Liveness probe: This is used to detect whether a container needs to be restarted.
This can help in situations where a container has been stuck in a deadlock or
other issues, where the container process is alive but unable to operate properly.
Restarting the container may increase the availability of Pods in that case. We briefly
covered this probe in Chapter 10, Running Production-Grade Kubernetes Workloads,
as it complements the role of ReplicaSet.

• Startup probe: This is an additional probe that's used for determining whether
a container has been fully started – the readiness and liveness probes are disabled
until this probe returns successfully. This is especially useful for containers that have
a long startup time due to some initialization. In this way, you can avoid premature
kills being made by the liveness probe.

All these probes are incredibly useful when you're configuring your Deployments – always
try to predict possible life cycle scenarios for the processes running in your containers and
configure the probes accordingly for your Deployments.

Probes can have different forms. For example, they can be running a command (exec)
inside the container and verifying whether the exit code is successful. Alternatively,
they can be HTTP GET requests (httpGet) to a specific endpoint of the container or
attempting to open a TCP socket (tcpSocket) and checking if a connection could
be established. Usually, httpGet probes are used on dedicated health endpoints (for
liveness) or ready endpoints (for readiness) that are exposed by the process running in the
container. These endpoints would encapsulate the logic of the actual health or readiness
check.

Please note that, by default, no probes are configured on containers running in Pods.
Kubernetes will serve traffic to Pod containers behind the Service, but only if the
containers have successfully started, and restart them if they have crashed using the
default always-restart policy. This means that it is your responsibility to figure out what
type of probes and what settings you need for your particular case. You will also need to
understand the possible consequences and caveats of incorrectly configured probes – for
example, if your liveness probe is too restrictive and has timeouts that are too small, it may
wrongfully restart your containers and decrease the availability of your application.

Now, let's demonstrate how you can configure a readiness probe on our Deployment and
how it works in real time.

330 Deployment – Deploying Stateless Applications

Important Note
If you are interested in the configuration details for other types of probes,
please refer to the official documentation: https://kubernetes.
io/docs/tasks/configure-pod-container/configure-
liveness-readiness-startup-probes/. We have only covered
the readiness probe in this section as it is the most important for interactions
between Service objects and Deployment objects.

The nginx Deployment that we use is very simple and does not need any dedicated
readiness probe. Instead, we will arrange the container's setup so that we can have the
container's readiness probe fail or succeed on demand. The idea is to create an empty file
called /usr/share/nginx/html/ready during container setup, which will be served
on the /ready endpoint by nginx (just like any other file) and configure a readiness
probe of the httpGet type to query the /ready endpoint for a successful HTTP status
code. Now, by deleting or recreating the ready file using the kubectl exec command,
we can easily simulate failures in our Pods that cause the readiness probe to fail or
succeed.

Please follow these steps to configure and test the readiness probe:

1. Delete the existing Deployment using the following command:

$ kubectl delete deployment nginx-deployment-example

2. Copy our previous YAML manifest for the Deployment:

$ cp nginx-deployment.yaml nginx-deployment-
readinessprobe.yaml

3. Open the file and modify the following parts of the manifest:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: nginx-deployment-example

spec:

 ...

 template:

 ...

 spec:

 containers:

 - name: nginx

https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/

Introducing the Deployment object 331

 image: nginx:1.17

 ports:

 - containerPort: 80

 command:

 - /bin/sh

 - -c

 - |

 touch /usr/share/nginx/html/ready

 echo "You have been served by Pod with IP
address: $(hostname -i)" > /usr/share/nginx/html/index.
html

 nginx -g "daemon off;"

 readinessProbe:

 httpGet:

 path: /ready

 port: 80

 initialDelaySeconds: 5

 periodSeconds: 2

 timeoutSeconds: 10

 successThreshold: 1

 failureThreshold: 2

There are multiple parts changing in the Deployment manifest, all of which have been
highlighted. First, we overridden the default container entry point command using
command and passed additional arguments. command is set to /bin/sh to execute
a custom shell command. The additional arguments are constructed in the following way:

• -c is an argument for /bin/sh that instructs it that what follows is a command to
be executed in the shell.

• touch /usr/share/nginx/html/ready is the first command that's used
in the container shell. This will create an empty ready file that can be served by
nginx on the /ready endpoint.

• echo "You have been served by Pod with IP address:
$(hostname -i)" > /usr/share/nginx/html/index.html is the
second command that sets the content of index.html to information about the
internal cluster Pod's IP address. hostname -i is the command that's used to get
the container IP address. This value will be different for each Pod running in our
Deployment.

332 Deployment – Deploying Stateless Applications

• nginx -g "daemon off;". Finally, we execute the default entrypoint
command for the nginx:1.17 image. This will start the nginx web server as the
main process in the container.

Important Note
Usually, you would perform such customization using a new Docker image,
which inherits from the nginx:1.17 image as a base. The method shown
here is being used for demonstration purposes and shows how flexible the
Kubernetes runtime is.

The second set of changes we made in the YAML manifest for the Deployment were for
the definition of readinessProbe, which is configured as follows:

• The probe is of the httpGet type and executes an HTTP GET request to the
/ready HTTP endpoint on port 80 of the container.

• initialDelaySeconds: This is set to 5 seconds and configures the probe to
start querying after 5 seconds from container start.

• periodSeconds: This is set to 2 seconds and configures the probe to query in
2-second intervals.

• timeoutSeconds: This is set to 10 seconds and configures a number of seconds,
after which the HTTP GET request times out.

• successThreshold: This is set to 1 and configures the minimum number of
consecutive success queries of the probe before it is considered to be successful once
it has failed.

• failureThreshold: This is set to 2 and configures the minimum number of
consecutive failed queries of the probe before it is considered to have failed. Setting
it to a value that's greater than 1 ensures that the probe is not providing false
positives.

To create the deployment, follow these steps:

1. Apply the new YAML manifest file to the cluster using the following command:

$ kubectl apply -f ./nginx-deployment-readinessprobe.yaml
--record

Introducing the Deployment object 333

2. Use the kubectl describe command to get the external load balancer IP
address of the nginx-deployment-example Service, which we created at the
beginning of this section and is still running (if you are recreating the Service, you
may need to wait until it has been configured):

$ kubectl describe svc nginx-service-example

...

LoadBalancer Ingress: 52.188.43.251

...

Endpoints: 10.244.0.43:80,10.244.1.50:80,1
0.244.1.51:80

We will use 52.188.43.251 as the IP address in our examples. You can also see
that the service has three Endpoints that map to our Deployment Pods, all of which
are ready to serve traffic.

3. Navigate to http://52.188.43.251 in your favorite web browser. Please turn
off web browser caching while making these requests to avoid any cached responses
to your queries. In Chrome, you can simply do this for your current tab by opening
Developer Tools by pressing F12 and checking the Disable Cache checkbox. Press
F5 to refresh. You will notice that the responses iterate over three different Pod IP
addresses. This is, because our Deployment has been configured to have three Pod
replicas. Each time you perform a request, you may hit a different Pod:

You have been served by Pod with IP address: 10.244.0.43

... (a few F5 hits later)

You have been served by Pod with IP address: 10.244.1.51

... (a few F5 hits later)

You have been served by Pod with IP address: 10.244.1.50

4. You can cross-check this with the kubectl get pod command to see the actual
addresses of the Pods:

$ kubectl get pod -o wide

NAME READY
STATUS RESTARTS AGE IP ...

nginx-deployment-example-85cd4bb66f-94r4q 1/1
Running 0 11m 10.244.1.51 ...

nginx-deployment-example-85cd4bb66f-95bwd 1/1
Running 0 11m 10.244.1.50 ...

nginx-deployment-example-85cd4bb66f-ssccm 1/1
Running 0 11m 10.244.0.43 ...

334 Deployment – Deploying Stateless Applications

5. Now, let's simulate a readiness failure for the first Pod. In our case, this is nginx-
deployment-example-85cd4bb66f-94r4q, which has an IP address of
10.244.1.51. To do this, we need to simply delete the ready file inside the
container using the kubectl exec command:

$ kubectl exec -it nginx-deployment-example-85cd4bb66f-
94r4q -- rm /usr/share/nginx/html/ready

6. The readiness probe will now start to fail, but not immediately! We have set it up
so that it needs to fail at least two times, and each check is performed in 2-second
intervals. So, if you are quick, you can go to your web browser and try refreshing the
external address of our Service a few times. However, you may still see that you were
served by 10.244.1.51. Later, you will notice that you are only served by two
other Pods that are still ready.

7. Now, if you describe the nginx-service-example Service, you will see that it
only has two Endpoints available, as expected:

$ kubectl describe svc nginx-service-example

...

Endpoints: 10.244.0.43:80,10.244.1.50:80

8. In the events for the Pod, you can also see that it is considered not ready:

$ kubectl describe pod nginx-deployment-example-
85cd4bb66f-94r4q

...

Events:

 Type Reason Age From
Message

 ---- ------ ---- ----

 Warning Unhealthy 2m21s (x151 over 7m21s) kubelet
Readiness probe failed: HTTP probe failed with
statuscode: 404

9. We can push this even further. Delete the ready files in the other two Pods
(nginx-deployment-example-85cd4bb66f-95bwd and nginx-
deployment-example-85cd4bb66f-ssccm, in our case) to make the whole
Service fail:

$ kubectl exec -it nginx-deployment-example-85cd4bb66f-
95bwd -- rm /usr/share/nginx/html/ready

Introducing the Deployment object 335

$ kubectl exec -it nginx-deployment-example-85cd4bb66f-
ssccm -- rm /usr/share/nginx/html/ready

10. Now, when you refresh the web page, you will see that the request is pending and
that eventually, it will fail with a timeout. We are now in a pretty bad state – we have
a total readiness failure for all the Pod replicas in our Deployment!

11. Finally, let's make one of our Pods ready again by recreating the file. You can refresh
the web page so that the request is pending and, at the same time, execute the
necessary command to create the ready file:

$ kubectl exec -it nginx-deployment-example-85cd4bb66f-
ssccm -- touch /usr/share/nginx/html/ready

12. After about 2 seconds (this is the probe interval), the pending request in the web
browser should succeed and you will be presented with a nice response from
nginx:

You have been served by Pod with IP address: 10.244.0.43

Congratulations – you have successfully configured and tested the readiness probe for
your Deployment Pods! This should give you a good insight into how the probes work and
how you can use them with Services that expose your Deployments.

Next, we will take a brief look at how you can scale your Deployments.

Scaling a Deployment object
The beauty of Deployments is that you can almost instantly scale them up or down,
depending on your needs. When the Deployment is exposed behind a Service, the
new Pods will be automatically discovered as new Endpoints when you scale up, or
automatically removed from the Endpoints list when you scale down. The steps for this
are as follows:

1. First, let's scale up our Deployment declaratively. Open the nginx-deployment-
readinessprobe.yaml YAML manifest file and modify the number of replicas:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: nginx-deployment-example

spec:

 replicas: 10

...

336 Deployment – Deploying Stateless Applications

2. Apply these changes to the cluster using the kubectl apply command:

$ kubectl apply -f ./nginx-deployment-readinessprobe.yaml
--record

deployment.apps/nginx-deployment-example configured

3. Now, if you check the Pods using the kubectl get pods command, you will
immediately see that new Pods are being created. Similarly, if you check the output
of the kubectl describe command for the Deployment, you will see the
following in the events:

$ kubectl describe deploy nginx-deployment-example

...

Events:

 Type Reason Age From
Message

 ---- ------ ---- ----

 Normal ScalingReplicaSet 21s deployment-controller
Scaled up replica set nginx-deployment-example-85cd4bb66f
to 10

4. You can achieve the same result using the imperative command, which is only
recommended for development scenarios:

$ kubectl scale deploy nginx-deployment-example
--replicas=10

deployment.apps/nginx-deployment-example scaled

5. To scale down our Deployment declaratively, simply modify the nginx-
deployment-readinessprobe.yaml YAML manifest file and change the
number of replicas:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: nginx-deployment-example

spec:

 replicas: 2

...

Introducing the Deployment object 337

6. Apply the changes to the cluster using the kubectl apply command:

$ kubectl apply -f ./nginx-deployment-readinessprobe.yaml
--record

7. You can achieve the same result using imperative commands. For example, you can
execute the following command:

$ kubectl scale deploy nginx-deployment-example
--replicas=2

If you describe the Deployment, you will see that this scaling down is reflected in
the events:

$ kubectl describe deploy nginx-deployment-example

...

Events:

 Type Reason Age From
Message

 ---- ------ ---- ----

 Normal ScalingReplicaSet 5s deployment-controller
Scaled down replica set nginx-deployment-example-
85cd4bb66f to 2

Deployment events are very useful if you want to know the exact timeline of scaling and
the other operations that can be performed with the Deployment object.

Important Note
It is possible to autoscale your deployments using
HorizontalPodAutoscaler. This will be covered in Chapter 20,
Autoscaling Kubernetes Pods and Nodes.

Next, you will learn how to delete a Deployment from your cluster.

338 Deployment – Deploying Stateless Applications

Deleting a Deployment object
To delete a Deployment object, you can do two things:

• Delete the Deployment object, along with the Pods that it owns. This can be done by
first scaling down automatically.

• Delete the Deployment object and leave the other Pods unaffected.

To delete the Deployment object and its Pods, you can use the regular kubectl delete
command:

$ kubectl delete deploy nginx-deployment-example

You will see that the Pods get terminated and that the Deployment object is then deleted.

Now, if you would like to delete just the Deployment object, you need to use the
--cascade=orphan option for kubectl delete:

$ kubectl delete deploy nginx-deployment-example
--cascade=orphan

After executing this command, if you inspect what pods are in the cluster, you will still see
all the Pods that were owned by the nginx-deployment-example Deployment.

How does a Deployment object manage
revisions and version rollout?
So far, we have only covered making one possible modification to a living Deployment –
we have scaled up and down by changing the replicas parameter in the specification.
However, this is not all we can do! It is possible to modify the Deployment's Pod template
(.spec.template) in the specification and, in this way, trigger a rollout. This rollout
may be caused by a simple change, such as changing the labels of the Pods, but it may
be also a more complex operation when the container images in the Pod definition are
changed to a different version. This is the most common scenario as it enables you, as
a Kubernetes cluster operator, to perform a controlled, predictable rollout of a new version
of your image and effectively create a new revision of your Deployment.

How does a Deployment object manage revisions and version rollout? 339

Your Deployment uses a rollout strategy, which can be specified in a YAML manifest using
.spec.strategy.type. Kubernetes supports two strategies out of the box:

• RollingUpdate: This is the default strategy and allows you to roll out a new
version of your application in a controlled way. This type of strategy uses two
ReplicaSets internally. When you perform a change in the Deployment spec that
causes a rollout, Kubernetes will create a new ReplicaSet with a new Pod template
scaled to zero Pods initially. The old, existing ReplicaSet will remain unchanged
at this point. Next, the old ReplicaSet will be scaled down gradually, whereas the
new ReplicaSet will be scaled up gradually at the same time. The number of Pods
that may be unavailable (readiness probe failing) is controlled using the .spec.
strategy.rollilngUpdate.maxUnavailable parameter. The maximum
number of extra Pods that can be scheduled above the desired number of Pods in
the Deployment is controlled by the .spec.strategy.rollilngUpdate.
maxSurge parameter. Additionally, this type of strategy offers automatic revision
history, which can be used for quick rollbacks in case of any failures.

• Recreate: This is a simple strategy that's useful for development scenarios where
all the old Pods have been terminated and replaced with new ones. This instantly
deletes any existing underlying ReplicaSet and replaces it with a new one. You
should not use this strategy for production workloads unless you have a specific
use case.

Tip
Consider the Deployment strategies as basic building blocks for more advanced
Deployment scenarios. For example, if you are interested in Blue/Green
Deployments, you can easily achieve this in Kubernetes by using a combination
of Deployments and Services while manipulating label selectors. You can
find out more about this in the official Kubernetes blog post: https://
kubernetes.io/blog/2018/04/30/zero-downtime-
deployment-kubernetes-jenkins/.

Now, we will perform a rollout using the RollingUpdate strategy. The Recreate
strategy, which is much simpler, can be exercised similarly.

https://kubernetes.io/blog/2018/04/30/zero-downtime-deployment-kubernetes-jenkins/
https://kubernetes.io/blog/2018/04/30/zero-downtime-deployment-kubernetes-jenkins/
https://kubernetes.io/blog/2018/04/30/zero-downtime-deployment-kubernetes-jenkins/

340 Deployment – Deploying Stateless Applications

Updating a Deployment object
First, let's recreate the Deployment that we used previously for our readiness probe
demonstration:

1. Make a copy of the previous YAML manifest file:

$ cp nginx-deployment-readinessprobe.yaml nginx-
deployment-rollingupdate.yaml

2. Ensure that you have a strategy of the RollingUpdate type, called
readinessProbe, set up and an image version of nginx:1.17. This should
already be set up in the nginx-deployment-readinessprobe.yaml
manifest file, if you completed the previous sections:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: nginx-deployment-example

spec:

 replicas: 3

...

 minReadySeconds: 10

 strategy:

 type: RollingUpdate

 rollingUpdate:

 maxUnavailable: 1

 maxSurge: 1

 template:

...

 spec:

 containers:

 - name: nginx

 image: nginx:1.17

...

 readinessProbe:

...

How does a Deployment object manage revisions and version rollout? 341

3. In this example, we are using maxUnavailable set to 1, which means that we
allow only one Pod out of three, which is the target number, to be unavailable (not
ready). This means that, at any time, there must be at least two Pods ready to serve
traffic. Similarly, maxSurge set to 1 means that we allow one extra Pod to be
created above the target number of three Pods during the rollout. This effectively
means that we can have up to four Pods (ready or not) present in the cluster
during the rollout. Please note that it is also possible to set up these parameters
as percentage values (such as 25%), which is very useful in autoscaling scenarios.
Additionally, minReadySeconds (which is set to 10) provides an additional time
span for which the Pod has to be ready before it can be announced as successful
during the rollout.

4. Apply the manifest file to the cluster:

$ kubectl apply -f ./nginx-deployment-rollingupdate.yaml
--record

With the deployment ready in the cluster, we can start rolling out a new version of our
application. We will change the image in the Pod template for our Deployment to a newer
version and observe what happens during the rollout. To do this, follow these steps:

1. Modify the container image that was used in the Deployment to nginx:1.18:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: nginx-deployment-example

spec:

...

 template:

...

 spec:

 containers:

 - name: nginx

 image: nginx:1.18

2. Apply the changes to the cluster using the following command:

$ kubectl apply -f ./nginx-deployment-rollingupdate.yaml
--record

deployment.apps/nginx-deployment-example configured

342 Deployment – Deploying Stateless Applications

3. Immediately after that, use the kubectl rollout status command to see the
progress in real time:

$ kubectl rollout status deployment nginx-deployment-
example

Waiting for deployment "nginx-deployment-example" rollout
to finish: 2 out of 3 new replicas have been updated...

Waiting for deployment "nginx-deployment-example" rollout
to finish: 2 of 3 updated replicas are available...

deployment "nginx-deployment-example" successfully rolled
out

4. The rollout will take a bit of time because we have configured minReadySeconds
on the Deployment specification and initialDelaySeconds on the Pod
container readiness probe.

5. Similarly, using the kubectl describe command, you can see the events for the
Deployment that inform us of how the ReplicaSets were scaled up and down:

$ kubectl describe deploy nginx-deployment-example

...

Events:

 Type Reason Age From
Message

 ---- ------ ---- ----

 Normal ScalingReplicaSet 3m56s deployment-controller
Scaled up replica set nginx-deployment-example-85cd4bb66f
to 3

 Normal ScalingReplicaSet 3m22s deployment-controller
Scaled up replica set nginx-deployment-example-54769f6df8
to 1

 Normal ScalingReplicaSet 3m22s deployment-controller
Scaled down replica set nginx-deployment-example-
85cd4bb66f to 2

 Normal ScalingReplicaSet 3m22s deployment-controller
Scaled up replica set nginx-deployment-example-54769f6df8
to 2

 Normal ScalingReplicaSet 3m5s deployment-controller
Scaled down replica set nginx-deployment-example-
85cd4bb66f to 0

How does a Deployment object manage revisions and version rollout? 343

 Normal ScalingReplicaSet 3m5s deployment-controller
Scaled up replica set nginx-deployment-example-54769f6df8
to 3

6. Now, let's take a look at the ReplicaSets in the cluster:

$ kubectl get rs

NAME DESIRED CURRENT
READY AGE

nginx-deployment-example-54769f6df8 3 3
3 6m44s

nginx-deployment-example-85cd4bb66f 0 0
0 7m18s

7. You will see something interesting here: the old ReplicaSet remains in the cluster
but has been scaled down to zero pods! The reason for this is that we're keeping
the Deployment revision history – each revision has a matching ReplicaSet that
can be used if we need to roll back. The number of revisions that are kept for each
Deployment is controlled by the .spec.revisionHistoryLimit parameter –
by default, it is set to 10. Revision history is important, especially if you are making
imperative changes to your Deployments. If you are using the declarative model
and always committing your changes to a source code repository, then the revision
history may be less relevant.

8. Lastly, we can check if the Pods were indeed updated to a new image version. Use
the following command and verify one of the Pods in the output:

$ kubectl describe pods

...

Containers:

 nginx:

 Container ID: docker://
a3ff03abf8f76e0d128f5561b6b8fd0c7a355f0fb8a4d3d9ef45ed9
ee8adf23c

 Image: nginx:1.18

This shows that we have indeed performed a rollout of the new nginx container image
version!

344 Deployment – Deploying Stateless Applications

Tip
You can change the Deployment container image imperatively using the
kubectl set image deployment nginx-deployment-
example nginx=nginx:1.18 --record command. This approach
is only recommended for non-production scenarios, and it works well with
imperative rollbacks.

Next, you will learn how to roll back a deployment.

Rolling back a Deployment object
If you are using a declarative model to introduce changes to your Kubernetes cluster and
are committing each change to your source code repository, performing a rollback is
very simple and involves just reverting the commit and applying the configuration again.
Usually, the process of applying changes is performed as part of the CI/CD pipeline for
the source code repository, instead of the changes being manually applied by an operator.
This is the easiest way to manage Deployments, and this is generally recommended in the
Infrastructure-as-Code and Configuration-as-Code paradigms.

Tip
One very good example of using a declarative model in practice is Flux
(https://fluxcd.io/), which is a project that's currently incubating
at CNCF. Flux is the core of the approach known as GitOps, which is a way
of implementing continuous deployment for cloud-native applications. It
focuses on a developer-centric experience when operating the infrastructure by
using tools developers are already familiar with, including Git and continuous
deployment tools.

The Kubernetes CLI still provides an imperative way to roll back a deployment using
revision history. Imperative rollbacks can also be performed on Deployments that have
been updated declaratively. Now, we will demonstrate how to use kubectl for rollbacks.
Follow these steps:

1. First, let's imperatively roll out another version of our Deployment. This time, we
will update the nginx image to version 1.19:

$ kubectl set image deployment nginx-deployment-example
nginx=nginx:1.19 --record

deployment.apps/nginx-deployment-example image updated

https://fluxcd.io/

How does a Deployment object manage revisions and version rollout? 345

2. Using kubectl rollout status, wait for the end of the deployment:

$ kubectl rollout status deployment nginx-deployment-
example

...

deployment "nginx-deployment-example" successfully rolled
out

3. Now, let's suppose that the new version of the application image, 1.19, is causing
problems and that your team decides to roll back to the previous version of the
image, which was working fine.

4. Use the following kubectl rollout history command to see all the
revisions that are available for the Deployment:

$ kubectl rollout history deploy nginx-deployment-example

deployment.apps/nginx-deployment-example

REVISION CHANGE-CAUSE

1 kubectl apply --filename=./nginx-deployment-
rollingupdate.yaml --record=true

2 kubectl apply --filename=./nginx-deployment-
rollingupdate.yaml --record=true

3 kubectl set image deployment nginx-deployment-
example nginx=nginx:1.19 --record=true

5. As you can see, we have three revisions. The first revision is our initial creation of
the Deployment. The second revision is the declarative update of the Deployment
to the nginx:1.18 image. Finally, the third revision is our last imperative update
to the Deployment that caused the nginx:1.19 image to be rolled out. CHANGE-
CAUSE is the contents of the kubernetes.io/change-cause annotation,
which is added when you use the --record flag for your kubectl commands.

346 Deployment – Deploying Stateless Applications

6. The revisions that were created as a declarative change do not contain too much
information in CHANGE-CAUSE. To find out more about the second revision, you
can use the following command:

$ kubectl rollout history deploy nginx-deployment-example
--revision=2

deployment.apps/nginx-deployment-example with revision #2

Pod Template:

...

 Containers:

 nginx:

 Image: nginx:1.18

7. Now, let's perform a rollback to this revision. Because it is the previous revision, you
can simply execute the following command:

$ kubectl rollout undo deploy nginx-deployment-example

deployment.apps/nginx-deployment-example rolled back

8. This would be equivalent of executing a rollback to a specific revision number:

$ kubectl rollout undo deploy nginx-deployment-example
--to-revision=2

9. Again, as in the case of a normal rollout, you can use the following command to
follow the rollback:

$ kubectl rollout status deploy nginx-deployment-example

Please note that you can also perform rollbacks on currently ongoing rollouts. This can be
done in both ways; that is, declaratively and imperatively.

Tip
If you need to pause and resume the ongoing rollout of a Deployment, you
can use the kubectl rollout pause deployment nginx-
deployment-example and kubectl rollout resume
deployment nginx-deployment-example commands.

Congratulations – you have successfully rolled back your Deployment. In the next
section, we will provide you with a set of best practices for managing Deployment objects
in Kubernetes.

Deployment object best practices 347

Deployment object best practices
This section will summarize known best practices when working with Deployment objects
in Kubernetes. This list is by no means complete, but it is a good starting point for your
journey with Kubernetes.

Use declarative object management for Deployments
In the DevOps world, it is a good practice to stick to declarative models when introducing
updates to your infrastructure and applications. This is atthe core of the Infrastructure-
as-Code and Configuration-as-Code paradigms. In Kubernetes, you can easily perform
declarative updates using the kubectl apply command, which can be used on a single
file or even a whole directory of YAML manifest files.

Tip
To delete objects, it is still better to use imperative commands. It is more
predictable and less prone to errors. Declaratively deleting resources in your
cluster is only useful in CI/CD scenarios, where the whole process is entirely
automated.

The same principle also applies to Deployment objects. Performing a rollout or rollback
when your YAML manifest files are versioned and kept in a source control repository is
easy and predictable. Using the kubectl rollout undo and kubectl set image
deployment commands is generally not recommended in production environments.
Using these commands gets much more complicated when more than one person is
working on operations in the cluster.

Do not use the Recreate strategy for
production workloads
Using the Recreate strategy may be tempting as it provides instantaneous updates for
your Deployments. However, at the same time, this will mean downtime for your end
users. This is because all the existing Pods for the old revision of the Deployment will
be terminated at once and replaced with the new Pods. There may be a significant delay
before the new pods become ready, and this means downtime. This downtime can be
easily avoided by using the RollingUpdate strategy in production scenarios.

348 Deployment – Deploying Stateless Applications

Do not create Pods that match an existing
Deployment label selector
It is possible to create Pods with labels that match the label selector of some existing
Deployment. This can be done using bare Pods or another Deployment or ReplicaSet. This
leads to conflicts, which Kubernetes does not prevent, and makes the existing deployment
believe that it has created the other Pods. The results may be unpredictable and in
general, you need to pay attention to how you label the resources in your cluster. We
advise you to use semantic labeling here, which you can learn more about in the official
documentation: https://kubernetes.io/docs/concepts/configuration/
overview/#using-labels.

Carefully set up your container probes
The liveness, readiness, and startup probes of your Pod containers can provide a lot of
benefits but at the same time, if they have been misconfigured, they can cause outages,
including cascading failures. You should always be sure that you understand the
consequences of each probe going into a failed state and how it affects other Kubernetes
resources, such as Service objects.

There are a couple of established best practices for readiness probes that you should
consider:

• Use this probe whenever your containers may not be ready to serve traffic as soon as
the container is started.

• Ensure that you check things such as cache warm-ups or your database migration
status during readiness probe evaluation. You may also consider starting the actual
process of a warm-up if it has not been started yet, but use this approach with
caution – a readiness probe will be executed constantly throughout the life cycle of
a pod, which means you shouldn't perform any costly operations for every request.
Alternatively, you may want to use a startup probe for this purpose.

• For microservice applications that expose HTTP endpoints, consider configuring
the httpGet readiness probe. This will ensure that every basis is covered when a
container is successfully running but the HTTP server has not been fully initialized.

• It is a good idea to use a separate, dedicated HTTP endpoint for readiness checks in
your application. For example, a common convention is using /health.

https://kubernetes.io/docs/concepts/configuration/overview/#using-labels
https://kubernetes.io/docs/concepts/configuration/overview/#using-labels

Deployment object best practices 349

• If you are checking the state of your dependencies (external database, logging
services, and so on) in this type of probe, be careful with shared dependencies,
such as databases. In this case, you should consider using a probe timeout, which
is greater than the maximum allowed timeout for the external dependency
– otherwise, you may get cascading failures and lower availability instead of
occasionally increased latency.

Similar to readiness probes, there are a couple of guidelines on how and when you should
use liveness probes:

• Liveness probes should be used with caution. Incorrectly configuring this probe can
result in cascading failures in your services and container restart loops.

• Do not use liveness probes unless you have a good reason to do so. A good reason
may be, for example, if there's a known issue with a deadlock in your application
that has an unknown root cause.

• Execute simple and fast checks that determine the status of the process, not its
dependencies. In other words, you do not want to check you status of your external
dependencies in the liveness probe, since this can lead to cascading failures due to
an avalanche of container restarts and overloading a small subset of Service Pods.

• If the process running in your container can crash or exit whenever it encounters an
unrecoverable error, you probably do not need a liveness probe at all.

• Use conservative settings for initialDelaySeconds to avoid any premature
container restarts and falling into a restart loop.

These are the most important points concerning probes for Pods. Now, let's discuss how
you should tag your container images.

Use meaningful and semantic image tags
Managing deployment rollbacks and inspecting the history of rollouts requires that we
use good tagging for the container images. If you rely on the latest tag, performing
a rollback will not be possible because this tag points to a different version of the image as
time goes on. It is a good practice to use semantic versioning for your container images.
Additionally, you may consider tagging the images with a source code hash, such as
a Git commit hash, to ensure that you can easily track what is running in your Kubernetes
cluster.

350 Deployment – Deploying Stateless Applications

Migrating from older versions of Kubernetes
If you are working on workloads that were developed on older versions of Kubernetes,
you may notice that, starting with Kubernetes 1.16, you can't apply the Deployment to the
cluster because of the following error:

error: unable to recognize "deployment": no matches for kind
"Deployment" in version "extensions/v1beta1"

The reason for this is that in version 1.16, the Deployment object was removed from the
extensions/v1beta1 API group, according to the API versioning policy. You should
use the apps/v1 API group instead, which Deployment has been part of since 1.9. It is
becoming a stable feature.

This also shows an important rule to follow when you work with Kubernetes: always
follow the API versioning policy and try to upgrade your resources to the latest API
groups when you migrate to a new version of Kubernetes. This will save you unpleasant
surprises when the resource is eventually deprecated in older API groups.

Summary
In this chapter, you learned how to work with stateless workloads and applications on
Kubernetes using Deployment objects. First, you created an example Deployment and
exposed its Pods using a Service object of the LoadBalancer type for external traffic.
Next, you learned how to scale and manage Deployment objects in the cluster. The
management operations we covered included rolling out a new revision of a Deployment
and rolling back to an earlier revision in case of a failure. Lastly, we equipped you with
a set of known best practices when working with Deployment objects.

The next chapter will extend this knowledge with details about managing stateful
workloads and applications. While doing so, we will introduce a new Kubernetes object:
StatefulSet.

Further reading
For more information regarding Deployments and Services, please refer to the following
Packt books:

• The Complete Kubernetes Guide, by Jonathan Baier, Gigi Sayfan, Jesse White
(https://www.packtpub.com/virtualization-and-cloud/
complete-kubernetes-guide).

https://www.packtpub.com/virtualization-and-cloud/complete-kubernetes-guide
https://www.packtpub.com/virtualization-and-cloud/complete-kubernetes-guide

Further reading 351

• Getting Started with Kubernetes – Third Edition, by Jonathan Baier, Jesse White
(https://www.packtpub.com/virtualization-and-cloud/getting-
started-kubernetes-third-edition).

• Kubernetes for Developers, by Joseph Heck (https://www.packtpub.com/
virtualization-and-cloud/kubernetes-developers).

• Hands-On Kubernetes on Windows, by Piotr Tylenda (https://www.packtpub.
com/product/hands-on-kubernetes-on-windows/9781838821562).

• You can also refer to the excellent official Kubernetes documentation (https://
kubernetes.io/docs/home/), which is always the most up-to-date source of
knowledge for Kubernetes in general.

https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/kubernetes-developers
https://www.packtpub.com/virtualization-and-cloud/kubernetes-developers
https://www.packtpub.com/product/hands-on-kubernetes-on-windows/9781838821562
https://www.packtpub.com/product/hands-on-kubernetes-on-windows/9781838821562
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/

12
StatefulSet –

Deploying Stateful
Applications

In the previous chapter, we explained how you can use a Kubernetes cluster to run stateless
workloads and applications and how to use Deployment objects for this purpose. Running
stateless workloads in the cloud is generally easier to handle, as any container replica can
handle the request without taking any dependencies on the results of previous operations
by the end user. In other words, every container replica would handle the request in an
identical way; all you need to care about is proper load balancing.

However, stateless workloads are only the easier part of running cloud applications. The
main complexity is in managing the state of applications. By state, we mean any stored
data that the application or component needs to serve the requests and it can be modified
by these requests. The most common example of a stateful component in applications is
a database – for example, it can be a relational MySQL database or a NoSQL MongoDB
database. In Kubernetes, you can use a dedicated object to run stateful workloads and
applications: StatefulSet. When managing StatefulSet objects, you will usually need to
work with PVs which have been covered in Chapter 9, Persistent Storage in Kubernetes.
This chapter will provide you with knowledge about the role of StatefulSet in Kubernetes
and how to create and manage StatefulSet objects to release new versions of your
stateful applications.

354 StatefulSet – Deploying Stateful Applications

In this chapter, we will cover the following topics:

• Introducing the StatefulSet object

• Managing StatefulSet

• Releasing a new version of an app deployed as a StatefulSet

• StatefulSet best practices

Technical requirements
For this chapter, you will need the following:

• Kubernetes cluster deployed. You can use either a local or a cloud-based
cluster, but to fully understand the concepts, we recommend using a multi-
node, cloud-based Kubernetes cluster. The cluster must support the creation of
PersistentVolumeClaims – any cloud-based cluster will be sufficient, or locally, for
example, minikube with a k8s.io/minikube-hostpath provisioner.

• A Kubernetes CLI (kubectl) installed on your local machine and configured to
manage your Kubernetes cluster.

Kubernetes cluster deployment (local and cloud-based) and kubectl installation have
been covered in Chapter 3, Installing Your First Kubernetes Cluster.

You can download the latest code samples for this chapter from the official GitHub
repository at https://github.com/PacktPublishing/The-Kubernetes-
Bible/tree/master/Chapter12.

Introducing the StatefulSet object
You may wonder why running stateful workloads in the distributed cloud is generally
considered harder than stateless ones. In classic three-tier applications, all the states
would be stored in a database (data tier or persistence layer) and there would be nothing
special about it. For SQL servers, you would usually add a failover setup with data
replication, and in case you require superior performance, you would scale vertically by
simply purchasing better hardware for hosting. Then, at some point, you might think
about clustered SQL solutions, introducing data sharding (horizontal data partitions).
But still, from the perspective of a web server running your application, the database
would be just a single connection string to read and write the data. The database would be
responsible for persisting a mutable state.

https://github.com/PacktPublishing/The-Kubernetes-Bible/tree/master/Chapter12
https://github.com/PacktPublishing/The-Kubernetes-Bible/tree/master/Chapter12

Introducing the StatefulSet object 355

Important note
Remember that every application as a whole is, in some way, stateful unless it
serves static content only or just transforms user input. But this does not mean
that every component in the application is stateful. A web server that runs the
application logic will be a stateless component, but the database where this
application stores user input and user sessions will be a stateful component.

We will first explain how you approach managing state in containers and what we actually
consider an application or system state.

Managing state in containers
Now, imagine how this could work if you deployed your SQL server (single instance) in a
container. The first thing you would notice is that after restarting the container, you would
lose the data stored in the database – each time it is restarted, you get a fresh instance of
the SQL server. Containers are ephemeral. This doesn't sound too useful for our use case.
Fortunately, containers come with the option to mount data volumes. A volume can be,
for example, a host's directory, which will be mounted to a specific path in the container's
filesystem. Whatever you store in this path will be kept in the host filesystem even after the
container is terminated or restarted. In a similar way, you can use NFS share or a cloud-
managed disk instance as a volume. Now, if you configure your SQL server to put its data
files in the path where the volume is mounted, you achieve data persistence even if the
container restarts. The container itself is still ephemeral, but the data (state) is not.

This is a high-level overview of how the state can be persisted for plain containers, without
involving Kubernetes. But before we move on to Kubernetes, we need to clarify what we
actually regard as a state.

If you think about it, when you have a web server that serves just simple static content
(which means it is always the same, as a simple HTML web page), there is still some data
that is persisted, for example, the HTML files. However, this is not state: user requests
cannot modify this data, so previous requests from the user will not influence what is the
result of the current request. In the same way, configuration files for your web server are
not their state or log files written on the disk (well, that is arguable, but from the end user's
perspective, it is not).

356 StatefulSet – Deploying Stateful Applications

Now, if you have a web server that keeps user sessions and stores information about
whether the user is logged in, then this is indeed the state. Depending on this information,
the web server will return different web pages (responses) based on whether the user is
logged in. Let's say that this web server runs in a container – there is a catch whether it is
the stateful component in your application. If the web server process stores user sessions
as a file in the container (warning: this is probably quite a bad design), then the web server
container is a stateful component. But if it stores user sessions in a database or a Redis
cache running in separate containers, then the web server is stateless, and the database or
Redis container becomes the stateful component.

This is briefly how it looks from a single container perspective. We need now to zoom out
a bit and take a look at state management in Kubernetes Pods.

Managing state in Kubernetes Pods
In Kubernetes, the concept of container volumes is extended by PersistentVolumes
(PVs), PersistentVolumeClaims (PVCs), and StorageClasses (SCs), which are dedicated,
storage-related objects. PVC aims to decouple Pods from the actual storage. PVC is a
Kubernetes object that models a request for the storage of a specific type, class, or size –
think of saying I would like 10 GB of read/write-once SSD storage. To fulfill such a request,
a PV object is required, which is a piece of real storage that has been provisioned by the
cluster's automation process – think of this as a directory on the host system or cloud-
managed disk. PV types are implemented as plugins, similarly to volumes in Docker.
Now, the whole process of provisioning PV can be dynamic – it requires the creation
of an SC object and for this to be used when defining PVCs. When creating a new SC,
you provide a provisioner (or plugin) with specific parameters, and each PVC using the
given SC will automatically create a PV using the selected provisioner. The provisioners
may, for example, create cloud-managed disks to provide the backing storage. On top of
that, containers of a given Pod can share data using the same PV and mount it to their
filesystem.

This is just a brief overview of what Kubernetes provides for state storage. We have
covered this in more detail in Chapter 9, Persistent Storage in Kubernetes.

Introducing the StatefulSet object 357

On top of the management of state in a single Pod and its containers, there is the
management of state in multiple replicas of a Pod. Let's think about what would happen if
we used a Deployment object to run multiple Pods with MySQL Server. First, you would
need to ensure that the state is persisted on a volume in a container – for this, you can use
PVs in Kubernetes. But then you actually get multiple, separate MySQL servers, which
is not very useful if you would like to have high availability and fault tolerance. If you
expose such a deployment using a service, it will also be useless because each time, you
may hit a different Pod and get different data. So, you arrive either at designing a multi-
node failover setup with replication between the master and replicas or a complex cluster
with data sharding. In any case, your individual MySQL Server Pod replicas need to have
a unique identity and, preferably, predictable network names so that the Nodes and clients
can communicate.

Tip
When designing your cloud-native application for the Kubernetes cluster,
always analyze all the pros and cons of storing the state of the application as
stateful components running in Kubernetes. Generally, it is easier to outsource
the hard part of managing such components to dedicated, cloud-managed
services (for example, Amazon S3, Azure CosmosDB, or Google Cloud SQL).
Then, the Kubernetes cluster can be used just for running stateless components.

This is where StatefulSet comes in. Let's take a closer look at this Kubernetes object.

StatefulSet and how it differs from a Deployment
object
Kubernetes StatefulSet is a similar concept to a Deployment object – it also provides a
way of managing and scaling a set of Pods, but it provides guarantees about the ordering
and uniqueness (unique identity) of the Pods. In the same way as Deployment, it uses a
Pod template to define what each replica should look like. You can scale it up and down
and perform rollouts of new versions. But now, in StatefulSet, the individual Pod replicas
are not interchangeable. The unique, persistent identity for each Pod is maintained during
any rescheduling or rollouts – this includes Pod name and its cluster DNS names. This
unique, persistent identity can be used for clearly identifying PVs that are assigned to
each Pod, even if replaced following a failure. For this, StatefulSet provides another type
of template in its specification named volumeClaimTemplates. This template can be
used for the dynamic creation of the PVCs of a given SC. By doing this, the whole process
of storage provisioning is fully dynamic – you just create a StatefulSet and the underlying
storage objects are managed by the StatefulSet controller.

358 StatefulSet – Deploying Stateful Applications

Tip
Cluster DNS names of individual Pods in StatefulSet remain the same, but their
cluster IP addresses are not guaranteed to stay the same. This means that if you
need to connect to individual Pods in the StatefulSet, you should use cluster
DNS names.

Basically, you can use StatefulSet for applications that require the following:

• Persistent storage managed by the Kubernetes cluster (this is the main use case, but
not the only one)

• Stable and unique network identifiers (usually DNS names) for each Pod replica

• Ordered deployment and scaling

• Ordered, rolling updates

As you can see, StatefulSets can be seen as a more predictable version of a Deployment
object, with the possibility to use persistent storage provided by PVCs. To summarize, the
key differences between StatefulSet and Deployment are as follows:

• StatefulSet ensures a deterministic (sticky) name for Pods, which consists of
<statefulSetName>-<ordinal>. For Deployments, you would have a
random name consisting of <deploymentName>-<podTemplateHash>-
<randomHash>.

• For StatefulSet objects, the Pods are started and terminated in a specific and
predictable order while scaling the ReplicaSet.

• In terms of storage, Kubernetes creates PVCs based on volumeClaimTemplates
of the StatefulSet specification for each Pod in the StatefulSet and always attaches
this to the Pod with the same name. For Deployment, if you choose to use
persistentVolumeClaim in the Pod template, Kubernetes will create a single PVC
and attach the same to all the Pods in the deployment. This may be useful in certain
scenarios, but is not a common use case.

• You need to create a headless Service object that is responsible for managing the
deterministic network identity (cluster DNS names) for Pods. The headless Service
allows us to return all Pods IP addresses behind the service as DNS A records
instead of a single DNS A record with a ClusterIP Service. A headless Service
is only required if you are not using a regular service. The specification of StatefulSet
requires having the Service name provided in .spec.serviceName.

Now, let's take a look at a concrete example of StatefulSet that deploys nginx Pods with
the backing of persistent storage.

Managing StatefulSet 359

Managing StatefulSet
To demonstrate how StatefulSet objects work, we will modify our nginx deployment and
adapt it to be a StatefulSet. A significant part of the StatefulSet specification is the same as
for Deployments. As we would like to demonstrate how automatic management of PVCs
works in StatefulSet objects, we will use volumeClaimTemplates in the specification
to create PVCs and PVs, which the Pods will consume. Each Pod will internally mount
its assigned PV under the /usr/share/nginx/html path in the container filesystem,
which is the default location of nginx files that are served over HTTP. In this way, we can
demonstrate how the state is persisted, even if we forcefully restart Pods.

Important note
The example that we are going to use in this chapter is for demonstration
purposes only and is meant to be as simple as possible. If you are interested
in complex examples, such as deploying and managing distributed databases
in StatefulSets, please take a look at the official Kubernetes blog post about
deploying the Cassandra database: https://kubernetes.io/docs/
tutorials/stateful-application/cassandra/. Usually, the
main source of complexity in such cases is handling the joining and removal of
Pod replicas when scaling the StatefulSet.

We will now go through all the YAML manifests required to create our StatefulSet and
apply them to the cluster.

Creating a StatefulSet
First, let's take a look at the StatefulSet YAML manifest file named nginx-
statefulset.yaml (the full version is available in the official GitHub repository
for the book: https://github.com/PacktPublishing/Kubernetes-for-
Beginners/blob/master/Chapter12/01_statefulset-example/nginx-
statefulset.yaml):

apiVersion: apps/v1

kind: StatefulSet

metadata:

 name: nginx-statefulset-example

spec:

 replicas: 3

 serviceName: nginx-headless

 selector:

 matchLabels:

https://kubernetes.io/docs/tutorials/stateful-application/cassandra/
https://kubernetes.io/docs/tutorials/stateful-application/cassandra/
https://github.com/PacktPublishing/Kubernetes-for-Beginners/blob/master/Chapter12/01_statefulset-example/nginx-statefulset.yaml
https://github.com/PacktPublishing/Kubernetes-for-Beginners/blob/master/Chapter12/01_statefulset-example/nginx-statefulset.yaml
https://github.com/PacktPublishing/Kubernetes-for-Beginners/blob/master/Chapter12/01_statefulset-example/nginx-statefulset.yaml

360 StatefulSet – Deploying Stateful Applications

 app: nginx-stateful

 environment: test

(to be continued in the next paragraph)

The first part of the preceding file is very similar to the Deployment object specification,
where you need to provide the number of replicas and a selector for Pods. There is
one new parameter, serviceName, that we will explain shortly.

The next part of the file concerns specification of the Pod template that is used by the
StatefulSet:

(continued)

 template:

 metadata:

 labels:

 app: nginx-stateful

 environment: test

 spec:

 containers:

 - name: nginx

 image: nginx:1.17

 ports:

 - containerPort: 80

 volumeMounts:

 - name: nginx-data

 mountPath: /usr/share/nginx/html

 command:

 - /bin/sh

 - -c

 - |

 echo "You have been served by Pod with IP address:
$(hostname -i)" > /usr/share/nginx/html/index.html

 nginx -g "daemon off;"

(to be continued in the next paragraph)

Managing StatefulSet 361

If you look closely, you can observe that the structure is the same as for Deployments.
Also, the last part of the file contains volumeClaimTemplates, which is used to define
templates for PVC used by the Pod:

(continued)

 volumeClaimTemplates:

 - metadata:

 name: nginx-data

 spec:

 accessModes: ["ReadWriteOnce"]

 resources:

 requests:

 storage: 1Gi

As you can see, in general, the structure of the StatefulSet spec is similar to Deployment,
although it has a few extra parameters for configuring PVCs and associated Service
objects. The specification has five main components:

• replicas: Defines the number of Pod replicas that should run using the given
template and the matching label selector. Pods may be created or deleted to
maintain the required number.

• serviceName: The name of the service that governs StatefulSet and provides the
network identity for the Pods. This Service must be created before StatefulSet is
created. We will create the nginx-headless Service in the next step.

• selector: A label selector, which defines how to identify Pods that the StatefulSet
owns. This can include set-based and equality-based selectors.

• template: Defines the template for Pod creation. Labels used in metadata
must match the selector. Pod names are not random and follow the
<statefulSetName>-<ordinal> convention.

• volumeClaimTemplates: Defines the template for PVC that will be
created for each of the Pods. Each Pod in the StatefulSet object will get its
own PVC that is assigned to a given Pod name persistently. In our case, it is
a 1 GB volume with the ReadWriteOnce access mode. This access mode
allows the volume to be mounted for reads and writes by a single Node only.
We did not specify storageClassName, so the PVCs will be provisioned
using the default SC in the cluster. PVC names are not random and follow the
<volumeClaimTemplateName>-<statefulSetName>-<ordinal>
convention.

362 StatefulSet – Deploying Stateful Applications

Tip
The default SC in your cluster is marked with the storageclass.
kubernetes.io/is-default-class annotation. Whether you
have a default SC, and how it is defined, depends on your cluster deployment.
For example, in the Azure Kubernetes Service cluster, it will be an SC named
default that uses the kubernetes.io/azure-disk provisioner.
In minikube, it will be an SC named standard that uses the k8s.io/
minikube-hostpath provisioner.

The specification also contains other fields that are related to rolling out new revisions of
StatefulSet – we will explain these in more detail in the next section.

Apart from that, in our Pod template, we have used a similar override of the command for
the nginx container, as in the case of Deployment in the previous chapter. The command
creates an index.html file in /usr/share/nginx/html/ with information about
what the IP address of the Pod is that serves the request. After that, it starts the nginx
web server with the standard entry point command for the image.

Next, let's have a look at our headless Service named nginx-headless. Create a
nginx-headless-service.yaml file with the following content:

apiVersion: v1

kind: Service

metadata:

 name: nginx-headless

spec:

 selector:

 app: nginx-stateful

 environment: test

 clusterIP: None

 ports:

 - port: 80

 protocol: TCP

 targetPort: 80

Managing StatefulSet 363

The specification is very similar to the normal Service that we created previously for the
Deployment, the only difference is that it has the value None for the clusterIP field.
This will result in the creation of a headless Service, nginx-headless. A headless
Service allows us to return all Pods' IP addresses behind the Service as DNS A records
instead of a single DNS A record with a clusterIP Service. We will demonstrate
what this means in practice in the next steps.

Lastly, let's create a LoadBalancer Service YAML manifest file, nginx-client-
service.yaml. This Service will allow us to reach the StatefulSet from an external
network using a web browser:

apiVersion: v1

kind: Service

metadata:

 name: nginx-client

spec:

 selector:

 app: nginx-stateful

 environment: test

 type: LoadBalancer

 ports:

 - port: 80

 protocol: TCP

 targetPort: 80

The preceding specification is the same as we previously used for the Deployment
demonstration. The only difference is the name, which is now nginx-client.

With all the YAML manifest files, we can start deploying our example StatefulSet! Perform
the following steps:

1. Create a headless Service, nginx-headless, using the following command:

$ kubectl apply -f ./nginx-headless-service.yaml

2. Create a LoadBalancer Service, nginx-client, using the following command:

$ kubectl apply -f ./nginx-client-service.yaml

364 StatefulSet – Deploying Stateful Applications

3. Create a StatefulSet object, nginx-stateful-example, using the following
command:

$ kubectl apply -f ./nginx-statefulset.yaml

4. Now, you can use the kubectl describe command to observe the creation of
the StatefulSet object:

$ kubectl describe statefulset nginx-statefulset-example

5. Alternatively, you can use sts as an abbreviation for StatefulSet when using the
kubectl commands.

6. If you use the kubectl get pods command, you can see that the three desired
Pod replicas have been created. Note that this can take a bit of time as the Pods have
to get the PVs provisioned based on their PVCs:

$ kubectl get pods

NAME READY STATUS RESTARTS
AGE

nginx-statefulset-example-0 1/1 Running 0
7m

nginx-statefulset-example-1 1/1 Running 0
5m

nginx-statefulset-example-2 1/1 Running 0
4m

Please note the ordered, deterministic Pod naming – this is the key for providing a
unique identity to the Pods in the StatefulSet object.

7. If you describe one of the Pods, you will see more details about the associated PV
and PVC:

$ kubectl describe pod nginx-statefulset-example-1

...

Volumes:

 nginx-data:

 Type: PersistentVolumeClaim (a reference to a
PersistentVolumeClaim in the same namespace)

 ClaimName: nginx-data-nginx-statefulset-example-1

...

Events:

 Type Reason Age From

Managing StatefulSet 365

Message

 ---- ------ ---- ----

 Normal Scheduled 7m default-scheduler
Successfully assigned default/nginx-statefulset-example-1
to aks-nodepool1-77120516-vmss000001

 Normal SuccessfulAttachVolume 7m attachdetach-
controller AttachVolume.Attach succeeded for volume
"pvc-6b2b1ad8-5b08-4d3e-bac9-6f7ec7de7d40"

 Normal Pulled 6m kubelet
Container image "nginx:1.17" already present on machine

 Normal Created 6m kubelet
Created container nginx

 Normal Started 6m kubelet
Started container nginx

As you can see, the PVC used by this Pod is named nginx-data-nginx-
statefulset-example-1. Additionally, right after the Pod was scheduled on its
target Node, the PV, pvc-6b2b1ad8-5b08-4d3e-bac9-6f7ec7de7d40, has
been provisioned based on the PVC and attached to the Pod. After that, the actual
container, which internally mounts this PV, has been created.

8. Using the kubectl get command, we can reveal more details about the PVC:

$ kubectl get pvc nginx-data-nginx-statefulset-example-1

NAME STATUS VOLUME
CAPACITY ACCESS MODES STORAGECLASS AGE

nginx-data-nginx-statefulset-example-1 Bound
pvc-6b2b1ad8-5b08-4d3e-bac9-6f7ec7de7d40 1Gi RWO
default 43m

9. And finally, let's take a look at the PV that was provisioned:

$ kubectl describe pv pvc-6b2b1ad8-5b08-4d3e-bac9-
6f7ec7de7d40

...

Source:

 Type: AzureDisk (an Azure Data Disk mount on
the host and bind mount to the pod)

 DiskName: kubernetes-dynamic-pvc-6b2b1ad8-5b08-
4d3e-bac9-6f7ec7de7d40

 DiskURI: /subscriptions/cc9a8166-829e-401e-

366 StatefulSet – Deploying Stateful Applications

a004-76d1e3733b8e/resourceGroups/mc_k8sforbeginners-rg_
k8sforbeginners-aks_eastus/providers/Microsoft.Compute/
disks/kubernetes-dynamic-pvc-6b2b1ad8-5b08-4d3e-bac9-
6f7ec7de7d40

...

In our example, as we are demonstrating this using Azure Kubernetes Service, the
PV was provisioned using AzureDisk, and you can also see the actual resource ID
that you can find in Azure Portal.

We have successfully created the StatefulSet object and now it is time to verify whether it
works as expected in a basic scenario. Please follow these steps:

1. Get the external IP address of the nginx-client Service so that we can use it to
access via a web browser:

$ kubectl describe svc nginx-client

...

LoadBalancer Ingress: 104.45.176.241

...

2. In our example, it is 104.45.176.241, and we will use it in subsequent steps.
Navigate to http://104.45.176.241 in your favorite web browser:

Figure 12.1 – Successful request to the nginx web server running in StatefulSet

If you refresh the page a few times (with the browser cache disabled), you will notice that
you are served by three different Pods. This is as expected – we are currently running
three Pod replicas in our StatefulSet object.

We will now take a quick look at how the headless Service behaves.

Managing StatefulSet 367

Using the headless Service and stable network
identities
Let's do an experiment that demonstrates how the headless Service is used to provide
stable and predictable network identities for our Pods:

1. Create an interactive busybox Pod and start the Bourne shell process. The
following command will create the Pod and immediately attach your terminal so
that you can interact from within the Pod:

$ kubectl run -i --tty busybox --image=busybox:1.28 --rm
--restart=Never -- sh

2. First, we need to check how our normal service, nginx-client, with
ClusterIP assigned, is resolved by the cluster DNS:

$ nslookup nginx-client

Server: 10.0.0.10

Address 1: 10.0.0.10 kube-dns.kube-system.svc.cluster.
local

Name: nginx-client

Address 1: 10.0.147.198 nginx-client.default.svc.cluster.
local

As you would expect, the response from DNS is that we have A record that points
to the service ClusterIP 10.0.147.198.

3. Perform a similar check for the headless Service, nginx-headless:

$ nslookup nginx-headless

Server: 10.0.0.10

Address 1: 10.0.0.10 kube-dns.kube-system.svc.cluster.
local

Name: nginx-headless

Address 1: 10.244.1.103 nginx-statefulset-example-0.
nginx-headless.default.svc.cluster.local

Address 2: 10.244.0.77 nginx-statefulset-example-1.nginx-
headless.default.svc.cluster.local

Address 3: 10.244.1.104 nginx-statefulset-example-2.
nginx-headless.default.svc.cluster.local

368 StatefulSet – Deploying Stateful Applications

In this case, we have received three A records that point directly to Pod IP
addresses. Additionally, they have CNAME records in the form of <podName>-
<serviceName>.<namespace>.svc.cluster.local. So, the difference
here is that a Service that has ClusterIP will get load balancing to a virtual IP
level (which, on Linux, is usually handled at a kernel level by iptables rules
configured by kube-proxy) whereas, in the case of the headless Service, the
responsibility for load balancing or choosing the target Pod is on the client making
the request.

4. Having predictable FQDNs for Pods in the StatefulSet gives us the option to send the
requests directly to individual Pods, without guessing their IP addresses or names.
Let's try getting the contents served by the nginx-statefulset-example-0
Pod using its short DNS name provided by the headless Service:

$ wget http://nginx-statefulset-example-0.nginx-headless
&& cat index.html

Connecting to nginx-statefulset-example-0.nginx-headless
(10.244.1.103:80)

...

You have been served by Pod with IP address: 10.244.1.103

As expected, you have connected directly to the Pod IP address and have been
served by the proper Pod.

5. Now, we will show that this DNS name remains unchanged even if a Pod is
restarted. The IP of the Pod will change, but the DNS name will not. What is more,
the PV that is mounted will also stay the same, but we will investigate this in the
next paragraphs. In another shell window, outside of the container, execute the
following command to force a restart of the nginx-statefulset-example-0
Pod:

$ kubectl delete pod nginx-statefulset-example-0

6. In the busybox shell, execute the same command for getting contents served by
the nginx-statefulset-example-0 Pod:

$ rm index.html && wget http://nginx-statefulset-
example-0.nginx-headless && cat index.html

Connecting to nginx-statefulset-example-0.nginx-headless
(10.244.1.113:80)

...

You have been served by Pod with IP address: 10.244.1.113

Managing StatefulSet 369

You can see that we used the same DNS name to call the Pod. We have been served
by a Pod with the same name, but now with a different IP address.

This explains how the headless Services can be leveraged to get a stable and predictable
network identity that will not change when a Pod is restarted. You may wonder what the
actual use of this is and why it is important for StatefulSet objects. There are a couple of
possible use cases:

• Deploying clustered databases, such as etcd or MongoDB, requires specifying
network addresses of other Nodes in the database cluster. This is especially
necessary if there are no automatic discovery capabilities provided by the database.
In such cases, stable DNS names provided by headless Services help to run such
clusters on Kubernetes as StatefulSets. There is still the problem of changing
the configuration when Pod replicas are added or removed from the StatefulSet
during scaling. In some cases, this is solved by the sidecar container pattern, which
monitors the Kubernetes API to dynamically change the database configuration.

• If you decide to implement your own storage solution running as StatefulSet with
advanced data sharding, you will most likely need mappings of logical shards to
physical Pod replicas in the cluster. Then, the stable DNS names can be used as
part of this mapping. They will guarantee that queries for each logical shard are
performed against a proper Pod, irrespective of whether it was rescheduled to
another Node or restarted.

Finally, let's take a look at the state persistence for Pods running in StatefulSet.

State persistence
To demonstrate how persisting state in StatefulSets works, we will use the kubectl
exec commands to introduce changes to the mounted PV. This is the easiest way in
which we can show that the files are persisted during Pod restarts or reschedules – in real-
world use cases, changes to the state would be done by the actual application, for example,
a database container writing files to the container filesystem. Perform the following steps:

1. Use the kubectl exec command to create a file named state.html in the /
usr/share/nginx/html directory in each of three nginx Pod containers.
This path is where the PV is mounted based on volumeClaimTemplates of the
StatefulSet object:

$ kubectl exec -it nginx-statefulset-example-0 -- /bin/
sh -c "echo State of Pod 0 > /usr/share/nginx/html/state.
html"

$ kubectl exec -it nginx-statefulset-example-1 -- /bin/

370 StatefulSet – Deploying Stateful Applications

sh -c "echo State of Pod 1 > /usr/share/nginx/html/state.
html"

$ kubectl exec -it nginx-statefulset-example-2 -- /bin/
sh -c "echo State of Pod 2 > /usr/share/nginx/html/state.
html"

2. Navigate in your web browser to the external IP of the Service and the state.
html file. In our example, it is http://104.45.176.241/state.html. You
will see that you have been served one of the files that we created, depending on
which Pod you have hit. If you refresh the page, with the cache disabled, you will see
that the contents change depending on the Pod:

Figure 12.2 – Accessing the state.html file persisted in StatefulSet

3. Use the kubectl get pods command to see the current IP addresses of the
Pods in the StatefulSet object:

$ kubectl get pods -o wide

NAME ... IP ...

nginx-statefulset-example-0 ... 10.244.1.113 ...

nginx-statefulset-example-1 ... 10.244.0.77 ...

nginx-statefulset-example-2 ... 10.244.1.104 ...

4. Now, let's simulate failure to our Pods and use the kubectl delete command in
order to delete all three of them. This will cause them to be recreated by StatefulSet:

$ kubectl delete pod nginx-statefulset-example-0 nginx-
statefulset-example-1 nginx-statefulset-example-2

pod "nginx-statefulset-example-0" deleted

pod "nginx-statefulset-example-1" deleted

pod "nginx-statefulset-example-2" deleted

Managing StatefulSet 371

5. StatefulSet object will recreate the Pods in an ordered fashion, waiting for each of
them to be ready. You can use the kubectl get command with an additional -w
flag to follow the process in real time and eventually, you will be presented with all
Pods being ready:

$ kubectl get pods -o wide -w

NAME ... AGE IP
...

nginx-statefulset-example-0 ... 3m58s 10.244.1.115
...

nginx-statefulset-example-1 ... 3m49s 10.244.0.79
...

nginx-statefulset-example-2 ... 92s 10.244.1.116
...

6. As you can see, the Pods have received new IPs. The containers that they are
running are freshly created, but the existing PVC was used to mount PV to the
containers. Once PVC is created by StatefulSet, it will not be deleted when you
delete or scale the StatefulSet object. This ensures that data is not lost, unless you
explicitly delete the PVC and PV yourself. If you navigate to the external IP of the
Service for the StatefulSet object to get state.html, you will see that the file is
still being served, even though it is not present in the original container image:

Figure 12.3 – Accessing the state.html file persisted in StatefulSet after the Pods restart

7. Lastly, let's show that when accessing the state.html file via the headless Service,
we are getting the same result:

$ kubectl run -i --tty busybox --image=busybox:1.28 --rm
--restart=Never -- sh

If you don't see a command prompt, try pressing enter.

/ # wget http://nginx-statefulset-example-0.nginx-
headless/state.html && cat state.html

Connecting to nginx-statefulset-example-0.nginx-headless
(10.244.1.115:80)

372 StatefulSet – Deploying Stateful Applications

...

State of Pod 0

This demonstration shows how StatefulSet can provide state and data persistence for your
containerized applications using stable network identities and PVCs. Next, we will take a
look at scaling the StatefulSet object.

Scaling StatefulSet
In the case of StatefulSets, you can do similar scaling operations as for Deployment objects
by changing the number of replicas in the specification or using the kubectl scale
imperative command. The new Pods will be automatically discovered as new Endpoints
for the Service when you scale up, or automatically removed from the Endpoints list when
you scale down.

However, there are a few differences when compared to Deployment objects:

• When you deploy a StatefulSet object of N replicas, the Pods during deployment are
created sequentially, in order from 0 to N-1. In our example, during the creation of
a StatefulSet object of three replicas, the first nginx-statefulset-example-0
Pod is created, followed by nginx-statefulset-example-1, and finally
nginx-statefulset-example-2.

• When you scale up the StatefulSet, the new Pods are also created sequentially and in
an ordered fashion.

• When you scale down the StatefulSet, the Pods are terminated sequentially, in
reverse order, from N-1 to 0. In our example, while scaling down the StatefulSet
object to zero replicas, the first nginx-statefulset-example-2 Pod is
terminated, followed by nginx-statefulset-example-1, and finally nginx-
statefulset-example-0.

• During scaling up of the StatefulSet object, before the next Pod is created in the
sequence, all its predecessors must be running and ready.

• During scaling down of the StatefulSet object, before the next Pod is terminated in
the reverse sequence, all its predecessors must be completely terminated and deleted.

Managing StatefulSet 373

• Also, in general, before any scaling operation is applied to a Pod in a StatefulSet
object, all its predecessors must be running and ready. This means that if, during
scaling down from four replicas to one replica, the nginx-statefulset-
example-0 Pod were to suddenly fail, then no further scaling operation would be
performed on nginx-statefulset-example-1, nginx-statefulset-
example-2, and nginx-statefulset-example-3 Pods. Scaling would
resume when the nginx-statefulset-example-0 Pod becomes ready again.

Tip
This sequential behavior of scaling operations can be relaxed by changing the
.spec.podManagementPolicy field in the specification. The default
value is OrderedReady. If you change it to Parallel, the scaling
operations will be performed on Pods in parallel, similar to what you know
from Deployment objects. Note that this affects only scaling operations.
The way of updating StatefulSet object with updateStrategy of the
RollingUpdate type does not change.

Equipped with this knowledge, let's scale up our StatefulSet declaratively:

1. Open the nginx-statefulset.yaml manifest file and modify the number of
replicas:

apiVersion: apps/v1

kind: StatefulSet

metadata:

 name: nginx-statefulset-example

spec:

 replicas: 5

...

2. Apply the changes to the cluster using the kubectl apply command:

$ kubectl apply -f ./nginx-statefulset.yaml –record

statefulset.apps/nginx-statefulset-example configured

3. If you now check the Pods using the kubectl get pods -w command, you
will see the sequential, ordered creation of new Pods. The nginx-statefulset-
example-4 Pod will not start creating until nginx-statefulset-example-3
has been created and becomes ready.

374 StatefulSet – Deploying Stateful Applications

Similarly, if you check the output of the kubectl describe command for the
StatefulSet object, you will see the following in the events:

$ kubectl describe sts nginx-statefulset-example

...

Events:

 Type Reason Age From
Message

 ---- ------ ---- ----

 Normal SuccessfulCreate 2m31s
statefulset-controller create Pod nginx-statefulset-
example-3 in StatefulSet nginx-statefulset-example
successful

 Normal SuccessfulCreate 117s
statefulset-controller create Claim nginx-data-nginx-
statefulset-example-4 Pod nginx-statefulset-example-4 in
StatefulSet nginx-statefulset-example success

 Normal SuccessfulCreate 117s
statefulset-controller create Pod nginx-statefulset-
example-4 in StatefulSet nginx-statefulset-example
successful

You can achieve the same result using the imperative command, which is
recommended only for development scenarios:

$ kubectl scale sts nginx-statefulset-example
--replicas=5

statefulset.apps/nginx-statefulset-example scaled

4. To perform the scaling down of our StatefulSet object declaratively, simply modify
the nginx-statefulset.yaml manifest file and change the number of replicas:

apiVersion: apps/v1

kind: StatefulSet

metadata:

 name: nginx-statefulset-example

spec:

 replicas: 2

...

Managing StatefulSet 375

5. Apply the changes to the cluster using the kubectl apply command:

$ kubectl apply -f ./nginx-statefulset.yaml --record

You can achieve the same result using imperative commands by executing the following
command:

$ kubectl scale sts nginx-statefulset-example --replicas=2

If you describe the StatefulSet object, you will see in the events that the scaling down is
reflected:

$ kubectl describe sts nginx-statefulset-example

...

Events:

 Type Reason Age From
Message

 ---- ------ ---- ----

 Normal SuccessfulDelete 61s (x2 over 32m) statefulset-
controller delete Pod nginx-statefulset-example-3 in
StatefulSet nginx-statefulset-example successful

 Normal SuccessfulDelete 30s statefulset-
controller delete Pod nginx-statefulset-example-2 in
StatefulSet nginx-statefulset-example successful

Of course, if you scale the StatefulSet object back to three replicas, and attempt to get
state.html for the nginx-statefulset-example-2 Pod replica, you will get the
expected, persisted file contents. PVs and PVCs are not deleted during any Pod operations
in the StatefulSet object.

Next, we will demonstrate how you can delete a StatefulSet object.

Deleting a StatefulSet
To delete a StatefulSet object, there are two possibilities:

• Delete the StatefulSet together with Pods that it owns.

• Delete the StatefulSet and leave the Pods unaffected.

In both cases, the PVCs and PVs that were created for the Pods using
volumeClaimTemplates will not be deleted. This ensures that state data is not lost
accidentally unless you explicitly clean up the PVCs and PVs.

376 StatefulSet – Deploying Stateful Applications

Important note
Currently, there is a Kubernetes Enhancement Proposal (KEP) 1847 that
proposes a way of requesting the automatic deletion of PVCs for StatefulSet
object. This KEP is likely to appear in future releases. You can find more
details at https://github.com/kubernetes/enhancements/
tree/33e16e4d192153d8b41d1e5d91659612d6d633f4/
keps/sig-apps/1847-autoremove-statefulset-pvcs.

To delete the StatefulSet object together with Pods, you can use the regular kubectl
delete command:

$ kubectl delete sts nginx-statefulset-example

You will see that the Pods will be terminated first, followed by the StatefulSet object.
Please note that this operation is different from scaling down the StatefulSet object to zero
replicas and then deleting it. If you delete StatefulSet object with existing Pods, there are
no guarantees regarding the order of termination of the individual Pods. In most cases,
they will be terminated at once.

Optionally, if you would like to delete just the StatefulSet object, you need to use the
--cascade=orphan option for kubectl delete:

$ kubectl delete sts nginx-statefulset-example --cascade=orphan

After this command, if you inspect what Pods are in the cluster, you will still see all the
Pods that were owned by the nginx-statefulset-example StatefulSet.

Lastly, if you would like to clean up PVCs and PVs after deleting the StatefulSet object,
you need to perform this step manually.

Important note
Please note that if you want to perform verifications of state persistence after
exercising the new version rollout in the next section, you should not yet delete
the PVCs. Otherwise, you will lose the state.html files stored in the PVs.

Use the following command:

$ kubectl delete pvc nginx-data-nginx-statefulset-example-0
nginx-data-nginx-statefulset-example-1 nginx-data-nginx-
statefulset-example-2

This command will delete PVCs and associated PVs.

https://github.com/kubernetes/enhancements/tree/33e16e4d192153d8b41d1e5d91659612d6d633f4/keps/sig-apps/1847-autoremove-statefulset-pvcs
https://github.com/kubernetes/enhancements/tree/33e16e4d192153d8b41d1e5d91659612d6d633f4/keps/sig-apps/1847-autoremove-statefulset-pvcs
https://github.com/kubernetes/enhancements/tree/33e16e4d192153d8b41d1e5d91659612d6d633f4/keps/sig-apps/1847-autoremove-statefulset-pvcs

Releasing a new version of an app deployed as a StatefulSet 377

Next, let's take a look at releasing new versions of apps deployed as StatefulSets and how
StatefulSet revisions are managed.

Releasing a new version of an app deployed as
a StatefulSet
We have just covered the scaling of StatefulSets in the previous section by making changes
to the .spec.replicas number in the specification. Everything you have learned
about sequential and ordered changes to the Pods plays an important role in rolling out
a new revision of a StatefulSet object when using the RollingUpdate strategy. There
are many similarities between StatefulSets and Deployment objects – we have covered
the details of Deployment updates in Chapter 11, Deployment – Deploying Stateless
Applications. Making changes to the StatefulSet Pod template (.spec.template) in the
specification will also cause the rollout of a new revision for StatefulSet. Usually, you will
change the image used by the Pod container to a new version – this is how you perform
the release of a new version of an app deployed as StatefulSet.

StatefulSets support two types of update strategies that you define using the .spec.
updateStrategy.type field in the specification:

• RollingUpdate: The default strategy, which allows you to roll out a new
version of your application in a controlled way. This is slightly different to the
RollingUpdate strategy known from Deployment objects. For StatefulSet, this
strategy will terminate and recreate Pods in a sequential and ordered fashion and
make sure that the Pod is recreated and in a ready state before proceeding to the
next one.

• OnDelete: This strategy implements the legacy behavior of StatefulSet updates
prior to Kubernetes 1.7. However, it is still useful! In this type of strategy, the
StatefulSet will not automatically update the Pod replicas by recreating them. You
need to manually delete a Pod replica to get the new Pod template applied. This
is useful in scenarios when you need to perform additional manual actions or
verifications before proceeding to the next Pod replica. For example, if you are
running a Cassandra cluster or etcd cluster in a StatefulSet, you may want to verify
whether the new Pod has correctly joined the existing cluster following removal of
the previous version of the Pod. Of course, it is possible to perform similar checks
using the Pod template life cycle postStart and preStop hooks while using the
RollingUpdate strategy, but this requires more sophisticated error handling in
the hooks.

378 StatefulSet – Deploying Stateful Applications

Let's now take a closer look at the RollingUpdate strategy, as it is the most important
and the most commonly used update strategy for StatefulSets. The key thing about this is
that the strategy respects all the StatefulSet guarantees that we explained in the previous
section regarding scaling. The rollout is done in reverse order, for example, the first
Pod, nginx-statefulset-example-2, is recreated with the new Pod template,
followed by nginx-statefulset-example-1, and finally nginx-statefulset-
example-0.

If the process of rollout fails (not necessarily the Pod that was currently recreated), the
StatefulSet controller is going to restore any failed Pod to its current version. This means
that Pods that have already received a successful update to the current version will remain
at the current version, whereas the Pods that have not yet received the update will remain
at the previous version. In this way, the StatefulSet attempts to always keep applications
healthy and consistent. However, this can also lead to broken rollouts of StatefulSets. If
one of the Pod replicas never becomes running and ready, then the StatefulSet will stop
the rollout and wait for manual intervention. Applying the template again to the previous
revision of StatefulSet is not enough – this operation will not proceed as StatefulSet will
wait for the failed Pod to become ready. The only resolution is manual deletion of the
failed Pod and then the StatefulSet can apply the previous revision of the Pod template.

Lastly, the RollingUpdate strategy also provides the option to execute staged rollouts
using the .spec.updateStrategy.rollingUpdate.partition field. This field
defines a number for which all the Pod replicas that have a lesser ordinal number will not
be updated, and, even if they are deleted, they will be recreated at the previous version. So,
in our example, if partition were to be set to 1, this means that during the rollout, only
nginx-statefulset-example-1 and nginx-statefulset-example-2 would
be updated, whereas nginx-statefulset-example-0 would remain unchanged and
running on the previous version. By controlling the partition field, you can easily roll
out a single canary replica and perform phased rollouts. Please note that the default value
is 0, which means that all Pod replicas will be updated.

Now, we will release a new version of our nginx web server using the RollingUpdate
strategy.

Releasing a new version of an app deployed as a StatefulSet 379

Updating StatefulSet
We will now demonstrate how to do a rollout of a new image version for a Pod container
using the StatefulSet YAML manifest file that we created previously:

1. Make a copy of the previous YAML manifest file:

$ cp nginx-statefulset.yaml nginx-statefulset-
rollingupdate.yaml

2. Ensure that you have RollingUpdate strategy type and partition set to 0. Please
note that if you have attempted to create the StatefulSet object with a different
strategy first, you will not be able to modify it without deleting the StatefulSet
beforehand:

apiVersion: apps/v1

kind: StatefulSet

metadata:

 name: nginx-statefulset-example

spec:

 replicas: 3

 serviceName: nginx-headless

 podManagementPolicy: OrderedReady

 updateStrategy:

 type: RollingUpdate

 rollingUpdate:

 partition: 0

...

 template:

...

 spec:

 containers:

 - name: nginx

 image: nginx:1.17

These values are the default ones, but it is worth specifying them explicitly to
understand what is really happening.

3. Apply the manifest file to the cluster:

$ kubectl apply -f ./nginx-statefulset-rollingupdate.yaml
--record

380 StatefulSet – Deploying Stateful Applications

When the StatefulSet is ready in the cluster, we can now roll out a new version of the
nginx container image for our StatefulSet object. To do that, please perform the
following steps:

1. Modify the container image used in the StatefulSet Pod template to nginx:1.18:

apiVersion: apps/v1

kind: StatefulSet

metadata:

 name: nginx-statefulset-example

spec:

...

 template:

...

 spec:

 containers:

 - name: nginx

 image: nginx:1.18

2. Apply the changes to the cluster using the following command:

$ kubectl apply -f ./nginx-statefulset-rollingupdate.yaml
--record

statefulset.apps/nginx-statefulset-example configured

3. Immediately after that, use the kubectl rollout status command to
see the progress in real time. This process will be a bit longer than in the case of
Deployment objects because the rollout is performed in a sequential and ordered
fashion:

$ kubectl rollout status sts nginx-statefulset-example

Waiting for partitioned roll out to finish: 0 out of 3
new pods have been updated...

Waiting for 1 pods to be ready...

Waiting for 1 pods to be ready...

Waiting for partitioned roll out to finish: 1 out of 3
new pods have been updated...

Waiting for 1 pods to be ready...

Waiting for 1 pods to be ready...

Waiting for partitioned roll out to finish: 2 out of 3
new pods have been updated...

Releasing a new version of an app deployed as a StatefulSet 381

Waiting for 1 pods to be ready...

Waiting for 1 pods to be ready...

partitioned roll out complete: 3 new pods have been
updated...

4. Similarly, using the kubectl describe command, you can see events for the
StatefulSet that demonstrate precisely what the order of Pod replica recreation was:

$ kubectl describe sts nginx-statefulset-example

...

Events:

 Type Reason Age From
Message

 ---- ------ ---- ----

 Normal SuccessfulDelete 3m12s
statefulset-controller delete Pod nginx-statefulset-
example-2 in StatefulSet nginx-statefulset-example
successful

 Normal SuccessfulCreate 2m34s (x2 over 12m)
statefulset-controller create Pod nginx-statefulset-
example-2 in StatefulSet nginx-statefulset-example
successful

 Normal SuccessfulDelete 2m25s
statefulset-controller delete Pod nginx-statefulset-
example-1 in StatefulSet nginx-statefulset-example
successful

 Normal SuccessfulCreate 105s (x2 over 13m)
statefulset-controller create Pod nginx-statefulset-
example-1 in StatefulSet nginx-statefulset-example
successful

 Normal SuccessfulDelete 99s
statefulset-controller delete Pod nginx-statefulset-
example-0 in StatefulSet nginx-statefulset-example
successful

 Normal SuccessfulCreate 64s (x2 over 13m)
statefulset-controller create Pod nginx-statefulset-
example-0 in StatefulSet nginx-statefulset-example
successful

382 StatefulSet – Deploying Stateful Applications

As expected, the rollout was done in reverse order. The first Pod to recreate was
nginx-statefulset-example-2, followed by nginx-statefulset-
example-1, and finally nginx-statefulset-example-0. Also, because we
have used the default partition value of 0, all the Pods were updated. This is
because all ordinal numbers of Pod replicas are greater than or equal to 0.

5. Now we can verify that the Pods were recreated with the new image. Execute the
following command to verify the first Pod replica in the StatefulSet object:

$ kubectl describe pod nginx-statefulset-example-0

...

Containers:

 nginx:

 Container ID: docker://031627cbea4c60194f7a2774ef965
ad52f6460f07bc44f7b426ff74a4ccad479

 Image: nginx:1.18

6. And finally, we can verify that the state was persisted because the existing PVCs
were used for the new Pods. Please note that this will only work properly if you
haven't deleted the PVCs for the StatefulSet manually in the previous section:

$ kubectl run -i --tty busybox --image=busybox:1.28 --rm
--restart=Never -- sh

If you don't see a command prompt, try pressing enter.

/ # wget http://nginx-statefulset-example-0.nginx-
headless/state.html && cat state.html

Connecting to nginx-statefulset-example-0.nginx-headless
(10.244.1.135:80)

...

State of Pod 0

As you can see, the rollout of a new version of nginx was completed successfully and the
state has been persisted even though the Pods were recreated.

Tip
You can change the StatefulSet container image imperatively using the
kubectl set image sts nginx-statefulset-example
nginx=nginx:1.18 --record command. This approach is only
recommended for non-production scenarios. In general, StatefulSets are much
easier to manage declaratively than imperatively.

Releasing a new version of an app deployed as a StatefulSet 383

Now, we will show how you can use the partition field to do a phased rollout with a
canary. Assume we would like to update the nginx image version to 1.19. You would
like to make sure that the change is working properly in your environment, using a canary
deployment, which is a single Pod replica updated to the new image version. Please refer
to the following steps:

1. Modify the nginx-statefulset-rollingupdate.yaml manifest file so that
the Pod container image version is nginx:1.19 and the partition number is
equal to current replicas, in our case 3:

apiVersion: apps/v1

kind: StatefulSet

metadata:

 name: nginx-statefulset-example

spec:

 replicas: 3

 serviceName: nginx-headless

 podManagementPolicy: OrderedReady

 updateStrategy:

 type: RollingUpdate

 rollingUpdate:

 partition: 3

...

 template:

...

 spec:

 containers:

 - name: nginx

 image: nginx:1.19

When the partition number is the same as the number of replicas, we
can apply the YAML manifest to the cluster and no changes to the Pods will be
introduced yet. This is called staging a rollout.

2. Apply the manifest file to the cluster:

$ kubectl apply -f ./nginx-statefulset-rollingupdate.yaml
--record

statefulset.apps/nginx-statefulset-example configured

384 StatefulSet – Deploying Stateful Applications

3. Now, let's create a canary for our new version. Decrease the partition
number by one to 2 in the manifest file. This means that all Pod replicas with
an ordinal number of less than 2 will not be updated – in our case, the nginx-
statefulset-example-2 Pod only, and all others will remain unchanged:

apiVersion: apps/v1

kind: StatefulSet

metadata:

 name: nginx-statefulset-example

spec:

 replicas: 3

 serviceName: nginx-headless

 podManagementPolicy: OrderedReady

 updateStrategy:

 type: RollingUpdate

 rollingUpdate:

 partition: 2

...

4. Apply the manifest file to the cluster again:

$ kubectl apply -f ./nginx-statefulset-rollingupdate.yaml
--record

statefulset.apps/nginx-statefulset-example configured

5. Use the kubectl rollout status command to follow the process. As
expected, only one Pod will be recreated:

$ kubectl rollout status sts nginx-statefulset-example

Waiting for 1 pods to be ready...

partitioned roll out complete: 1 new pods have been
updated...

6. If you describe the nginx-statefulset-example-1 and nginx-
statefulset-example-2 Pods, you can see that the first one is using the old
version of the image, whereas the second is using the new one:

$ kubectl describe pod nginx-statefulset-example-1

...

Containers:

 nginx:

Releasing a new version of an app deployed as a StatefulSet 385

 Container ID: docker://031627cbea4c60194f7a2774ef965
ad52f6460f07bc44f7b426ff74a4ccad479

 Image: nginx:1.18

...

$ kubectl describe pod nginx-statefulset-example-2

...

Containers:

 nginx:

 Container ID: docker://1c3b1e4dc7bb048d407f8aef2da91
8bf8ef2a8e8c2258b53b847c06bff2efbc5

 Image: nginx:1.19

...

7. At this point, you would like to perform verifications and smoke tests on your
canary. For that, we will try getting the state.html file directly via the headless
Service:

$ kubectl run -i --tty busybox --image=busybox:1.28 --rm
--restart=Never -- sh

If you don't see a command prompt, try pressing enter.

/ # wget http://nginx-statefulset-example-2.nginx-
headless/state.html && cat state.html

Connecting to nginx-statefulset-example-2.nginx-headless
(10.244.1.139:80)

...

State of Pod 2

8. Canary looks good, so we can continue with a phased rollout of our new version.
For a phased rollout, you may use any lower partition number in the manifest.
You can do a few small, phased rollouts or just proceed with a full rollout. Let's do a
full rollout by decreasing partition to 0:

apiVersion: apps/v1

kind: StatefulSet

metadata:

 name: nginx-statefulset-example

spec:

 replicas: 3

 serviceName: nginx-headless

386 StatefulSet – Deploying Stateful Applications

 podManagementPolicy: OrderedReady

 updateStrategy:

 type: RollingUpdate

 rollingUpdate:

 partition: 0

...

9. Apply the manifest file to the cluster again:

$ kubectl apply -f ./nginx-statefulset-rollingupdate.yaml
--record

statefulset.apps/nginx-statefulset-example configured

10. Observe the next phase of the rollout using the kubectl rollout status
command:

$ kubectl rollout status sts nginx-statefulset-example

Waiting for partitioned roll out to finish: 1 out of 3
new pods have been updated...

Waiting for 1 pods to be ready...

Waiting for 1 pods to be ready...

Waiting for partitioned roll out to finish: 2 out of 3
new pods have been updated...

Waiting for 1 pods to be ready...

Waiting for 1 pods to be ready...

partitioned roll out complete: 3 new pods have been
updated...

As you can see, the phased rollout to the nginx:1.19 image version was completed
successfully.

Tip
It is possible to do phased rollouts imperatively. To do that, you need to control
the partition number using the kubectl patch command, for
example, kubectl patch sts nginx-statefulset-example
-p '{"spec":{"updateStrategy":{"type":
"RollingUpdate","rollingUpdate":
{"partition":3}}}}'. However, this is much less readable and error
prone than declarative changes.

We will now take a look at how you can do rollbacks of StatefulSets.

StatefulSet best practices 387

Rolling back StatefulSet
In the previous Chapter 11, Deployment – Deploying Stateless Applications, we have
described how you can do imperative rollbacks to Deployments. For StatefulSets, you can
do exactly the same operations. To do that, you need to use the kubectl rollout
undo commands. However, especially for StatefulSets, we recommend using a declarative
model for introducing changes to your Kubernetes cluster. In this model, you usually
commit each change to the source code repository, and performing rollback is very simple
and involves just reverting the commit and applying the configuration again. Usually, the
process of applying changes is performed as part of the CI/CD pipeline for the source
code repository, instead of manually applying the changes by an operator. This is the
easiest way to manage StatefulSets, and generally recommended in Infrastructure-as-Code
and Configuration-as-Code paradigms.

Important note
When performing rollbacks to StatefulSets, you must be fully aware of the
consequences of operations such as downgrading to an earlier version of the
container image while persisting the state. For example, if your rollout to a
new version has introduced data schema changes to the state, then you will
not be able to safely roll back to an earlier version unless you ensure that the
downward migration of state data is implemented!

In our example, if you would like to roll back to the nginx:1.18 image version for
our StatefulSet, you would either modify the YAML manifest file manually or revert the
commit in your source code repository if you use one. Then, all you would need to do is
execute the kubectl apply command to the cluster.

In the last section, we will provide you with a set of best practices for managing
StatefulSets in Kubernetes.

StatefulSet best practices
This section summarizes known best practices when working with StatefulSet objects in
Kubernetes. The list is by no means complete, but is a good starting point for your journey
with Kubernetes.

388 StatefulSet – Deploying Stateful Applications

Use declarative object management for StatefulSets
It is a good practice in DevOps world to stick to declarative models for introducing
updates to your infrastructure and applications. Using the declarative way of updates is
the core concept for paradigms such as Infrastructure-as-Code and Configuration-as-
Code. In Kubernetes, you can easily perform declarative updates using the kubectl
apply command, which can be used on a single file or even a whole directory of YAML
manifest files.

Tip
To delete objects, it is still better to use imperative commands. It is more
predictable and less prone to errors. The declarative deletion of resources in the
cluster is useful only in CI/CD scenarios, where the whole process is entirely
automated.

The same principle applies also to StatefulSets. Performing a rollout or rollback when
your YAML manifest files are versioned and kept in a source control repository is easy
and predictable. Using the kubectl rollout undo and kubectl set image
deployment commands is generally not recommended in production environments.
Using these commands gets much more complicated when more than one person is
working on operations in the cluster.

Do not use the TerminationGracePeriodSeconds Pod
with a 0 value for StatefulSets
The specification of Pod allows you to set TerminationGracePeriodSeconds,
which informs kubelet how much time it should allow for a Pod to gracefully terminate
when it attempts to terminate it. If you set TerminationGracePeriodSeconds to 0,
this will effectively make Pods terminate immediately, which is strongly discouraged for
StatefulSets. StatefulSets often need graceful cleanup or preStop life cycle hooks to run
before the container is removed, otherwise there is a risk that the state of StatefulSet will
become inconsistent.

Scale down StatefulSets before deleting
When you delete a StatefulSet and you intend to reuse the PVCs later, you need to ensure
that the StatefulSet terminates gracefully, in an ordered manner, so that any subsequent
redeployment will not fail because of an inconsistent state in PVCs. If you perform the
kubectl delete operation on your StatefulSet, all the Pods will be terminated at once.
This is often not desired and you should first scale down the StatefulSet gracefully to zero
replicas and then delete the StatefulSet itself.

Summary 389

Ensure state compatibility during StatefulSet rollbacks
If you ever intend to use StatefulSet rollbacks, you need to be aware of the consequences
of operations such as downgrading to an earlier version of the container image while
persisting the state. For example, if your rollout to a new version has introduced data
schema changes in the state, then you will not be able to safely roll back to an earlier
version unless you ensure that the downward migration of state data is implemented.
Otherwise, your rollback will just recreate Pods with the older versions of the container
image and they will fail to start properly because of incompatible state data.

Do not create Pods that match an existing StatefulSet
label selector
It is possible to create Pods with labels that match the label selector of some existing
StatefulSet. This can be done using bare Pods or another Deployment or ReplicaSet. This
leads to conflicts, which Kubernetes does not prevent, and makes the existing StatefulSet
believe that it has created the other Pods. The results may be unpredictable and, in general,
you need to pay attention to how you organize your labeling of resources in the cluster. It
is advised to use semantic labeling – you can learn more about this approach in the official
documentation: https://kubernetes.io/docs/concepts/configuration/
overview/#using-labels.

Summary
This chapter has demonstrated how to work with stateful workloads and applications on
Kubernetes using StatefulSets. You first learned what the approaches to persisting state
in containers and in Kubernetes Pods are and, based on that, we have described how a
StatefulSet object can be used to persist the state. Next, we created an example StatefulSet,
together with a headless Service. Based on that, you learned how PVCs and PVs are used
in StatefulSets to ensure that the state is persisted between Pod restarts. Next, you learned
how you can scale the StatefulSet and how to introduce updates using canary and phased
rollouts. And finally, we provided you with a set of known best practices when working
with StatefulSets.

In the next chapter, you will learn more about managing special workloads where you
need to maintain exactly one Pod per each Node in Kubernetes – we will introduce a new
Kubernetes object: DaemonSet.

https://kubernetes.io/docs/concepts/configuration/overview/#using-labels
https://kubernetes.io/docs/concepts/configuration/overview/#using-labels

390 StatefulSet – Deploying Stateful Applications

Further reading
For more information regarding StatefulSets and persistent storage management in
Kubernetes, please refer to the following Packt books:

• The Complete Kubernetes Guide, by Jonathan Baier, Gigi Sayfan, Jesse White
(https://www.packtpub.com/virtualization-and-cloud/
complete-kubernetes-guide)

• Getting Started with Kubernetes – Third Edition, by Jonathan Baier, Jesse White
(https://www.packtpub.com/virtualization-and-cloud/getting-
started-kubernetes-third-edition)

• Kubernetes for Developers, by Joseph Heck (https://www.packtpub.com/
virtualization-and-cloud/kubernetes-developers)

• Hands-On Kubernetes on Windows, by Piotr Tylenda (https://www.packtpub.
com/product/hands-on-kubernetes-on-windows/9781838821562)

You can also refer to the excellent official Kubernetes documentation (https://
kubernetes.io/docs/home/), which is always the most up-to-date source of
knowledge regarding Kubernetes in general.

https://www.packtpub.com/virtualization-and-cloud/complete-kubernetes-guide
https://www.packtpub.com/virtualization-and-cloud/complete-kubernetes-guide
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/kubernetes-developers
https://www.packtpub.com/virtualization-and-cloud/kubernetes-developers
https://www.packtpub.com/product/hands-on-kubernetes-on-windows/9781838821562
https://www.packtpub.com/product/hands-on-kubernetes-on-windows/9781838821562
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/

13
DaemonSet –

Maintaining Pod
Singletons on Nodes

The previous chapters have explained and demonstrated how to use the most common
Kubernetes controllers for managing Pods, such as ReplicaSet, Deployment, and
StatefulSet. Generally, when running cloud application components that contain the
actual business logic you will need either Deployments or StatefulSets for controlling your
Pods. In some cases, when you need to run batch workloads as part of your application,
you will use Jobs and CronJobs.

However, in some cases, you will need to run components that have a supporting
function and, for example, execute maintenance tasks or aggregate logs and metrics. More
specifically, if you have any tasks that need to be executed for each Node in the cluster,
they can be performed using a DaemonSet. This is the last type of Pod management
controller that we are going to introduce in this part of the book. The purpose of a
DaemonSet is to ensure that each Node (unless specified otherwise) runs a single replica
of a Pod. If you add a new Node to the cluster, it will automatically get a Pod replica
scheduled. Similarly, if you remove a Node from the cluster, the Pod replica will be
terminated – the DaemonSet will execute all required actions.

392 DaemonSet – Maintaining Pod Singletons on Nodes

In this chapter, we will cover the following topics:

• Introducing the DaemonSet object

• Creating and managing DaemonSets

• Common use cases for DaemonSets

• Alternatives to DaemonSets

Technical requirements
For this chapter, you will need the following:

• A Kubernetes cluster deployed. You can use either a local or cloud-based cluster, but
in order to fully understand the concepts we recommend using a multi-node, cloud-
based Kubernetes cluster.

• The Kubernetes CLI (kubectl) installed on your local machine and configured to
manage your Kubernetes cluster.

Kubernetes cluster deployment (local and cloud-based) and kubectl installation were
covered in Chapter 3, Installing Your First Kubernetes Cluster.

You can download the latest code samples for this chapter from the official GitHub
repository: https://github.com/PacktPublishing/The-Kubernetes-
Bible/tree/master/Chapter13.

Introducing the DaemonSet object
The term daemon in operating systems has a long history and, in short, is used to describe
a program that runs as a background process, without interactive control from the user.
In many cases, daemons are responsible for handling maintenance tasks, serving network
requests, or monitoring hardware activities. These are often processes that you want to run
reliably, all the time, in the background, from the time you boot the operating system to
when you shut it down.

Tip
Daemons are associated in most cases with Unix-like operating systems. In
Windows, you will more commonly encounter the term Windows service.

https://github.com/PacktPublishing/The-Kubernetes-Bible/tree/master/Chapter13
https://github.com/PacktPublishing/The-Kubernetes-Bible/tree/master/Chapter13

Introducing the DaemonSet object 393

In Kubernetes, you may need a similar functionality where your Pods behave like classic
operating system daemons on each of the Nodes in the cluster. For this, Kubernetes offers
a dedicated Pod management controller named DaemonSet. The role of a DaemonSet is
straightforward: run a single Pod replica on each of the Nodes in the cluster and manage
them automatically. There are variety of use cases that require such Node-local facilities
and usually they serve important and fundamental roles for the whole cluster – we will
discuss some common use cases in the sections coming up, but generally you need them
for the following:

• Node monitoring in the cluster.

• Logs and telemetry gathering from individual Nodes and sometimes Pods running
on a Node.

• Managing cluster storage – this is especially important for handling requests from
provisioners for PersistentVolumeClaims and PersistentVolumes.

All you have learned in the previous chapters about ReplicaSets, Deployments, and
StatefulSets applies more or less to the DaemonSet. Its specification requires you to
provide a Pod template, Pod label selectors, and optionally Node selectors if you want to
schedule the Pods only on a subset of Nodes.

Depending on the case, you may not need to communicate with the DaemonSet from
other Pods or from an external network. For example, if the job of your DaemonSet is
just to perform a periodic cleanup of the filesystem on the Node, it is unlikely you would
like to communicate with such Pods. If your use case requires any ingress or egress
communication with the DaemonSet Pods, then you have the following common patterns:

• Map container ports to host ports: Since the DaemonSet Pods are guaranteed to be
singletons on cluster Nodes, it is possible to use mapped host ports. The clients must
know the Node IP addresses.

• Pushing data to a different service: In some cases, it may be enough that the
DaemonSet is responsible for sending updates to other services without needing to
allow ingress traffic.

394 DaemonSet – Maintaining Pod Singletons on Nodes

• Headless service matching DaemonSet Pod label selectors: This is a similar
pattern to the case of StatefulSets, where you can use the cluster DNS to retrieve
multiple A records for Pods using the DNS name of the headless service.

• Normal service matching DaemonSet Pod label selectors: Less commonly, you
may need to reach any Pod in the DaemonSet. Using a normal Service object, for
example of the ClusterIP type, will allow you to communicate with a random
Pod in the DaemonSet.

We will now show how you can create and manage an example DaemonSet in your cluster.

Creating and managing DaemonSets
In order to demonstrate how DaemonSets work, we will use nginx running in a Pod
container that returns simple information about the Node IP address where it is currently
scheduled. The IP address will be provided to the container using an environment variable
and based on that, a modified version of index.html in /usr/share/nginx/
html will be created. To access the DaemonSet endpoints, we will use a headless service,
similar to what we did for StatefulSet in Chapter 12, StatefulSet – Deploy Stateful
Applications. Most of the real use cases of DaemonSets are rather complex and involve
mounting various system resources to the Pods. We will keep our DaemonSet example as
simple as possible to show the principles.

Important note
If you would like to work on a real example of a DaemonSet, we have
provided a working version of Prometheus node-exporter deployed
as a DaemonSet behind a headless Service: https://github.
com/PacktPublishing/Kubernetes-for-Beginners/
blob/master/Chapter13/02_daemonset-prometheus-
nodeexporter/node-exporter.yaml. When following the guide
in this section, the only difference is that you need to use node-exporter
as the Service name, use port 9100 and append the /metrics path
for requests sent using wget. This DaemonSet exposes Node metrics in
Prometheus data model format on port 9100 under the /metrics path.

We will now go through all the YAML manifests required to create our DaemonSet and
apply them to the cluster.

https://github.com/PacktPublishing/Kubernetes-for-Beginners/blob/master/Chapter13/02_daemonset-prometheus-nodeexporter/node-exporter.yaml
https://github.com/PacktPublishing/Kubernetes-for-Beginners/blob/master/Chapter13/02_daemonset-prometheus-nodeexporter/node-exporter.yaml
https://github.com/PacktPublishing/Kubernetes-for-Beginners/blob/master/Chapter13/02_daemonset-prometheus-nodeexporter/node-exporter.yaml
https://github.com/PacktPublishing/Kubernetes-for-Beginners/blob/master/Chapter13/02_daemonset-prometheus-nodeexporter/node-exporter.yaml

Creating and managing DaemonSets 395

Creating a DaemonSet
First, let's take a look at the StatefulSet YAML manifest file named nginx-daemonset.
yaml (full version available in the official GitHub repository for the book: https://
github.com/PacktPublishing/Kubernetes-for-Beginners/blob/
master/Chapter13/01_daemonset-example/nginx-daemonset.yaml):

apiVersion: apps/v1

kind: DaemonSet

metadata:

 name: nginx-daemonset-example

spec:

 selector:

 matchLabels:

 app: nginx-daemon

 environment: test

(to be continued in the next paragraph)

The first part of the preceding file contains the metadata and Pod label selector for
the DaemonSet, quite similar to what you have seen in Deployments and StatefulSets.
In the second part of the file, we present the Pod template that will be used by the
DaemonSet:

(continued)

 template:

 metadata:

 labels:

 app: nginx-daemon

 environment: test

 spec:

 containers:

 - name: nginx

 image: nginx:1.17

 ports:

 - containerPort: 80

 env:

 - name: NODE_IP

 valueFrom:

 fieldRef:

https://github.com/PacktPublishing/Kubernetes-for-Beginners/blob/master/Chapter13/01_daemonset-example/nginx-daemonset.yaml
https://github.com/PacktPublishing/Kubernetes-for-Beginners/blob/master/Chapter13/01_daemonset-example/nginx-daemonset.yaml
https://github.com/PacktPublishing/Kubernetes-for-Beginners/blob/master/Chapter13/01_daemonset-example/nginx-daemonset.yaml

396 DaemonSet – Maintaining Pod Singletons on Nodes

 fieldPath: status.hostIP

 command:

 - /bin/sh

 - -c

 - |

 echo "You have been served by Pod running on Node
with IP address: $(NODE_IP)" > /usr/share/nginx/html/index.html

 nginx -g "daemon off;"

As you can see, the structure of DaemonSet spec is similar to what you know from
Deployments and StatefulSets. The general idea is the same, you need to configure the Pod
template and use a proper label selector to match the Pod labels. Note that you do not see
the replicas field here, as the number of Pods running in the cluster will be dependent
on the number of Nodes in the cluster. The specification has two main components:

• selector: A label selector, which defines how to identify Pods that the
DaemonSet owns. This can include set-based and equality-based selectors.

• template: This defines the template for Pod creation. Labels used in metadata
must match the selector.

It is also common to specify .spec.template.spec.nodeSelector or .spec.
template.spec.tolerations in order to control the Nodes where the DaemonSet
Pods are deployed. We cover Pod scheduling in detail in Chapter 19, Advanced Techniques
for Scheduling Pods. Additionally, you can specify .spec.updateStrategy, .spec.
revisionHistoryLimit, and .spec.minReadySeconds, which are similar to
what you have learned about Deployment objects.

Tip
If you run hybrid Linux-Windows Kubernetes clusters, one of the common
use cases for Node selectors or Node affinity for DaemonSets is ensuring that
the Pods are scheduled only on Linux Nodes or only on Windows Nodes. This
makes sense as the container runtime and operating system are very different
between such Nodes.

Creating and managing DaemonSets 397

Apart from that, in our Pod template we have used a similar override of command for the
nginx container as we did in the cases of Deployments and StatefulSets in the previous
chapters. The command creates index.html in /usr/share/nginx/html/ with
information about the IP address of the Node that runs the Pod serving the request. After
that, it starts the nginx web server with the standard entrypoint command for the image.
To provide the information about the Node IP address, we use an additional NODE_IP
environment variable populated by status.hostIP of the Pod object (at runtime).

Next, let's take a quick look at the headless Service named nginx-daemon-headless.
Create an nginx-daemon-headless-service.yaml file with the following YAML
manifest:

apiVersion: v1

kind: Service

metadata:

 name: nginx-daemon-headless

spec:

 selector:

 app: nginx-daemon

 environment: test

 clusterIP: None

 ports:

 - port: 80

 protocol: TCP

 targetPort: 80

As we explained in the case of the StatefulSet example, the specification is very similar
to a normal Service, the only difference is that it has the None value for the clusterIP
field. This will result in the creation of an nginx-daemon-headless headless Service.
A headless Service allows us to return all Pods' IP addresses behind the Service as DNS A
records instead of a single DNS A record with a Service clusterIP.

398 DaemonSet – Maintaining Pod Singletons on Nodes

We have all the required YAML manifest files for our demonstration and we can proceed
with applying the manifests to the cluster. Please follow these steps:

1. Create the nginx-daemon-headless headless Service using the following
command:

$ kubectl apply -f ./nginx-daemon-headless-service.yaml

2. Create an nginx-daemonset-example DaemonSet using the following
command:

$ kubectl apply -f ./nginx-daemonset.yaml

3. Now, you can use the kubectl describe command to observe the creation of
the DaemonSet:

$ kubectl describe daemonset nginx-daemonset-example

4. Alternatively, you can use ds as an abbreviation for daemonset when using the
kubectl commands.

5. If you use the kubectl get pods command, you can see that there will be one
Pod scheduled for each of the Nodes in the cluster:

$ $ kubectl get pods -o wide

NAME ... IP NODE
...

nginx-daemonset-example-5w8jx ... 10.244.1.144
aks-nodepool1-77120516-vmss000000 ...

nginx-daemonset-example-tzqmc ... 10.244.0.90
aks-nodepool1-77120516-vmss000001 ...

In our case, we have two Nodes in the cluster, so exactly two Pods have been created.

We have successfully deployed the DaemonSet and we can now verify that it works as
expected. To do that, follow the given steps:

1. First, we need to know the IP addresses of the individual Nodes in order to cross-
check the output of further commands:

$ kubectl get node -o wide

NAME ... INTERNAL-IP ...

aks-nodepool1-77120516-vmss000000 ... 10.240.0.4 ...

aks-nodepool1-77120516-vmss000001 ... 10.240.0.5 ...

Creating and managing DaemonSets 399

2. Create an interactive busybox Pod and start the Bourne shell process. The
following command will create the Pod and immediately attach your terminal so
that you can interact from within the Pod:

$ kubectl run -i --tty busybox --image=busybox:1.28 --rm
--restart=Never -- sh

3. We need to check how our nginx-daemon-headless headless Service is
resolved by the cluster DNS:

$ nslookup nginx-daemon-headless

Server: 10.0.0.10

Address 1: 10.0.0.10 kube-dns.kube-system.svc.cluster.
local

Name: nginx-daemon-headless

Address 1: 10.244.1.144 10-244-1-144.nginx-daemon-
headless.default.svc.cluster.local

Address 2: 10.244.0.90 10-244-0-90.nginx-daemon-headless.
default.svc.cluster.local

We have been provided with two DNS names for the individual Pods in the
DaemonSet: 10-244-1-144.nginx-daemon-headless.default.
svc.cluster.local, which belongs to the aks-nodepool1-77120516-
vmss000000 Node, and 10-244-0-90.nginx-daemon-headless.
default.svc.cluster.local, which belongs to the aks-nodepool1-
77120516-vmss000001 Node.

4. We can now use the DNS names (also in short-name form) to communicate with
the Pods of the DaemonSet. First, we will try to connect to the 10-244-1-144.
nginx-daemon-headless Pod:

$ wget http://10-244-1-144.nginx-daemon-headless && cat
index.html

Connecting to 10-244-1-144.nginx-daemon-headless
(10.244.1.144:80)

...

You have been served by Pod running on Node with IP
address: 10.240.0.4

As expected, the Pod is scheduled on the aks-nodepool1-77120516-
vmss000000 Node, which has an IP address of 10.240.0.4 (you can cross-
check this with earlier commands' output).

400 DaemonSet – Maintaining Pod Singletons on Nodes

5. Let's do a similar check for the other Pod in the cluster, 10-244-0-90.nginx-
daemon-headless:

$ rm index.html && wget http://10-244-0-90.nginx-daemon-
headless && cat index.html

Connecting to 10-244-0-90.nginx-daemon-headless
(10.244.0.90:80)

...

You have been served by Pod running on Node with IP
address: 10.240.0.5

And again, as expected, we have been served by a Pod running on the
aks-nodepool1-77120516-vmss000001 Node.

This demonstrates the most important principles underlying how DaemonSet Pods are
scheduled and how you can interact with them using headless Services. We will now show
how you can modify the DaemonSet to roll out a new version of a container image for the
Pods.

Modifying a DaemonSet
Updating a DaemonSet can be done in a similar way as for Deployments. If you modify
the Pod template of the DaemonSet, this will trigger a rollout of a new revision of
DaemonSet according to its updateStrategy. There are two strategies available:

• RollingUpdate: The default strategy, which allows you to roll out a new version
of your daemon in a controlled way. It is similar to rolling updates in Deployments
in that you can define .spec.updateStrategy.rollingUpdate.
maxUnavailable to control how many Pods in the clusters are unavailable at
most during the rollout (defaults to 1) and .spec.minReadySeconds (defaults
to 0). It is guaranteed that at most one Pod of DaemonSet will be in running state on
each node in the cluster during the rollout process.

• OnDelete: This strategy implements the legacy behavior of StatefulSet
updates prior to Kubernetes 1.6. In this type of strategy, the DaemonSet will not
automatically update the Pod by recreating them. You need to manually delete a Pod
on a Node in order to get the new Pod template applied. This is useful in scenarios
when you need to do additional manual actions or verifications before proceeding
to the next Node.

Creating and managing DaemonSets 401

The rollout of a new DaemonSet revision can be controlled in similar ways as for a
Deployment object. You can use the kubectl rollout status command and
perform imperative rollbacks using the kubectl rollout undo command. Let's
demonstrate how you can declaratively update the container image in a DaemonSet Pod to
a newer version:

1. Modify the nginx-daemonset.yaml YAML manifest file so that it uses
nginx:1.18 container image in the template:

apiVersion: apps/v1

kind: DaemonSet

metadata:

 name: nginx-daemonset-example

spec:

...

 template:

...

 spec:

 containers:

 - name: nginx

 image: nginx:1.18

2. Apply the manifest file to the cluster:

$ kubectl apply -f ./nginx-daemonset.yaml --record

3. Immediately after that, use the kubectl rollout status command to see the
progress in real time:

$ kubectl rollout status ds nginx-daemonset-example

Waiting for daemon set "nginx-daemonset-example" rollout
to finish: 0 out of 2 new pods have been updated...

Waiting for daemon set "nginx-daemonset-example" rollout
to finish: 1 out of 2 new pods have been updated...

daemon set "nginx-daemonset-example" successfully rolled
out

402 DaemonSet – Maintaining Pod Singletons on Nodes

4. Similarly, using the kubectl describe command, you can see events for the
DaemonSet that exactly show what the order was of the Pod recreation:

$ kubectl describe ds nginx-daemonset-example

...

Events:

 Type Reason Age From
Message

 ---- ------ ---- ----

 Normal SuccessfulDelete 113s daemonset-controller
Deleted pod: nginx-daemonset-example-5w8jx

 Normal SuccessfulCreate 74s daemonset-controller
Created pod: nginx-daemonset-example-jsh7x

 Normal SuccessfulDelete 73s daemonset-controller
Deleted pod: nginx-daemonset-example-tzqmc

 Normal SuccessfulCreate 41s daemonset-controller
Created pod: nginx-daemonset-example-kgqbj

You can see that the Pods were replaced one by one. This is because we had the default
value of .spec.updateStrategy.rollingUpdate.maxUnavailable, which
is 1.

Tip
You can change the DaemonSet container image imperatively using the
kubectl set image ds nginx-daemonset-example
nginx=nginx:1.18 --record command. This approach is
recommended only for non-production scenarios.

Additionally, DaemonSet will automatically create Pods if a new Node joins the cluster
(providing that it matches the selector and affinity parameters). If a Node is removed from
the cluster, the Pod will be terminated also. The same will happen if you modify the labels
or taints on a Node so that it matches the DaemonSet – a new Pod will be created for that
Node. If you modify the labels or taints for a Node in a way that it no longer matches the
DaemonSet, the existing Pod will be terminated.

Creating and managing DaemonSets 403

Next, we will show how you can delete a DaemonSet.

Deleting a DaemonSet
In order to delete a DaemonSet object, there are two possibilities:

• Delete the DaemonSet together with Pods that it owns.

• Delete the DaemonSet and leave the Pods unaffected.

To delete the DaemonSet together with Pods, you can use the regular the kubectl
delete command:

$ kubectl delete ds nginx-daemonset-example

You will see that the Pods will first get terminated and then the DaemonSet will be
deleted.

Now, if you would like to delete just the DaemonSet, you need to use the
--cascade=orphan option with kubectl delete:

$ kubectl delete ds nginx-daemonset-example --cascade=orphan

After this command, if you inspect what Pods are in the cluster, you will still see all the
Pods that were owned by the nginx-daemonset-example DaemonSet.

Important note
If you are draining a node using the kubectl drain command and
this node is running Pods owned by a DaemonSet, you need to pass the
--ignore-daemonsets flag to drain the node completely.

Let's now take a look at the most common use cases for DaemonSets in Kubernetes.

404 DaemonSet – Maintaining Pod Singletons on Nodes

Common use cases for DaemonSets
At this point, you may wonder what is the actual use of the DaemonSet and what are the
real-life use cases for this Kubernetes object? In general, DaemonSets are used either for
very fundamental functions of the cluster, without which it is not useable, or for helper
workloads performing maintenance or data collection. We have summarized the common
and interesting use cases for DaemonSets in the following points:

• Depending on your cluster deployment, the kube-proxy core service may
be deployed as a DaemonSet instead of a regular operating system service. For
example, in the case of Azure Kubernetes Service (AKS), you can see the definition
of this DaemonSet using the kubectl describe ds -n kube-system
kube-proxy command. This is a perfect example of a backbone service that needs
to run as a singleton on each Node in the cluster. You can also see an example
YAML manifest for kube-proxy here: https://github.com/kubernetes/
kubernetes/blob/master/cluster/addons/kube-proxy/kube-
proxy-ds.yaml.

• Another example of fundamental services running as DaemonSets is running
an installation of Container Network Interface (CNI) plugins and agents for
maintaining the network in a Kubernetes cluster. A good example of such a
DaemonSet is the Flannel agent (https://github.com/flannel-io/
flannel/blob/master/Documentation/kube-flannel.yml), which
runs on each Node and is responsible for allocating a subnet lease to each host out
of a larger, preconfigured address space. This of course depends on what type of
networking is installed on the cluster.

• Cluster storage daemons will be often deployed as DaemonSets. A good example of
a commonly used daemon is Object Storage Daemon (OSD) for Ceph, which is a
distributed object, block, and file storage platform. OSD is responsible for storing
objects on the local filesystem of each Node and providing access to them over
the network. You can find an example manifest file here (as part of a Helm Chart
template): https://github.com/ceph/ceph-container/blob/master/
examples/helm/ceph/templates/osd/daemonset.yaml.

• Ingress controllers in Kubernetes are sometimes deployed as DaemonSets. We will
take a closer look at Ingress in Chapter 21, Advanced Traffic Routing with Ingress. For
example, when you deploy nginx as an Ingress controller in your cluster, you have
an option to deploy it as a DaemonSet: https://github.com/nginxinc/
kubernetes-ingress/blob/master/deployments/daemon-set/
nginx-ingress.yaml. Deploying an Ingress controller as a DaemonSet is
especially common if you do Kubernetes cluster deployments on bare-metal servers.

https://github.com/kubernetes/kubernetes/blob/master/cluster/addons/kube-proxy/kube-proxy-ds.yaml
https://github.com/kubernetes/kubernetes/blob/master/cluster/addons/kube-proxy/kube-proxy-ds.yaml
https://github.com/kubernetes/kubernetes/blob/master/cluster/addons/kube-proxy/kube-proxy-ds.yaml
https://github.com/flannel-io/flannel/blob/master/Documentation/kube-flannel.yml
https://github.com/flannel-io/flannel/blob/master/Documentation/kube-flannel.yml
https://github.com/ceph/ceph-container/blob/master/examples/helm/ceph/templates/osd/daemonset.yaml
https://github.com/ceph/ceph-container/blob/master/examples/helm/ceph/templates/osd/daemonset.yaml
https://github.com/nginxinc/kubernetes-ingress/blob/master/deployments/daemon-set/nginx-ingress.yaml
https://github.com/nginxinc/kubernetes-ingress/blob/master/deployments/daemon-set/nginx-ingress.yaml
https://github.com/nginxinc/kubernetes-ingress/blob/master/deployments/daemon-set/nginx-ingress.yaml

Alternatives to DaemonSets 405

• Log gathering and aggregation agents are often deployed as DaemonSets. For
example, fluentd can be deployed as a DaemonSet in a cluster. You can find
multiple YAML manifest files with examples in the official repository: https://
github.com/fluent/fluentd-kubernetes-daemonset.

• Agents for collecting Node metrics make a perfect use case for deployment as
DaemonSets. A well-known example of such an agent is Prometheus node-exporter:
https://github.com/prometheus-operator/kube-prometheus/
blob/main/manifests/node-exporter-daemonset.yaml.

And the list goes on – as you can see, DaemonSet is another building block provided
for engineers designing the workloads running on Kubernetes clusters. In many cases,
DaemonSets are the hidden backbone of a cluster that makes it fully operational.

Next, let's discuss what possible alternatives there are to using DaemonSets.

Alternatives to DaemonSets
The reason for using DaemonSets is quite simple – you would like to have exactly one Pod
with a particular function on each Node in the cluster. However, sometimes you should
consider different approaches that may fit your needs better:

• In log-gathering scenarios, you need to evaluate if you want to design your log
pipeline architecture based on DaemonSets or the sidecar container pattern. Both
have their advantages and disadvantages, but in general, running sidecar containers
may be easier to implement and be more robust, even though it may require more
system resources.

• If you just want to run periodic tasks, and you do not need to do it on each Node
in the cluster, a better solution can be using Kubernetes CronJobs. Again, it is
important to know what the actual use case is and whether running a separate Pod
on each Node is a must-have requirement.

https://github.com/fluent/fluentd-kubernetes-daemonset
https://github.com/fluent/fluentd-kubernetes-daemonset
https://github.com/prometheus-operator/kube-prometheus/blob/main/manifests/node-exporter-daemonset.yaml
https://github.com/prometheus-operator/kube-prometheus/blob/main/manifests/node-exporter-daemonset.yaml

406 DaemonSet – Maintaining Pod Singletons on Nodes

• Operating system daemons (for example, provided by systemd in Ubuntu) can
be used to do similar tasks as DaemonSets. The drawback of this approach is that
you cannot manage these native daemons using the same tools as you manage
Kubernetes clusters with, for example kubectl. But at the same time, you do not
have the dependency on any Kubernetes service, which may be a good thing in
some cases.

• Static Pods (https://kubernetes.io/docs/tasks/configure-pod-
container/static-pod/) can be used to achieve a similar result. This type of
Pod is created based on a specific directory watched by kubelet for static manifest
files. Static Pods cannot be managed using kubectl and they are most useful for
cluster bootstraping functions.

Finally, we can now summarize our knowledge about DaemonSets.

Summary
In this chapter, you have learned how to work with DaemonSets in Kubernetes, and
how they are used to manage special types of workloads or processes that must run as
a singleton on each Node in the cluster. You first created an example DaemonSet and
learned what the most important parts of its specification are. Next, you practiced how
to roll out a new revision of a DaemonSet to the cluster and saw how you can monitor
the deployment. Additionally, we discussed what the most common use cases are for this
special type of Kubernetes object and what alternatives there are that you could consider.

This was the last type of Pod management controller that we discuss in this part of
the book. In the next part, you will learn all the details required to effectively deploy
Kubernetes clusters in different cloud environments. We will first take a look at working
with clusters deployed on Google Kubernetes Engine.

Further reading
For more information regarding DaemonSets and their use cases in Kubernetes, please
refer to the following Packt books:

• The Complete Kubernetes Guide, by Jonathan Baier, Gigi Sayfan, Jesse White
(https://www.packtpub.com/virtualization-and-cloud/
complete-kubernetes-guide).

• Getting Started with Kubernetes – Third Edition, by Jonathan Baier, Jesse White
(https://www.packtpub.com/virtualization-and-cloud/getting-
started-kubernetes-third-edition).

https://kubernetes.io/docs/tasks/configure-pod-container/static-pod/
https://kubernetes.io/docs/tasks/configure-pod-container/static-pod/
https://www.packtpub.com/virtualization-and-cloud/complete-kubernetes-guide
https://www.packtpub.com/virtualization-and-cloud/complete-kubernetes-guide
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition

Further reading 407

• Kubernetes for Developers, by Joseph Heck (https://www.packtpub.com/
virtualization-and-cloud/kubernetes-developers).

• Hands-On Kubernetes on Windows, by Piotr Tylenda (https://www.packtpub.
com/product/hands-on-kubernetes-on-windows/9781838821562).

• You can also refer to the excellent official Kubernetes documentation (https://
kubernetes.io/docs/home/), which is always the most up-to-date source of
knowledge about Kubernetes in general.

https://www.packtpub.com/virtualization-and-cloud/kubernetes-developers
https://www.packtpub.com/virtualization-and-cloud/kubernetes-developers
https://www.packtpub.com/product/hands-on-kubernetes-on-windows/9781838821562
https://www.packtpub.com/product/hands-on-kubernetes-on-windows/9781838821562
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/

Section 4:
Deploying

Kubernetes
on the Cloud

The easiest way to run Kubernetes in production is to use one of the top major cloud
providers. Google Cloud Platform, Amazon Web Services, and Microsoft Azure offer top
services that can automate the management of a Kubernetes cluster for you at scale.

This part of the book comprises the following chapters:

• Chapter 14, Kubernetes Clusters on Google Kubernetes Engine

• Chapter 15, Launching a Kubernetes Cluster on Amazon Web Services with Amazon
Elastic Kubernetes Service

• Chapter 16, Kubernetes Clusters on Microsoft Azure with Azure Kubernetes Service

14
Kubernetes

Clusters on Google
Kubernetes Engine

In this chapter, we are going to look at launching our very own Kubernetes cluster in
the first of the three public cloud providers that we will be covering in this title: Google
Cloud Platform (GCP).

By the end of the chapter, we will have signed up to GCP and launched a Kubernetes
workload using Google Kubernetes Engine (GKE), as well as having discussed some of
the features that GKE has to offer.

We will be covering the following topics:

• What are GCP and GKE?

• Preparing your local environment

• Launching your first GKE cluster

• Deploying a workload and interacting with your cluster

• More about cluster nodes

412 Kubernetes Clusters on Google Kubernetes Engine

Technical requirements
To follow along with this chapter, you will need a GCP account with a valid payment
method attached to it.

Important note
Following the instructions in this chapter will incur a financial cost. It is
therefore important that you terminate any resources you launch once you have
finished using them.

All prices quoted in this chapter are correct at the time of writing this book, and we
recommend that you review the current costs before you launch any resources.

What are GCP and GKE?
Before we roll up our sleeves and look at signing up for a GCP account and installing the
tools, we will need to launch our GKE-powered cluster. We should also discuss GCP and
how it came to be.

Google Cloud Platform
Of the big three public cloud providers, GCP is the newest. We will look at Amazon Web
Services (AWS) and Microsoft Azure over the next two chapters.

Google's foray into public cloud technology started very differently from the other two
providers. In April of 2008, Google launched the public preview of its Google App Engine,
which was the first component of its cloud offering. Google App Engine, as a service, is
still available to this day. The service allows developers to deploy their applications into
Google-managed runtimes – these include PHP, Java, Ruby, Python, Node.js, and .NET,
along with Google's own programming language, Go.

The next service under the GCP banner didn't arrive until May 2010, and this was Google
Cloud Storage, followed by Google BigQuery and a preview version of its Prediction API.
A year later, October 2011 saw the launch of Google Cloud SQL. Then, in June 2012, the
Google Compute Engine preview was launched.

Preparing your environment 413

As you can see, 4 years had passed, and we then had what most would consider the core
services that go into making a public cloud service. However, the majority of the services
were still in preview – in fact, it wouldn't be until 2013 that a lot of these core services
would move out of preview and into generally available (GA), which meant that it was
possible to safely run production workloads at scale.

All of this was just a year before Google would launch Kubernetes. Towards the end of
2014, Google would bring out the first alpha of GKE.

Google Kubernetes Engine
Given that Kubernetes was developed at Google, and also given Google's vast experience
of running container workloads at scale with the Borg project (as we discussed in Chapter
1, Kubernetes Fundamentals), it came as no surprise that Google was one of the first of the
public cloud providers to offer its own Kubernetes offering in GKE.

In fact, after Kubernetes v1 came out and was then handed over to the Cloud Native
Computing Foundation (CNCF) to maintain in July 2015, it was only a month later that
the GKE service went GA.

The GKE service allows you to launch and manage a CNCF certified Kubernetes cluster
powered by the compute, storage, and network services of GCP, and also allows for deep
integration with the monitoring, identity, and access management functions of
the platform.

Now that we know a little bit of the history behind the service, we can sign up and install
some of the management tools we will be using to launch our cluster.

Preparing your environment
The first thing we need to do is get you access to GCP. To do this, you will either need to
sign up for an account or log in to your existing one. Let's learn how.

414 Kubernetes Clusters on Google Kubernetes Engine

Signing up for a GCP account
To sign up for a GCP account, you will need to visit https://cloud.google.com/.
Here you should be greeted by a page that looks like the following:

Figure 14.1 – The GCP welcome page

If you are already using a Google service such as Gmail, YouTube, or have an Android
phone, then you will possess a Google account. You can use this account to enroll for
GCP. As you can see in Figure 14.1, I am already logged into my own Google account, as
indicated by the avatar on the top right-hand side of the screenshot.

At the time of writing, Google is offering $300 of credits for you to use over 90 days.

Important note
If you choose to take advantage of the free credits, you will still need to enter a
valid payment method. Google does this to ensure that it is not an automated
bot signing up for the account to abuse the credits they are offering. Once the
credits have been used or expired, you will be given the option to upgrade your
account to a paid account.

If you want to take advantage of this, then click on the Get started for free button and
follow the onscreen prompts, making sure you read the terms and conditions. Once you
have enrolled, you will be taken to the GCP console.

If you already have a GCP account, then log in to the GCP console directly at the
following URL: https://console.cloud.google.com/.

Now that we have an account in place, let's learn how to create a project using
the platform.

https://cloud.google.com/
https://console.cloud.google.com/

Preparing your environment 415

Creating a project
GCP has a concept whereby resources are launched into projects. if you have just signed
up for an account, then a project called My First Project will have been created for
you as part of the enrollment process.

If you are using an existing account, then I would recommend creating a new project to
launch your GKE cluster in. To do this, click on the Select menu, which can be found in
the top bar next to the GCP logo.

This will display all of your projects, as well as giving you the option to create a new
project. To do so, follow these steps:

1. Click on NEW PROJECT.
2. You will be asked to give your new project a name, select the billing account you

would like to attach the project to, and finally select the organization or folder you
would like to place the project in. Fill in the required details.

3. Once these details have been entered, then you simply need to click on the
CREATE button.

Important note
If you are using the automatically provided My First Project, you will
need to make sure that the project is attached to a billing account before you
proceed. To do this, click on the burger menu icon in the top left of the Google
Cloud Console page, and select the Billing option. From here, follow the
onscreen instructions to link the project to the billing account.

Now that we have a place to launch our resources, we can look at installing the GCP
command-line tool.

Installing the GCP command-line interface
Here we are going to cover the GCP Command-Line Interface (CLI) on your local
machine. Don't worry if you do not want to or are unable to install it, as there is a way
that you can run the CLI in the cloud. But let's start with my operating system of
choice, macOS.

416 Kubernetes Clusters on Google Kubernetes Engine

Installing on macOS
If you are like me and you do a lot of work on macOS using Terminal, there is a high
likelihood that you have installed and used Homebrew at some point.

Important note
Homebrew is a package manager for macOS that simplifies the installation of
software on your machine. It works exclusively on the command line via the
brew command.

If you don't have Homebrew installed, then you can install it by opening a Terminal
session and running the following command:

$ /bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/
Homebrew/install/master/install.sh)zz

Once installed, you will be able to install the GCP CLI using the following command:

$ brew tap homebrew/cask

$ brew cask install google-cloud-sdk

You can test the installation by running the following command:

$ gcloud --version

If everything goes as planned, you should see something like the following output:

Figure 14.2 – Checking the version number on macOS

If you are having problems, you can check the documentation by running this code:

$ brew cask info google-cloud-sdk

Once Homebrew is installed and working, you can move onto the Initialization section of
this chapter.

Preparing your environment 417

Installing on Windows
There are a few options to install the GCP CLI on Windows. The first is to open a
PowerShell session and run the following command in order to install it using Chocolatey.

Important note
Like Homebrew on macOS, Chocolatey is a package manager that lets you
easily and consistently install a wide variety of packages on Windows via
PowerShell, using the same command syntax rather than having to worry
about the numerous installation methods that exist on Windows.

If you don't have Chocolatey installed, then you can run the following command in a
PowerShell session that has been launched with administrative privileges:

$ Set-ExecutionPolicy Bypass -Scope Process -Force; [System.
Net.ServicePointManager]::SecurityProtocol = [System.Net.
ServicePointManager]::SecurityProtocol -bor 3072; iex
((New-Object System.Net.WebClient).DownloadString('https://
chocolatey.org/install.ps1'))

Once Chocolatey is installed, or if you already have it installed, simply run the following:

$ choco install --ignore-checksum gcloudsdk

The other way you can install it is to download the installer from the following
URL: https://dl.google.com/dl/cloudsdk/channels/rapid/
GoogleCloudSDKInstaller.exe.

Once downloaded, run the executable by double-clicking on it and following the onscreen
prompts.

Once installed, open a new PowerShell window and run the following command:

$ gcloud --version

If everything goes as planned, you should see something like the following output:

Figure 14.3 – Checking the version number in PowerShell

Once installed and working, you can move onto the Initialization section of this chapter.

https://dl.google.com/dl/cloudsdk/channels/rapid/GoogleCloudSDKInstaller.exe
https://dl.google.com/dl/cloudsdk/channels/rapid/GoogleCloudSDKInstaller.exe

418 Kubernetes Clusters on Google Kubernetes Engine

Installing on Linux
While the Google Cloud CLI packages are available for most distributions, we don't have
the space to cover all of the various package managers here. Instead, we will use the install
script provided by Google. To run this, you simply need to use the following commands:

$ curl https://sdk.cloud.google.com | bash

$ exec -l $SHELL

The script will ask you several questions during the installation. For most people,
answering Yes will be fine. Once installed as per the macOS and Windows installations,
you can run the following command:

$ gcloud –version

You should then see the following output:

Figure 14.4 – Checking the version number on Linux

The one thing you might have noticed from the three installations is that, while the install
method differs, once the package has been installed, we are using the same gcloud
command, and also getting the same results back. From here, it shouldn't matter which
operating system you are running, as the commands will apply to all three.

Cloud Shell
Before we started installing the Google Cloud CLI, I did mention that there was a fourth
option. That option is Google Cloud Shell, which is built into Google Cloud Console. To
access this, click on the Shell icon, which can be found on the right of the top menu.

Once configured, you should see what looks to be a web-based terminal from which you
can run the following:

$ gcloud –version

The output differs slightly here as Google has provided the full suite of supporting tools.
However, you will notice from the following screen that the versions do match the ones we
installed locally:

Preparing your environment 419

Figure 14.5 – Checking the version number in Google Cloud Shell

If you are using Google Cloud Shell, then you can skip the initialization step, as this has
already been done for you.

Initialization
If you have chosen to install the client locally, then we will need to do one final step to link
it to your GCP account. To do this, run the following command:

$ gcloud init

This will immediately run a quick network diagnostic to ensure that the client has the
connectivity it needs to run. Once the diagnostic has passed, you will be prompted with
the following question:

You must log in to continue. Would you like to log in (Y/n)?

420 Kubernetes Clusters on Google Kubernetes Engine

Answering Y will open a browser window. If it doesn't, then copy and paste the provided
URL into your browser where, once you have selected the account you wish to use, you
will be presented with an overview of the permissions the client is requesting, as seen in
the following figure:

Figure 14.6 – Reviewing the permissions

If you are happy to grant the permissions, then click the Allow button. Back on your
terminal, you will get confirmation of the user you are logged in as. Then you will be asked
to pick a cloud project to use. The list will only contain the unique ID of the project, and
not the friendly name that you saw or set up in Google Cloud Console earlier. If you have
more than one project, please make sure you pick the correct project.

Should you need to update the project the client is using at any point, you can run the
following command:

$ gcloud config set project PROJECT_ID

Make sure you replace PROJECT_ID with the unique ID of the project you wish to
switch to.

Now that you have installed the Google Cloud CLI and have configured your account, we
are ready to launch your GKE cluster.

Launching your first GKE cluster 421

Launching your first GKE cluster
As it is going to take a few minutes to launch the cluster, let's run the command to
initiate the process and then talk through in a little more detail what is happening while
it launches.

Before we launch our cluster, we need to make sure that the container.googleapis.
com service is enabled. To do this, run the following command:

$ gcloud services enable container.googleapis.com

Once the service has been enabled, the command to launch a two-node cluster called
k8sforbeginners, which will be hosted in a single zone in the Central US region, is
as follows:

$ gcloud container clusters create k8sforbeginners
--num-nodes=2 --zone=us-central1-a

After about 5 minutes, you should see something that looks like the following output:

Figure 14.7 – Launching the cluster

422 Kubernetes Clusters on Google Kubernetes Engine

Once the cluster has launched, you should be able to follow the URL in the output and
view it in Google Cloud Console, as seen in the following figure:

Figure 14.8 – Viewing the cluster in Google Cloud Console

Now that we have our cluster up and running, we can look at deploying a workload, then
take a look at Google Cloud Console in a little more detail.

Deploying a workload and interacting with
your cluster
One of the things to note from the feedback when we launched our cluster is the following
output:

kubeconfig entry generated for k8sforbeginners.

As you may have already guessed, this has downloaded and configured all of the necessary
information to connect the kubectl instance that you used to launch the cluster. You can
confirm this by running the following command:

$ kubectl get nodes

The output you get from the command should show two nodes with a prefix of gke, so
should appear something like the following Terminal output:

Figure 14.9 – Using kubectl to list the nodes

Deploying a workload and interacting with your cluster 423

If you saw the preceding output and you are happy to proceed with the kubectl instance
you are using, then you can skip the next section of the chapter and move straight onto
Launching an example workload.

You can also find a link to the official GKE documentation in the Further reading section
at the end of this chapter.

Configuring your local client
Should you need to configure another kubectl instance to connect to your cluster, then
the GCP CLI has a command to do just that.

Important note
Running the command that follows assumes you have the GCP CLI installed
and configured. If you don't have this, then please follow the instructions from
the Installing the Google Cloud Platform CLI section of this chapter.

The command you need to run to download the credentials and configure kubectl is as
follows:

$ gcloud container clusters get-credentials k8sforbeginners
--zone=us-central1-a

Should you need to switch to or from another configuration (or context as it is known),
you can run the following commands. The first command lists the current context:

$ kubectl config current-context

The next command lists the names of all of the contexts that you have configured:

$ kubectl config get-contexts -o name

Once you know the name of the context that you need to use, you can run the following
command, making sure to replace context_name with the name of the context that you
change it to, as in the following:

$ kubectl config use-context context_name

So now that we have your kubectl control configured to talk to and interact with your
GKE cluster, we can launch an example workload.

424 Kubernetes Clusters on Google Kubernetes Engine

Launching an example workload
The example workload we are going to launch is the PHP / Redis Guestbook example,
which is used throughout the official Kubernetes documentation:

1. The first step in launching the workload is to create the Redis Leader deployment
and service. To do this, we use the following commands:

$ kubectl apply -f https://raw.githubusercontent.com/
GoogleCloudPlatform/kubernetes-engine-samples/master/
guestbook/redis-leader-deployment.yaml

$ kubectl apply -f https://raw.githubusercontent.com/
GoogleCloudPlatform/kubernetes-engine-samples/master/
guestbook/redis-leader-service.yaml

2. Next up, we need to repeat the process, but this time to launch the Redis Follower
deployment and service, as shown here:

$ kubectl apply -f https://raw.githubusercontent.com/
GoogleCloudPlatform/kubernetes-engine-samples/master/
guestbook/redis-follower-deployment.yaml

$ kubectl apply -f https://raw.githubusercontent.com/
GoogleCloudPlatform/kubernetes-engine-samples/master/
guestbook/redis-follower-service.yaml

3. Now that we have Redis up and running, it is time to launch the frontend
deployment and service – this is the application itself:

$ kubectl apply -f https://raw.githubusercontent.com/
GoogleCloudPlatform/kubernetes-engine-samples/master/
guestbook/frontend-deployment.yaml

$ kubectl apply -f https://raw.githubusercontent.com/
GoogleCloudPlatform/kubernetes-engine-samples/master/
guestbook/frontend-service.yaml

4. After a few minutes, you should be able to run the following command to get
information on the service you have just launched:

$ kubectl get service frontend

Deploying a workload and interacting with your cluster 425

The output of the command should give you an external IP address that looks like
the following Terminal output:

Figure 14.10 – Getting information on the frontend service

Now that we have launched our application, copy the EXTERNAL-IP value and put the IP
address into your browser. Here you should be presented with the Guestbook application.
Try submitting a few messages, as shown in the following figure:

Figure 14.11 – The Guestbook application with a few test messages

So, now that we have our workload launched, let's return to and explore Google Cloud
Console.

Exploring Google Cloud Console
We have already seen our cluster in Google Cloud Console, so next, click on the
Workloads link, which can be found in the left-hand-side menu of the Kubernetes
Engine section in Google Cloud Console.

426 Kubernetes Clusters on Google Kubernetes Engine

Workloads
Once the page loads, you should see something that resembles the following screen:

Figure 14.12 – Viewing the workload in the console

As you can see from the preceding screen, the three deployments are listed along with
confirmation of the namespace they are in, as well as the cluster that the workload belongs
to.

If we had more than one cluster with multiple namespaces and deployments, we would be
able to use the filter to drill down into our GKE workloads.

Clicking on the frontend deployment will let you view more information:

Figure 14.13 – Getting insights into a deployment

Deploying a workload and interacting with your cluster 427

On this page, you will be able to drill further down into your deployment using the tabs
below the deployment name, as follows:

• OVERVIEW: This view gives you, well, an overview of your deployment – as you
can see from the previous screenshot, you can see the CPU, memory, and disk
utilization, along with other information.

• DETAILS: This lists more details about the environment and deployment itself.
Here, you can find out when it was created, annotations, labels (as well as details
about the replicas), the update strategy, and pod information.

• REVISION HISTORY: Here, you will find a list of all of the revisions to the
deployment. This is useful if your deployment is updated frequently and you need
to keep track of when the deployment was updated.

• EVENTS: If you have any problems with your deployment, then this is the place
you should look. All events – such as scaling, pod availability, and other errors – will
be logged here.

• LOGS: This is a searchable list of the logs from all containers running the pod.

• YAML: This is an exportable YAML file containing the full deployment
configuration.

This information is available for all deployments across all GKE clusters you have
launched within the project.

Services & Ingress
In this section, we are going to look at the Services & Ingress section. As you may have
already guessed, this lists all the services that are launched across all of your GKE clusters.

428 Kubernetes Clusters on Google Kubernetes Engine

After clicking on Services & Ingress, you will be presented with a screen that looks
similar to the following:

Figure 14.14 – Viewing the services in the console

As you can see, we have the three services we launched listed. However, the frontend
service has a type of External load balancer and a public IP address listed, as
opposed to the redis-leader and redis-follower services, which only have a
Cluster IP. This is because, of the three services, we only want the frontend service to be
accessible publicly as only our frontend service uses the two Redis ones.

When the external load balancer was launched (and as we are running our cluster in a
public cloud provider), the Kubernetes scheduler knew to contact the Google Cloud API
and launch a load balancer for use, and then configure it to talk back to our cluster nodes,
exposing the deployment. This deployment is running on port 80 internally.

As before, clicking on one of the three running services will give you several bits of
information:

• OVERVIEW: This view gives you a summary of the service configuration and
utilization.

• DETAILS: Here you can find more detail on the service along with a link to view
the load balancer resource that has been launched within our Google Cloud project.

• EVENTS: As before, here you can find any events that have affected the service.
This is useful for troubleshooting.

• LOGS: This is a repeat of the logs shown in the Workloads section.

• YAML: Again, this is a way for you to export the full configuration for the service as
a YAML file.

Although we are not going to use the other menu items, we should quickly discuss them.

Deploying a workload and interacting with your cluster 429

Other menu options
There are five more options for us to discuss. So far, we haven't really launched a workload
that would utilize them.

Applications
With no applications launched, this links you to a marketplace where you can choose and
deploy pre-configured applications into your environment – at the time of writing, there
are over 100 applications, which range from free and open source to commercial offerings:

Figure 14.15 – Just a couple of the hundreds of applications available

The applications are categorized. They cover everything from Blog and CMS, databases,
and analytics, all the way through to development tools and stacks. The applications are
based on the Application Custom Resource Definition, which is being worked on by the
Kubernetes Application Special Interest Group.

Configuration
Here you can manage ConfigMaps, such as environment variables, as well as Secrets,
and share them amongst your GKE clusters.

Storage
From this section, you can manage, monitor, and review your persistent volume claims as
well as storage classes associated with your GKE clusters.

Object browser
This allows you to browse all of the objects running in your clusters using a graphical
representation of the Kubernetes API. From here you can generate YAML for any part of
your GKE cluster.

430 Kubernetes Clusters on Google Kubernetes Engine

Migrate to containers
This is an interesting tool; it inspects your virtual machine workload (which could
be running on either Linux or Windows) and then figures out the critical parts of
the application. It then attempts to containerize it. In the end, you will be left with a
Dockerfile, along with all of the necessary data files and configurations.

Deleting your cluster
Once you have finished with your cluster, you can remove it by running the following
commands. The first removes the service we created and the second removes the cluster
itself:

$ kubectl delete service frontend

$ gcloud container clusters delete k8sforbeginners --zone=us-
central1-a

It will take a few minutes to remove the cluster.

Important note
This should also delete any services that were launched by your workloads,
such as load balancers. However, I do recommend checking Google Cloud
Console for any orphaned services, to ensure that you do not get any
unexpected costs.

So far throughout this chapter, we have been using the --zone=us-central1-a zone.
This has been launching our cluster in a single availability zone in the US Central region.
Let's discuss what other cluster options are available.

More about cluster nodes
At the end of the previous section, I mentioned availability zones and regions. Before
we discuss some of the cluster deployment options, we should get a bit of a better
understanding of what we mean by availability zones and regions:

• Region: A region is made up of zones. Zones have great low-latency network
connectivity to other zones within the same region. This gives you a way of
deploying highly available always-on fault-tolerant workloads.

More about cluster nodes 431

• Availablity zone: Think of availability zones as separate data centers within a
region. The zones have diverse networks and power, meaning that, should a single
zone have an issue and you are running your workload across multiple zones, then
your workload shouldn't be impacted.

The one thing to note with zones is that you might find that not all machine
types are available across all zones within a region. Therefore, please check before
attempting to deploy your workload.

Google best practice recommends that, for optimum performance and availability, you
should deploy your workload across the maximum number of zones within a single
region. However, it is possible to split your workloads across multiple regions – all you
have to do is take into account and allow for the increased latency between regions.

With that in mind, let's take a look at the command we used to launch the test cluster at
the start of the chapter:

$ gcloud container clusters create k8sforbeginners
--num-nodes=2 --zone=us-central1-a

As we know, it will launch two nodes, but only in a single zone, as we have only passed
one using the --zone flag, which in our case was the us-central1 region and zone a.

Run the following command, but use the --region flag rather than the --zone one:

$ gcloud container clusters create k8sforbeginners
--num-nodes=2 --region=us-central1

Once launched, run the following:

$ kubectl get nodes

This will produce something that looks like the following output:

Figure 14.16 – Viewing the nodes running in a region

432 Kubernetes Clusters on Google Kubernetes Engine

As you can see, we have two nodes in each zone, giving us a total cluster size of six nodes.
The reason for this is that when you define a region by default, your cluster is spread
across three zones. You can override this behavior by using the --node-locations
flag.

This makes our command look like the following:

$ gcloud container clusters create k8sforbeginners
--num-nodes=2 --region=us-central1 --node-locations
us-central1-a,us-central1-b,us-central1-c,us-central1-f

We are still using the us-central1 region, but deploying to the a,b,c, and f zones.
Running the kubectl get nodes command now shows the following:

Figure 14.17 – Our cluster across four zones

As you can see, Google has made it straightforward to deploy your clusters across multiple
zones. This means that you can deploy your workload across a fully redundant cluster with
very little effort required.

To remove clusters deployed using the --region flag, you should use the following
command:

$ gcloud container clusters delete k8sforbeginners --region=us-
central1

At the time of writing, the simple two-node cluster we launched at the start of the chapter
has a cost of around $49 per month, with the price increasing to around $270 per month
for the eight-node cluster we have just launched. For more information on cost, see the
link to the Google Cloud Pricing Calculator in the Further reading section.

That concludes our look at GKE. Before we move onto the next public cloud provider, let's
summarize what we have covered.

Summary 433

Summary
In this chapter, we discussed the origins of GCP and the GKE service, before walking
through how to sign up for an account and how to install and configure the Google Cloud
command-line tool.

We then launched a simple two-node cluster using a single command, then deployed
and interacted with a workload using both the kubectl command and Google
Cloud Console.

Finally, and again only using a single command, we redeployed our cluster to take
advantage of multiple availability zones, quickly scaling to a fully redundant and highly
available eight-node cluster running across four availability zones.

I am sure you will agree that Google has done an excellent job in making deploying
and maintaining what is a complex infrastructure configuration a relatively trivial and
quick task.

Also, once your workloads are deployed, managing them is exactly the same as you would
if your cluster was deployed elsewhere – we really haven't had to make any allowances for
our cluster being run on GCP.

In the next chapter, we are going to be looking at deploying a Kubernetes cluster in
Amazon Web Services using Amazon Elastic Kubernetes Service. This is Amazon's fully
managed Kubernetes offering.

Further reading
Here are links to more information on some of the topics and tools that we have covered
in this chapter:

• Google Kubernetes Engine: https://cloud.google.com/kubernetes-
engine/

• Google Kubernetes Engine Documentation: https://cloud.google.com/
kubernetes-engine/docs

• Google Cloud Pricing Calculator: https://cloud.google.com/products/
calculator

• The Guestbook Sample Application: https://github.com/
GoogleCloudPlatform/kubernetes-engine-samples/tree/master/
guestbook

• Migrate your VM workloads to Kubernetes: https://cloud.google.com/
migrate/anthos/docs/getting-started

https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/kubernetes-engine/docs
https://cloud.google.com/kubernetes-engine/docs
https://cloud.google.com/products/calculator
https://cloud.google.com/products/calculator
https://github.com/GoogleCloudPlatform/kubernetes-engine-samples/tree/master/guestbook
https://github.com/GoogleCloudPlatform/kubernetes-engine-samples/tree/master/guestbook
https://github.com/GoogleCloudPlatform/kubernetes-engine-samples/tree/master/guestbook
https://cloud.google.com/migrate/anthos/docs/getting-started
https://cloud.google.com/migrate/anthos/docs/getting-started

434 Kubernetes Clusters on Google Kubernetes Engine

• The Kubernetes Application SIG: https://github.com/kubernetes-sigs/
application

• The Google Cloud Kubernetes comic: https://cloud.google.com/
kubernetes-engine/kubernetes-comic

https://github.com/kubernetes-sigs/application
https://github.com/kubernetes-sigs/application
https://cloud.google.com/kubernetes-engine/kubernetes-comic
https://cloud.google.com/kubernetes-engine/kubernetes-comic

15
Launching a

Kubernetes Cluster
on Amazon Web

Services with
Amazon Elastic

Kubernetes Service
In the previous chapter, we took our first steps with launching a Kubernetes cluster in a
public cloud. Now we know what the Google Cloud Platform (GCP) Kubernetes offering
looks like, we are going to move on to the Amazon Elastic Kubernetes Service (EKS) by
Amazon Web Services (AWS).

In this chapter, you will learn what is needed to do to set up an AWS account, installing
the supporting toolsets on macOS, Windows, and also Linux before finally launching and
interacting with an Amazon EKS cluster.

436 Launching a Kubernetes Cluster on Amazon Web Services with Amazon Elastic Kubernetes Service

We will be covering the following topics:

• What are AWS and Amazon EKS?

• Preparing your local environment

• Launching your Amazon EKS cluster

• Deploying a workload and interacting with your cluster

• Deleting your Amazon EKS cluster

Technical requirements
To following along with this chapter, you will need an AWS account with a valid payment
attached to it.

Important note
Following the instructions in this chapter will incur a cost and it is important
that you terminate any resources you launch once you have finished with them.

All prices quoted in this chapter are correct at the time of writing this book, and we
recommend that you review the current costs before you launch any resources.

What are AWS and Amazon EKS?
There is a very good chance you have already heard of AWS, as not only is it one of the
first public cloud providers, but also, at the time of writing, it has the largest market share.

AWS
As you may have already guessed, AWS is owned and operated by Amazon. Amazon, the
retailer, first started to dabble with cloud services way back in 2000 when they started to
develop and deploy application programming interfaces (APIs) for their retail partners
to consume.

Off the back of this work, Amazon realized that they would need to build a better and
more standardized infrastructure platform to not only host the services they had been
developing but to also ensure that they could quickly scale, as more of the Amazon
retail outlet was consuming more of the software services and was growing at an
expediential rate.

What are AWS and Amazon EKS? 437

Chris Pinkham and Benjamin Black wrote a white paper in 2003 that was approved by Jeff
Bezos in 2004, which described an infrastructure platform where compute and storage
resources can all be deployed programmatically.

The first public acknowledgment of AWS's existence was made in late 2004; however, the
term was used to describe a collection of tools and APIs that would allow third parties to
interact with Amazon's retail product catalog rather than what we know today.

It wasn't until 2006 that a rebranded AWS was launched, starting in March with the
Simple Storage Service, or S3 for short, which was a service that allowed developers to
write and serve individual files using a web API rather having to write and read from a
traditional local filesystem.

The next service to launch, Amazon Simple Queue Service (SQS), had formed part of the
original AWS collection of tools—this was a distributed message system that again could
be controlled and consumed by developers using an API.

The final service launched in 2006 was a beta of the Amazon Elastic Compute Cloud
service, or Amazon EC2 for short, which was limited to existing AWS customers—again,
you could use the APIs developed by Amazon to launch resources.

This was the final piece of the puzzle for Amazon, and they now had the foundations of
a public cloud platform they could use not only their own retail platform on but also sell
space to other companies and the public, such as you and me.

If we fast forward from 2006, when there were three services, to the time of writing, which
is late 2020, there are now over 170 services available. All of these 170+ services stick to
the core principles that were laid out in the white paper written in 2003 each service is
software-defined, meaning that all a developer has to do is to make a simple API request
to launch, configure, and in some cases consume before finally being able to make a
request terminate the service.

Tip
Services that are prefixed with Amazon are services that are standalone, unlike
ones that are prefixed with AWS, which are services that are designed to be
used alongside other AWS services.

Long gone are the days of having to order a service, have someone build and deploy, then
hand it over to you—this takes deployment times down to seconds from what sometimes
could take weeks.

Rather than discuss all 170+ services, which would be a collection of books all by itself, we
should discuss the service we are going to be looking at in this chapter.

438 Launching a Kubernetes Cluster on Amazon Web Services with Amazon Elastic Kubernetes Service

Amazon EKS
While AWS was the first of the major public cloud providers, it was one of the last to
launch a standalone Kubernetes service. Amazon EKS was first announced in late 2017
and became generally available in the United States (US) East (N. Virginia) and US West
(Oregon) regions in June 2018.

The service is built to work with and take advantage of other AWS services and features,
such as the following:

• AWS Identity and Access Management (IAM): This service allows you to take
control of and manage both end-user and programmatic access to other AWS
services.

• Amazon Route 53: This is Amazon's Domain Name System (DNS) service. EKS
can use it as a source of DNS for clusters, which means that service discovery and
routing can easily be managed within your cluster.

• Amazon Elastic Block Storage (EBS): If you need persistent block storage for
the containers running within your Amazon EKS instance, then it is provided by
the same service used to provide block storage for the rest of your EC2 compute
resources.

• EC2 Auto Scaling: Should your cluster need to scale, then the same technology to
scale your EC2 instances is employed.

• Multi Availability Zones (AZs): The Amazon EKS management layer, as well as
cluster nodes, can be configured to be spread across multiple AZs within a given
region to bring high availability (HA) and resilience to your deployment.

Before we launch our Amazon EKS cluster, we are going to have to download, install, and
configure a few tools.

Preparing your local environment
There are two sets of command-line tools we are going to install, but before we do, we
should quickly discuss the steps to sign up for a new AWS account. If you already have an
AWS account, then you can skip this task and move straight on to the Installing the AWS
command-line interface section.

Preparing your local environment 439

Signing up for an AWS account
Signing up for an AWS account is a straightforward process, as detailed here:

1. Head over to https://aws.amazon.com/ and then click on the Create an
AWS account button, which can be found in the top right of the page.

Important note
While Amazon offers a free tier for new users, it is limited to certain services,
instance sizing, and also for 12 months. For information on the AWS Free Tier,
see https://aws.amazon.com/free/.

2. Fill out the initial form that asks for an email address, your preferred password, and
the AWS account name.

3. Once done, click on Continue and follow the onscreen instructions. These will
involve you confirming both your payment details and also confirming your
identity via an automated phone call.

Once you have your account created and enabled, you will be able to start using AWS
services. In our case, we now need to install the command-line tools we will be using to
launch our Amazon EKS cluster.

Installing the AWS command-line interface
Next on our list of tasks is to install the AWS command-line interface (CLI). As with the
previous chapter, Chapter 14, Kubernetes Clusters on Google Kubernetes Engine, we will be
targeting Windows, Linux, and also macOS, which we will be looking at first.

Installing on macOS
Installing the AWS CLI on macOS using Homebrew is as simple as running the following
command:

$ brew install awscli

Once it's installed, running the following command:

$ aws --version

https://aws.amazon.com/
https://aws.amazon.com/free/

440 Launching a Kubernetes Cluster on Amazon Web Services with Amazon Elastic Kubernetes Service

This will output the version of the AWS CLI, along with some of the support services it
needs, as illustrated in the following screenshot:

Figure 15.1 – Checking the AWS CLI version number on macOS

Once it's installed, we can move on to the AWS CLI configuration section.

Installing on Windows
As with macOS, you can use a package manager to install the AWS CLI. As in
Chapter 14, Kubernetes Clusters on Google Kubernetes Engine, we will be using Chocolatey.
The command you need to run is shown here:

$ choco install awscli

Once using Chocolatey, running aws --version will give you similar output to what
we saw on macOS, as illustrated in the following screenshot:

Figure 15.2 – Checking the AWS CLI version number on Windows

Once it's installed, we can move on to the AWS CLI configuration section.

Installing on Linux
While there are packages available for each distribution, the easiest way of installing the
AWS CLI on Linux is to download and run the installer.

Important note
These instructions assume that you have the curl and unzip packages
installed, if you don't, please install them using your distribution's package
manager—for example, on Ubuntu, you would need to run sudo apt
install unzip curl to install both packages.

Preparing your local environment 441

To download and install the AWS CLI, run the following commands:

$ curl "https://awscli.amazonaws.com/awscli-exe-linux-x86_64.
zip" -o "awscliv2.zip"

$ unzip awscliv2.zip

$ sudo ./aws/install

Once it's installed, you should be able to run aws --version, and you will get
something like this:

Figure 15.3 – Checking the AWS CLI version number on Linux

Once installed, we can move on to the AWS CLI configuration section.

AWS CLI configuration
Once you have the AWS CLI installed and you have checked that it is running okay by
issuing the aws --version command, you will need to link the CLI to your
AWS account.

To do this, you will need to log in to the AWS console—this can be accessed at http://
console.aws.amazon.com/. Once logged in, type IAM into the Find Services search
box and click on the link to be taken to the Identity and Access Management (IAM)
page. We need to create a user with programmatic access; to do this, follow these steps:

1. Once the page has loaded, click on Users, which can be found under the Access
Management section of the left-hand side menu.

2. Enter the username—I will be using ekscluster—then select both the
Programmatic access and AWS Management Console access types. If you select
the latter option, you will be given the option of setting an autogenerated or custom
password and can decide whether the password should be reset after the user
logs in.

Personally, I set a custom password and unticked the option of resetting the
password after the first login. To proceed to the next step, once you have set the
details, click on the Next: Permissions button.

http://console.aws.amazon.com/
http://console.aws.amazon.com/

442 Launching a Kubernetes Cluster on Amazon Web Services with Amazon Elastic Kubernetes Service

3. Rather than create a group, we are going to simply grant our user an existing
policy. To do this, select Attach existing policies directly and select the
AdministratorAccess policy, then click on Next: Tags to proceed to the next step.

4. As we are going to be removing this user at the end of the chapter, I am not going
to enter any tags; however, you can, if you like. Click on the Next: Review button to
move on to the final step.

5. Once you have reviewed the information presented to you, click on the
Create user button.

6. Once the user has been created, click on the Download .csv button—this is the only
time that the secret will be displayed, and once you close the page, you will have to
generate a new one.

Once you have the secret, click on the Close button. We now have the credentials
we can use to authenticate our AWS CLI against our AWS account.

Return to your terminal and then run the following command to create a default profile:

$ aws configure

This will ask for a few bits of information, as follows:

• AWS access key identifier (ID): This is the access key ID from the comma-
separated values (CSV) file we downloaded.

• AWS secret access key: This is the key from the CSV file.

• Default region name: I entered us-east-1.

• Default output format: I left this blank.

To test that everything is working, you can run the following command:

$ aws ec2 describe-regions

This will list the AWS regions that are available, and the output should look like something
like this:

Preparing your local environment 443

Figure 15.4 – Testing the AWS CLI

Now we have the AWS CLI installed and configured to talk to our account, we need to
install the next command-line tool.

Installing eksctl, the official CLI for Amazon EKS
While it is possible to launch an Amazon EKS cluster using the AWS CLI, it is complicated
and there are a lot of steps. To get around this, Weaveworks have created a simple
command-line tool that generates an AWS CloudFormation template and then launches
your cluster.

Tip
AWS CloudFormation is Amazon's Infrastructure-as-Code (IaC) definition
language that lets you define your AWS resources in such a way that they be
can be deployed across multiple accounts or repeatedly in the same one. This is
useful if you have to keep spinning up an environment—for example, as part of
a continuous integration (CI) build.

Installation couldn't be easier—macOS users can run the following commands to install
using Homebrew:

$ brew tap weaveworks/tap

$ brew install weaveworks/tap/eksctl

Windows users can use the following command:

$ choco install eksctl

444 Launching a Kubernetes Cluster on Amazon Web Services with Amazon Elastic Kubernetes Service

All Linux users have to do is download the precompiled binaries and copy them into
place, as follows:

$ curl --silent --location "https://github.com/weaveworks/
eksctl/releases/latest/download/eksctl_$(uname -s)_amd64.tar.
gz" | tar xz -C /tmp

$ sudo mv /tmp/eksctl /usr/local/bin

Once installed, you should be able to run eksctl version to get the version number.
We are now ready to launch our cluster.

Launching your Amazon EKS cluster
For our test, we are going to use the defaults built into the eksctl command. These will
launch an Amazon EKS cluster with the following attributes:

• In the us-west-1 region.

• With two worker nodes, using the m5.large instance type.

• Uses the official AWS EKS Amazon Machine Image (AMI).

• In its own virtual private cloud (VPC), which is Amazon's networking service.

• With an automatically generated random name.

So, without further ado, let's launch our cluster by running the following command:

$ eksctl create cluster

You might want to go and make a drink or catch up on emails, as this process can take
around 30 minutes to complete.

If you are not following along, here is the output I got when running the command. First
of all, some basic information is displayed about the version of eksctl and which region
will be used:

[i] eksctl version 0.33.0

[i] using region us-east-1

Launching your Amazon EKS cluster 445

Now, by default, eksctl uses the us-west-2 region; however, as we set us-east-1
as the default when we configured the AWS CLI, it has used that setting. Next up, it will
give some information on the networking and AZs it will be deploying resources into, as
illustrated in the following code snippet:

[i] setting availability zones to [us-east-1e us-east-1a]

[i] subnets for us-east-1e - public:192.168.0.0/19
private:192.168.64.0/19

[i] subnets for us-east-1a - public:192.168.32.0/19
private:192.168.96.0/19

It will now give details of which version of the AMI it is going to use, along with the
Kubernetes version that image supports, as follows:

[i] nodegroup "ng-6cd00965" will use "ami-0f4cae6ae56be18ee"
[AmazonLinux2/1.18]

[i] using Kubernetes version 1.18

Now it knows all of the elements, it is going to create a cluster and with it make a start on
the deployment, as follows:

[i] creating EKS cluster "attractive-sheepdog-1607259336" in
"us-east-1" region with un-managed nodes

[i] will create 2 separate CloudFormation stacks for cluster
itself and the initial nodegroup

[i] if you encounter any issues, check CloudFormation console
or try 'eksctl utils describe-stacks --region=us-east-1
--cluster=attractive-sheepdog-1607259336'

As you can see, it has called my cluster attractive-sheepdog-1607259336; this
will be referenced throughout the build. By default, logging is not enabled, as we can
see here:

[i] CloudWatch logging will not be enabled for cluster
"attractive-sheepdog-1607259336" in "us-east-1"

[i] you can enable it with 'eksctl utils update-cluster-
logging --enable-types={SPECIFY-YOUR-LOG-TYPES-HERE (e.g. all)}
--region=us-east-1 --cluster=attractive-sheepdog-1607259336'

446 Launching a Kubernetes Cluster on Amazon Web Services with Amazon Elastic Kubernetes Service

Now is the point where we wait, and the following messages are displayed:

[i] Kubernetes API endpoint access will use default of
{publicAccess=true, privateAccess=false} for cluster
"attractive-sheepdog-1607259336" in "us-east-1"

[i] 2 sequential tasks: { create cluster control plane
"attractive-sheepdog-1607259336", 3 sequential sub-tasks: { no
tasks, create addons, create nodegroup "ng-6cd00965" } }

[i] building cluster stack "eksctl-attractive-sheepdog-
1607259336-cluster"

[i] deploying stack "eksctl-attractive-sheepdog-1607259336-
cluster"

Once deployed, it will download the cluster credentials and configure kubectl,
as follows:

[✓] saved kubeconfig as "/Users/russ.mckendrick/.kube/config"
[i] no tasks

[✓] all EKS cluster resources for "attractive-
sheepdog-1607259336" have been created

[i] adding identity "arn:aws:iam::687011238589:role/eksctl-
attractive-sheepdog-160725-NodeInstanceRole-1FZFP968TXZG9" to
auth ConfigMap

The final step is to wait for the nodes to become available, as is happening here:

[i] nodegroup "ng-6cd00965" has 0 node(s)

[i] waiting for at least 2 node(s) to become ready in "ng-
6cd00965"

[i] nodegroup "ng-6cd00965" has 2 node(s)

[i] node "ip-192-168-23-50.ec2.internal" is ready

[i] node "ip-192-168-50-107.ec2.internal" is ready

Now we have both nodes online and ready, it is time to display a message confirming that
everything is ready, as follows:

[i] kubectl command should work with "/Users/russ.mckendrick/.
kube/config", try 'kubectl get nodes'

[✓] EKS cluster "attractive-sheepdog-1607259336" in "us-
east-1" region is ready0

Deploying a workload and interacting with your cluster 447

Now that the cluster is ready, let's do as the output suggests and run kubectl get
nodes. As expected, this gives us details on the two nodes that make up our cluster, as
illustrated in the following screenshot:

Figure 15.5 – Viewing the two cluster nodes

Now we have a cluster up and running, let's launch the same workload we launched when
we launched our Google Kubernetes Engine (GKE) cluster.

Deploying a workload and interacting with
your cluster
If you recall from the last chapter, we used the Guestbook example from the GCP GKE
examples' GitHub repository.

First, we are going to deploy the workload before we then explore the web-based AWS
console. Let's make a start on our Guestbook deployment.

Deploying the workload
Even though we are our cluster is running on AWS using Amazon EKS, we are going to be
using the same set of YAML Ain't Markup Language (YAML) files we used to launch our
workload in GKE. Follow these next steps:

1. As before, our first step is launching the Redis Leader deployment and service
using the following commands:

$ kubectl apply -f https://raw.githubusercontent.com/
GoogleCloudPlatform/kubernetes-engine-samples/master/
guestbook/redis-leader-deployment.yaml

$ kubectl apply -f https://raw.githubusercontent.com/
GoogleCloudPlatform/kubernetes-engine-samples/master/
guestbook/redis-leader-service.yaml

448 Launching a Kubernetes Cluster on Amazon Web Services with Amazon Elastic Kubernetes Service

2. Once the Redis Leader deployment and service have been created, we need to
launch the Redis Follower deployment, as follows:

$ kubectl apply -f https://raw.githubusercontent.com/
GoogleCloudPlatform/kubernetes-engine-samples/master/
guestbook/redis-follower-deployment.yaml

$ kubectl apply -f https://raw.githubusercontent.com/
GoogleCloudPlatform/kubernetes-engine-samples/master/
guestbook/redis-follower-service.yaml

3. Once Redis is up and running, it's time to launch the frontend deployment and
service using the following commands:

$ kubectl apply -f https://raw.githubusercontent.com/
GoogleCloudPlatform/kubernetes-engine-samples/master/
guestbook/frontend-deployment.yaml

$ kubectl apply -f https://raw.githubusercontent.com/
GoogleCloudPlatform/kubernetes-engine-samples/master/
guestbook/frontend-service.yaml

4. After a few minutes, we will be able to run the following command to get
information on the service we have just launched, which should include details on
where to access our workload:

$ kubectl get service frontend

You will notice that this time, the output is slightly different from the output we got
when running the workload on GKE, as we can see in the following screenshot:

Figure 15.6 – Getting information on the frontend service
As you can see, rather than an Internet Protocol (IP) address, we get a Uniform
Resource Locator (URL). Copy that into your browser.

Once you have opened the URL, given that we have used exactly the same work, you won't
be surprised to see the Guestbook application, as shown in the following screenshot:

Deploying a workload and interacting with your cluster 449

Figure 15.7 – The Guestbook application with a few test messages

Now we have our workload up and running, let's take a look at what we can see through
the AWS console.

Exploring the AWS console
In this section, we are going to try to take a look at our newly deployed workload using
the AWS console. First, we need to log in, as follows:

1. Open https://console.aws.amazon.com/. If you are still logged in from
when we generated the IAM credentials, you will need to log out as we will not be
using our main AWS user for this part of the chapter.

2. Once logged out, open the CSV file that we downloaded during the AWS CLI
configuration section of the chapter and then copy and paste the console login link
into your browser. Enter the credentials for the ekscluster user we created
earlier in the AWS CLI configuration section of this chapter. If you selected the
option to reset the password when the user first logs in, then you will be prompted
to do so now.

https://console.aws.amazon.com/

450 Launching a Kubernetes Cluster on Amazon Web Services with Amazon Elastic Kubernetes Service

Important note
You may be thinking to yourself: Why are we using a different user to log in to
the AWS console, as my main user has full access? There is a good reason for
this—when eksctl launched our cluster, there was a line that said adding
identity. This granted permissions to the user that were used to create a
cluster to be able to interact with the cluster using AWS services. This means
that we will be able to view workloads and the like within the AWS console. If
you were to use your regular user, then you would not have permission to see
any of the details we are about to look at within the AWS console, due to the
cluster not knowing about your main user.

3. Next, make sure that the region we have launched our cluster in is selected. The
region selector can be found in the top right next to the Support drop-down
menu—make sure that US East (N. Virginia) us-east-1 is selected.

4. Once you have the region selected, enter EKS into the Services menu and you will
be taken to the Amazon Container Services page, as illustrated in the following
screenshot:

Figure 15.8 – The Amazon Container Services page

5. Next, click on the Clusters link underneath the Amazon EKS entry in the left-hand
side menu, as illustrated in the following screenshot:

Deploying a workload and interacting with your cluster 451

Figure 15.9 – Listing the Amazon EKS clusters
Clicking on the cluster name, which in my case is attractive-
sheepdog-1607259336, will take you to the cluster view.

6. The initial Overview tab will show you the nodes within the cluster. The next option
is Workloads—clicking this will take you to the workloads view.

7. By default, it will show you all of the Kubernetes namespaces, including the
system ones—selecting the default namespace in the All Namespaces
dropdown will display just the workloads we have launched, as illustrated in the
following screenshot:

Figure 15.10 – Viewing the workloads in the default namespace

8. Clicking on one of the deployments will give you more information on the
deployment—this includes details of the pods, configuration, and so on. However,
as you click around, you will find that all you can really do is view information on
the services; there are no graphs, logging output, or anything that gives more than a
basic overview of our workloads.

452 Launching a Kubernetes Cluster on Amazon Web Services with Amazon Elastic Kubernetes Service

9. The final section is Configuration; again, this gives basic information on our cluster
and not a lot more.

Moving away from the EKS service page and going to the EC2 service section of the
AWS console will display the two nodes, as illustrated in the following screenshot:

Figure 15.11 – Viewing the EC2 instances
Here, you will be able to drill down and find out more information on the instance,
including its central processing unit (CPU), random-access memory (RAM),
and network utilization; however, this is only for the instance itself and not for our
Kubernetes workload.

10. Selecting Load Balancers from the Load Balancing section of the left-hand side
menu will show you the elastic load balancer that was launched and configured
when we applied the frontend service, as illustrated in the following screenshot:

Figure 15.12 – Viewing the elastic load balancer

11. The final AWS service we are using is AWS CloudFormation, so entering
CloudFormation in the Services menu and clicking on the link will take you to
the CloudFormation service page.

Deploying a workload and interacting with your cluster 453

Here, you will see two stacks, one for the EKS nodes—these are our two EC2
instances—and then one for the EKS cluster, which is our Kubernetes management
plane. These stacks are illustrated in the following screenshot:

Figure 15.13 – Viewing the AWS CloudFormation stacks

12. Selecting one of the stacks will give you details on what happened when the stack
was launched. It will list all of the many resources that were created during the
launch of the Amazon EKS cluster using eksctl.

13. If you select a template and then view it in the designer, you can even see the
template that was generated by eksctl with a visual representation. The following
screenshot gives a view of the simpler of the two stacks:

Figure 15.14 – Viewing the AWS CloudFormation template in the designer

454 Launching a Kubernetes Cluster on Amazon Web Services with Amazon Elastic Kubernetes Service

That is about all we can see in the AWS console. As we have seen, while Amazon EKS is
relatively simple to launch using eksctl, its level of integration with the AWS console is
somewhat lacking compared to the GKE cluster we launched in the previous chapter.

While we were able to explore and view our workload, we could not interact with too
much; also, the feedback on the cluster is tied into the basic monitoring offered by the
Amazon EC2 service.

 Once you have finished your Amazon EKS cluster, you can delete it.

Deleting your Amazon EKS cluster
You can delete your cluster by running the following command, making sure to replace
the cluster name with that of your own:

$ eksctl delete cluster --name attractive-sheepdog-1607259336

Deleting the cluster does not take as long to run as when we launched it; in fact, it takes
around 5 minutes. As before, eksctl gives you details on what it is doing as it deletes the
resources, starting with the same details on when we launched the cluster, as illustrated in
the following code snippet:

[i] eksctl version 0.33.0

[i] using region us-east-1

Then, it provides details on the cluster, as follows:

[i] deleting EKS cluster "attractive-sheepdog-1607259336"

[i] deleted 0 Fargate profile(s)

The first thing that is updated is the local kubectl configuration, as we can see here:

[✓] kubeconfig has been updated

Then, any resources that have been launched as part of deploying workloads onto our
cluster are removed, as follows:

[i] cleaning up AWS load balancers created by Kubernetes
objects of Kind Service or Ingress

Summary 455

Then, the two AWS CloudFormation stacks are removed, which in turn removes all of the
resources they created and configured, as illustrated in the following code snippet:

[i] 2 sequential tasks: { delete nodegroup "ng-6cd00965",
delete cluster control plane "attractive-sheepdog-1607259336"
[async] }

[i] will delete stack "eksctl-attractive-sheepdog-1607259336-
nodegroup-ng-6cd00965"

[i] waiting for stack "eksctl-attractive-sheepdog-1607259336-
nodegroup-ng-6cd00965" to get deleted

[i] will delete stack "eksctl-attractive-sheepdog-1607259336-
cluster"

[✓] all cluster resources were deleted

At this point, our cluster has been completely deleted.

Important note
Please double-check the EC2, EKS, and CloudFormation sections in the AWS
console to ensure that all services have been correctly deleted as you will be
charged for any orphaned or idle resources that have been left behind. While
this is an unlikely scenario, it is best to double-check now rather than receive
an unexpected bill at the end of the month.

So, how much would our Amazon EKS cluster have cost us to run for a month?

There are two sets of costs that we need to take into account—the first is for the Amazon
EKS cluster itself. It is US Dollars (USD) $0.10 per hour for each Amazon EKS cluster you
create; however, each Amazon EKS cluster can run multiple node groups, so you shouldn't
have to launch more than one per region—so, the cluster itself comes in around $72 per
month.

Now, added to the EC2 cluster nodes, which in our case would have cost around $70 each,
this means that the total cost to run our cluster for a month would be around $212—and
I say around because there are then charges for bandwidth and also for the AWS Elastic
Load Balancing (ELB) service, which will increase the cost of our workload further.

Summary
In this chapter, we discussed the origins of AWS and also Amazon EKS before walking
through how to sign up for an account and how to install and configure the two
command-line tools required to easily launch an Amazon EKS cluster.

456 Launching a Kubernetes Cluster on Amazon Web Services with Amazon Elastic Kubernetes Service

Once our cluster was up and running, we deployed the same workload as when we
launched our GKE cluster. We did not have to make any allowances for the workload
running on a different cloud provider—it just worked, even deploying a load balancer
using the AWS native load balancing service.

We did, however, find that EKS is not as integrated with the AWS console as the Google
service we looked at, and also learned that we had to install a second command-line tool
to easily launch our cluster due to the complications of trying to do so using the AWS
CLI. This would have been around eight steps, and that assumes that the Amazon VPC
configuration and IAM roles had been created and deployed.

Personally, this lack of integration and complexity when it comes to launching and
maintaining clusters compared to other providers would put me off running my
Kubernetes workloads on Amazon EKS.

In the next chapter, we are going to look at launching an Azure Kubernetes Service
(AKS) cluster on Microsoft Azure, which will be the last of the three public providers we
will be covering.

Further reading
Here are links to more information on some of the topics and tools we have covered in
this chapter:

• AWS: https://aws.amazon.com/

• Amazon EKS: https://aws.amazon.com/eks/

• The AWS CLI: https://aws.amazon.com/cli/

• eksctl: https://eksctl.io/

• Weaveworks: https://www.weave.works/

• Official documentation: https://docs.aws.amazon.com/eks/latest/
userguide/what-is-eks.html

https://aws.amazon.com/
https://aws.amazon.com/eks/
https://aws.amazon.com/cli/
https://eksctl.io/
https://www.weave.works/
https://docs.aws.amazon.com/eks/latest/userguide/what-is-eks.html
https://docs.aws.amazon.com/eks/latest/userguide/what-is-eks.html

16
Kubernetes Clusters

on Microsoft
Azure with Azure

Kubernetes Service
The last of the three public cloud Kubernetes services we are going to look at is Azure
Kubernetes Service (AKS), which is hosted on what most people consider to be one of
the "big three" public cloud providers, Microsoft Azure.

By the end of this chapter, you will have configured your local environment with the tools
needed to interact with your Microsoft Azure account and launch your AKS cluster.
From there we will launch the same workload we launched in the previous two chapters,
and then explore the level of integration that your AKS cluster has with the Microsoft
Azure portal.

458 Kubernetes Clusters on Microsoft Azure with Azure Kubernetes Service

To do this, we will be covering the following topics:

• What are Microsoft Azure and AKS?

• Preparing your local environment

• Launching your AKS cluster

• Deploying a workload and interacting with your cluster

• Deleting your AKS cluster

Technical requirements
To following along with this chapter, you will need a Microsoft Azure account with a valid
payment method attached to it.

Important note
Following the instructions in this chapter will incur a cost and it is important
that you terminate any resources you launch once you have finished with them
to avoid unwanted expenses.

All prices quoted in this chapter are correct at the time of print and we recommend that
you review the current costs before you launch any resources.

What are Microsoft Azure and AKS?
Before we start to look at installing the supporting tools, let's quickly discuss the origins of
the services we'll be looking at, starting with Microsoft Azure.

Microsoft Azure
In 2008, Microsoft announced a new service called Windows Azure, which it had been
working on since 2004. This service was part of a project known internally as Project
Red Dog. This project focused on delivering data center services using core Windows
components. The five core components that Microsoft announced at their 2008 developer
conference were as follows:

• Microsoft SQL Data Services: This was a cloud version of the Microsoft SQL
Database service running as a Platform as a Service (PaaS), which aimed to
remove the complexity of hosting your own SQL services.

What are Microsoft Azure and AKS? 459

• Microsoft .NET Services: Another PaaS service that allowed developers to deploy
their .NET-based applications into a Microsoft-managed .NET runtime.

• Microsoft SharePoint: A Software as a Service (SaaS) version of the popular
intranet product.

• Microsoft Dynamics: A SaaS version of Microsoft's CRM product.

• Windows Azure: An Infrastructure as a Service (IaaS) offering similar to other
cloud providers that allowed users to spin up virtual machines, storage, and the
networking services needed to support their compute workloads.

All of the services that Microsoft announced were built on top of the Red Dog operating
system, which was a specialized operating system with a cloud layer built in.

In 2014, Windows Azure was renamed Microsoft Azure, which reflected both the name of
the underlying operating system powering the cloud services and also the fact that Azure
was running a large number of Linux-based workloads – in fact, in 2020, it was revealed
that more than 50% of VM cores are running Linux workloads, as well as 60% of the
Azure Marketplace images now being Linux-based.

This is largely due to Microsoft embracing both Linux and open source projects such as
Kubernetes.

AKS
Microsoft provided its own container-based service called Azure Container Service
(ACS). This allowed you to deploy container workloads backed by three different
orchestrators: Docker Swarm, DC/OS, and Kubernetes.

It soon became apparent that Kubernetes was the most popular of the three orchestrators,
so ACS was gradually replaced by AKS, which was a CNCF-compliant, purely Kubernetes-
based service. The transition took about 2 years, with AKS becoming generally available in
2018 and ACS being retired in early 2020.

The AKS service is closely integrated with Azure Active Directory, Policies, and other key
Microsoft Azure services.

Alongside AKS, Microsoft also offer a pure container service called Azure Container
Instances (ACI) as well as the ability to launch container workloads in Azure App
Services.

Rather than carrying on discussing the background of the services, I have always found
it much easier to roll up your sleeves and get hands-on with a service, so without further
delay, let's look at getting the tools installed we will need to launch and manage our
AKS cluster.

460 Kubernetes Clusters on Microsoft Azure with Azure Kubernetes Service

Preparing your local environment
Before we look at launching our cluster, there are a few tasks we need to complete. First of
all, if you don't already have one, you will need to sign up for an Azure account.

If you don't already have an account, then you can head to https://azure.
microsoft.com/free/. You will be taken to the following page where you can sign up
for a free account:

Figure 16.1 – Creating your Azure free account

At the time of writing, your free account includes 12 months of popular services, $200 of
credit that can be used to explore and test the different Azure services, and access to over
25 services that will always be free.

Click on the Start for free button and follow the onscreen instructions. The sign-up
process will take about 15 minutes and you will need to provide valid credit or debit card
information to complete the process and gain access to your free account.

Once you have access to your account, the next step is to install the Azure CLI.

The Azure CLI
Microsoft provides a powerful cross-platform command-line tool for managing your
Microsoft Azure resources. Installing it on the three main operating systems couldn't
be simpler.

Installing on macOS
If you have been following along with the previous two chapters, then you may have
already guessed that we will be using Homebrew to install the Azure CLI on macOS. To
do this, simply run the following command:

$ brew install azure-cli

https://azure.microsoft.com/free/
https://azure.microsoft.com/free/

Preparing your local environment 461

Once installed, run the following command:

$ az –version

This should return something similar to the following screenshot:

Figure 16.2 – Checking the Azure CLI version on macOS

Once installed, you can move on to the Configuring the Azure CLI section of this chapter.

Installing on Windows
There are few ways you can install the Azure CLI on Windows:

• The first is to download a copy of the installer from https://aka.ms/
installazurecliwindows and then execute it by double-clicking on it.

• The next option is to use the following PowerShell command, which will download
the installer from the preceding URL and install it:

$ Invoke-WebRequest -Uri https://aka.ms/
installazurecliwindows -OutFile .\AzureCLI.msi; Start-
Process msiexec.exe -Wait -ArgumentList '/I AzureCLI.msi
/quiet'; rm .\AzureCLI.msi

• The third option is to use the Chocolatey package manager and run the following
command:

$ choco install azure-cli

https://aka.ms/installazurecliwindows
https://aka.ms/installazurecliwindows

462 Kubernetes Clusters on Microsoft Azure with Azure Kubernetes Service

Whichever way you choose to install the package, run the following command once it has
been installed to find out the version number:

$ az –version

You should see something like the following screen:

Figure 16.3 – Checking the Azure CLI version on Windows

Once installed, you can move on to the Configuring the Azure CLI section.

Installing on Linux
Microsoft provides an installation script that covers the most common Linux
distributions. To run the script, use the following command:

$ curl -L https://aka.ms/InstallAzureCli | bash

Once installed, you will need to restart your session. You can do this by logging out and
then back in, or on some distributions by running the following command:

$ source ~/.profile

Once you have restarted your session, run the following command:

$ az –version

Preparing your local environment 463

This will return information on the version of the Azure CLI installed:

Figure 16.4 – Checking the Azure CLI version on Linux

Now we have the Azure CLI installed, we can configure it.

Configuring the Azure CLI
Configuring the Azure CLI is a really straightforward process; you just need to run the
following command:

$ az login

This will open up your default browser where you will be asked to log in. If you are having
problems or running a command-line-only installation of the Azure CLI (on a remote
Linux server for example), then running the following command will give you a URL and
unique sign-in code to use:

$ az login –use-device-code

Once logged in, your command-line session should return some information on your
Azure account. You can view this again by using the following command:

$ az account show

If, for any reason, you are not able to install the Azure CLI locally, all is not lost, as there is
a web-based terminal with the Azure CLI you can use in the Azure portal. We are going to
look at this next.

464 Kubernetes Clusters on Microsoft Azure with Azure Kubernetes Service

Accessing Azure Cloud Shell
To get access to Azure Cloud Shell, open https://portal.azure.com/ and log in
with your credentials. Once logged in, you can click on the Cloud Shell icon in the menu
bar, which can be found at the top of the page – it is the first icon next to the central
search box.

If you have previously opened a Cloud Shell session, then it will launch straight away. If
you receive a message saying You have no storage mounted, resolve this by making sure
that your subscription is selected correctly from the drop-down box:

Figure 16.5 – Setting up Cloud Shell

Then, click on the Create storage button. After about a minute, your Cloud Shell should
open, and you will be presented with a command prompt:

Figure 16.6 – Your Cloud Shell command prompt

https://portal.azure.com/

Launching your AKS cluster 465

Now that you have a command prompt, running the following command, as we did on
the local Azure CLI installation, will give you information on the version of the Azure
CLI installed:

$ az --version

You will not need to run the az login command as the Azure portal took care of that
for you in the background when your Cloud Shell instance launched.

Now that you have access to a configured Azure CLI, in one form or another, we can look
at launching our AKS cluster.

Launching your AKS cluster
Launching your AKS cluster requires two commands. The first command creates an Azure
resource group:

$ az group create --name k8sforbeginners-rg --location eastus
-o table

In the preceding command, we are creating a resource group called
k8sforbeginners-rg in the eastus region and setting the output to be formatted as
a table rather than JSON, which is the default output type for the Azure CLI.

Information
A resource group is a logical container used to group related Azure resources.
Services launched within the resource group can inherit settings such as
role-based access controls, locks, and even the location.

Once the resource group has been created, you should see something like the following
output:

Figure 16.7 – Creating the resource group

466 Kubernetes Clusters on Microsoft Azure with Azure Kubernetes Service

Now that we have our resource group, we can launch our AKS cluster by running the
following command:

$ az aks create --resource-group k8sforbeginners-rg --name
k8sforbeginners-aks --node-count 2 --enable-addons monitoring
--generate-ssh-keys -o yaml

Launching the cluster will take about 5 minutes, so while that is running I will work
through the options we passed to the preceding az aks create command:

• --resource-group is the name of the resource group you want to launch
your AKS cluster in. The cluster will inherit the resource group's location. In our
example, we are using the k8sforbeginners-rg resource group we created in
the command before last.

• --name is the name of the cluster you are launching. We are calling ours
k8sforbeginners-aks.

• --node-count is the number of nodes you want to launch. We are launching 2.
At the time of writing, the default instance type for nodes is Standard_DS2_v2,
meaning that each node will have 2 vCPUs and 7 GB of RAM.

• --enable-addons is used to supply a list of add-ons to enable while the cluster is
being launched – we are just enabling the monitoring add-on.

• --generate-ssh-keys will generate SSH public and private key files for
the cluster.

• -o determines the output. At this time, we are outputting the results returned when
we run the command as yaml because the output is more readable than both the
JSON and table options.

Once your cluster has launched, you should see something like the following output:

Launching your AKS cluster 467

Figure 16.8 – Viewing the output of the cluster launch

As you can see, there is a lot of information. We are not going to worry about any of this
though, as we will be using the Azure CLI and portal to interact with the cluster.

Now that our cluster has launched, we need to configure our kubectl client so that it can
interact with the cluster. To do this, run the following command:

$ az aks get-credentials --resource-group k8sforbeginners-rg
--name k8sforbeginners-aks

Once run, you should see something like the following:

Figure 16.9 – Grabbing the credentials and configuring kubectl

This now means that you can start to interact with your cluster, for example, by running
the following command:

$ kubectl get nodes

468 Kubernetes Clusters on Microsoft Azure with Azure Kubernetes Service

This will return the nodes within the cluster, as seen in the following screenshot:

Figure 16.10 – Viewing the nodes in the cluster

Now that we have our cluster launched and our local kubectl client configured with the
cluster details and credentials, we can launch our test workload.

Deploying a workload and interacting with
your cluster
We are going to be using the same workload we launched in Chapter 14, Kubernetes
Clusters on Google Kubernetes Engine, and Chapter 15, Launching a Kubernetes Cluster on
Amazon Web Services with Amazon Elastic Kubernetes Service, so I am not going to go into
detail here other than to cover the commands.

Launching the workload
As per the previous chapters, there are three main steps to launching our workload:

1. Create the Redis leader deployment and service:

$ kubectl apply -f https://raw.githubusercontent.com/
GoogleCloudPlatform/kubernetes-engine-samples/master/
guestbook/redis-leader-deployment.yaml

$ kubectl apply -f https://raw.githubusercontent.com/
GoogleCloudPlatform/kubernetes-engine-samples/master/
guestbook/redis-leader-service.yaml

2. Create the Redis follower deployment and service:

$ kubectl apply -f https://raw.githubusercontent.com/
GoogleCloudPlatform/kubernetes-engine-samples/master/
guestbook/redis-follower-deployment.yaml

$ kubectl apply -f https://raw.githubusercontent.com/
GoogleCloudPlatform/kubernetes-engine-samples/master/
guestbook/redis-follower-service.yaml

Deploying a workload and interacting with your cluster 469

3. Create the Guestbook frontend deployment and service:

$ kubectl apply -f https://raw.githubusercontent.com/
GoogleCloudPlatform/kubernetes-engine-samples/master/
guestbook/frontend-deployment.yaml

$ kubectl apply -f https://raw.githubusercontent.com/
GoogleCloudPlatform/kubernetes-engine-samples/master/
guestbook/frontend-service.yaml

4. The final command to run gets the address of the frontend service:

$ kubectl get service frontend

This should return something like the following screenshot:

Figure 16.11 – Getting the external IP address of the frontend service

Direct your browser to the IP address and you should be greeted with the Guestbook
application. As before, I have added a few test entries:

Figure 16.12 – Viewing the Guestbook application

Now that the workload is up and running, we can move to the Azure portal.

Exploring the Azure portal
If you haven't already, log in to the Azure portal found at https://portal.azure.
com/. Once logged in, enter kube into the Search resources, services, and docs search
box at the very top of the page.

https://portal.azure.com/
https://portal.azure.com/

470 Kubernetes Clusters on Microsoft Azure with Azure Kubernetes Service

Under the list of services, you will see Kubernetes services – click on this service and
you will be be presented with a list of Kubernetes services you have launched within your
subscription.

Figure 16.13 – Listing the Kubernetes services

Clicking on k8sforbeginners-aks will take you to an overview page. This will be our
jumping-off point for viewing information about our workload and cluster.

Figure 16.14 – The cluster overview

Deploying a workload and interacting with your cluster 471

Under the Kubernetes resources menu on the left, you will see several options. Let's work
through them one by one:

• Namespaces: Here you will find all the namespaces active within the cluster. As we
didn't define a namespace when we launched our workload, our deployments and
services will be listed under the default namespace.

As well as the default namespace, there are also the ones deployed as part of
the cluster, namely, kube-node-lease, kube-public, and kube-system. I
would recommend leaving these alone.

If you were to click on the default namespace, you would be presented with the
Overview page, where you can edit the YAML that defines the namespaces, along
with an Events log.

• Workloads | Deployments: Here, as you may have already guessed, is where you
can view information on your workloads. In the following screenshot, I have filtered
the list to only show the workloads in the default namespace:

Figure 16.15 – Viewing the deployments

472 Kubernetes Clusters on Microsoft Azure with Azure Kubernetes Service

Clicking on one of the deployments will give you a more detailed view of the
deployment. For example, selecting the frontend deployment shows the following:

Figure 16.16 – An overview of the frontend deployment
As you can see from the menu on the left, there are a few additions to the options: as
well as YAML and Events, we also have the option to view Insights. We will take a
closer look at this at the end of this section when we cover Insights in more detail.

The next option is Live Logs, which, at the time of writing, is in preview. Here, you
can select one of the deployed pods and stream the logs in real time.

Deploying a workload and interacting with your cluster 473

Figure 16.17 – Viewing the pod logs in real time
The Changelogs option displays any changelogs available as part of your
deployment.

• Workloads | Pods: Here, you can view a list of the pods that make up your
workload. The IP address along with the node the pod is active on are listed. This is
a useful view to get a quick overview of all of your running pods.

Figure 16.18 – Viewing all of your pods
Clicking on one of the pods will give you an Overview, and show you the YAML
and also any Events for the pod.

474 Kubernetes Clusters on Microsoft Azure with Azure Kubernetes Service

• Workloads | Replica sets is another useful view for getting an at-a-glance view of
the replica sets deployed as part of your workload.

Figure 16.19 – Viewing the replica sets
Clicking on one of the replica sets gives you the now-familiar options of Overview,
YAML, and Events.

• Workloads | Stateful sets: While we don't have any stateful sets deployed as part
of our workload, clicking to view all of the namespaces will show the stateful
sets deployed by Microsoft as part of the cluster. These are the Azure OMS Agent
(omsagent) used for monitoring our cluster – there is one of these deployed per
node at all times – and the Proxy service (kube-proxy).

• Workloads | Jobs and Cron jobs: Under these tabs, you will find details of any jobs
and cron jobs you have deployed within the cluster.

Deploying a workload and interacting with your cluster 475

• Services and ingresses: Here, you will be able to find a list of all of the services you
have deployed in your cluster. As you can see from the following screenshot, you
can get an overview of the Cluster IP used for the service along with any External
IP you have configured:

Figure 16.20 – Viewing the services
Clicking on one of the services listed will provide the now-familiar view and allow
you to drill deeper into the configuration of the services.

• Storage: If we had any persistent storage configured within the cluster, you would
be able to view the details here.

• Configuration: The final option under the Kubernetes resources menu allows you
to view and edit any Config maps or Secrets you have configured within the cluster.
As we don't have any of these configured in our workload, the ones listed are for the
cluster itself, so I wouldn't recommend making any changes to the items present.

As you can see, there is a wealth of options available to get information about all of the
parts that make up your Kubernetes workload.

476 Kubernetes Clusters on Microsoft Azure with Azure Kubernetes Service

The next section in the left-hand menu covers the settings of the cluster itself. Here is a
quick overview of what you can find:

• Node pools: Here you will find details of the node pool you have, along with the
options to Upgrade the Kubernetes version running within the pool. This option
is only available if you upgrade the version of Kubernetes running on the control
plane.

You can also Scale the pool and have the option to Add a node pool. In the
following screenshot, we can see what the scale option looks like:

Figure 16.21 – Node pool scale options

• Cluster configuration: In the last point, I mentioned that you can only upgrade
the Kubernetes version running within your node pools if you upgrade the control
plane, and this option is where you do that. The control plane is managed by
Microsoft and is separate to your node pools. The Kubernetes control plane offers
backward compatibility by up to three releases, so normally you would only be able
to upgrade within three releases of the version you are currently running.

• Scale: While, at the time of writing, this option is still listed as its own option, the
page does mention that the scale functions have been moved to the Node pool
section and that this page will be removed at some point.

Deploying a workload and interacting with your cluster 477

• Networking: Here you will find both information and configuration options for the
networking of your cluster. This is quite a dense subject and I recommend following
the link on the page for more information on the options available when it comes to
networking and your AKS cluster.

• Dev Spaces: Like the Scale option, this has again been deprecated. Microsoft at
one point offered an IDE based on Visual Studio Code called Dev Spaces, but this
service is due to be retired and Microsoft are now recommending you use Bridge to
Kubernetes in Visual Studio and Visual Studio Code.

• Deployment center: This service is still in preview, but here you can add and
configure an Azure DevOps pipeline to deploy your application straight into your
cluster.

• Policies: One of the big selling points of Microsoft Azure is the centralized means
it offers for managing policies. Enabling this add-on will extend the Azure policy
service into your AKS cluster, giving you a way to centrally manage and report on
policies.

• Properties: This provides a quick overview of your AKS cluster.

• Locks: Here, you can add a resource lock that will protect your cluster from
accidental deletion or from any configuration changes that may affect the running
of your AKS cluster.

The last part of the Azure portal we are going to look at is the Insights option found
under the Monitoring menu in the cluster view. As you may recall, when we deployed our
cluster, we enabled the monitoring add-on using the --enable-addons monitoring
flag.

What this did was enable the OMS Agent stateful set, which we saw when we looked at
the Stateful set page under the Workloads section. The OMS Agent is the tool used by
Microsoft to ship data from a resource to the Azure Log Analytics service. Once the data
has been shipped to this service, Microsoft then presents this information back to you,
most commonly as Insights. Most Azure services have an Insights option and the data
here can be used by Azure Monitor to create and generate alerts.

478 Kubernetes Clusters on Microsoft Azure with Azure Kubernetes Service

Clicking on Insights will bring up a page similar to the following:

Figure 16.22 – Viewing some of the cluster insights

There are a few options under Insights – let's take a look:

• Cluster: This is shown in the preceding screenshot and gives you a quick view of the
CPU and memory utilization across the whole cluster. It also shows both Node and
pod counts.

• Reports: At the time of writing, this is in preview. Here you can find pre-written
reports around Node monitoring (performance), Resource monitoring
(availability), Billing, and also Networking. As the service matures, more reports
will be added.

• Nodes: Here you can get an overview of your Nodes.

Deleting your AKS cluster 479

• Controllers: This is where you will find details on the controllers launched within
your cluster – for example, the Replica and Daemon sets.

• Containers: Here you can find details of all the containers running on the pods you
have deployed.

• Deployments: This option shows a list of your deployments.

Now you may think there is a lot of repetition in the preceding sections – and there is a
little bit of that; however, if you need to see what is going on within your cluster quickly,
you now have a way of getting that information without having to drill through a lot of
pages to find it.

I recommend having a look around and clicking on as many options as you can to explore
the level of integration of your cluster and the Azure portal. Once you have finished, it is
time for us to remove the cluster.

Deleting your AKS cluster
The final thing we are going to look at is how to delete the cluster. Moving back to the
Azure CLI, all we need to run to delete the cluster is the following command:

$ az aks delete --resource-group k8sforbeginners-rg --name
k8sforbeginners-aks

You will be asked if you are sure – answering yes will proceed to delete the cluster.

The process takes about 5 minutes. The preceding command only deletes the cluster itself
and not the resource group. To delete the latter, run the following command:

$ az group delete --name k8sforbeginners-rg

Again, you will be asked if you want to delete the group – just answer yes.

So how much would our cluster cost to run?

Unlike the other two cloud services we looked at in the previous two chapters, there is no
charge for cluster management, and all that you need to pay for is the compute resource.

480 Kubernetes Clusters on Microsoft Azure with Azure Kubernetes Service

So, in our case, 2 x Standard_DS2_v2 instances in US East would cost around $213 per
month. There are other options, such as new generations of instances that could give us a
similar-sized cluster for less money. For example, we could launch a different cluster using
the following commands:

$ az group create --name k8sforbeginners-rg --location eastus
-o table

$ az aks create --resource-group k8sforbeginners-rg --name
k8sforbeginners-aks --node-count 2 --enable-addons monitoring
--generate-ssh-keys --node-vm-size standard_ds3_v2 -o yaml

This will give us a two-node cluster with a total of 4 vCPUs and 16 GB of RAM for around
$140 per month.

Summary
In this chapter, we looked at how Microsoft Azure came to be, along with a little bit of
the history behind some of the container services offered by Microsoft, and how they
eventually settled on AKS.

We then signed up for an Azure account and installed and configured the Azure CLI
before launching our own AKS cluster. Once launched, we deployed the same workload
we deployed to our Google Kubernetes Engine and Amazon Elastic Kubernetes
Service clusters.

Once the workload was deployed, we moved onto the Azure portal and looked at the
options for gaining insights into our workload and cluster as well as some of the cluster
management options.

We then finally deleted the resources we launched, and discussed how much the cluster
would cost to run.

Out of the three public cloud services we have looked at over the last three chapters,
I personally believe that Microsoft has come up with the most rounded and feature-rich
offering.

Further reading 481

I would put Google's offering, which we discussed in Chapter 14, Kubernetes Clusters on
Google Kubernetes Engine, at a close second, as technically it is good, but their pricing
makes it difficult to recommend. This leaves Amazon's service, covered in Chapter 15,
Launching a Kubernetes Cluster on Amazon Web Services with Amazon Elastic Kubernetes
Service. AWS comes in as my least recommend service – it simply doesn't feel as polished
as the offerings by Microsoft and Google in that it should feel like you are launching a
service to complement other services offered by the cloud provider, but instead it really
feels like you just happen to be running a Kubernetes cluster in AWS.

Personal opinion aside, the key takeaway from having launched a Kubernetes cluster
in three very different public cloud services is that once you have your cluster up and
running, and your kubectl client configured to interact with it, the experience is pretty
much the same and your workload really doesn't care where it is launched. You also
don't have to take into consideration the differences between the three providers – only
just a few years ago, this seemed like an unthinkable situation, and truly cloud-agnostic
workloads were just a pipe dream.

In the next section of this book, we are going to look at some more advanced Kubernetes
usage, starting with Helm charts – all of which can be applied to clusters launched in the
public clouds we have discussed in this and the previous two chapters.

Further reading
Here are links to more information on some of the topics and tools covered in this
chapter:

• Microsoft Azure: https://azure.microsoft.com/

• AKS: https://azure.microsoft.com/services/kubernetes-
service/

• AKS official documentation: https://docs.microsoft.com/en-us/
azure/aks/

• Azure DevOps: https://azure.microsoft.com/services/devops/

• Bridge to Kubernetes documentation: https://code.visualstudio.com/
docs/containers/bridge-to-kubernetes

• Bridge to Kubernetes (Visual Studio): https://marketplace.
visualstudio.com/items?itemName=ms-azuretools.mindaro

• Bridge to Kubernetes (Visual Studio Code): https://marketplace.
visualstudio.com/items?itemName=mindaro.mindaro

https://azure.microsoft.com/
https://azure.microsoft.com/services/kubernetes-service/
https://azure.microsoft.com/services/kubernetes-service/
https://docs.microsoft.com/en-us/azure/aks/
https://docs.microsoft.com/en-us/azure/aks/
https://azure.microsoft.com/services/devops/
https://code.visualstudio.com/docs/containers/bridge-to-kubernetes
https://code.visualstudio.com/docs/containers/bridge-to-kubernetes
https://marketplace.visualstudio.com/items?itemName=ms-azuretools.mindaro
https://marketplace.visualstudio.com/items?itemName=ms-azuretools.mindaro
https://marketplace.visualstudio.com/items?itemName=mindaro.mindaro
https://marketplace.visualstudio.com/items?itemName=mindaro.mindaro

Section 5:
Advanced

Kubernetes

There is still a lot to say about Kubernetes. In this section, we are going to discuss some
other advanced Kubernetes topics. These topics are not forcibly linked together, but
it's nice to discuss all of them. We will discover the Helm package manager, advanced
techniques for scheduling, the Ingress resource, and more.

This part of the book comprises the following chapters:

• Chapter 17, Working with Helm Charts

• Chapter 18, Authentication and Authorization on Kubernetes

• Chapter 19, Advanced Techniques for Scheduling Pods

• Chapter 20, Autoscaling Kubernetes Pods and Nodes

• Chapter 21, Advanced Traffic Routing with Ingress

17
Working with
Helm Charts

As part of the application development process, you need to think about application
redistribution and dependency management. You may want this as part of your final
product offering – the application needs to be easily downloaded and installed by
the customers. But you may also want to redistribute the application or a component
internally for other teams working on the same product. In the non-container world,
you have a variety of package management systems (or package managers). If you
work on Ubuntu, you can use the Advanced Package Tool (APT) to install software. On
Windows, you can use Chocolatey (https://chocolatey.org/), and if you are
interested in libraries or applications specific to JavaScript, you can use npm.

Kubernetes is no exception, and it has its own dedicated package managers implemented
by the community, the most popular of which is currently Helm (https://helm.sh/).
In general, Helm is currently regarded as the industry standard for internal and external
redistribution of your Kubernetes applications, with the largest repository of stable Helm
charts (currently available as part of Artifact Hub: https://artifacthub.io/). You
can use Helm charts to quickly deploy different components in your Kubernetes cluster.
For example, if you need to have a scalable Elasticsearch cluster for your logs, no problem
– you can deploy a fully functional cluster in a matter of minutes!

https://chocolatey.org/
https://helm.sh/
https://artifacthub.io/

486 Working with Helm Charts

By the end of this chapter, you will know the most important principles behind Helm
and Helm chart development, and additionally, we will demonstrate how you can install
some popular components and solutions using the official stable Helm charts. With this
knowledge, you will be able to quickly set up your Kubernetes development environment
or even plan for redistribution of your Kubernetes application as a dedicated Helm chart.

In this chapter, we will cover the following topics:

• Understanding Helm

• Releasing software to Kubernetes using Helm

• Helm chart anatomy

• Installing popular solutions using Helm charts

Technical requirements
For this chapter, you will need the following:

• A Kubernetes cluster deployed. We recommend using a multi-node, cloud-
based Kubernetes cluster. It is possible to run Helm on minikube, but you may
encounter limitations as not all functionalities of real clusters are supported.

• The Kubernetes command-line interface (CLI) (kubectl) installed on your local
machine and configured to manage your Kubernetes cluster.

Basic Kubernetes cluster deployment (local and cloud-based) and kubectl installation
have been covered in Chapter 3, Installing Your First Kubernetes Cluster.

The following previous chapters can give you an overview of how to deploy a fully
functional Kubernetes cluster on different cloud platforms:

• Chapter 14, Kubernetes Clusters on Google Kubernetes Engine

• Chapter 15, Launching a Kubernetes Cluster on Amazon Web Services with the
Amazon Elastic Kubernetes Service

• Chapter 16, Kubernetes Cluster on Microsoft Azure with Azure Kubernetes Service

You can download the latest code samples for this chapter from the official GitHub
repository: https://github.com/PacktPublishing/The-Kubernetes-
Bible/tree/master/Chapter17.

https://github.com/PacktPublishing/The-Kubernetes-Bible/tree/master/Chapter17
https://github.com/PacktPublishing/The-Kubernetes-Bible/tree/master/Chapter17

Understanding Helm 487

Understanding Helm
The simplest way to distribute your Kubernetes application to others so that they can
deploy it on their cluster is by sharing the Kubernetes objects' YAML manifest files, for
example using a public source repository such as https://github.com/.
This approach is often used as a basic showcase of how you can run a given application
as a container on Kubernetes. However, sharing raw YAML manifests has quite a
few disadvantages:

• All values in YAML templates are hardcoded. This means that if you want to change
the number of replicas of a Service object or a value stored in the ConfigMap object,
you need to go through the manifest files, find the values you want to configure,
and then edit them. Similarly, if you want to deploy the manifests to a different
namespace in the cluster than the creators intended, you need to edit all YAML files.
On top of that, you do not really know which values in the YAML templates are
intended to be configurable by the creator unless they document this.

• The Deployment process may be different for each application. There is no
standardization in which YAML manifests the creator would provide and which
components you need to deploy yourself.

• No dependency management. For example, if your application requires a MySQL
server running as a StatefulSet in the cluster, you either need to deploy it yourself
or rely on the creator of the application to provide YAML manifests for the
MySQL server.

This is a bit similar to what you see with desktop applications in the Windows ecosystem
if you do not use Windows Store or a package manager such as Chocolatey. Some
applications that you download will come with an installer as a .exe file, some as a .msi,
and others will be just .zip files that you need to extract and configure yourself.

In Kubernetes, you can use Helm, which is the most popular package manager for
Kubernetes applications and services. If you are familiar with popular package managers
such as APT, yum, npm, or Chocolatey, you will find many concepts in Helm similar and
easy to understand. The following are the three most important concepts in Helm:

• A chart is a Helm package. This is what you install when you use the Helm
CLI. A Helm chart contains all Kubernetes YAML manifests required to deploy
the application on the cluster. Please note that these YAML manifests may be
parametrized, so that you can easily inject configuration values provided by the user
that installs the chart.

https://github.com/

488 Working with Helm Charts

• A repository is a storage location for Helm charts that is used for collecting
and sharing charts. They can be public or private – there are multiple public
repositories that are available, which you can browse on Artifact Hub (https://
artifacthub.io/packages/search?page=1&kind=0). Up until recently,
there was one main, official Helm charts repository (https://github.com/
helm/charts). This gathered all stable and incubating charts and was maintained
by Google. This repository is now deprecated and using Artifact Hub is the
recommended way to discover charts and repositories. Private repositories are
usually used for distributing components running on Kubernetes between teams
working on the same product.

• A release is an instance of a Helm chart that was installed and is running in a
Kubernetes cluster. This is what you manage with the Helm CLI, for example by
upgrading or uninstalling it. You can install one chart many times on the same
cluster and have multiple releases of it that are identified uniquely by release names.

Tip
In short, Helm charts contain parametrizable YAML manifests that you store
in a Helm repository for distribution. When you install a Helm chart, a Helm
release is created in your cluster that you can further manage.

Let's quickly summarize the most common use cases for Helm:

• Deploying popular software to your Kubernetes cluster. This makes development
on Kubernetes much easier – you can deploy third-party components to the cluster
in a matter of seconds. The same approach may be used in production clusters.
You do not need to rely on writing your own YAML manifest for such third-party
components.

• Helm charts provide dependency management capabilities. If chart A requires chart
B to be installed first with specific parameters, Helm supports syntax for this out of
the box.

• Sharing your own applications as Helm charts. This can include packaging a
product for consumption by the end users or using Helm as an internal package and
dependency manager for microservices in your product.

https://artifacthub.io/packages/search?page=1&kind=0
https://artifacthub.io/packages/search?page=1&kind=0
https://github.com/helm/charts
https://github.com/helm/charts

Releasing software to Kubernetes using Helm 489

• Ensuring that the applications receive proper upgrades. Helm has its own process
for upgrading Helm releases.

• Configuring software deployments for your needs. Helm charts are basically
generic YAML templates for Kubernetes object manifests that can be parametrized.
Helm uses Go templates (https://godoc.org/text/template) for
parametrization. If you are familiar with Go then you will be at home; if not,
you will find it pretty similar to other templating systems, such as Mustache
(https://mustache.github.io/).

Currently, Helm is distributed as a binary client (library) that has a CLI similar to
kubectl. All operations that you perform using Helm do not require any additional
components to be installed on the Kubernetes cluster. Please note that this has changed
with the release of version 3.0.0 of Helm. Previously, the architecture of Helm was
different, and it required a special, dedicated service running on Kubernetes named Tiller.
This was causing various problems such as security around role-based access control
(RBAC) and elevated-privilege Pods running inside the cluster. You can read more about
the differences between the latest major version of Helm and previous ones in the official
FAQ: https://helm.sh/docs/faq/#changes-since-helm-2. This is useful to
know if you find any online guides that still mention Tiller – they are most likely intended
for older versions of Helm.

Now, we are going to install Helm and deploy a simple Helm chart from Artifact Hub to
verify that it works correctly on your cluster.

Releasing software to Kubernetes using Helm
In this section, you will learn how to install Helm and how to test the installation by
deploying an example Helm chart. Helm is provided as binary releases (https://
github.com/helm/helm/releases) available for multiple platforms. You can use
them or refer to the following guides for installation using a package manager on your
desired operating system.

https://godoc.org/text/template
https://mustache.github.io/
https://helm.sh/docs/faq/#changes-since-helm-2
https://github.com/helm/helm/releases
https://github.com/helm/helm/releases

490 Working with Helm Charts

Installing Helm on Ubuntu
To install Helm on Ubuntu, you need to first add the official APT repository using the
following commands:

$ curl https://baltocdn.com/helm/signing.asc | sudo apt-key add
–

$ sudo apt-get install apt-transport-https –yes

$ echo "deb https://baltocdn.com/helm/stable/debian/ all main"
| sudo tee /etc/apt/sources.list.d/helm-stable-debian.list

$ sudo apt-get update

After that, the installation is straightforward using APT – use the following command:

$ sudo apt-get install helm

Verify that the installation was successful by trying to get the Helm version from the
command line:

$ helm version

version.BuildInfo{Version:"v3.5.3",
GitCommit:"041ce5a2c17a58be0fcd5f5e16fb3e7e95fea622",
GitTreeState:"dirty", GoVersion:"go1.15.8"}

Once installed, you can move on to Deploying an example chart in this section.

Installing Helm on Windows
To install Helm on Windows, the easiest way is to use the Chocolatey package manager. If
you have not used Chocolatey before, you can find more details and the installation guide
in the official documentation: https://chocolatey.org/install.

Execute the following command to install Helm:

$ choco install kubernetes-helm

https://chocolatey.org/install

Releasing software to Kubernetes using Helm 491

Verify that the installation was successful by trying to get the Helm version from the
command line:

$ helm version

version.BuildInfo{Version:"v3.5.3",
GitCommit:"041ce5a2c17a58be0fcd5f5e16fb3e7e95fea622",
GitTreeState:"dirty", GoVersion:"go1.15.8"}

Once installed, you can move on to Deploying an example chart in this section.

Installing Helm on macOS
To install Helm on macOS, you can use the standard Homebrew package manager. Use
the following command to install the Helm formula:

$ brew install helm

Verify that the installation was successful by trying to get the Helm version from the
command line:

$ helm version

version.BuildInfo{Version:"v3.5.3",
GitCommit:"041ce5a2c17a58be0fcd5f5e16fb3e7e95fea622",
GitTreeState:"dirty", GoVersion:"go1.15.8"}

Once installed, we can deploy an example chart to verify that Helm works properly on
your Kubernetes cluster.

Deploying an example chart
By default, Helm comes with no repositories configured. One possibility, which is no
longer recommended, is to add the stable repository so that you can browse the most
popular Helm charts:

$ helm repo add stable https://charts.helm.sh/stable

492 Working with Helm Charts

Please note that most charts are now in a process of deprecation as they are moved to
different Helm repositories where they will be maintained by the original creators. You
can see this if you try to search for available Helm charts using the helm search repo
command:

$ $ helm search repo stable

NAME CHART VERSION APP
VERSION DESCRIPTION

stable/acs-engine-autoscaler 2.2.2 2.1.1
DEPRECATED Scales worker nodes within agent pools

stable/aerospike 0.3.5
v4.5.0.5 DEPRECATED A Helm chart for Aerospike
in Kubern...

stable/airflow 7.13.3 1.10.12
DEPRECATED - please use: https://github.com/air...

...

Instead, the new recommended way is to use the helm search hub command, which
allows you to browse the Artifact Hub directly from the CLI:

$ helm search hub

URL CHART
VERSION APP VERSION DESCRIPTION

https://artifacthub.io/packages/helm/gabibbo97/... 0.1.0
fedora-32 389 Directory Server

https://artifacthub.io/packages/helm/aad-pod-id... 3.0.3
1.7.4 Deploy components for aad-pod-identity

https://artifacthub.io/packages/helm/arhatdev/a... 0.1.0
latest Network Manager Living at Edge

...

Releasing software to Kubernetes using Helm 493

Now, let's try searching for one of the most popular Helm charts that we can use for
testing our installation – we would like to deploy WordPress on our Kubernetes cluster.
First, let's check what the available charts are for WordPress on Artifact Hub:

$ helm search hub wordpress

URL CHART
VERSION APP VERSION DESCRIPTION

https://artifacthub.io/packages/helm/groundhog2... 0.3.0
5.7.0-apache A Helm chart for Wordpress on Kubernetes

https://artifacthub.io/packages/helm/bitnami/wo... 10.7.1
5.7.0 Web publishing platform for building blogs and
...

https://artifacthub.io/packages/helm/seccurecod... 2.5.2
4.0 Insecure & Outdated Wordpress Instance: Never
e...

...

Similarly, you can directly use the Artifact Hub web UI (https://artifacthub.io/
packages/search?page=1&ts_query_web=wordpress&kind=0) and search for
WordPress Helm charts:

Figure 17.1 – Artifact Hub search results for WordPress Helm charts

https://artifacthub.io/packages/search?page=1&ts_query_web=wordpress&kind=0
https://artifacthub.io/packages/search?page=1&ts_query_web=wordpress&kind=0

494 Working with Helm Charts

We recommend using the Helm chart provided and maintained by Bitnami (https://
bitnami.com/stacks/helm), a company specializing in distributing open source
software on various platforms, such as Kubernetes. They were also maintainers of
multiple charts in the deprecated stable repository. If you navigate to the search result
for WordPress charts by Bitnami (https://artifacthub.io/packages/helm/
bitnami/wordpress) you will see the following:

Figure 17.2 – Bitnami WordPress Helm chart on Artifact Hub with install instructions

The page gives you detailed information about how you can add the bitnami repository
and how to install the Helm chart for WordPress. Additionally, you will find a lot of details
about available configuration, known limitations, and troubleshooting. You can also
navigate to the home page of each of the charts in order to see the YAML templates that
make up the chart (https://github.com/bitnami/charts/tree/master/
bitnami/wordpress).

We can now do the installation by following the instructions on the web page. First, add
the bitnami repository to your Helm installation:

$ helm repo add bitnami https://charts.bitnami.com/bitnami

"bitnami" has been added to your repositories

https://bitnami.com/stacks/helm
https://bitnami.com/stacks/helm
https://artifacthub.io/packages/helm/bitnami/wordpress
https://artifacthub.io/packages/helm/bitnami/wordpress
https://github.com/bitnami/charts/tree/master/bitnami/wordpress
https://github.com/bitnami/charts/tree/master/bitnami/wordpress

Releasing software to Kubernetes using Helm 495

With the repository present, we can install the bitnami/wordpress Helm chart as a
wordpress-test-release Helm release with the default configuration:

$ helm install wordpress-test-release bitnami/wordpress

...

** Please be patient while the chart is being deployed **

Your WordPress site can be accessed through the following DNS
name from within your cluster:

 wordpress-test-release.default.svc.cluster.local (port 80)

To access your WordPress site from outside the cluster follow
the steps below:

1. Get the WordPress URL by running these commands:

 NOTE: It may take a few minutes for the LoadBalancer IP to be
available.

 Watch the status with: 'kubectl get svc --namespace
default -w wordpress-test-release'

 export SERVICE_IP=$(kubectl get svc --namespace default
wordpress-test-release --template "{{ range (index .status.
loadBalancer.ingress 0) }}{{.}}{{ end }}")

 echo "WordPress URL: http://$SERVICE_IP/"

 echo "WordPress Admin URL: http://$SERVICE_IP/admin"

2. Open a browser and access WordPress using the obtained URL.

3. Login with the following credentials below to see your blog:

 echo Username: user

 echo Password: $(kubectl get secret --namespace default
wordpress-test-release -o jsonpath="{.data.wordpress-password}"
| base64 --decode)

After a while, you will be provided with all the information required to monitor your
Deployment of WordPress and how to log in to the WordPress instance. This is the beauty
of Helm – you have executed a single helm install command and you are presented
with a detailed guide of how to use the deployed component on your cluster. And
meanwhile, the WordPress instance deploys without any intervention from you!

496 Working with Helm Charts

Tip
It is a good practice to first inspect what will be the Kubernetes objects'
YAML manifests that were produced by Helm. You can do that by running
the helm install command with additional flags: helm install
wordpress-test-release bitnami/wordpress --dry-run
--debug. The output will contain joint output of YAML manifests, and they
will not be applied to the cluster.

Let's now follow the instructions from the Helm chart installation output:

1. Wait for the wordpress-test-release Service object (of the LoadBalancer
type) to acquire external IP:

$ kubectl get svc --namespace default -w wordpress-test-
release

NAME TYPE CLUSTER-IP
EXTERNAL-IP PORT(S) AGE

wordpress-test-release LoadBalancer 10.0.62.91
52.226.146.38 80:32049/TCP,443:30351/TCP 9m18s

In our case, this will be 52.226.146.3. You may additionally verify that Pods are
ready by checking the output of the kubectl get pods command.

2. You can also use further commands in the instruction to get the information in an
automated way:

$ export SERVICE_IP=$(kubectl get svc --namespace default
wordpress-test-release --template "{{ range (index
.status.loadBalancer.ingress 0) }}{{.}}{{ end }}")

$ echo "WordPress URL: http://$SERVICE_IP/"

WordPress URL: http://52.226.146.38/

$ echo "WordPress Admin URL: http://$SERVICE_IP/admin"

WordPress Admin URL: http://52.226.146.38/admin

3. Now open your web browser and navigate to the WordPress admin URL:

Releasing software to Kubernetes using Helm 497

Figure 17.3 – WordPress chart deployed on Kubernetes – admin login page

4. Use the following commands to obtain the credentials that are stored in a dedicated
wordpress-test-release Secret object deployed as part of the chart:

$ echo Username: user

Username: user

$ echo Password: $(kubectl get secret --namespace default
wordpress-test-release -o jsonpath="{.data.wordpress-
password}" | base64 --decode)

Password: <hidden>

5. Use the credentials to log in as the WordPress admin:

Figure 17.4 – WordPress chart deployed on Kubernetes – admin dashboard

498 Working with Helm Charts

You can enjoy your WordPress now, congratulations! If you are interested, you can inspect
the Pods, Services, Deployments, and StatefulSets that were deployed as part of this Helm
chart. This will give you a lot of insight into what the components of the chart are and how
they interact.

Tip
The Helm CLI offers autocompletion for various shells. You can run the helm
completion command to learn more.

If you want to get information about all Helm releases that are deployed in your
Kubernetes cluster, use the following command:

$ helm list

NAME NAMESPACE REVISION UPDA
TED STATUS CHART
APP VERSION

wordpress-test-release default
1 2021-03-23 23:47:18.6285679
+0100 CET deployed wordpress-10.7.1
5.7.0

When you are ready, you can clean up the cluster by uninstalling the Helm release using
the following command:

$ helm uninstall wordpress-test-release

release "wordpress-test-release" uninstalled

This will delete all Kubernetes objects that the release has created. Please note though
that PersistentVolumes and PersistentVolumeClaims created by Helm chart will not be
cleaned up – you need to clean them up manually. Currently there is a proposal for Helm
v4 to include an option of deleting PersistentVolumeClaims while executing the helm
uninstall command.

We will now take a closer look at how Helm charts are structured internally.

Helm chart anatomy 499

Helm chart anatomy
As an example, we will take the WordPress Helm chart by Bitnami (https://github.
com/bitnami/charts/tree/master/bitnami/wordpress) that we have just
used to perform a test Deployment in the cluster. Helm charts are simply directories with
a specific structure (convention) that can live either in your local filesystem or in a Git
repository. The directory name is at the same time the name of the chart, in this case,
wordpress. The structure of files in the chart directory is as follows:

• Chart.yaml: YAML file that contains metadata about the chart such as version,
keywords, and references to dependent charts that must be installed.

• LICENSE: Optional, plain-text file with license information.

• README.md: End user README file that will be visible on Artifact Hub.

• values.yaml: The default configuration values for the chart that will be used
as YAML template parameters. These values can be overridden by the Helm user,
either one by one in the CLI or as a separate YAML file with values.

• values.schema.json: Optionally, you can provide a JSON schema that
values.yaml must follow.

• charts/: Optional directory with additional, dependent charts.

• crds/: Optional Kubernetes custom resource definitions.

• templates/: The most important directory that contains all YAML templates for
generating Kubernetes YAML manifest files. The YAML templates will be combined
with provided values. The resulting YAML manifest files will be applied to the
cluster.

• templates/NOTES.txt: Optional file with short usage notes.

For example, if you inspect Chart.yaml in the WordPress Helm chart, you can see
that it depends on the MariaDB chart by Bitnami, if an appropriate value of mariadb.
enabled is set to true in the provided values:

...

appVersion: 5.7.0

dependencies:

 - condition: mariadb.enabled

 name: mariadb

 repository: https://charts.bitnami.com/bitnami

 version: 9.x.x

...

https://github.com/bitnami/charts/tree/master/bitnami/wordpress
https://github.com/bitnami/charts/tree/master/bitnami/wordpress

500 Working with Helm Charts

Now, if you take a look at the values.yaml file with the default values, which is quite
verbose, you can see that by default MariaDB is enabled:

...

##

MariaDB chart configuration

ref: https://github.com/bitnami/charts/blob/master/bitnami/
mariadb/values.yaml

##

mariadb:

 ## Whether to deploy a mariadb server to satisfy the
applications database requirements. To use an external database
set this to false and configure the externalDatabase parameters

 ##

 enabled: true

...

And lastly, let's check what one of the YAML templates looks like – open the
deployment.yaml file (https://github.com/bitnami/charts/blob/
master/bitnami/wordpress/templates/deployment.yaml), which is a
template for the Kubernetes Deployment object for Pods with WordPress containers. For
example, you can see how the number of replicas is referenced from the provided
values:

kind: Deployment

...

spec:

...

 replicas: {{ .Values.replicaCount }}

...

This will be replaced by the replicaCount value (for which the default value of 1 you
can find in the values.yaml file). The details about how to use Go templates can be
found at https://pkg.go.dev/text/template. You can also learn by example by
analyzing existing Helm charts – most of them are using similar patterns for processing
provided values.

Tip
The detailed documentation on Helm chart structure can be found at
https://helm.sh/docs/topics/charts/.

https://github.com/bitnami/charts/blob/master/bitnami/wordpress/templates/deployment.yaml
https://github.com/bitnami/charts/blob/master/bitnami/wordpress/templates/deployment.yaml
https://pkg.go.dev/text/template
https://helm.sh/docs/topics/charts/

Installing popular solutions using Helm charts 501

In most cases, you will need to override some of the default values from the
values.yaml file during the installation of a chart. Let's say we want to set a
wordpressBlogName value to Kubernetes for Beginners Blog. To do that,
you have two options:

• Use Helm CLI parameters, where the syntax is as follows:

$ helm install wordpress-test-release --set
wordpressBlogName="Kubernetes for Beginners Blog"
bitnami/wordpress

You can use the --set parameter multiple times to set other values.
• Create your own values.yaml file that has exactly the same structure as the

original one. You need to specify only the values that you override, which in this
case would be as follows:

wordpressBlogName: Kubernetes for Beginners Blog

Then you can use it as a parameter to the helm install command:
$ helm install wordpress-test-release -f values.yaml
bitnami/wordpress

This approach is much more scalable if you have multiple values to override.
Additionally, you can do versioning of these files in your own repository.

Now, when you know the most important details about the Helm chart structure, we can
deploy some selected, popular solutions on Kubernetes using Helm charts.

Installing popular solutions using Helm charts
In this section, we will demonstrate how you can quickly install the following software for
your Kubernetes cluster. They can be useful in your development scenarios or as building
blocks of your cloud-native applications:

• Kubernetes Dashboard: Provides an overview of the cluster with a nice web UI.

• Elasticsearch with Kibana: Popular full-text search engine, commonly used in log
analytics. Kibana is used as a visualizations UI.

• Prometheus with Grafana: Popular monitoring system with a time series database.
Grafana is used as a visualizations UI.

Let's begin by installing Kubernetes Dashboard.

502 Working with Helm Charts

Kubernetes Dashboard
Kubernetes Dashboard is the official web UI for providing an overview of your cluster.
The Helm chart for this component is officially maintained by the Kubernetes community
(https://artifacthub.io/packages/helm/k8s-dashboard/kubernetes-
dashboard). We are going to install it with the default parameters, as there is no need
for any customizations at this point. First, add the kubernetes-dashboard repository
to Helm:

$ helm repo add kubernetes-dashboard https://kubernetes.github.
io/dashboard/

"kubernetes-dashboard" has been added to your repositories

Now, we can install the Helm chart as a kubernetes-dashboard-test release in the
cluster:

$ helm install kubernetes-dashboard-test kubernetes-dashboard/
kubernetes-dashboard

...

Get the Kubernetes Dashboard URL by running:

 export POD_NAME=$(kubectl get pods -n default -l "app.
kubernetes.io/name=kubernetes-dashboard,app.kubernetes.io/
instance=kubernetes-dashboard-test" -o jsonpath="{.items[0].
metadata.name}")

 echo https://127.0.0.1:8443/

 kubectl -n default port-forward $POD_NAME 8443:8443

Use the following command to verify that the Pod with Kubernetes Dashboard is running
and ready:

$ kubectl get pods -n default -l "app.kubernetes.
io/name=kubernetes-dashboard,app.kubernetes.io/
instance=kubernetes-dashboard-test"

NAME READY STATUS
RESTARTS AGE

kubernetes-dashboard-test-84fb9b495f-rfpm8 1/1 Running
0 64s

https://artifacthub.io/packages/helm/k8s-dashboard/kubernetes-dashboard
https://artifacthub.io/packages/helm/k8s-dashboard/kubernetes-dashboard

Installing popular solutions using Helm charts 503

Now, you can use the commands for accessing the dashboard. The kubectl port-
forward command will make it possible to connect to a Pod running inside your
cluster from your local machine in a safe way, without exposing the dashboard as a
LoadBalancer Service. You can find more details in the official documentation:
https://kubernetes.io/docs/tasks/access-application-cluster/
port-forward-access-application-cluster/. Execute the following
commands:

$ export POD_NAME=$(kubectl get pods -n default -l "app.
kubernetes.io/name=kubernetes-dashboard,app.kubernetes.io/
instance=kubernetes-dashboard-test" -o jsonpath="{.items[0].
metadata.name}")

$ echo https://127.0.0.1:8443/

https://127.0.0.1:8443/

$ kubectl -n default port-forward $POD_NAME 8443:8443

Forwarding from 127.0.0.1:8443 -> 8443

Forwarding from [::1]:8443 -> 8443

The kubectl port-forward command will do the forwarding as long as it is running.
If you terminate the process with Ctrl + C, forwarding will be stopped.

Before we can access the dashboard, we need to create a ServiceAccount and
ClusterRoleBinding, which we can use for the dashboard. The exact steps are documented
in https://github.com/kubernetes/dashboard/blob/master/docs/
user/access-control/creating-sample-user.md. Follow the given steps:

1. Run the following command to create an admin-user service account in the
cluster:

$ cat <<EOF | kubectl apply -f -

apiVersion: v1

kind: ServiceAccount

metadata:

 name: admin-user

 namespace: default

EOF

2. Create ClusterRoleBinding between the service account and built into the
cluster-admin cluster role:

$ cat <<EOF | kubectl apply -f -

apiVersion: rbac.authorization.k8s.io/v1

https://kubernetes.io/docs/tasks/access-application-cluster/port-forward-access-application-cluster/
https://kubernetes.io/docs/tasks/access-application-cluster/port-forward-access-application-cluster/
https://github.com/kubernetes/dashboard/blob/master/docs/user/access-control/creating-sample-user.md
https://github.com/kubernetes/dashboard/blob/master/docs/user/access-control/creating-sample-user.md

504 Working with Helm Charts

kind: ClusterRoleBinding

metadata:

 name: admin-user

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: cluster-admin

subjects:

- kind: ServiceAccount

 name: admin-user

 namespace: default

EOF

3. Get the bearer token that we can use for logging in to the dashboard:

$ kubectl -n default get secret $(kubectl -n default
get sa/admin-user -o jsonpath="{.secrets[0].name}") -o
go-template="{{.data.token | base64decode}}"

Now, you can use the pretty long token to log in to the dashboard in the browser.
Navigate to https://127.0.0.1:8443/, select Token, and copy and paste the
value of your bearer token:

Figure 17.5 – Kubernetes Dashboard chart – login page

At this point, you have access to the dashboard and you can browse its functionalities:

Installing popular solutions using Helm charts 505

Figure 17.6 – Kubernetes Dashboard chart – Deployments page

The bearer token is for a user with the cluster-admin role, so be careful, as you can
perform any operations, including deleting resources.

Elasticsearch with Kibana
Elasticsearch is a popular full-text search engine that is commonly used for log indexing
and log analytics. Kibana, which is part of the Elasticsearch ecosystem, is a visualization
UI for the Elasticsearch database. To install this stack, we will need to use two charts, both
of which are maintained by Elasticsearch creators:

• Elasticsearch chart (https://artifacthub.io/packages/helm/
elastic/elasticsearch)

• Kibana chart (https://artifacthub.io/packages/helm/elastic/
kibana)

First, we need to add the elastic repository to Helm:

$ helm repo add elastic https://helm.elastic.co

"elastic" has been added to your repositories

https://artifacthub.io/packages/helm/elastic/elasticsearch
https://artifacthub.io/packages/helm/elastic/elasticsearch
https://artifacthub.io/packages/helm/elastic/kibana
https://artifacthub.io/packages/helm/elastic/kibana

506 Working with Helm Charts

After that, we can install Elasticsearch in our cluster:

$ helm install elasticsearch-test --set replicas=1 elastic/
elasticsearch

By default, the chart deploys a three-node cluster of Elasticsearch. Depending on your
Deployment, it may not be possible to have three Nodes of Elasticsearch, as each of them
needs to run on a separate Kubernetes Node. We adjusted the replicas value for the
template to 1.

With Elasticsearch being deployed, we can already continue with installing Kibana using
the following command:

$ helm install kibana-test --set service.type=LoadBalancer
elastic/kibana

The chart default values are configured in such a way that by default Kibana will connect
to http://elasticsearch-master:9200, which is also the instance that we have
just deployed using the Helm chart. Additionally, we need to override the service.
type value to LoadBalancer to be able to access Kibana externally.

Wait for the Kibana Service object to get the external IP address:

$ kubectl get svc

NAME TYPE CLUSTER-IP
EXTERNAL-IP PORT(S) AGE

kibana-test-kibana LoadBalancer 10.0.28.100
20.62.189.45 5601:32212/TCP 10m

In our case, it is 20.62.189.45.

Now, open the web browser and navigate to http://20.62.189.45:5601/. When
your Elasticsearch instance and Kibana are ready, you will see the following:

Installing popular solutions using Helm charts 507

Figure 17.7 – Elasticsearch and Kibana charts – Kibana UI

You can now explore the functionalities of Elasticsearch and Kibana. If you are interested
in working on sample data, you can follow the official guide: https://www.elastic.
co/guide/en/kibana/current/get-started.html.

The next chart that we will take a look at is the Prometheus stack chart, which installs
Prometheus together with Grafana.

Prometheus with Grafana
Prometheus is a popular monitoring system with a time series database that is widely
used in the Kubernetes community. Grafana is commonly used as a visualizations UI
for Prometheus. This combination is so common that the Prometheus community
has prepared an official Helm chart (https://artifacthub.io/packages/
helm/prometheus-community/kube-prometheus-stack) that deploys both
Prometheus and Grafana as a single chart, together with a set of useful Prometheus rules
for basic monitoring.

Let's begin by adding the prometheus-community repository to Helm:

$ helm repo add prometheus-community https://prometheus-
community.github.io/helm-charts

"prometheus-community" has been added to your repositories

Next, the installation is as simple as running this single command:

$ helm install prometheus-stack-test prometheus-community/kube-
prometheus-stack

https://www.elastic.co/guide/en/kibana/current/get-started.html
https://www.elastic.co/guide/en/kibana/current/get-started.html
https://artifacthub.io/packages/helm/prometheus-community/kube-prometheus-stack
https://artifacthub.io/packages/helm/prometheus-community/kube-prometheus-stack

508 Working with Helm Charts

You can monitor whether Pods are running using the kubectl get pods command:

$ kubectl get pods

NAME
READY STATUS RESTARTS AGE

prometheus-prometheus-stack-test-kube-prometheus-0 2/2
Running 1 11m

prometheus-stack-test-grafana-97b7cd8c4-fx56l 2/2
Running 0 11m

prometheus-stack-test-kube-operator-5f46876fcc-5dnkp 1/1
Running 0 11m

prometheus-stack-test-kube-state-metrics-b845577bb-tp99s 1/1
Running 0 11m

prometheus-stack-test-prometheus-node-exporter-jg85x 1/1
Running 0 11m

prometheus-stack-test-prometheus-node-exporter-ks5bn 1/1
Running 0 11m

To access Prometheus and Grafana, we will use the kubectl port-forward
command again. In this case, we have not exposed the Pods using the LoadBalancer
service. Feel free to do so after inspecting the default values.yaml file. Execute the
following two commands in separate shells – the kubectl process must be running at
the same time as you want to forward the ports:

$ kubectl port-forward prometheus-prometheus-stack-test-kube-
prometheus-0 9090

$ kubectl port-forward prometheus-stack-test-grafana-97b7cd8c4-
fx56l 3000

Of course, you need to use a proper Pod name for Grafana, and in your case it may be
different.

Next, let's navigate to the Prometheus UI in a web browser. Open the
http://127.0.0.1:9090/ address:

Installing popular solutions using Helm charts 509

Figure 17.8 – Prometheus stack chart – Prometheus web UI

Similarly, you can navigate to http://127.0.0.1:3000/ in order to access the
Grafana UI:

Figure 17.9 – Prometheus stack chart – Grafana web UI

Congratulations, you have successfully deployed the Prometheus stack on your
Kubernetes cluster! As you can see, working with Helm charts, even for complex, multi-
component solutions, is easy and can provide a lot of benefits for your development and
production environments.

510 Working with Helm Charts

Summary
This chapter has covered the details of working with Helm and Helm charts. First, you
have learned what the purpose of package management is and how Helm works as a
package manager for Kubernetes. We have demonstrated how you can install Helm on
your local machine, and how you can deploy the WordPress chart to test the installation.
Then, we went through the structure of Helm charts, and we have shown how the YAML
templates in charts can be configured using user-provided values. Lastly, we have shown
the installation of a few popular solutions on a Kubernetes cluster using Helm. We have
installed Kubernetes Dashboard, Elasticsearch together with Kibana, and the Prometheus
Stack including Grafana.

In the next chapter, we are going to explore authentication and authorization on
Kubernetes. We will dive deeper into RBAC available in Kubernetes – which you got a
sneak-peek of in this chapter while creating ServiceAccount for accessing Kubernetes
Dashboard!

Further reading
For more information regarding Helm and Helm charts, please refer to the following
Packt Publishing book:

• Learn Helm, by Andrew Block, Austin Dewey (https://www.packtpub.com/
product/learn-helm/9781839214295)

You can learn more about Elasticsearch and Prometheus in the following Packt Publishing
books:

• Learning Elasticsearch, by Abhishek Andhavarapu (https://www.packtpub.
com/product/learning-elasticsearch/9781787128453)

• Hands-On Infrastructure Monitoring with Prometheus, by Joel Bastos, Pedro Ara√∫jo
(https://www.packtpub.com/product/hands-on-infrastructure-
monitoring-with-prometheus/9781789612349)

You can also refer to the official Helm documentation: https://helm.sh/docs/.

https://www.packtpub.com/product/learn-helm/9781839214295
https://www.packtpub.com/product/learn-helm/9781839214295
https://www.packtpub.com/product/learning-elasticsearch/9781787128453
https://www.packtpub.com/product/learning-elasticsearch/9781787128453
https://www.packtpub.com/product/hands-on-infrastructure-monitoring-with-prometheus/9781789612349
https://www.packtpub.com/product/hands-on-infrastructure-monitoring-with-prometheus/9781789612349
https://helm.sh/docs/

18
Authentication and

Authorization on
Kubernetes

In software systems, authentication and authorization play a significant role in providing
security. These terms may seem similar but they are very different security processes that
work together to provide identity and access management. In short, authentication
determines whether a given user of a system is indeed who they claim to be – the easiest
way to visualize this is using a username and password to complete an authentication
process. Authorization, on the other hand, determines what the user can and cannot do or
access in the system. This also means that in secure systems, authentication is the first step
and authorization must always follow authentication. One of the approaches of modeling
authorization in systems is using role-based access control (RBAC), where you organize
access control and management with roles and privileges. Roles can be assigned to users
in the system, which gives them certain privileges and access. In this way, you can achieve
very fine-grained access management that can be used to enforce the principle of least
privilege.

512 Authentication and Authorization on Kubernetes

Kubernetes, as a mature and widely adopted container orchestration system, is no
exception – it has been designed with security as a first-class citizen. Authentication and
authorization in Kubernetes are extensible and can fulfill the needs of enterprise systems.

For authentication, you can use one of the built-in strategies, such as X509 client
certificates or OpenID Connect tokens, which are considered industry standards. If
there is a need for less common authentication providers such as LDAP, you can use an
authenticating proxy or authentication webhook. We will discuss this in the first section
of the chapter and extend this knowledge by demonstrating how you can integrate Azure
Kubernetes Service (AKS) with Azure Active Directory (AAD) for authentication, and
even use Azure RBAC for providing authorization in AKS.

For authorization, Kubernetes comes with a built-in RBAC mechanism that allows you
to configure fine-grained sets of permissions and assign them to users, groups, and
ServiceAccounts (subjects). In this way, as a cluster administrator, you can control how
cluster users (internal and external) interact with the Kubernetes API server, which API
resources they can access, and which actions (verbs) they can perform. We will discuss the
details in the second section of this chapter.

In this chapter, we will cover the following topics:

• Authentication and user management

• Authentication – AKS and AAD integration

• Authorization – introduction to RBAC

Technical requirements
For this chapter, you will need the following:

• A Kubernetes cluster to be deployed. We recommend using a multi-node, cloud-
based Kubernetes cluster. To be able to follow the section regarding AKS and, AAD
you need to have a managed AKS cluster deployed and the Azure CLI installed.

• The Kubernetes CLI (kubectl) installed on your local machine and configured to
manage your Kubernetes cluster.

Basic Kubernetes cluster deployment (local and cloud-based) and kubectl installation
were covered in Chapter 3, Installing Your First Kubernetes Cluster.

Authentication and user management 513

The following chapters can give you an overview of how to deploy a fully functional
Kubernetes cluster on different cloud platforms:

• Chapter 14, Kubernetes Clusters on Google Kubernetes Engine

• Chapter 15, Launching a Kubernetes Cluster on Amazon Web Services with the
Amazon Elastic Kubernetes Service

• Chapter 16, Kubernetes Clusters on Microsoft Azure with the Azure Kubernetes
Service.

You can download the latest code samples for this chapter from the official GitHub
repository: https://github.com/PacktPublishing/The-Kubernetes-
Bible/tree/master/Chapter18.

Authentication and user management
The Kubernetes API server provides RESTful endpoints for managing Kubernetes cluster
and acts as the frontend to the shared state of the cluster. All users and all internal
components interact with the cluster via the Kubernetes API server. Requests to the API
are always one of the following:

• Associated with an external, normal user or a ServiceAccount defined in the
Kubernetes cluster

• Treated as anonymous requests if the cluster has been configured to allow
anonymous requests

This is determined in the authentication process – the entire HTTP request is used
as input to the process, but usually only request hearers or the client certificate is
analyzed. Authentication is carried out by authentication modules that depend on the
cluster configuration. Your cluster may have multiple authentication modules enabled
and then each of them is executed in sequence until one succeeds. If the request fails
to authenticate, the API server will either respond with an HTTP status code of 401
(unauthorized) or, if anonymous requests are enabled, treat it as anonymous.

Tip
Anonymous requests are essentially mapped to a special
username called system:anonymous and a group called
system:unauthenticated. This means that you can organize your
authorization to resources for such requests, just as you can for other users or
ServiceAccounts.

https://github.com/PacktPublishing/Kubernetes-for-Beginners/tree/master/Chapter18
https://github.com/PacktPublishing/The-Kubernetes-Bible/tree/master/Chapter18
https://github.com/PacktPublishing/The-Kubernetes-Bible/tree/master/Chapter18

514 Authentication and Authorization on Kubernetes

Since all operations inside and outside the cluster must go through the Kubernetes API
server, this means that all of them must go through the authentication process. This
includes the operations of internal cluster components and Pods, which query the API
server. For you, as an external user of the cluster, any requests that you make using
kubectl commands or directly to the Kubernetes API server will also go through the
authentication process:

• Normal users: Such users are managed externally, independent from the
Kubernetes cluster. Currently, Kubernetes does not provide any objects to
represent such users. The external management of users may be as simple (but not
recommended) as static user-password files passed to the API server using the
token-auth-file argument during startup. In real production scenarios, you
should use cloud services such as AAD or AWS Identity and Access Management
to manage the users and integrate with your Kubernetes cluster using OpenID
Connect (https://openid.net/connect/) tokens to seamlessly authenticate.
Note that normal user accounts are global and do not have cluster namespaces.

• Service accounts: These are managed by Kubernetes cluster and modeled
as ServiceAccount objects. You can create and manage service accounts just
like any other resource in Kubernetes; for example, using kubectl and
YAML manifest files. This type of account is intended for processes in cluster
components or running in Pods. The credentials for ServiceAccounts are
stored as Secrets in the cluster that are mounted into Pods so that the container
process can use them to talk to the Kubernetes API server. When a process
authenticates using a ServiceAccount token, it is seen as a user called
system:serviceaccount:<namespace>:<serviceAccountName>. Note
that ServiceAccounts are namespaced.

As you can see, user management in Kubernetes is a mixture of different approaches
that should fit all the needs of different organizations. The key takeaway here is that
after the authentication process, the request will be either rejected (optionally treated as
anonymous) or will be treated as coming from a particular user. The username attribute
may be provided by the external user management system, as in the case of normal users,
or it will be system:serviceaccount:<namespace>:<serviceAccountName>
for ServiceAccounts. Additionally, the request will have more attributes associated
with it, such as User ID (UID), groups, and extra fields. This information is used for
authorization processes based on RBAC, which we will explain in the next section.

Now, let's look at the authentication methods that you can use with Kubernetes.

https://openid.net/connect/

Authentication and user management 515

Static token files
This method is the most basic one that Kubernetes offers for managing normal users. The
approach somewhat resembles the /etc/shadow and /etc/passwd files, which were
used in the early days of Unix systems. Note, however, that it is not recommended and is
considered unsecure for production clusters.

In this method, you define a .csv file where each line has the following format:

token,user,uid,"group1,group2,group3"

Then, you pass the file when starting the Kubernetes API server process using the
token-auth-file parameter. To authenticate against the API server, you need to use
a standard HTTP bearer authentication scheme for your requests. This means that your
requests will need to use an additional header that's in the following form:

Authorization: Bearer <token>

Based on this request information, the Kubernetes API server will match the token against
the static token file and assign user attributes based on the matched record.

When using kubectl, you must modify your kubeconfig. You can do this using the
kubectl command:

$ kubectl config set-credentials <contextUser> --token=<token>

After that, you need to create and use context with this user for your requests using the
kubectl config use-context command.

Important note
In Kubernetes versions prior to 1.19, there was a similar authentication method
that allowed us to use an HTTP basic authentication scheme and a file passed
by the basic-auth-file parameter to the API server. This method is no
longer supported due to security reasons.

516 Authentication and Authorization on Kubernetes

The following diagram visualizes the principles behind this method of authentication:

Figure 18.1 – Static token file authentication in Kubernetes

We can now summarize the advantages and disadvantages of using static token file
method for authentication.

The advantages are as follows:

• Easy to configure

• Easy to understand

The disadvantages are as follows:

• Unsecure; exposing a token file compromises all cluster users.

• Requires that we manually manage users.

• Adding new users or removing existing ones requires that we restart the Kubernetes
API server.

• Rotating any tokens requires that we restart the Kubernetes API server.

In short, this method is good for development environments and learning the principles
behind authentication in Kubernetes, but it is not recommended for production use cases.
Next, we will take a look at authenticating users using ServiceAccount tokens.

ServiceAccount tokens
As we mentioned in the introduction to this section, ServiceAccounts are meant for
in-cluster identities for processes running in Pod containers or for cluster components.
However, they can be used for authenticating external requests as well.

Authentication and user management 517

ServiceAccounts are Kubernetes objects and can be managed like any other resource
in the cluster; that is, by using kubectl or raw HTTP requests to the API server. The
tokens for ServiceAccounts are JSON Web Tokens (JWTs) and are stored as Kubernetes
Secret objects. Secrets were covered in Chapter 6, Configuring Your Pods Using ConfigMaps
and Secrets. Usually, when defining a Pod, you will specify what ServiceAccount
should be used for processes running in the containers. You can do this using .spec.
serviceAccountName in the Pod specification. The JWT token will be injected into
the container; then, the process inside can use it in the HTTP bearer authentication
scheme to authenticate to the Kubernetes API server. This is only necessary if it interacts
with the API server in any way, for example, if it needs to discover other Pods in the
cluster. We have summarized this authentication method in the following diagram:

Figure 18.2 – ServiceAccount authentication in Kubernetes

518 Authentication and Authorization on Kubernetes

This also shows why ServiceAccount tokens can be used for external requests – the
API server does not care about the origin of the request; all it is interested in is the
bearer token that comes with the request header. Again, you can use this token in
kubectl or in raw HTTP requests to the API server. Please note that this is generally
not a recommended way to use ServiceAccounts, but it can be used in some scenarios,
especially when you are unable to use an external authentication provider for normal
users.

We will now demonstrate how you can create and manage ServiceAccounts and how you
can use JWT tokens to authenticate when using kubectl. This will also give a sneak peek
into RBAC, which we are going to look at in more detail in the next section. Please follow
the following steps:

1. Create a YAML manifest for a new ServiceAccount named example-account.
We will configure RBAC for this account so that it can only read Pods in the
default namespace. The example-account-serviceaccount.yaml
YAML manifest file has the following contents:

apiVersion: v1

kind: ServiceAccount

metadata:

 name: example-account

 namespace: default

Note that applying the preceding manifest has the same effect as the imperative
kubectl create serviceaccount example-account command.

2. Create a YAML manifest for a Role object named pod-reader in the default
namespace. This role will allow you to get, watch, and list Pods in this namespace.
The pod-reader-role.yaml YAML manifest file has the following contents:

apiVersion: rbac.authorization.k8s.io/v1

kind: Role

metadata:

 namespace: default

 name: pod-reader

rules:

- apiGroups: [""]

 resources: ["pods"]

 verbs: ["get", "watch", "list"]

Authentication and user management 519

3. Create a YAML manifest for RoleBinding named reads-pods. This is what
associates the role that we created with our example-account ServiceAccount
– the account will now have the privilege of read-only access to Pods, and nothing
more. The read-pods-rolebinding.yaml YAML manifest file has the
following contents:

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

 name: read-pods

 namespace: default

subjects:

- kind: ServiceAccount

 name: example-account

 namespace: default

roleRef:

 kind: Role

 name: pod-reader

 apiGroup: rbac.authorization.k8s.io

4. Now, we can apply all the manifest files to the cluster at once using the kubectl
apply command:

$ kubectl apply -f ./

serviceaccount/example-account created

role.rbac.authorization.k8s.io/pod-reader created

rolebinding.rbac.authorization.k8s.io/read-pods created

5. We need to retrieve the JWT for the service account. To do that, use the following
command, which retrieves it from the associated Secret object and decodes it from
Base64 encoding:

$ kubectl -n default get secret $(kubectl -n default get
sa/example-account -o jsonpath="{.secrets[0].name}") -o
go-template="{{.data.token | base64decode}}"

520 Authentication and Authorization on Kubernetes

6. Copy the token; we will need it for further operations. If you are interested, you can
inspect the contents of the JWT using https://jwt.io/:

Figure 18.3 – Inspecting a JWT for ServiceAccount
As you can see, the JWT maps to the example-account ServiceAccount.
Additionally, you can identify that the actual username (marked as subject in the
payload) it will be mapped to in Kubernetes is system:serviceaccount:defa
ult:example-account, as we explained previously.

7. With this JWT, we can set up kubectl to test it. First, you need to create a user in
your kubeconfig using the following command:

$ kubectl config set-credentials example-account—
token=<jwtToken>

8. Create a new context that uses this user. You also need to know the cluster name
that you are connecting to right now – you can check it using the kubectl
config view command. Use the following command to create a new context
named example-account-context:

$ kubectl config set-context example-account-context—
user=example-account—cluster=<clusterName>

https://jwt.io/

Authentication and user management 521

9. You may want to check the name of the context that you are currently using by
using the kubectl config current-context command. This will make it
easier to go back to your old cluster admin context. Switch to the new context using
the following command:

$ kubectl config use-context example-account-context

Switched to context "example-account-context".

10. We are now ready to verify that our authentication works and that the RBAC roles
allow read-only access to Pods in the default namespace. First, try getting Pods:

$ kubectl get pods

NAME
READY STATUS RESTARTS AGE

alertmanager-prometheus-stack-test-kube-alertmanager-0
2/2 Running 0 47h

elasticsearch-master-0
1/1 Running 0 47h

...

11. This has worked as expected! Now, try getting Pods from the kube-system
namespace:

$ kubectl get pods -n kube-system

Error from server (Forbidden): pods is forbidden: User
"system:serviceaccount:default:example-account" cannot
list resource "pods" in API group "" in the namespace
"kube-system"

12. We have authenticated correctly, but the action was forbidden by RBAC
authorization, which is what we expected. Lastly, let's try getting Service objects:

$ kubectl get svc

Error from server (Forbidden): services is forbidden:
User "system:serviceaccount:default:example-account"
cannot list resource "services" in API group "" in the
namespace "default"

522 Authentication and Authorization on Kubernetes

As you can see, we have successfully used our ServiceAccount JWT as a bearer token
for authentication and we have verified that our privileges work correctly. You can now
switch back to your old kubectl context using the kubectl config use-context
command.

Tip
The preceding procedure of configuring the kubectl context with a bearer
token can be used for the static token file authentication method as well.

Let's summarize what are the advantages and disadvantages of using ServiceAccount
tokens for authentication are.

The advantages are as follows:

• Easy to configure and use, similar to static token files.

• Entirely managed by the Kubernetes cluster, so there's no need for external
authentication providers.

• ServiceAccounts are namespaced.

The disadvantages are as follows:

• ServiceAccounts are intended for processes running in Pod containers to give them
identity and let them use Kubernetes RBAC.

• Any Pod that has access to reading Secrets can discover all tokens for
ServiceAccounts! This is an important security implication, especially if you are
thinking about having high-privilege service accounts in your cluster. This would
also violate the principle of least privilege.

• Rotation of ServiceAccount tokens is cumbersome and there is no automated way
to do this out of the box. This makes any mitigations to security incidents much
harder.

• ServiceAccount tokens do not expire, which is another security concern.
There is a design proposal to make this possible, though; you can read more
here: https://github.com/kubernetes/community/blob/master/
contributors/design-proposals/auth/bound-service-account-
tokens.md.

https://github.com/kubernetes/community/blob/master/contributors/design-proposals/auth/bound-service-account-tokens.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/auth/bound-service-account-tokens.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/auth/bound-service-account-tokens.md

Authentication and user management 523

In general, using ServiceAccount tokens for external authentication is good for
development and test scenarios when you cannot integrate with external authentication
providers. But for production clusters, it is not the best option, mainly due to security
concerns. Now, let's take a look at using X.509 client certificates.

X.509 client certificates
Using X.509 client certificates is one of the industry standards for authentication
processes. There is one important catch, however – you need to have good means of
managing certificate signing, revoking, and rotation – otherwise, you may hit very similar
security issues as with using ServiceAccount tokens. You can learn more about X.509
certificates and the processes around them here: https://www.ssl.com/faqs/
what-is-an-x-509-certificate/.

This method works in Kubernetes as follows:

1. The Kubernetes API server is started with the client-ca-file argument.
This provides certificate authority (CA) information to be used to validate client
certificates presented to the API server.

2. Users that want to authenticate against the API server need to request an X.509
client certificate from the CA. This should be a secure and audited process. The
subject common name (the CN attribute in the subject) of the certificate is used as
the username attribute when authentication is successful. Note that as of Kubernetes
1.19, you can use the Certificates API to manage signing requests. More information
is available in the official documentation: https://kubernetes.io/docs/
reference/access-authn-authz/certificate-signing-requests/.

3. The user must present the client certificate during authentication to the API server,
which validates the certificate against the CA. Based on that, the request goes
through the authentication process successfully or is rejected.

https://www.ssl.com/faqs/what-is-an-x-509-certificate/
https://www.ssl.com/faqs/what-is-an-x-509-certificate/
https://kubernetes.io/docs/reference/access-authn-authz/certificate-signing-requests/
https://kubernetes.io/docs/reference/access-authn-authz/certificate-signing-requests/

524 Authentication and Authorization on Kubernetes

While using the kubectl commands, you can configure this method of authentication
for your user using the kubectl config set-credentials command. We have
summarized this process in the following diagram:

Figure 18.4 – X.509 client certificate authentication in Kubernetes

Please note that this visualizes the case when initial CSR by the user is handled by the
Certificate API in a Kubernetes cluster. This does not need to be the case as CA may be
external to the cluster, and the Kubernetes API server can rely on a copy of the CA .pem
file.

We can summarize the advantages of this method as follows:

• It's a much more secure process than using ServiceAccount tokens or static token
files.

• Being unable to store certificates in the cluster means that it is not possible to
compromise all certificates, as was the case of using ServiceAccount tokens. X.509
client certificates can be used for high-privileged user accounts.

• X.509 client certificates can be revoked on demand. This is very important in case of
security incidents.

Authentication and user management 525

The disadvantages of X.509 client certificate authentication are as follows:

• Certificates have an expiry date, which means they cannot be valid indefinitely. For
simple use cases in development, this is a disadvantage. From a security perspective,
in production clusters, this is a huge advantage.

• Monitoring certificate expiration, revocation, and rotation must be handled. This
should be an automated process so that we can quickly react in the case of security
incidents.

• The built-in Certificate API has limited functionality.

• Using client certificates in the browser for authentication is troublesome, for
example, when you would like to authenticate to Kubernetes Dashboard.

The key takeaway is that using X.509 client certificates is secure but requires sophisticated
certificate management so that we have all the benefits. Now, we will take a look at
OpenID Connect tokens, which is the recommended method for cloud environments.

OpenID Connect tokens
Using OpenID Connect (OIDC), you can achieve a single sign-on (SSO) experience
for your Kubernetes cluster (and possibly other resources in your organization). OIDC
is an authentication layer that's created on top of OAuth 2.0, which allows third-
party applications to verify the identity of the end user and obtain basic user profile
information. OIDC uses JWTs, which you can obtain using flows that conform to the
OAuth 2.0 specifications. The most significant issue with using OIDC for authenticating
in Kubernetes is the limited availability of OpenID providers. But if you are deploying in
a cloud environment, all tier 1 cloud service providers such as Microsoft Azure, Amazon
Web Services, and Google Cloud Platform have their versions of OpenID providers. The
beauty of managed Kubernetes cluster deployments in the cloud, such as, AKS Amazon
EKS, and Google Kubernetes Engine, is that they provide integration with their native
OpenID provider out of the box or by a simple flip of a configuration switch. In other
words, you do not need to worry about reconfiguring the Kubernetes API server and
making it work with your chosen OpenID provider – you get it alongside the managed
solution. In the last section of this chapter, we will demonstrate how you can do that for
AKS throughout.

526 Authentication and Authorization on Kubernetes

If you are interested in learning more about the OpenID Connect protocol, you can refer
to the official web page: https://openid.net/connect/. For more details and
more specific flows, such as in the context of AAD please take a look here: https://
docs.microsoft.com/en-us/azure/active-directory/develop/
v2-protocols-oidc. In the following diagram, you can see the basics of the OIDC
authentication flow on Kubernetes:

Figure 18.5 – OpenID Connect authentication in Kubernetes

The most important thing is that the OpenID provider is responsible for the SSO
experience and managing the bearer tokens. Additionally, the Kubernetes API server must
validate the bearer token that's received against the OpenID provider.

Using OIDC has the following advantages:

• You get SSO experience, which you can use with other services in your organization.

• Tier 1 cloud service providers have their own OpenID providers that easily integrate
with their managed Kubernetes offerings.

• It can be also used with other OpenID providers and non-cloud deployments – this
requires a bit more configuration though.

• It's a secure and scalable solution.

https://openid.net/connect/
https://docs.microsoft.com/en-us/azure/active-directory/develop/v2-protocols-oidc
https://docs.microsoft.com/en-us/azure/active-directory/develop/v2-protocols-oidc
https://docs.microsoft.com/en-us/azure/active-directory/develop/v2-protocols-oidc

Authentication and user management 527

The disadvantages of this approach can be summarized as follows:

• Kubernetes has no web interface where you can trigger the authentication process.
This means that you need to get the credentials by manually requesting them from
the identity provider. In managed cloud Kubernetes offerings, this is often solved by
additional simple tooling to generate kubeconfig with credentials.

• Tokens cannot be revoked, so they are set to expire in a short time. This requires the
tokens to be frequently renewed.

The key takeaway about OIDC is that this is your best bet when configuring
authentication for Kubernetes, especially if you are deploying production clusters in the
cloud. Lastly, let's take a quick look at the other available authentication methods.

Other methods
Kubernetes offers a few other authentication methods that you can use. They are mainly
intended for advanced use cases, such as integrating with LDAP or Kerberos. The first one
is authenticating proxy.

When you use authenticating proxy in front of the Kubernetes API server, you can
configure the API server to use certain HTTP headers to extract authentication user
information from them. In other words, your authenticating proxy is doing the job of
authenticating the user and passing down this information alongside the request in the
form of additional headers.

You can find more information in the official documentation: https://
kubernetes.io/docs/reference/access-authn-authz/
authentication/#authenticating-proxy.

Another approach is known as webhook token authentication, where the Kubernetes
API server uses an external service to verify the bearer tokens. The external service
receives the information in the form of a TokenReview object from the API server via an
HTTP POST request, performs verification, and sends back a TokenReview object with
additional information about the result.

You can find more information in the official documentation: https://kubernetes.
io/docs/reference/access-authn-authz/authentication/#webhook-
token-authentication.

In general, you only need these two methods in special cases where you want to integrate
with existing identity providers in your organization that are not supported by Kubernetes
out of the box.

In the next section, we will look at RBAC.

https://kubernetes.io/docs/reference/access-authn-authz/authentication/#authenticating-proxy
https://kubernetes.io/docs/reference/access-authn-authz/authentication/#authenticating-proxy
https://kubernetes.io/docs/reference/access-authn-authz/authentication/#authenticating-proxy
https://kubernetes.io/docs/reference/access-authn-authz/authentication/#webhook-token-authentication
https://kubernetes.io/docs/reference/access-authn-authz/authentication/#webhook-token-authentication
https://kubernetes.io/docs/reference/access-authn-authz/authentication/#webhook-token-authentication

528 Authentication and Authorization on Kubernetes

Authorization and introduction to RBAC
While authentication is about determining whether a given user of a system is indeed who
they claim to be, authorization determines what the user can and cannot do or access. As
such, authorization usually complements authentication – these two processes are used
together to provide security for the system. Authentication is the first step in determining
the identity of the user, whereas authorization is the next step when verifying if the user
can perform the action they want to.

In the Kubernetes API server, authenticating a request results in a set of additional request
attributes such as user, group, API request verb, or HTTP request verb. These are then
passed further to authorization modules that, based on these attributes, answer whether
the user is allowed to do the action or not. If the request is denied by any of the modules,
the user will be presented with an HTTP status code of 403 (Forbidden).

Tip
This is an important difference between HTTP status codes. If you receive 401
(Unauthorized), this means that you have been not recognized by the
system; for example, you have provided incorrect credentials or the user does
not exist. If you receive 403 (Forbidden), this means that authentication
has been successful, you have been recognized, but you are not allowed to do
the action you requested. This is useful when debugging issues regarding access
to a Kubernetes cluster.

Kubernetes has a few authorization modes available that can be enabled by using the
authorization-mode argument when starting the Kubernetes API server:

• RBAC: Allows you to organize access control and management with roles and
privileges. RBAC is one of the industry standards for access management, also
outside of Kubernetes. Roles can be assigned to users in the system, which gives
them certain privileges and access. In this way, you can achieve very fine-grained
access management that can be used to enforce the principle of least privilege. For
example, you can define a role in the system that allows you to access certain files
on a network share. Then, you can assign such roles to individual users on groups
in the system to allow them to access these files. This can be done by associating
the user with a role – in Kubernetes, you model this using the RoleBinding and
ClusterRoleBinding objects. In this way, multiple users can be assigned a role and a
single user can have multiple roles assigned. Please note that in Kubernetes, RBAC
is permissive, which means that there are no deny rules. Everything is denied by
default, and you have to define allow rules instead.

Authorization and introduction to RBAC 529

• Attribute-Based Access Control (ABAC): This is part of the access control
paradigm, used not only in Kubernetes, which uses policies based on the attributes
of the user, resource, and environment. This is a very fine-grained access control
approach – you can, for example, define that the user can access a given file, but
only if the user has clearance to access confidential data (user attribute), the owner
of the file is Mike (resource attribute), and the user tries to access the file from an
internal network (environment attribute). So, policies are sets of attributes that must
be present together for the action to be performed. In Kubernetes, this is modeled
using Policy objects. For example, you can define that the authenticated user, mike,
can read any Pods in the default Namespace. If you want to give the same access
to user bob, then you need to create a new Policy for user bob.

• Node: A special-purpose authorization mode used for authorizing API requests
made by kubelet in the cluster.

• Webhook: This mode is similar to webhooks for authentication. You can
define an external service that needs to handle HTTP POST requests with an
SubjectAccessReview object that's sent by the Kubernetes API server. This service
must process the request and determine if the request should be allowed or denied.
The response from the service should contain SubjectAccessReview, along
with information, whether the subject is allowed the access. Based on that, the
Kubernetes API server will either proceed with the request or reject it with an
HTTP status code of 403. This approach is useful when you are integrating with
existing access control solutions in the organization.

Currently, RBAC is considered an industry standard in Kubernetes due to its flexibility
and ease of management. For this reason, RBAC is the only authentication mode we are
going to describe in more detail.

530 Authentication and Authorization on Kubernetes

RBAC mode in Kubernetes
Using RBAC in Kubernetes involves two types of API resources that belong to the rbac.
authorization.k8s.io API group:

• Role and ClusterRole: They define a set of permissions. Each rule in Role says
which verb(s) are allowed for which API resource(s). The only difference between
Role and ClusterRole is that Role is namespace-scoped, whereas ClusterRole is
global.

• RoleBinding and ClusterRoleBinding: They associate users or a set of users
(alternatively, groups or ServiceAccounts) with a given Role. Similarly, RoleBinding
is namespace-scoped, while ClusterRoleBinding is cluster-wide. Please note that
ClusterRoleBinding works with ClusterRole, but RoleBinding works with both
ClusterRole and Role.

All these Kubernetes objects can be managed using kubectl and YAML manifests, just
as you do with Pods, Services, and so on.

We will now demonstrate this in practice. In the previous section, we showed a basic
RBAC configuration for a service account that was being used for authentication using
kubectl. The example that we are going to use here will be a bit different and will involve
creating a Pod that runs under a dedicated service account and periodically queries the
Kubernetes API server for a list of Pods. In general, having dedicated service accounts for
running your Pods is a good practice and makes it possible to ensure the principle of least
privilege. For example, if your Pod needs to get the list of Pods in the cluster but does not
need to create a new Pod, the ServiceAccount for this Pod should have a role assigned that
allows you to list read-only Pods, nothing more. Please follow these steps to configure this
example:

1. Begin by creating a dedicated ServiceAccount named pod-logger. Create a
YAML manifest named pod-logger-serviceaccount.yaml:

apiVersion: v1

kind: ServiceAccount

metadata:

 name: pod-logger

 namespace: default

2. Apply the manifest to the cluster using the following command:

$ kubectl apply -f ./pod-logger-serviceaccount.yaml

Authorization and introduction to RBAC 531

3. Create a role named pod-reader. This role will only allow the get, watch, and
list verbs on pods resources in the Kubernetes RESTful API. In other words, this
translates into an /api/v1/namespaces/default/pods endpoint in the API.
Note that apiGroups specified as "" mean the core API group. The structure of
the pod-reader-role.yaml YAML manifest file is as follows:

apiVersion: rbac.authorization.k8s.io/v1

kind: Role

metadata:

 namespace: default

 name: pod-reader

rules:

- apiGroups: [""]

 resources: ["pods"]

 verbs: ["get", "watch", "list"]

4. Apply the manifest to the cluster using the following command:

$ kubectl apply -f ./pod-reader-role.yaml

5. Now, we would normally create a RoleBinding object to associate the service
account with the role. But to make this demonstration more interesting, we
willcreate a Pod that's running under the pod-logger service account. This
will essentially make the Pod unable to query the API for Pods because it will be
unauthorized (remember that everything is denied by default in RBAC). Create a
YAML manifest named pod-logger-static-pod.yaml for a static Pod called
pod-logger-static, running without any additional controllers:

apiVersion: v1

kind: Pod

metadata:

 name: pod-logger-static

spec:

 serviceAccountName: pod-logger

 containers:

- name: logger

 image: radial/busyboxplus:curl

 command:

 - /bin/sh

- -c

532 Authentication and Authorization on Kubernetes

 - |

 SERVICEACCOUNT=/var/run/secrets/kubernetes.io/
serviceaccount

 TOKEN=$(cat ${SERVICEACCOUNT}/token)

 while true

 do

 echo "Querying Kubernetes API Server for Pods in
default namespace..."

 curl—cacert $SERVICEACCOUNT/ca.crt—header
"Authorization: Bearer $TOKEN" -X GET https://
kubernetes/api/v1/namespaces/default/pods

 sleep 10

 done

Here, the most important fields are .spec.serviceAccountName, which
specifies the service account that the Pod should run under, and command in
the container definition, which we have overridden to periodically query the
Kubernetes API. Assigning the pod-logger service account, as explained in the
previous section, will result in a Secret with a bearer JWT for this account to be
mounted in the container filesystem under /var/run/secrets/kubernetes.
io/serviceaccount/token. The overridden commands run an infinite loop
in a Bourne shell in 10-second intervals. In each iteration, we query the Kubernetes
API endpoint (https://kubernetes/api/v1/namespaces/default/
pods) for Pods in the default namespace with the HTTP GET method using
the curl command. To properly authenticate, we need to pass the contents of /
var/run/secrets/kubernetes.io/serviceaccount/token as a bearer
token in the Authorization header for the request. Additionally, we need to
pass a CA certificate path to verify the remote server using the cacert argument.
The certificate is injected into /var/run/secrets/kubernetes.io/
serviceaccount/ca.crt by the Kubernetes runtime.

6. When you create this Pod and inspect its logs, you should expect to see just a bunch
of messages with an HTTP status code of 403 (Forbidden). This is because
the ServiceAccount does not have a RoleBinding type that associates it with the
pod-reader Role yet. First, apply the manifest to the cluster:

$ kubectl apply -f ./pod-logger-static-pod.yaml

Authorization and introduction to RBAC 533

7. Start following the logs of the pod-logger-static Pod using the following
command:

$ kubectl logs pod-logger-static -f

Querying Kubernetes API Server for Pods in default
namespace...

...

{

 "kind": "Status",

 "apiVersion": "v1",

 "metadata": {

 },

 "status": "Failure",

 "message": "pods is forbidden: User \"system:serviceac
count:default:pod-logger\" cannot list resource \"pods\"
in API group \"\" in the namespace \"default\"",

 "reason": "Forbidden",

 "details": {

 "kind": "pods"

 },

"code": 403

}

8. In a new console window, we will create and apply a RoleBinding that associates
the ServiceAccount with the pod-reader Role. Create a YAML manifest named
read-pods-rolebinding.yaml that contains the following contents:

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

 name: read-pods

 namespace: default

subjects:

- kind: ServiceAccount

 name: pod-logger

 namespace: default

roleRef:

 kind: Role

534 Authentication and Authorization on Kubernetes

name: pod-reader

apiGroup: rbac.authorization.k8s.io

There are three key components in the RoleBinding manifest: name, which is
used to identify the user, subjects, which reference the users, groups, or service
accounts, and roleRef, which references the role.

9. Apply the manifest file using the following command:

$ kubectl apply -f ./read-pods-rolebinding.yaml

10. In the previous console window, which still follows the logs of the Pod, you will see
that the Pod was able to successfully retrieve the list of Pods in the cluster. In other
words, the request was successfully authorized:

$ kubectl logs pod-logger-static -f

...

Querying Kubernetes API Server for Pods in default
namespace...

...

{

"kind": "PodList",

"apiVersion": "v1",

"metadata": {

"selfLink": "/api/v1/namespaces/default/pods",

"resourceVersion": "4052324"

 },

"items": [

 {

"metadata": {

"name": "alertmanager-prometheus-stack-test-kube-
alertmanager-0",

"generateName": "alertmanager-prometheus-stack-test-kube-
alertmanager-",

"namespace": "default",

...

Azure Kubernetes Service and Azure Active Directory integration 535

11. Lastly, you can delete the RoleBinding type using the following command:

$ kubectl delete rolebinding read-pods

12. Now, if you inspect the logs of the Pod again, you will see that the requests are
denied with an HTTP status code of 403 again.

Congratulations! You have successfully used RBAC in Kubernetes to be able to read the
Pods in the cluster for a Pod running under ServiceAccount. Next, we will take a look at
how to practically integrate AKS with AAD for authentication and authorization.

Azure Kubernetes Service and Azure Active
Directory integration
Tier 1 cloud service providers such as Microsoft Azure, Google Cloud Platform, and
Amazon Web Services have their own managed Kubernetes cluster offerings. We covered
the Kubernetes deployments for these three cloud platforms in the previous chapters.
What is important here is that managed Kubernetes clusters come with a lot of additional
integrations with other cloud services. In this section, we will show you how to use AAD
integrations for AKS to provide authentication using OpenID Connect and authorization
using Azure RBAC. This approach unifies user management and access control across
Azure resources, AKS, and Kubernetes resources.

Important note
At the time of writing, integration with AAD for authentication in AKS is
in general availability and may be enabled on demand. Azure RBAC for
Kubernetes authorization is currently in preview and can be enabled only when
creating a new cluster. It will be possible to enable it on demand when the
feature reaches general availability. For this reason, we will demonstrate these
two features by deploying a new cluster from scratch.

Let's begin this demonstration by taking care of the prerequisites.

536 Authentication and Authorization on Kubernetes

Prerequisites
First, we need to ensure that the prerequisites have been installed and enabled (these steps
must be fulfilled when the feature is still in preview; otherwise, a standard Azure CLI
installation should be sufficient):

1. Using the Azure CLI, register the EnableAzureRBACPreview feature flag using
the az feature register command:

$ az feature register—namespace "Microsoft.
ContainerService"—name "EnableAzureRBACPreview"

2. Wait for the flag to be registered; this can take a few minutes. You can query the
status using the following command:

$ az feature list -o table | grep EnableAzureRBACPreview

Microsoft.ContainerService/EnableAzureRBACPreview
Registered

3. When the status turns into Registered, perform a registration refresh of the
Microsoft.ContainerService resource provider:

$ az provider register—namespace Microsoft.
ContainerService

4. Install the aks-preview CLI extension and update it to the latest version
(0.4.55 or higher, if required):

$ az extension add—name aks-preview

$ az extension update—name aks-preview

With all the prerequisites ready, we can deploy the managed AKS cluster with AAD
integration and Azure RBAC integration.

Deploying a managed AKS cluster with AAD and Azure
RBAC integration
To deploy the cluster, follow these steps:

1. If you haven't created a resource group named k8sforbeginners-rg yet, you
need to create it using the following command:

$ az group create—name k8sforbeginners-rg—location eastus

Azure Kubernetes Service and Azure Active Directory integration 537

2. Start provisioning a cluster named k8sforbeginners-aks-aad with the AAD
and Azure RBAC integration features:

$ az aks create—resource-group k8sforbeginners-rg—name
k8sforbeginners-aks-aad—node-count 2 --enable-aad—enable-
azure-rbac

3. This will take a few minutes. In the end, you should see that the following section is
present in the response body:

 "aadProfile": {

 "adminGroupObjectIds": null,

 "clientAppId": null,

 "enableAzureRbac": true,

 "managed": true,

 "serverAppId": null,

 "serverAppSecret": null,

 "tenantId": ...

 },

We now have a managed AKS cluster with AAD and Azure RBAC integration ready. Next,
we are going to access the cluster using kubectl to verify the AAD integration.

Accessing the AKS cluster with AAD integration
enabled
In the previous sections, we explained what the available authentication modes in
Kubernetes are. One of them is OpenID Connect integration, which is an identity layer
built on top of the OAuth 2.0 protocol to provide single sign-on (SSO) capabilities. AKS
cluster with AAD integration internally relies on this authentication mode. The most
important benefit of such an integration is that you can manage users and groups in AAD,
just like with any Azure service. Your AKS cluster will seamlessly use AAD to authenticate
normal users! This means you can build RBAC policies on top of that.

538 Authentication and Authorization on Kubernetes

To access the newly deployed AKS cluster with kubectl, please follow these steps:

1. The AAD user that you use for the Azure CLI needs to have the Azure
Kubernetes Service Cluster User role (https://docs.microsoft.
com/en-us/azure/role-based-access-control/built-in-
roles#azure-kubernetes-service-cluster-user-role). Of course, if
you are the owner of the subscription, this is enough.

2. Execute the following Azure CLI command, which will generate kubeconfig for
accessing the cluster. If you are presented with any SSO instructions, please follow
them:

$ az aks get-credentials—resource-group
k8sforbeginners-rg—name k8sforbeginners-aks-aad

3. Now, attempt to get Pods in the cluster:

$ kubectl get pods

To sign in, use a web browser to open the page https://
microsoft.com/devicelogin and enter the code ... to
authenticate.

4. You need to complete the SSO process using the provided code. Eventually, you will
see the following in your browser (provided that you have the correct AAD role
assigned):

Figure 18.6 – Signing into AKS integrated with AAD

5. However, you will be presented with, maybe surprisingly, a message stating that
listing Pods is forbidden:

$ kubectl get pods

...

Error from server (Forbidden): pods is forbidden:
User "9b3fde3b-4059-40fa-9e93-4147cc93164d" cannot

https://docs.microsoft.com/en-us/azure/role-based-access-control/built-in-roles#azure-kubernetes-service-cluster-user-role
https://docs.microsoft.com/en-us/azure/role-based-access-control/built-in-roles#azure-kubernetes-service-cluster-user-role
https://docs.microsoft.com/en-us/azure/role-based-access-control/built-in-roles#azure-kubernetes-service-cluster-user-role

Azure Kubernetes Service and Azure Active Directory integration 539

list resource "pods" in API group "" in the namespace
"default": User does not have access to the resource in
Azure. Update role assignment to allow access.

This is expected. The message is coming from the Kubernetes API server authorization
module, which means that authentication using AAD SSO was successful! The reason
that we have been forbidden access is that we are also using Azure RBAC integration and
by default, our user does not have any Kubernetes Roles assigned. Take note of the AAD
user principal ID (in this example, 9b3fde3b-4059-40fa-9e93-4147cc93164d)
as it will be needed in the next steps. Alternatively, you can use the az ad signed-in-
user show command and check objectId.

Tip
AAD offers various solutions for managing access to resources. You can read
the following documentation if you are interested in providing conditional
access and just in time (JIT) access to an AKS cluster: https://docs.
microsoft.com/en-us/azure/aks/managed-aad#use-
conditional-access-with-azure-ad-and-aks, https://
docs.microsoft.com/en-us/azure/aks/managed-
aad#configure-just-in-time-cluster-access-with-
azure-ad-and-aks. JIT access is the most secure way to allow elevated
access to the cluster for a limited time and with full auditing capabilities. This is
regarded as an industry standard for securely managing production clusters.

Now, let's learn how to work with Azure RBAC integration for AKS.

Using Azure RBAC for an AKS cluster
To make it possible for our AAD user to list and manage the Pods in the cluster, we will
do two things. First, we are going to use the built-in Azure Kubernetes Service
RBAC Admin role in Azure RBAC, which is essentially a superuser administration role
that allows you to perform any action on any resource. This role should rarely be used as it
violates the principle of least privilege. If you are going to use such a highly privileged role
for production systems, you need to consider using JIT cluster access. The alternative way
of going about this would be to create AAD custom roles, where you can create your own
role that allows you to manage Pods in the default namespace. Such a role is defined in
Azure RBAC, but because we have Azure RBAC integration turned on for an AKS cluster,
this will be effective for Kubernetes resources.

https://docs.microsoft.com/en-us/azure/aks/managed-aad#use-conditional-access-with-azure-ad-and-aks
https://docs.microsoft.com/en-us/azure/aks/managed-aad#use-conditional-access-with-azure-ad-and-aks
https://docs.microsoft.com/en-us/azure/aks/managed-aad#use-conditional-access-with-azure-ad-and-aks
https://docs.microsoft.com/en-us/azure/aks/managed-aad#configure-just-in-time-cluster-access-with-azure-ad-and-aks
https://docs.microsoft.com/en-us/azure/aks/managed-aad#configure-just-in-time-cluster-access-with-azure-ad-and-aks
https://docs.microsoft.com/en-us/azure/aks/managed-aad#configure-just-in-time-cluster-access-with-azure-ad-and-aks
https://docs.microsoft.com/en-us/azure/aks/managed-aad#configure-just-in-time-cluster-access-with-azure-ad-and-aks

540 Authentication and Authorization on Kubernetes

To use the built-in Azure Kubernetes Service RBAC Admin role, follow
these steps:

1. Get the resource ID of your AKS cluster using the following command and store it
in the AKS_ID environment variable:

$ AKS_ID=$(az aks show—resource-group k8sforbeginners-rg—
name k8sforbeginners-aks-aad—query id -o tsv)

$ echo $AKS_ID

/subscriptions/.../resourcegroups/k8sforbeginners-rg/
providers/Microsoft.ContainerService/managedClusters/
k8sforbeginners-aks-aad

2. Using your user principal ID from the previous steps (in our case, 9b3fde3b-
4059-40fa-9e93-4147cc93164d), create an Azure RBAC role assignment for
your user and the Azure Kubernetes Service RBAC Admin role:

$ az role assignment create—role "Azure Kubernetes
Service RBAC Admin"—assignee 9b3fde3b-4059-40fa-9e93-
4147cc93164d—scope $AKS_ID

3. After a while, attempt to get the Pods from all the namespaces using the kubectl
command:

$ kubectl get pods -A

NAMESPACE NAME READY
STATUS RESTARTS AGE

kube-system coredns-748cdb7bf4-kjbxb 1/1
Running 0 58m

kube-system coredns-748cdb7bf4-ww4gg 1/1
Running 0 60m

...

4. Since we want to demonstrate using an Azure RBAC custom role, delete the role
assignment. First, you need to get the ID of the assignment and then pass it to the
second command, like so:

$ az role assignment list—scope $AKS_ID—query [].id -o
tsv

/subscriptions/.../resourcegroups/k8sforbeginners-rg/
providers/Microsoft.ContainerService/managedClusters/
k8sforbeginners-aks-aad/providers/Microsoft.
Authorization/roleAssignments/9d67b507-7f87-44dc-a3f1-
7fd053b308f6

Azure Kubernetes Service and Azure Active Directory integration 541

$ az role assignment delete—ids /subscriptions/
cc9a8166-829e-401e-a004-76d1e3733b8e/resourcegroups/
k8sforbeginners-rg/providers/Microsoft.ContainerService/
managedClusters/k8sforbeginners-aks-aad/providers/
Microsoft.Authorization/roleAssignments/9d67b507-7f87-
44dc-a3f1-7fd053b308f6

5. Lastly, you can verify that kubectl get pods returns forbidden again.

The alternative solution would be to create an Azure RBAC custom role that allows you
to manage Pods. You can check the full list of available actions for roles in the official
documentation: https://docs.microsoft.com/en-us/azure/role-based-
access-control/resource-provider-operations#microsoftcontainer
service. We are interested in the following actions:

• Microsoft.ContainerService/managedClusters/pods/read

• Microsoft.ContainerService/managedClusters/pods/write

• Microsoft.ContainerService/managedClusters/pods/delete

To create the custom role and assign it to your AAD user, follow these steps:

1. Determine your subscription ID using the az account show command. The
subscription ID will be present under the id property in the output.

2. Create an aks-pod-writer.json file that contains a role definition
that allows you to read, write, and delete Pods in the AKS cluster. Replace
<subscriptionId> with your subscription ID:

{

 "Name": "AKS Pods Writer",

 "Description": "Allows read-write management of Pods
in cluster/namespace.",

 "Actions": [],

 "NotActions": [],

 "DataActions": [

 "Microsoft.ContainerService/managedClusters/pods/
read",

 "Microsoft.ContainerService/managedClusters/pods/
write",

 "Microsoft.ContainerService/managedClusters/pods/
delete"

],

542 Authentication and Authorization on Kubernetes

 "NotDataActions": [],

 "assignableScopes": [

 "/subscriptions/<subscriptionId>"

]

}

3. Use the following command to create a custom role definition:

$ az role definition create—role-definition @aks-pod-
writer.json

4. Now, you can assign the new role to your user (in our example, 9b3fde3b-4059-
40fa-9e93-4147cc93164d):

$ az role assignment create—role "AKS Pods Writer"—
assignee 9b3fde3b-4059-40fa-9e93-4147cc93164d—scope $AKS_
ID

5. After a while, you can check the Pods in the cluster using the kubectl get pods
-A command. Note that the new role assignments can take up to 5 minutes to
propagate:

$ kubectl get pods -A

NAMESPACE NAME READY
STATUS RESTARTS AGE

kube-system coredns-748cdb7bf4-kjbxb 1/1
Running 0 89m

kube-system coredns-748cdb7bf4-ww4gg 1/1
Running 0 90m

6. Now, try to list all the deployments in the cluster – you will get a Forbidden
result, as expected:

$ kubectl get deploy -A

Error from server (Forbidden): deployments.apps is
forbidden: User "9b3fde3b-4059-40fa-9e93-4147cc93164d"
cannot list resource "deployments" in API group "apps"
at the cluster scope: User does not have access to the
resource in Azure. Update role assignment to allow
access.

Summary 543

7. Lastly, we need to verify whether we can create Pods. Run a simple static Pod with
the busybox container image:

$ kubectl run -i—tty busybox—image=busybox:1.28 --rm—
restart=Never—sh

If you don't see a command prompt, try pressing enter.

/ #

As you can see, we have successfully used Azure RBAC roles to manage authorization in
an AKS cluster. What's more, we haven't manually managed the Role and RoleBinding
objects in the Kubernetes cluster itself. Please note that most of the actions that we have
executed in the Azure CLI can be also done in the Azure portal.

Important note
If you do not need the AKS resources, remember to clean them up to avoid any
unnecessary costs.

Congratulations! You have successfully deployed a managed AKS cluster with AAD and
Azure RBAC integration. Now, let's summarize what you have learned in this chapter.

Summary
This chapter covered authentication and authorization in Kubernetes. First, we provided
an overview of the available authentication methods in Kubernetes and explained how
you can use ServiceAccount tokens for external user authentication. Next, we focused
on RBAC in Kubernetes. You learned how to use Roles, ClusterRoles, RoleBindings,
and ClusterRoleBindings to manage authorization in your cluster. We demonstrated a
practical use case of RBAC for ServiceAccounts by creating a Pod that can list Pods in
the cluster using the Kubernetes API (respecting the principle of least privilege). Finally,
we provided an overview of how easily you can integrate your AKS with AAD for single
sign-on authentication and Azure RBAC for authorization.

In the next chapter, we are going to dive deep into advanced techniques for
scheduling Pods.

544 Authentication and Authorization on Kubernetes

Further reading
For more information regarding authorization and authentication in Kubernetes, please
refer to the following PacktPub books:

• The Complete Kubernetes Guide, by Jonathan Baier, Gigi Sayfan, Jesse White
(https://www.packtpub.com/virtualization-and-cloud/
complete-kubernetes-guide)

• Getting Started with Kubernetes – Third Edition, by Jonathan Baier, Jesse White
(https://www.packtpub.com/virtualization-and-cloud/getting-
started-kubernetes-third-edition)

• Kubernetes for Developers, by Joseph Heck (https://www.packtpub.com/
virtualization-and-cloud/kubernetes-developers)

You can also refer to the official documentation:

• The Kubernetes documentation (https://kubernetes.io/docs/home/),
which is always the most up-to-date source of knowledge about Kubernetes in
general.

• AKS authentication and authorization best practices are available in the official
Microsoft documentation: https://docs.microsoft.com/en-us/azure/
aks/operator-best-practices-identity.

• Details about Azure RBAC for Kubernetes are documented at https://docs.
microsoft.com/en-us/azure/aks/manage-azure-rbac.

• More advanced use cases for Azure RBAC for Kubernetes are covered in this guide:
https://docs.microsoft.com/en-us/azure/aks/azure-ad-rbac.

https://www.packtpub.com/virtualization-and-cloud/complete-kubernetes-guide
https://www.packtpub.com/virtualization-and-cloud/complete-kubernetes-guide
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/kubernetes-developers
https://www.packtpub.com/virtualization-and-cloud/kubernetes-developers
https://kubernetes.io/docs/home/
https://docs.microsoft.com/en-us/azure/aks/operator-best-practices-identity
https://docs.microsoft.com/en-us/azure/aks/operator-best-practices-identity
https://docs.microsoft.com/en-us/azure/aks/manage-azure-rbac
https://docs.microsoft.com/en-us/azure/aks/manage-azure-rbac
https://docs.microsoft.com/en-us/azure/aks/azure-ad-rbac

19
Advanced

Techniques for
Scheduling Pods

At the beginning of the book, in Chapter 2, Kubernetes Architecture – From Docker
Images to Running Pods, we explained the principles behind the Kubernetes scheduler
(kube-scheduler) control plane component and its crucial role in the cluster. In short, its
responsibility is to schedule container workloads (Kubernetes Pods) and assign them to
healthy worker Nodes that fulfill the criteria required for running a particular workload.

This chapter will cover how you can control the criteria for scheduling Pods in the cluster.
We will especially dive deeper into Node affinity, taints, and tolerations for Pods. We
will also take a closer look at scheduling policies, which give kube-scheduler flexibility in
how it prioritizes Pod workloads. You will find all of these concepts important in running
production clusters at cloud scale.

546 Advanced Techniques for Scheduling Pods

In this chapter, we will cover the following topics:

• Refresher – What is kube-scheduler?

• Managing Node affinity

• Using Node taints and tolerations

• Scheduling policies

Technical requirements
For this chapter, you will need the following:

• Kubernetes cluster deployed. We recommend using a multi-node, cloud-based
Kubernetes cluster. Having a multi-node cluster will make understanding Node
affinity, taints, and tolerations much easier.

• Kubernetes CLI (kubectl) installed on your local machine and configured to
manage your Kubernetes cluster.

Basic Kubernetes cluster deployment (local and cloud-based) and kubectl installation
have been covered in Chapter 3, Installing Your First Kubernetes Cluster.

The following previous chapters can give you an overview of how to deploy a fully
functional Kubernetes cluster on different cloud platforms:

• Chapter 14, Kubernetes Clusters on Google Kubernetes Engine

• Chapter 15, Launching a Kubernetes Cluster on Amazon Web Services with the
Amazon Elastic Kubernetes Service

• Chapter 16, Kubernetes Clusters on Microsoft Azure with the Azure
Kubernetes Service

You can download the latest code samples for this chapter from the official GitHub
repository: https://github.com/PacktPublishing/The-Kubernetes-
Bible/tree/master/Chapter19.

https://github.com/PacktPublishing/The-Kubernetes-Bible/tree/master/Chapter19
https://github.com/PacktPublishing/The-Kubernetes-Bible/tree/master/Chapter19

Refresher – What is kube-scheduler? 547

Refresher – What is kube-scheduler?
In Kubernetes clusters, kube-scheduler is a component of the control plane that runs
on Master Nodes. The main responsibility of this component is scheduling container
workloads (Pods) and assigning them to healthy worker Nodes that fulfill the criteria
required for running a particular workload. To recap, a Pod is a group of one or more
containers with a shared network and storage and is the smallest deployment unit in the
Kubernetes system. You usually use different Kubernetes controllers, such as Deployment
objects and StatefulSet objects, to manage your Pods, but it is kube-scheduler that
eventually assigns the created Pods to particular Nodes in the cluster.

Important note
For managed Kubernetes clusters in the cloud, such as the managed Azure
Kubernetes Service or the Amazon Elastic Kubernetes Service, you normally
do not have access to the Master Nodes, as they are managed by the cloud
service provider for you. This means you will not have access to kube-scheduler
itself, and usually, you cannot control its configuration, such as scheduling
policies. But you can control all parameters for Pods that influence their
scheduling.

Kube-scheduler queries the Kubernetes API Server (kube-apiserver) at a regular interval
in order to list the Pods that have not been scheduled. At creation, Pods are marked as
not scheduled – this means no worker Node was elected to run them. A Pod that is not
scheduled will be registered in the etcd cluster state but without any worker Node
assigned to it, and thus, no running kubelet will be aware of this Pod. Ultimately, no
container described in the Pod specification will run at this point.

Internally, the Pod object, as it is stored in etcd, has a property called nodeName. As the
name suggests, this property should contain the name of the worker Node that will host
the Pod. When this property is set, we say the Pod is in a scheduled state, otherwise, the
Pod is in a pending state.

548 Advanced Techniques for Scheduling Pods

We need to find a way to fill this value, and this is the role of the kube-scheduler. For this,
the kube-scheduler poll continues the kube-apiserver at a regular interval. It looks for
Pod resources with an empty nodeName property. Once it finds such Pods, it will execute
an algorithm to elect a worker Node and will update the nodeName property in the Pod
object, by issuing an HTTP request to the kube-apiserver. When electing a worker Node,
the kube-scheduler will take into account its internal scheduling policies and criteria that
you defined for the Pods. Finally, the kubelet which is responsible for running Pods on
the selected worker Node will notice that there is a new Pod in the scheduled state for
the Node and will attempt starting the Pod. These principles have been visualized in the
following diagram:

Figure 19.1 – Interactions of kube-scheduler and Kubernetes API server

The scheduling process for a Pod is performed in two phases:

• Filtering: Kube-scheduler determines the set of Nodes that are capable of running
a given Pod. This includes checking the actual state of the Nodes and verifying any
resource requirements and criteria specified by the Pod definition. At this point,
if there are no Nodes that can run a given Pod, the Pod cannot be scheduled and
remains pending.

Managing Node affinity 549

• Scoring: Kube-scheduler assigns scores for each Node based on a set of scheduling
policies. Then, the Pod is assigned by the scheduler to the Node with the highest
score. We will cover scheduling policies in the last section of this chapter.

The kube-scheduler will consider criteria and configuration values you can optionally pass
in the Pod specification. By using these configurations, you can control precisely how the
kube-scheduler will elect a worker Node.

Important note
The decisions of kube-scheduler are valid precisely at the point in time of
scheduling the Pod. When the Pod gets scheduled and is running, kube-
scheduler will not do any rescheduling operations while it is running (which
can be days or even months). So even if this Pod no longer matches the Node
according to your rules, it will remain running. Rescheduling will only happen
if the Pod is terminated and a new Pod needs to be scheduled.

In the next sections, we will discuss the following configurations to control the scheduling
of Pods:

• Node name and Node selector, which are the simplest forms of static scheduling.

• Node affinity and inter-Pod affinity/anti-affinity.

• Taints and tolerations.

Let's first take a look at Node affinity, together with Node name and Node selector.

Managing Node affinity
To better understand how Node affinity works in Kubernetes, we need first to take a
look at the most basic scheduling options, which are using Node name and Node selector
for Pods.

Pod Node name
As we mentioned before, each Pod object has a nodeName field which is usually
controlled by the kube-scheduler. Nevertheless, it is possible to set this property directly in
the YAML manifest when you create a Pod or create a controller that uses a Pod template.
This is the simplest form of statically scheduling Pods on a given Node and is generally not
recommended – it is not flexible and does not scale at all. The names of Nodes can change
over time and you risk running out of resources on the Node.

550 Advanced Techniques for Scheduling Pods

Tip
You may find setting nodeName explicitly useful in debugging scenarios
when you want to run a Pod on a specific Node.

We are going to demonstrate all scheduling principles on an example Deployment object
that we introduced in Chapter 11, Deployment – Deploying Stateless Applications. This is a
simple Deployment that manages five Pod replicas of an nginx webserver running in a
container. Create the following YAML manifest named nginx-deployment.yaml:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: nginx-deployment-example

spec:

 replicas: 5

 selector:

 matchLabels:

 app: nginx

 environment: test

 template:

 metadata:

 labels:

 app: nginx

 environment: test

 spec:

 containers:

 - name: nginx

 image: nginx:1.17

 ports:

 - containerPort: 80

Managing Node affinity 551

At this point, the Pod template in .spec.template.spec does not contain any
configuration that affects the scheduling of the Pod replicas. Before we apply the manifest
to the cluster, we need to know what Nodes we have in the cluster so that we can
understand how they are scheduled and how we can influence the scheduling of Pods. You
can get the list of Nodes using the kubectl get nodes command:

$ kubectl get nodes

NAME STATUS ROLES AGE
VERSION

aks-nodepool1-77120516-vmss000000 Ready agent 1d
v1.18.14

aks-nodepool1-77120516-vmss000001 Ready agent 1d
v1.18.14

aks-nodepool1-77120516-vmss000002 Ready agent 1d
v1.18.14

In our example, we are running a three-Node cluster. For simplicity, we will refer
to aks-nodepool1-77120516-vmss000000 as Node 0, aks-nodepool1-
77120516-vmss000001 as Node 1, and aks-nodepool1-77120516-
vmss000002 as Node 2.

Now, let's apply the nginx-deployment.yaml YAML manifest to the cluster:

$ kubectl apply -f ./nginx-deployment.yaml

deployment.apps/nginx-deployment-example created

552 Advanced Techniques for Scheduling Pods

The Deployment object will create five Pod replicas. You can get their statuses, together
with the Node names that they were scheduled for, using the following command:

$ kubectl get pods --namespace default --output=custom-
columns="NAME:.metadata.name,STATUS:.status.phase,NODE:.spec.
nodeName"

NAME STATUS NODE

nginx-deployment-example-5549875c78-nndb4 Running
aks-nodepool1-77120516-vmss000001

nginx-deployment-example-5549875c78-ps7pd Running
aks-nodepool1-77120516-vmss000000

nginx-deployment-example-5549875c78-s824f Running
aks-nodepool1-77120516-vmss000002

nginx-deployment-example-5549875c78-xfbkj Running
aks-nodepool1-77120516-vmss000002

nginx-deployment-example-5549875c78-zg2w7 Running
aks-nodepool1-77120516-vmss000000

As you can see, by default the Pods have been distributed uniformly – Node 0 has received
two Pods, Node 1 one Pod, and Node 2 two Pods. This is a result of the default scheduling
policies enabled in the kube-scheduler for filtering and scoring.

Tip
If you are running a non-managed Kubernetes cluster, you can inspect the
logs for the kube-scheduler Pod using the kubectl logs command, or
even directly at the master Nodes in /var/log/kube-scheduler.
log. This may also require increased verbosity of logs for the kube-scheduler
process. You can read more at https://kubernetes.io/docs/
reference/command-line-tools-reference/kube-
scheduler/.

We will now forcefully assign all Pods in the Deployment to Node 0 in the cluster using
the nodeName field in the Pod template. Change the nginx-deployment.yaml
YAML manifest so that it has this property set with the correct Node name for your
cluster:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: nginx-deployment-example

https://kubernetes.io/docs/reference/command-line-tools-reference/kube-scheduler/
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-scheduler/
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-scheduler/

Managing Node affinity 553

spec:

...

 template:

...

 spec:

 nodeName: aks-nodepool1-77120516-vmss000000

...

Apply the manifest to the cluster using the kubectl apply -f ./nginx-
deployment.yaml command and inspect the Pod status and Node assignment again:

$ kubectl get pods --namespace default --output=custom-
columns="NAME:.metadata.name,STATUS:.status.phase,NODE:.spec.
nodeName"

NAME STATUS NODE

nginx-deployment-example-6977595df5-95sfh Running
aks-nodepool1-77120516-vmss000000

nginx-deployment-example-6977595df5-cxgqb Running
aks-nodepool1-77120516-vmss000000

nginx-deployment-example-6977595df5-h5wwk Running
aks-nodepool1-77120516-vmss000000

nginx-deployment-example-6977595df5-pww9g Running
aks-nodepool1-77120516-vmss000000

nginx-deployment-example-6977595df5-q5xxs Running
aks-nodepool1-77120516-vmss000000

As expected, all five Pods are now running on Node 0. These are all new Pods – when you
change the Pod template in the Deployment specification, it causes internally a rollout
using a new ReplicaSet object, while the old ReplicaSet object is scaled down, as explained
in Chapter 11, Deployment – Deploying Stateless Applications.

Important note
In this way, we have actually bypassed kube-scheduler. If you inspect events for
one of the Pods using the kubectl describe pod command, you will
see that it lacks any events with Scheduled as a reason.

Next, we are going to take a look at another basic method of scheduling Pods, which is the
Node selector.

554 Advanced Techniques for Scheduling Pods

Pod Node selector
Pod specification has a special field, .spec.nodeSelector, that gives you the ability
to schedule your Pod only on Nodes that have certain label values. This concept is similar
to label selectors that you know from Deployments or StatefulSets, but the difference is
that it allows only simple equality-based comparisons for labels. You cannot do advanced
set-based logic.

A very common use case for scheduling Pods using nodeSelector is managing Pods
in hybrid Windows/Linux clusters. Every Kubernetes Node comes by default with a set of
labels, which include the following:

• kubernetes.io/arch: Describes the Node's processor architecture, for example,
amd64 or arm. This is also defined as beta.kubernetes.io/arch.

• kubernetes.io/os: Has a value of linux or windows. This is also defined as
beta.kubernetes.io/os.

If you inspect the labels for one of the Nodes, you will see that there are plenty of them –
in our case some of them are specific to Azure Kubernetes Service (AKS) clusters only:

$ kubectl describe node aks-nodepool1-77120516-vmss000000

...

Labels: agentpool=nodepool1

 beta.kubernetes.io/arch=amd64

 beta.kubernetes.io/instance-type=Standard_
DS2_v2

 beta.kubernetes.io/os=linux

 failure-domain.beta.kubernetes.io/
region=eastus

 failure-domain.beta.kubernetes.io/zone=0

 kubernetes.azure.com/cluster=MC_
k8sforbeginners-rg_k8sforbeginners-aks_eastus

 kubernetes.azure.com/mode=system

 kubernetes.azure.com/node-image-
version=AKSUbuntu-1804gen2-2021.02.17

 kubernetes.azure.com/role=agent

 kubernetes.io/arch=amd64

 kubernetes.io/hostname=aks-nodepool1-
77120516-vmss000000

 kubernetes.io/os=linux

 kubernetes.io/role=agent

Managing Node affinity 555

 node-role.kubernetes.io/agent=

 node.kubernetes.io/instance-type=Standard_
DS2_v2

 storageprofile=managed

 storagetier=Premium_LRS

 topology.kubernetes.io/region=eastus

 topology.kubernetes.io/zone=0

...

Of course, you can define your own labels for the Nodes and use them to control
scheduling. Please note that in general you should use semantic labeling for your
resources in Kubernetes, rather than give them special labels just for the purpose of
scheduling. Let's demonstrate how to do that by following these steps:

1. Use the kubectl label nodes command to add a node-type label with a
superfast value to Node 1 and Node 2 in the cluster:

$ kubectl label nodes aks-nodepool1-77120516-vmss000001
node-type=superfast

node/aks-nodepool1-77120516-vmss000001 labeled

$ kubectl label nodes aks-nodepool1-77120516-vmss000002
node-type=superfast

node/aks-nodepool1-77120516-vmss000002 labeled

2. Edit the ./nginx-deployment.yaml deployment manifest so that it has
nodeSelector in the Pod template set to node-type: superfast
(nodeName that we used previously should be removed):

apiVersion: apps/v1

kind: Deployment

metadata:

 name: nginx-deployment-example

spec:

...

 template:

...

 spec:

 nodeSelector:

 node-type: superfast

...

556 Advanced Techniques for Scheduling Pods

3. Apply the manifest to the cluster using the kubectl apply -f ./nginx-
deployment.yaml command and inspect the Pod status and Node assignment
again. You may need to wait a while for the deployment rollout to finish:

$ kubectl get pods --namespace default --output=custom-
columns="NAME:.metadata.name,STATUS:.status.phase,NODE:.
spec.nodeName"

NAME STATUS
NODE

nginx-deployment-example-8485bc9569-2pm5h Running
aks-nodepool1-77120516-vmss000001

nginx-deployment-example-8485bc9569-79gn9 Running
aks-nodepool1-77120516-vmss000002

nginx-deployment-example-8485bc9569-df6x8 Running
aks-nodepool1-77120516-vmss000001

nginx-deployment-example-8485bc9569-fd4gv Running
aks-nodepool1-77120516-vmss000002

nginx-deployment-example-8485bc9569-tlxgl Running
aks-nodepool1-77120516-vmss000002

As you can see, Node 1 has been assigned with two Pods and Node 2 with
three Pods. The Pods have been distributed among Nodes that have the node-
type=superfast label.

4. In contrast, if you change the ./nginx-deployment.yaml manifest so that it
has nodeSelector in the Pod template set to node-type: slow, which no
Node in the cluster has assigned, we will see that Pods could not be scheduled and
the deployment will be stuck. Edit the manifest:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: nginx-deployment-example

spec:

...

 template:

...

 spec:

 nodeSelector:

 node-type: slow

...

Managing Node affinity 557

5. Apply the manifest to the cluster using the kubectl apply -f ./nginx-
deployment.yaml command and inspect the Pod status and Node assignment
again:

$ kubectl get pods --namespace default --output=custom-
columns="NAME:.metadata.name,STATUS:.status.phase,NODE:.
spec.nodeName"

NAME STATUS
NODE

nginx-deployment-example-54dbf4699f-jdx42 Pending
<none>

nginx-deployment-example-54dbf4699f-sk2jd Pending
<none>

nginx-deployment-example-54dbf4699f-xjdp2 Pending
<none>

nginx-deployment-example-8485bc9569-2pm5h Running
aks-nodepool1-77120516-vmss000001

nginx-deployment-example-8485bc9569-df6x8 Running
aks-nodepool1-77120516-vmss000001

nginx-deployment-example-8485bc9569-fd4gv Running
aks-nodepool1-77120516-vmss000002

nginx-deployment-example-8485bc9569-tlxgl Running
aks-nodepool1-77120516-vmss000002

The reason why three new Pods are pending and four old Pods are still running is
the default configuration of rolling updates in the Deployment object. By default,
maxSurge is set to 25% of Pod replicas (absolute number is rounded up), so in our
case, it is two Pods allowed to be created above the desired number of five Pods. In
total, we now have seven Pods. At the same time, maxUnavailable is also 25%
of Pod replicas (but absolute number is rounded down), so in our case, one Pod
out of five can be not available. In other words, four Pods must be Running. And
because the new Pending Pods cannot get a Node in the process of scheduling, the
Deployment is stuck waiting and not progressing. Normally, in this case you need
to either perform a rollback to the previous version for the Deployment or change
nodeSelector to one that matches existing Nodes properly. Of course, there is
also an alternative of adding a new Node with matching labels or adding missing
labels to the existing ones, without performing a rollback.

We will now continue the topic of scheduling Pods with the first of more advanced
techniques: Node affinity.

558 Advanced Techniques for Scheduling Pods

Node affinity configuration for Pods
The concepts of Node affinity expand the nodeSelector approach and provide a richer
language for defining which Nodes are preferred or avoided for your Pod. In everyday life,
the word affinity describes a natural liking for and understanding of someone or something,
and this best describes the purpose of Node affinity for Pods. That is, you can control
which Nodes your Pod will be attracted to or repelled by.

With Node affinity, represented in .spec.affinity.nodeAffinity for the Pod, you
get the following enhancements over simple nodeSelector:

• You get a richer language for expressing the rules for matching Pods to Nodes. For
example, you can use In, NotIn, Exists, DoesNotExist, Gt, and Lt operators
for labels.

• Similarly to nodeAffinity, it is possible to do scheduling using inter-Pod affinity
(podAffinity) and additionally anti-affinity (podAntiAffinity). Anti-
affinity has an opposite effect to affinity – you can define rules that repel the Pods.
In this way, you can make your Pods be attracted to Nodes that already run certain
Pods. This is especially useful if you want to collocate Pods to decrease latency.

• It is possible to define soft affinity and anti-affinity rules that represent a
preference instead of a hard rule. In other words, if the scheduler can still
schedule the Pod, even if it cannot match the soft rule. Soft rules are represented
by the preferredDuringSchedulingIgnoredDuringExecution
field in specification, whereas hard rules are represented by the
requiredDuringSchedulingIgnoredDuringExecution field.

• Soft rules can be weighted.

Tip
Even though there is no Node anti-affinity field provided by a separate field in
spec, as in the case of inter-Pod anti-affinity you can still achieve similar results
by using the NotIn and DoesNotExist operators. In this way, you can
make Pods be repelled from Nodes with specific labels, also in a soft way.

The use cases and scenarios for defining the Node affinity and inter-Pod affinity/anti-
affinity rules are unlimited. It is possible to express all kinds of requirements in this way,
provided that you have enough labeling on the Nodes. For example, you can model
requirements like scheduling the Pod only on a Windows Node with an Intel CPU
and premium storage in the West Europe region but currently not running Pods for
MySQL, or try not to schedule the Pod in availability Zone 1, but if it is not possible, then
availability Zone 1 is still OK.

Managing Node affinity 559

To demonstrate Node affinity, we will try to model the following requirements for our
Deployment: "Try to schedule the Pod only on Nodes with a node-type label with a
fast or superfast value, but if it this not possible, use any Node but strictly not with a
node-type label with an extremelyslow value." For this, we need to use:

• Soft Node affinity rule of type
preferredDuringSchedulingIgnoredDuringExecution to match fast
and superfast Nodes.

• Hard Node affinity rule of type
requiredDuringSchedulingIgnoredDuringExecution to repel the Pod
strictly from Nodes with node-type as extremelyslow. We need to use the
NotIn operator to get the anti-affinity effect.

In our cluster we are going to first have the following labeling for Nodes:

• Node 0: slow

• Node 1: fast

• Node 2: superfast

As you can see, according to our requirements the Deployment Pods should be scheduled
on Node 1 and Node 2, unless there is something preventing them from being allocated
there, like a lack of CPU or memory resources. In that case, Node 0 would also be allowed
as we use the soft affinity rule.

Next, we will relabel the Nodes in the following way:

• Node 0: slow

• Node 1: extremelyslow

• Node 2: extremelyslow

Subsequently, we will need to redeploy our Deployment (for example, scale it down to
zero and up to the original replica count, or use the kubectl rollout restart
command) to reschedule the Pods again. After that, looking at our requirements, kube-
scheduler should assign all Pods to Node 0 (because it is still allowed by the soft rule) but
avoid at all costs Node 1 and Node 2. If by any chance Node 0 has no resources to run the
Pod, then the Pods would be stuck in the Pending state.

560 Advanced Techniques for Scheduling Pods

Tip
To solve the issue of rescheduling already running Pods (in other words, to
make kube-scheduler consider them again), there is an incubating Kubernetes
project named Descheduler. You can find out more here: https://
github.com/kubernetes-sigs/descheduler.

To do the demonstration, please follow these steps:

1. Use the kubectl label nodes command to add a node-type label with a
slow value for Node 0, a fast value for Node 1, and a superfast value for Node
2:

$ kubectl label nodes --overwrite aks-nodepool1-77120516-
vmss000000 node-type=slow

node/aks-nodepool1-77120516-vmss000000 labeled

$ kubectl label nodes --overwrite aks-nodepool1-77120516-
vmss000001 node-type=fast

node/aks-nodepool1-77120516-vmss000001 labeled

$ kubectl label nodes --overwrite aks-nodepool1-77120516-
vmss000002 node-type=superfast

node/aks-nodepool1-77120516-vmss000002 not labeled #
Note that this label was already present with this value

2. Edit the ./nginx-deployment.yaml Deployment manifest (the full file is
available in the official GitHub repository for the book: https://github.
com/PacktPublishing/Kubernetes-for-Beginners/blob/master/
Chapter19/03_affinity/nginx-deployment.yaml), and remove
nodeSelector. Instead, define the soft Node affinity rule as follows:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: nginx-deployment-example

spec:

...

 template:

...

 spec:

 affinity:

 nodeAffinity:

https://github.com/kubernetes-sigs/descheduler
https://github.com/kubernetes-sigs/descheduler
https://github.com/PacktPublishing/Kubernetes-for-Beginners/blob/master/Chapter19/03_affinity/nginx-deployment.yaml
https://github.com/PacktPublishing/Kubernetes-for-Beginners/blob/master/Chapter19/03_affinity/nginx-deployment.yaml
https://github.com/PacktPublishing/Kubernetes-for-Beginners/blob/master/Chapter19/03_affinity/nginx-deployment.yaml

Managing Node affinity 561

 requiredDuringSchedulingIgnoredDuringExecution:

 nodeSelectorTerms:

 - matchExpressions:

 - key: node-type

 operator: NotIn

 values:

 - extremelyslow

 preferredDuringSchedulingIgnoredDuringExecution:

 - weight: 1

 preference:

 matchExpressions:

 - key: node-type

 operator: In

 values:

 - fast

 - superfast

...

As you can see, we have used nodeAffinity
(not podAffinity or podAntiAffinity) with
preferredDuringSchedulingIgnoredDuringExecution set so that it
has only one soft rule: node-type should have a fast value or a superfast
value. This means that if there are no resources on such Nodes, they can still be
scheduled on other Nodes. Additionally, we specify one hard anti-affinity rule
in requiredDuringSchedulingIgnoredDuringExecution, which
says that node-type must not be extremelyslow. You can find the full
specification of Pod's .spec.affinity in the official documentation: https://
kubernetes.io/docs/reference/generated/kubernetes-api/
v1.19/#affinity-v1-core.

3. Apply the manifest to the cluster using the kubectl apply -f ./nginx-
deployment.yaml command and inspect the Pod status and Node assignment
again. You may need to wait a while for the Deployment rollout to finish:

$ kubectl get pods --namespace default --output=custom-
columns="NAME:.metadata.name,STATUS:.status.phase,NODE:.
spec.nodeName"

NAME STATUS
NODE

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.19/#affinity-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.19/#affinity-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.19/#affinity-v1-core

562 Advanced Techniques for Scheduling Pods

nginx-deployment-example-7ff6c65bd4-8z7z5 Running
aks-nodepool1-77120516-vmss000002

nginx-deployment-example-7ff6c65bd4-ps9md Running
aks-nodepool1-77120516-vmss000002

nginx-deployment-example-7ff6c65bd4-pszkq Running
aks-nodepool1-77120516-vmss000001

nginx-deployment-example-7ff6c65bd4-qpv5d Running
aks-nodepool1-77120516-vmss000001

nginx-deployment-example-7ff6c65bd4-vh6dx Running
aks-nodepool1-77120516-vmss000002

Our Node affinity rules were defined to prefer Nodes that have node-type set to
either fast or superfast, and indeed the Pods were scheduled for Node 1 and
Node 2 only.

Now we will do an experiment to demonstrate how the soft part of Node affinity together
with the hard part of Node anti-affinity work. We will relabel the Nodes as described in
the introduction, redeploy the Deployment, and observe what happens. Please follow
these steps:

1. Use the kubectl label nodes command to add a node-type label
with a slow value for Node 0, an extremelyslow value for Node 1, and an
extremelyslow value for Node 2:

$ kubectl label nodes --overwrite aks-nodepool1-77120516-
vmss000000 node-type=slow

node/aks-nodepool1-77120516-vmss000000 not labeled

$ kubectl label nodes --overwrite aks-nodepool1-77120516-
vmss000001 node-type=extremelyslow

node/aks-nodepool1-77120516-vmss000001 labeled

$ kubectl label nodes --overwrite aks-nodepool1-77120516-
vmss000002 node-type=extremelyslow

node/aks-nodepool1-77120516-vmss000002 labeled

Managing Node affinity 563

2. At this point, if you were to check Pods assignments using kubectl get pods,
there would be no difference. This is because, as we explained before, a Pod's
assignment to Nodes is valid only at the time of scheduling, and after that, it is
not changed unless they are restarted. To force the restart of Pods, we could scale
the Deployment down to zero replicas and then back to five. But there is an easier
way, which is to use an imperative kubectl rollout restart command.
This approach has the benefit of not making the Deployment unavailable, and it
performs a rolling restart of Pods without a decrease in the number of available
Pods. Execute the following command:

$ kubectl rollout restart deploy nginx-deployment-example

deployment.apps/nginx-deployment-example restarted

3. Inspect the Pod status and Node assignment again. You may need to wait a while for
the Deployment rollout to finish:

$ kubectl get pods --namespace default --output=custom-
columns="NAME:.metadata.name,STATUS:.status.phase,NODE:.
spec.nodeName"

NAME STATUS
NODE

nginx-deployment-example-6c4fdd447d-4mjfm Running
aks-nodepool1-77120516-vmss000000

nginx-deployment-example-6c4fdd447d-qgqmc Running
aks-nodepool1-77120516-vmss000000

nginx-deployment-example-6c4fdd447d-qhrtf Running
aks-nodepool1-77120516-vmss000000

nginx-deployment-example-6c4fdd447d-tnvpm Running
aks-nodepool1-77120516-vmss000000

nginx-deployment-example-6c4fdd447d-ttfnk Running
aks-nodepool1-77120516-vmss000000

The output shows that, as expected, all Pods have been scheduled to Node 0, which
is labeled with node-type=slow. We allow such Nodes if there is nothing better,
and in this case Node 1 and Node 2 have label node-type=extremelyslow,
which is prohibited by the hard Node anti-affinity rule.

Tip
To achieve even higher granularity and control of Pod scheduling, you can
use Pod topology spread constraints. More details are available in the official
documentation: https://kubernetes.io/docs/concepts/
workloads/pods/pod-topology-spread-constraints/.

https://kubernetes.io/docs/concepts/workloads/pods/pod-topology-spread-constraints/
https://kubernetes.io/docs/concepts/workloads/pods/pod-topology-spread-constraints/

564 Advanced Techniques for Scheduling Pods

Congratulations, you have successfully configured Node affinity for our Deployment Pods!
We will now explore another way of scheduling Pods – taints and tolerations.

Using Node taints and tolerations
Using the Node and inter-Pod affinity mechanism for scheduling Pods is very powerful,
but sometimes you need a simpler way of specifying which Nodes should repel Pods.
Kubernetes offers a slightly older and simpler feature for this purpose – taints and
tolerations. You apply a taint to a given Node (which describes some kind of limitation)
and the Pod must have a specific toleration defined to be schedulable on the tainted Node.
If the Pod has a toleration, it does not mean that the taint is required on the Node. The
real-life definition of taint is "a trace of a bad or undesirable substance or quality," and this
reflects the idea pretty well – all Pods will avoid a Node if there is a taint set for them, but
we can instruct Pods to tolerate a specific taint.

Tip
If you look closely at how taints and tolerations are described, you can see
that you can achieve similar results with Node labels and Node hard and soft
affinity rules with the NotIn operator. There is one catch – you can define
taints with a NoExecute effect which will result in the termination of the
Pod if it cannot tolerate it. You cannot get similar results with affinity rules
unless you restart the Pod manually.

Taints for Nodes have the following structure: <key>=<value>:<effect>. The key
and value pair identifies the taint and can be used for more granular tolerations, for
example tolerating all taints with a given key and any value. This is similar to labels, but
please bear in mind that taints are separate properties, and defining a taint does not affect
Node labels. In our example demonstration, we will use our own taint with a machine-
check-exception key and a memory value. This is, of course, a theoretical example
where we want to indicate that there is a hardware issue with memory on the host, but you
could also have a taint with the same key and instead a cpu or disk value. In general,
your taints should semantically label the type of issue that the Node is experiencing. There
is nothing preventing you from using any keys and values for creating taints, but if they
make semantic sense, it is much easier to manage them and define tolerations.

Using Node taints and tolerations 565

The taint can have different effects:

• NoSchedule – kube-scheduler will not schedule Pods to this Node. Similar
behavior can be achieved using a hard Node affinity rule.

• PreferNoSchedule – kube-scheduler will try to not schedule Pods to this Node.
Similar behavior can be achieved using a soft Node affinity rule.

• NoExecute – kube-scheduler will not schedule Pods to this Node and evict
(terminate and reschedule) running Pods from this Node. You cannot achieve
similar behavior using Node affinity rules. Note that when you define a toleration
for a Pod for this type of taint, it is possible to control how long the Pod will tolerate
the taint before it gets evicted, using tolerationSeconds.

Kubernetes manages quite a few NoExecute taints automatically by monitoring the
Node hosts. The following taints are built-in and managed by NodeController or the
kubelet:

• node.kubernetes.io/not-ready: Added when NodeCondition Ready has a
false status.

• node.kubernetes.io/unreachable: Added when NodeCondition Ready
has an Unknown status. This happens when NodeController cannot reach the Node.

• node.kubernetes.io/out-of-disk: Node has no disk available.

• node.kubernetes.io/memory-pressure: Node is experiencing memory
pressure.

• node.kubernetes.io/disk-pressure: Node is experiencing disk pressure.

• node.kubernetes.io/network-unavailable: Network is currently down
on the Node.

• node.kubernetes.io/unschedulable: Node is currently in an
unschedulable state.

• node.cloudprovider.kubernetes.io/uninitialized: Intended
for Nodes that are prepared by an external cloud provider. When the Node gets
initialized by cloud-controller-manager, this taint is removed.

To add a taint on a Node, you use the kubectl taint node command in the
following way:

$ kubectl taint node <nodeName> <key>=<value>:<effect>

566 Advanced Techniques for Scheduling Pods

So, for example, if we want to use key machine-check-exception and a memory
value with a NoExecute effect for Node 1, we will use the following command:

$ kubectl taint node aks-nodepool1-77120516-vmss000001 machine-
check-exception=memory:NoExecute

To remove the same taint, you need to use the following command (bear in mind the -
character at the end of the taint definition):

$ kubectl taint node aks-nodepool1-77120516-vmss000001 machine-
check-exception=memory:NoExecute-

You can also remove all taints with a specified key:

kubectl taint node aks-nodepool1-77120516-vmss000001 machine-
check-exception:NoExecute-

To counteract the effect of the taint on a Node for specific Pods, you can define tolerations
in their specification. In other words, you can use tolerations to ignore taints and still
schedule the Pods to such Nodes. If a Node has multiple taints applied, the Pod must
tolerate all of its taints. Tolerations are defined under .spec.tolerations in the Pod
specification and have the following structure:

tolerations:

- key: <key>

 operator: <operatorType>

 value: <value>

 effect: <effect>

The operator can be either Equal or Exists. Equal means that both key and value
of taint must match exactly, whereas Exists means that just key must match and value
is not considered. In our example, if we want to ignore the taint, the toleration will need to
look like this:

tolerations:

- key: machine-check-exception

 operator: Equal

 value: memory

 effect: NoExecute

You can define multiple tolerations for a Pod.

Using Node taints and tolerations 567

In the case of NoExecute tolerations, it is possible to define an additional field called
tolerationSeconds, which specifies how long the Pod will tolerate the taint until it
gets evicted. So, this is a way of having partial toleration of taint with a timeout. Please
note that if you use NoExecute taints, you usually also need to add a NoSchedule
taint. In this way, you can prevent any eviction loops happening when the Pod has a
NoExecute toleration with tolerationSeconds set. This is because the taint has no
effect for a specified number of seconds, which also includes not preventing the Pod from
being scheduled for the tainted Node.

Important Note
When Pods are created in the cluster, Kubernetes automatically adds
two Exists tolerations for node.kubernetes.io/not-
ready and node.kubernetes.io/unreachable with
tolerationSeconds set to 300.

We will now put this knowledge into practice with a few demonstrations. Please follow the
next steps:

1. If you have the nginx-deployment-example Deployment with Node affinity
defined still running from the previous section, it will currently have all Pods
running on Node 0. The Node affinity rules are constructed in such a way that the
Pods cannot be scheduled on Node 1 and Node 2. Let's see what happens if you
taint Node 0 with machine-check-exception=memory:NoExecute:

$ kubectl taint node aks-nodepool1-77120516-vmss000000
machine-check-exception=memory:NoExecute

node/aks-nodepool1-77120516-vmss000000 tainted

2. Check the Pod status and Node assignment:

$ kubectl get pods --namespace default --output=custom-
columns="NAME:.metadata.name,STATUS:.status.phase,NODE:.
spec.nodeName"

NAME STATUS
NODE

nginx-deployment-example-6c4fdd447d-c42z2 Pending
<none>

nginx-deployment-example-6c4fdd447d-dstbl Pending
<none>

nginx-deployment-example-6c4fdd447d-ktfzh Pending
<none>

568 Advanced Techniques for Scheduling Pods

nginx-deployment-example-6c4fdd447d-ptcwc Pending
<none>

nginx-deployment-example-6c4fdd447d-wdmb9 Pending
<none>

All Deployment Pods are now in the Pending state because kube-scheduler is
unable to find a Node that can run them.

3. Edit the ./nginx-deployment.yaml Deployment manifest and
remove affinity. Instead, define taint toleration for machine-check-
exception=memory:NoExecute with a timeout of 60 seconds:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: nginx-deployment-example

spec:

...

 template:

...

 spec:

 tolerations:

 - key: machine-check-exception

 operator: Equal

 value: memory

 effect: NoExecute

 tolerationSeconds: 60

...

When this manifest is applied to the cluster, the old Node affinity rules which
prevented scheduling to Node 1 and Node 2 will be gone. The Pods will be able
to schedule on Node 1 and Node 2, but Node 0 has taint machine-check-
exception=memory:NoExecute. So, the Pods should not be scheduled to Node
0, as NoExecute implies NoSchedule, right? Let's check that.

4. Apply the manifest to the cluster using the kubectl apply -f ./nginx-
deployment.yaml command and inspect the Pod status and Node assignment
again. You may need to wait a while for the Deployment rollout to finish:

$ kubectl get pods -o wide

NAME ... AGE IP

Using Node taints and tolerations 569

NODE

nginx-deployment-example-6b774d7f6c-95ttq ... 14s
10.244.1.230 aks-nodepool1-77120516-vmss000000

nginx-deployment-example-6b774d7f6c-hthwj ... 16m
10.244.0.110 aks-nodepool1-77120516-vmss000001

nginx-deployment-example-6b774d7f6c-lskr7 ... 14s
10.244.1.231 aks-nodepool1-77120516-vmss000000

nginx-deployment-example-6b774d7f6c-q94kw ... 16m
10.244.2.19 aks-nodepool1-77120516-vmss000002

nginx-deployment-example-6b774d7f6c-wszfn ... 16m
10.244.0.109 aks-nodepool1-77120516-vmss000001

This result may be a bit surprising. As you can see, we got two Pods scheduled on
Node 1 and one Pod on Node 2, but at the same time Node 0 has received two Pods,
and they are in eviction loop every 60 seconds! The explanation for this is that
tolerationSeconds for the NoExecute taint implies that the whole taint is
ignored for 60 seconds. So kube-scheduler can schedule the Pod on Node 0, even
though it will get evicted later.

5. Let's fix this behavior by applying a recommendation to use a NoSchedule taint
whenever you use a NoExecute taint. In this way, the evicted Pods will have
no chance to be scheduled on the tainted Node again, unless of course they start
tolerating this type of taint too. Execute the following command to taint Node 0:

$ kubectl taint node aks-nodepool1-77120516-vmss000000
machine-check-exception=memory:NoSchedule

node/aks-nodepool1-77120516-vmss000000 tainted

6. Inspect the Pod status and Node assignment again:

$ kubectl get pods --namespace default --output=custom-
columns="NAME:.metadata.name,STATUS:.status.phase,NODE:.
spec.nodeName"

NAME STATUS
NODE

nginx-deployment-example-6b774d7f6c-hthwj Running
aks-nodepool1-77120516-vmss000001

nginx-deployment-example-6b774d7f6c-jfvqn Running
aks-nodepool1-77120516-vmss000001

nginx-deployment-example-6b774d7f6c-q94kw Running
aks-nodepool1-77120516-vmss000002

nginx-deployment-example-6b774d7f6c-wszfn Running

570 Advanced Techniques for Scheduling Pods

aks-nodepool1-77120516-vmss000001

nginx-deployment-example-6b774d7f6c-z8jx2 Running
aks-nodepool1-77120516-vmss000002

In the output you can see that the Pods are now distributed between Node 1 and
Node 2 – exactly as we wanted.

7. Now, remove both taints from the Node 0:

$ kubectl taint node aks-nodepool1-77120516-vmss000000
machine-check-exception-

node/aks-nodepool1-77120516-vmss000000 untainted

8. Restart the Deployment to reschedule the Pods using the following command:

$ kubectl rollout restart deploy nginx-deployment-example

deployment.apps/nginx-deployment-example restarted

9. Inspect the Pod status and Node assignment again:

$ kubectl get pods --namespace default --output=custom-
columns="NAME:.metadata.name,STATUS:.status.phase,NODE:.
spec.nodeName"

NAME STATUS
NODE

nginx-deployment-example-56f4d4d96d-nf82h Running
aks-nodepool1-77120516-vmss000002

nginx-deployment-example-56f4d4d96d-v8m9c Running
aks-nodepool1-77120516-vmss000000

nginx-deployment-example-56f4d4d96d-vzqn4 Running
aks-nodepool1-77120516-vmss000000

nginx-deployment-example-56f4d4d96d-wpv78 Running
aks-nodepool1-77120516-vmss000001

nginx-deployment-example-56f4d4d96d-x7x92 Running
aks-nodepool1-77120516-vmss000001

The Pods are again distributed evenly between all three Nodes.

Using Node taints and tolerations 571

10. And finally, let's see how the combination of NoExecute and NoSchedule taints
work, with tolerationSeconds for NoExecute set to 60. Apply two taints to
Node 0 again:

$ kubectl taint node aks-nodepool1-77120516-vmss000000
machine-check-exception=memory:NoSchedule

node/aks-nodepool1-77120516-vmss000000 tainted

$ kubectl taint node aks-nodepool1-77120516-vmss000000
machine-check-exception=memory:NoExecute

node/aks-nodepool1-77120516-vmss000000 tainted

11. Immediately after that, start watching Pods with their Node assignments. Initially,
you will see that the Pods are still running on Node 0 for some time. But after 60
seconds, you will see:

$ kubectl get pods --namespace default --output=custom-
columns="NAME:.metadata.name,STATUS:.status.phase,NODE:.
spec.nodeName"

NAME STATUS
NODE

nginx-deployment-example-56f4d4d96d-44zvt Running
aks-nodepool1-77120516-vmss000002

nginx-deployment-example-56f4d4d96d-9rg2p Running
aks-nodepool1-77120516-vmss000001

nginx-deployment-example-56f4d4d96d-nf82h Running
aks-nodepool1-77120516-vmss000002

nginx-deployment-example-56f4d4d96d-wpv78 Running
aks-nodepool1-77120516-vmss000001

nginx-deployment-example-56f4d4d96d-x7x92 Running
aks-nodepool1-77120516-vmss000001

As we expected, the Pods have been evicted after 60 seconds and there were no
eviction-schedule loops.

This has demonstrated a more advanced use case for taints which you cannot easily
substitute with Node affinity rules. In the next section, we will give a short overview of
kube-scheduler scheduling policies.

572 Advanced Techniques for Scheduling Pods

Scheduling policies
kube-scheduler decides for which Node a given Pod should be scheduled, in two phases:
filtering and scoring. To quickly recap, filtering is the first phase when kube-scheduler
finds a set of Nodes that can be used for the running of a Pod. For example, if a Pod
tolerates Node taints. In the second phase, scoring, the filtered Nodes are ranked using a
scoring system to find the most suitable Node for the Pod.

The way the default kube-scheduler executes these two phases is defined by the
scheduling policy. This policy is configurable and can be passed to the kube-scheduler
process using the additional arguments --policy-config-file <filename> or
--policy-configmap <configMap>.

Important note
In managed Kubernetes clusters, such as the managed Azure Kubernetes
Service, you will not be able to change scheduling policy of kube-scheduler, as
you do not have access to Kubernetes master Node.

There are two configuration fields that are most important in scheduling policy:

• Predicates: Implement the rules for filtering

• Priorities: Implement the scoring system

The full list of currently supported predicates and priorities is available in the official
documentation: https://kubernetes.io/docs/reference/scheduling/
policies/. We will give an overview of a few of the most interesting ones that show
how flexible the default kube-scheduler is. Some of the selected predicates are shown in
the following list:

• PodToleratesNodeTaints: As the name suggests, implements a basic check if
a Pod has defined a toleration for current Node taints

• PodFitsResources: Implements a check if the Node has enough free resources
to meet the requirements specified by a Pod

• CheckNodePIDPressure: Implements a check if the Node has enough available
process IDs to safely continue running Pods

• CheckVolumeBinding: Implements a check if the Node is compatible with PVCs
that the Pod requires

https://kubernetes.io/docs/reference/scheduling/policies/
https://kubernetes.io/docs/reference/scheduling/policies/

Summary 573

Some of the interesting available priorities are as follows:

• SelectorSpreadPriority: Ensures that Pods that belong to the same
ReplicationController, StatefulSet, and ReplicaSet objects (this includes
Deployments) are evenly spread across the Nodes. This ensures better fault
tolerance in case of Node failures.

• NodeAffinityPriority and InterPodAffinityPriority: Implements
the soft Node affinity and inter-Pod affinity/anti-affinity.

• ImageLocalityPriority: Prioritizes the Nodes that already have the container
images required by a Pod in the local cache to reduce start up time and decrease
unnecessary network traffic.

• ServiceSpreadingPriority: Attempts to spread the Pods by minimizing the
number of Pods belonging to the same Service object running on the same Node.
This ensures better fault tolerance in case of Node failures.

The preceding examples are just a subset of the available predicates and priorities, but this
already gives an overview of how many complex use cases and scenarios are supported out
of the box in kube-scheduler.

Summary
This chapter has given an overview of advanced techniques for Pod scheduling in
Kubernetes. First, we recapped the theory behind kube-scheduler implementation. We
have explained the process of scheduling Pods. Next, we introduced the concept of Node
affinity in Pod scheduling. You learned the basic scheduling methods which use Node
names and Node selectors, and based on that we have explained how more advanced
Node affinity works. We also explained how you can use the affinity concept to achieve
anti-affinity, and what inter-Pod affinity/anti-affinity is. After that, we discussed taints
for Nodes and tolerations specified by Pods. You learned about some different effects of
the taints, and have put the knowledge into practice in an advanced use case involving
NoExecute and NoSchedule taints on a Node. Lastly, we discussed the theory behind
scheduler policies that can be used to configure the default kube-scheduler.

In the next chapter, we are going to discuss autoscaling of Pods and Nodes in
Kubernetes – this will be a topic that will show how flexibly Kubernetes can run
workloads in cloud environments.

574 Advanced Techniques for Scheduling Pods

Further reading
For more information regarding Pod scheduling in Kubernetes, please refer to the
following PacktPub books:

• The Complete Kubernetes Guide, by Jonathan Baier, Gigi Sayfan, Jesse White
(https://www.packtpub.com/virtualization-and-cloud/
complete-kubernetes-guide)

• Getting Started with Kubernetes – Third Edition, by Jonathan Baier, Jesse White
(https://www.packtpub.com/virtualization-and-cloud/getting-
started-kubernetes-third-edition)

• Kubernetes for Developers, by Joseph Heck (https://www.packtpub.com/
virtualization-and-cloud/kubernetes-developers)

You can also refer to official documents:

• Kubernetes documentation (https://kubernetes.io/docs/home/), which
is always the most up-to-date source of knowledge about Kubernetes in general.

• Node affinity is covered at https://kubernetes.io/docs/concepts/
scheduling-eviction/assign-pod-node/.

• Taint and tolerations are covered at https://kubernetes.io/docs/
concepts/scheduling-eviction/taint-and-toleration/.

• Pod priorities and preemption (which we have not covered in this chapter)
are described at https://kubernetes.io/docs/concepts/
configuration/pod-priority-preemption/.

• Advanced kube-scheduler configuration using scheduling profiles (which we have
not covered in this chapter) is described at https://kubernetes.io/docs/
reference/scheduling/config.

https://www.packtpub.com/virtualization-and-cloud/complete-kubernetes-guide
https://www.packtpub.com/virtualization-and-cloud/complete-kubernetes-guide
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/kubernetes-developers
https://www.packtpub.com/virtualization-and-cloud/kubernetes-developers
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/concepts/configuration/pod-priority-preemption/
https://kubernetes.io/docs/concepts/configuration/pod-priority-preemption/
https://kubernetes.io/docs/reference/scheduling/config
https://kubernetes.io/docs/reference/scheduling/config

20
Autoscaling

Kubernetes Pods
and Nodes

Needless to say, having autoscaling capabilities for your cloud-native application is
considered the holy grail of running applications in cloud. In short, by autoscaling, we
mean a method to automatically and dynamically adjust the amount of computational
resources, such as CPU and RAM memory, available to your application. The goal of it is
to cleverly add or remove available resources based on the activity and demand of end
users. So, for example, the application may require more CPU and RAM memory during
daytime hours, when users are most active, but much less during the night. Similarly, if
you are running an e-commerce business, you can expect a huge spike in demand during
so-called Black Friday. In this way, you can not only provide a better, highly available
service to users but also reduce your cost of goods sold (COGS) for the business. The
fewer resources you consume in the cloud, the less you pay, and the business can invest
the money elsewhere – this is a win-win situation. There is, of course, no single rule that
fits all use cases, hence good autoscaling needs to be based on critical usage metrics and
should have predictive features to anticipate the workloads based on history.

576 Autoscaling Kubernetes Pods and Nodes

Kubernetes, as the most mature container orchestration system available, comes with
a variety of built-in autoscaling features. Some of these features are natively supported
in every Kubernetes cluster and some require installation or specific type of cluster
deployment. There are also multiple dimensions of scaling that you can have:

• Vertical for Pods: This involves adjusting the amount of CPU and memory
resources available to a Pod. Pods can run under limits specified for CPU and
memory, to prevent excessive consumption, but these limits may require automatic
adjustment rather than a human operator guessing. This is implemented by a
VerticalPodAutoscaler (VPA).

• Horizontal for Pods: This involves dynamically changing the number of Pod
replicas for your Deployment or StatefulSet. These objects come with nice scaling
features out of the box, but adjusting the number of replicas can be automated using
a HorizontalPodAutoscaler (HPA).

• Horizontal for Nodes: Another dimension of horizontal scaling (scaling out), but
this time at the level of a Kubernetes Node. You can scale your whole cluster by
adding or removing the Nodes. This requires, of course, a Kubernetes Deployment
that runs in an environment that supports the dynamic provisioning of machines,
such as a cloud environment. This is implemented by a Cluster Autoscaler (CA),
available for some cloud vendors.

In this chapter, we will cover the following topics:

• Pod resource requests and limits

• Autoscaling Pods vertically using a Vertical Pod Autoscaler

• Autoscaling Pods horizontally using a Horizontal Pod Autoscaler

• Autoscaling Kubernetes Nodes using a Cluster Autoscaler

Technical requirements
For this chapter, you will need the following:

• A Kubernetes cluster deployed. We recommend using a multi-node, cloud-based
Kubernetes cluster.

• Having a multi-node Google Kubernetes Engine (GKE) cluster is a recommended
prerequisite to follow the second section relating to the Vertical Pod Autoscaler
(VPA). AKS and EKS currently require the manual installation of a VPA, which we
are going to demonstrate, but GKE has support for it out of the box.

Pod resource requests and limits 577

• Having a multi-node AKS, EKS, or GKE cluster is a prerequisite for following the
final section regarding a CA.

• A Kubernetes CLI (kubectl) installed on your local machine and configured to
manage your Kubernetes cluster.

Basic Kubernetes cluster deployment (local and cloud-based) and kubectl installation
have been covered in Chapter 3, Installing Your First Kubernetes Cluster.

The following chapters can provide you with an overview of how to deploy a fully
functional Kubernetes cluster on different cloud platforms and install the requisite CLIs to
manage them:

• Chapter 14, Kubernetes Clusters on Google Kubernetes Engine

• Chapter 15, Launching a Kubernetes Cluster on Amazon Web Services with the
Amazon Elastic Kubernetes Service

• Chapter 16, Kubernetes Clusters on Microsoft Azure with the Azure
Kubernetes Service

You can download the latest code samples for this chapter from the official GitHub
repository at https://github.com/PacktPublishing/The-Kubernetes-
Bible/tree/master/Chapter20.

Pod resource requests and limits
Before we dive into the topics of autoscaling in Kubernetes, we need to explain a bit
more about how you can control the CPU and memory resource (known as compute
resources) usage by Pod containers in Kubernetes. Controlling the use of compute
resources is important since, in this way, you can enforce resource governance – this
allows better planning of the cluster capacity and, most importantly, prevents situations
when a single container can consume all compute resources and prevent other Pods from
serving the requests.

https://github.com/PacktPublishing/The-Kubernetes-Bible/tree/master/Chapter20
https://github.com/PacktPublishing/The-Kubernetes-Bible/tree/master/Chapter20

578 Autoscaling Kubernetes Pods and Nodes

When you create a Pod, it is possible to specify how much compute resources its
containers require and what the limits are in terms of permitted consumption. The
Kubernetes resource model provides an additional distinction between two classes of
resources: compressible and incompressible. In short, a compressible resource can be
easily throttled, without severe consequences. A perfect example of such a resource is the
CPU – if you need to throttle CPU usage for a given container, the container will operate
normally, just slower. On the other hand, we have incompressible resources that cannot be
throttled without sever consequences – RAM memory allocation is an example of such a
resource. If you do not allow a process running in a container to allocate more memory,
the process will crash and result in container restart.

Important Note
If you want to know more about the philosophy and design decisions for the
Kubernetes resource governance model, we recommend reading the official
design proposal documents. Resource model: https://github.com/
kubernetes/community/blob/master/contributors/
design-proposals/scheduling/resources.md. Resource
quality of service: https://github.com/kubernetes/
community/blob/master/contributors/design-
proposals/node/resource-qos.md.

To control the resources for a Pod container, you can specify two values in its
specification:

• requests: This specifies the guaranteed amount of a given resource provided by
the system. You can also think the other way round – this is the amount of a given
resource that the Pod container requires from the system in order to function
properly. This is important as Pod scheduling is dependent on the requests
value (not limits), namely, the PodFitsResources predicate and the
BalancedResourceAllocation priority.

• limits: This specifies the maximum amount of a given resource provided by
the system. If specified together with requests, this value must be greater than
or equal to requests. Depending on whether the resource is compressible or
incompressible, exceeding the limit has different consequences – compressible
resources (CPU) will be throttled, whereas incompressible resources (RAM) may
result in container kill and restart.

https://github.com/kubernetes/community/blob/master/contributors/design-proposals/scheduling/resources.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/scheduling/resources.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/scheduling/resources.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/node/resource-qos.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/node/resource-qos.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/node/resource-qos.md

Pod resource requests and limits 579

If you use different values for requests and limits, you can allow for resource
overcommit. This technique is useful for efficiently handling short bursts of resource
usage while allowing better resource usage on average. The reasoning behind this is that
you will rarely have all containers on the Node requiring maximum resources, as they
specify in limits, at the same time. This gives you better bin packing of your Pods for
the majority of the time. The concept is similar to overprovisioning for virtual machine
hypervisors or, in the real world, overbooking for airplane flights.

If you do not specify limits at all, the container can consume as much of the resource
on a Node as it wants. This can be controlled by namespace resource quotas and limit
ranges – you can read more about these objects in the official documentation: https://
kubernetes.io/docs/concepts/policy/limit-range/.

Tip
In more advanced scenarios, you can also control huge pages and ephemeral
storage requests and limits.

Before we dive into the configuration details, we need to look at what are the units for
measuring CPU and memory in Kubernetes. For CPU, the base unit is Kubernetes CPU
(KCU), where 1 is equivalent to, for example, 1 vCPU on Azure, 1 core on GCP, or 1
hyperthreaded core on a bare-metal machine. Fractional values are allowed: 0.1 can be
also specified as 100m (milliKCUs). For memory, the base unit is byte; you can, of course,
specify standard unit prefixes, such as M, Mi, G, or Gi.

To enable compute resource requests and limits for Pod containers in our nginx
Deployment that we used in the previous chapters, you can make the following changes to
the YAML manifest, nginx-deployment.yaml:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: nginx-deployment-example

spec:

 replicas: 5

 selector:

 matchLabels:

 app: nginx

 environment: test

 template:

 metadata:

https://kubernetes.io/docs/concepts/policy/limit-range/
https://kubernetes.io/docs/concepts/policy/limit-range/

580 Autoscaling Kubernetes Pods and Nodes

 labels:

 app: nginx

 environment: test

 spec:

 containers:

 - name: nginx

 image: nginx:1.17

 ports:

 - containerPort: 80

 resources:

 limits:

 cpu: 200m

 memory: 60Mi

 requests:

 cpu: 100m

 memory: 50Mi

For each container that you have in the Pod, you can specify the .spec.template.
spec.containers[*].resources field. In this case, we have set limits at 200m
KCU and 60Mi for RAM, and requests at 100m KCU and 50Mi for RAM.

When you apply the manifest to the cluster using kubectl apply -f ./nginx-
deployment.yaml, you can describe one of the Nodes in the cluster that run Pods for
this Deployment and you will see detailed information about compute resources quotas
and allocation:

$ kubectl describe node aks-nodepool1-77120516-vmss000000

...

Non-terminated Pods: (5 in total)

 Namespace Name
CPU Requests CPU Limits Memory Requests Memory Limits AGE

 --------- ----
------------ ---------- --------------- ------------- ---

 default nginx-deployment-example-
5d8b9979d4-9sd9x 100m (5%) 200m (10%) 50Mi (1%)
60Mi (1%) 8m12s

 default nginx-deployment-example-
5d8b9979d4-rbwv2 100m (5%) 200m (10%) 50Mi (1%)
60Mi (1%) 8m10s

Pod resource requests and limits 581

 default nginx-deployment-example-
5d8b9979d4-sfzx9 100m (5%) 200m (10%) 50Mi (1%)
60Mi (1%) 8m10s

 kube-system kube-proxy-q6xdq
100m (5%) 0 (0%) 0 (0%) 0 (0%) 10d

 kube-system omsagent-czm6q
75m (3%) 500m (26%) 225Mi (4%) 600Mi (13%) 17d

Allocated resources:

 (Total limits may be over 100 percent, i.e., overcommitted.)

 Resource Requests Limits

 -------- -------- ------

 cpu 475m (25%) 1100m (57%)

 memory 375Mi (8%) 780Mi (17%)

 ephemeral-storage 0 (0%) 0 (0%)

 hugepages-1Gi 0 (0%) 0 (0%)

 hugepages-2Mi 0 (0%) 0 (0%)

 attachable-volumes-azure-disk 0 0

Now, based on this information, you could experiment, and set requests for CPU for
the container to a value higher than the capacity of a single Node in the cluster, in our
case, 2000m KCU. When you do that and apply the changes to the Deployment, you will
notice that new Pods hang in the Pending state because they cannot be scheduled on a
matching Node. In such cases, inspecting the Pod will reveal the following:

$ kubectl describe pod nginx-deployment-example-56868549b-5n6lj

...

Events:

 Type Reason Age From Message

 ---- ------ ---- ---- -------

 Warning FailedScheduling 25s default-scheduler 0/3 nodes
are available: 3 Insufficient cpu.

There were no Nodes that could accommodate a Pod that has a container requiring
2000m KCU, and therefore the Pod cannot be scheduled at this moment.

With knowledge of how to manage compute resources, we will move on to autoscaling
topics: first, we are going to explain the vertical autoscaling of Pods.

582 Autoscaling Kubernetes Pods and Nodes

Autoscaling Pods vertically using a Vertical
Pod Autoscaler
In the previous section, we have been managing requests and limits for the compute
resources manually. Setting these values correctly requires some accurate human guessing,
observing metrics, and performing benchmarks to adjust. Using overly high requests
values will result in a waste of compute resources, whereas setting it too low may result
in Pods being packed too densely and having performance issues. Also, in some cases,
the only way to scale the Pod workload is to do it vertically by increasing the amount of
compute resources it can consume. For bare-metal machines, this would mean upgrading
the CPU hardware and adding more physical RAM memory. For containers, it is as simple
as allowing them more of the compute resource quotas. This works, of course, only up to
the capacity of a single Node. You cannot scale vertically beyond that unless you add more
powerful Nodes to the cluster.

To help resolve these issues, Kubernetes offers a Vertical Pod Autoscaler (VPA), which
can increase and decrease CPU and memory resource requests for Pod containers
dynamically. The goal is to better match the actual usage rather than rely on hardcoded,
predefined values. Controlling limits within specified ratios is also supported.

The VPA is created by a Custom Resource Definition (CRD) object named
VerticalPodAutoscaler. This means that this object is not part of standard
Kubernetes API groups and needs to be installed in the cluster. The VPA is developed as
part of an autoscaler project (https://github.com/kubernetes/autoscaler)
in the Kubernetes ecosystem.

There are three main components of a VPA:

• Recommender: Monitors the current and past resource consumption and provides
recommended CPU and memory request values for a Pod container.

• Updater: Checks for Pods with incorrect resources and deletes them, so that the
Pods can be recreated with the updated requests and limits values

• Admission plugin: Sets the correct resource requests and limits on new Pods
created or recreated by their controller, for example, a Deployment object, due to
changes made by the updater

https://github.com/kubernetes/autoscaler

Autoscaling Pods vertically using a Vertical Pod Autoscaler 583

The reason why the updater needs to terminate Pods and the VPA has to rely on the
admission plugin is that Kubernetes does not support dynamic changes to the resource
requests and limits. The only way is to terminate the Pod and create a new one
with new values. In-place modifications of values are tracked in KEP1287 (https://
github.com/kubernetes/enhancements/pull/1883) and, when implemented,
will make the design of the VPA much simpler, thereby ensuring improved high
availability.

Important note
A VPA can run in recommendation-only mode where you see the suggested
values in the VPA object, but the changes are not applied to the Pods. A VPA
is currently considered experimental and using it in a mode that recreates the
Pods may lead to downtimes of your application. This should change when in-
place updates of Pod requests and limits are implemented.

Some Kubernetes offerings come with one-click support for installing a VPA. Two good
examples are OpenShift and GKE. We will now quickly explain how you can do that if you
are running a GKE cluster.

Enabling a VPA in GKE
Assuming that your GKE cluster is named k8sforbeginners, as in Chapter 14,
Kubernetes Clusters on Google Kubernetes Engine, enabling a VPA is as simple as running
the following command:

$ gcloud container clusters update k8sforbeginners --enable-
vertical-pod-autoscaling

Note that this operation causes a restart to the Kubernetes control plane.

If you want to enable a VPA for a new cluster, you can use the additional argument
--enable-vertical-pod-autoscaling, for example:

$ gcloud container clusters create k8sforbeginners
--num-nodes=2 --zone=us-central1-a --enable-vertical-pod-
autoscaling

The GKE cluster will have a VPA CRD available, and you can use it to control the vertical
autoscaling of Pods.

https://github.com/kubernetes/enhancements/pull/1883
https://github.com/kubernetes/enhancements/pull/1883

584 Autoscaling Kubernetes Pods and Nodes

Enabling a VPA for other Kubernetes clusters
In the case of different platforms such as AKS or EKS (or even local deployments for
testing), you need to install a VPA manually by adding a VPA CRD to the cluster. The
exact, most recent steps are documented in the corresponding GitHub repository:
https://github.com/kubernetes/autoscaler/tree/master/vertical-
pod-autoscaler#installation.

To install a VPA in your cluster, please perform the following steps:

1. Clone the Kubernetes autoscaler repository (https://github.com/
kubernetes/autoscaler):

$ git clone https://github.com/kubernetes/autoscaler

2. Navigate to the VPA component directory:

$ cd autoscaler/vertical-pod-autoscaler

3. Begin installation using the following command. This assumes that your current
kubectl context is pointing to the desired cluster:

$./hack/vpa-up.sh

4. This will create a bunch of Kubernetes objects. You can verify that the main
component Pods are started correctly using the following command:

$ kubectl get pods -n kube-system

NAME READY
STATUS RESTARTS AGE

vpa-admission-controller-688857d5c4-4l9c2 1/1
Running 0 10s

vpa-recommender-74849cc845-qbfpg 1/1
Running 0 11s

vpa-updater-6dbd6569d6-9np22 1/1
Running 0 12s

The VPA components are running, and we can now proceed to testing a VPA on
real Pods.

https://github.com/kubernetes/autoscaler/tree/master/vertical-pod-autoscaler#installation
https://github.com/kubernetes/autoscaler/tree/master/vertical-pod-autoscaler#installation
https://github.com/kubernetes/autoscaler
https://github.com/kubernetes/autoscaler

Autoscaling Pods vertically using a Vertical Pod Autoscaler 585

Using a VPA
For demonstration purposes, we need a Deployment with Pods that cause actual
consumption of CPU. The Kubernetes autoscaler repository has a good, simple
example that has predictable CPU usage: https://github.com/kubernetes/
autoscaler/blob/master/vertical-pod-autoscaler/examples/
hamster.yaml. We are going to modify this example a bit and do a step-by-step
demonstration. Let's prepare the Deployment first:

1. Create the hamster-deployment.yaml YAML manifest file:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: hamster

spec:

 selector:

 matchLabels:

 app: hamster

 replicas: 5

 template:

 metadata:

 labels:

 app: hamster

 spec:

 containers:

 - name: hamster

 image: ubuntu:20.04

 resources:

 requests:

 cpu: 100m

 memory: 50Mi

 command:

 - /bin/sh

 - -c

 - while true; do timeout 0.5s yes >/dev/null;
sleep 0.5s; done

https://github.com/kubernetes/autoscaler/blob/master/vertical-pod-autoscaler/examples/hamster.yaml
https://github.com/kubernetes/autoscaler/blob/master/vertical-pod-autoscaler/examples/hamster.yaml
https://github.com/kubernetes/autoscaler/blob/master/vertical-pod-autoscaler/examples/hamster.yaml

586 Autoscaling Kubernetes Pods and Nodes

It's a real hamster! The command that is used in the Pod's ubuntu container
consumes the maximum available CPU of 0.5 seconds and does nothing for 0.5
seconds, all the time. This means that the actual CPU usage will stay, on average, at
around 500m KCU. However, the requests for resources specify that it requires
100m KCU. This means that the Pod will consume more than it declares, but since
there are no limits set, Kubernetes will not throttle the container CPU. This could
potentially lead to incorrect scheduling decisions by Kubernetes Scheduler.

2. Apply the manifest to the cluster using the following command:

$ kubectl apply -f ./hamster-deployment.yaml

deployment.apps/hamster created

3. Let's verify what the CPU usage of the Pod is. The simplest way is to use the
kubectl top command:

$ kubectl top pod

NAME CPU(cores) MEMORY(bytes)

hamster-779cfd69b4-5bnbf 475m 1Mi

hamster-779cfd69b4-8dt5h 497m 1Mi

hamster-779cfd69b4-mn5p5 492m 1Mi

hamster-779cfd69b4-n7nss 496m 1Mi

hamster-779cfd69b4-rl29j 484m 1Mi

As we expected, the CPU consumption for each Pod in the deployment oscillates at
around 500m KCU.

With that, we can move on to creating a VPA for our Pods. VPAs can operate in four
modes that you specify by means of the .spec.updatePolicy.updateMode field:

• Recreate: Pod container limits and requests are assigned on Pod creation
and dynamically updated based on calculated recommendations. To update the
values, the Pod must be restarted. Please note that this may be disruptive to your
application.

• Auto: Currently equivalent to Recreate, but when in-place updates for Pod
container requests and limits are implemented, this can automatically switch
to the new update mechanism.

• Initial: Pod container limits and requests are assigned on Pod creation
only.

• Off: A VPA runs in recommendation-only mode. The recommended values can be
inspected in the VPA object, for example, by using kubectl.

Autoscaling Pods vertically using a Vertical Pod Autoscaler 587

We are going to first create a VPA for hamster Deployment, which runs in Off mode,
and later we will enable Auto mode. To do this, please perform the following steps:

1. Create a VPA YAML manifest named hamster-vpa.yaml:

apiVersion: autoscaling.k8s.io/v1

kind: VerticalPodAutoscaler

metadata:

 name: hamster-vpa

spec:

 targetRef:

 apiVersion: apps/v1

 kind: Deployment

 name: hamster

 updatePolicy:

 updateMode: "Off"

 resourcePolicy:

 containerPolicies:

 - containerName: '*'

 minAllowed:

 cpu: 100m

 memory: 50Mi

 maxAllowed:

 cpu: 1

 memory: 500Mi

 controlledResources:

 - cpu

 - memory

This VPA is created for a Deployment object with the name hamster, as specified
in .spec.targetRef. The mode is set to "Off" in .spec.updatePolicy.
updateMode ("Off" needs to be specified in quotes to avoid being interpreted
as a Boolean) and the container resource policy is configured in .spec.
resourcePolicy.containerPolicies. The policy that we used allows Pod
container requests for CPU to be adjusted automatically between 100m KCU
and 1000m KCU, and for memory between 50Mi and 500Mi.

588 Autoscaling Kubernetes Pods and Nodes

2. Apply the manifest file to the cluster:

$ kubectl apply -f ./hamster-vpa.yaml

verticalpodautoscaler.autoscaling.k8s.io/hamster-vpa
created

3. You need to wait a while for the recommendation to be calculated for the first time.
Then, you can check what the recommendation is by describing the VPA:

$ kubectl describe vpa hamster-vpa

...

Status:

 Conditions:

 Last Transition Time: 2021-03-28T14:33:33Z

 Status: True

 Type: RecommendationProvided

 Recommendation:

 Container Recommendations:

 Container Name: hamster

 Lower Bound:

 Cpu: 551m

 Memory: 262144k

 Target:

 Cpu: 587m

 Memory: 262144k

 Uncapped Target:

 Cpu: 587m

 Memory: 262144k

 Upper Bound:

 Cpu: 1

 Memory: 378142066

The VPA has recommended allocating a bit more than the expected 500m KCU
and 262144k memory. This makes sense, as the Pod should have a safe buffer for
CPU consumption.

Autoscaling Pods vertically using a Vertical Pod Autoscaler 589

4. Now we can check the VPA in practice and change its mode to Auto. Modify
hamster-vpa.yaml:

apiVersion: autoscaling.k8s.io/v1

kind: VerticalPodAutoscaler

metadata:

 name: hamster-vpa

spec:

...

 updatePolicy:

 updateMode: Auto

...

5. Apply the manifest to the cluster:

$ kubectl apply -f ./hamster-vpa.yaml

verticalpodautoscaler.autoscaling.k8s.io/hamster-vpa
configured

6. After a while, you will notice that the Pods for the Deployment are being restarted
by the VPA:

$ kubectl get pod

NAME READY STATUS RESTARTS
AGE

hamster-779cfd69b4-5bnbf 1/1 Running 0
45m

hamster-779cfd69b4-8dt5h 1/1 Terminating 0
45m

hamster-779cfd69b4-9tqfx 1/1 Running 0
60s

hamster-779cfd69b4-n7nss 1/1 Running 0
45m

hamster-779cfd69b4-wdz8t 1/1 Running 0
60s

7. We can inspect one of the restarted Pods to see the current requests
for resources:

$ kubectl describe pod hamster-779cfd69b4-9tqfx

...

590 Autoscaling Kubernetes Pods and Nodes

Annotations: vpaObservedContainers: hamster

 vpaUpdates: Pod resources updated by
hamster-vpa: container 0: cpu request, memory request

...

Containers:

 hamster:

...

 Requests:

 cpu: 587m

 memory: 262144k

...

As you can see, the newly started Pod has CPU and memory requests set to the
values recommended by the VPA!

Important note
A VPA should not be used with an HPA running on CPU/memory metrics
at this moment. However, you can use a VPA in conjunction with an HPA
running on custom metrics.

Next, we are going to discuss how you can horizontally autoscale Pods using a Horizontal
Pod Autoscaler (HPA).

Autoscaling Pods horizontally using a
Horizontal Pod Autoscaler
While a VPA acts like an optimizer of resource usage, the true scaling of your
Deployments and StatefulSets that run multiple Pod replicas can be done using a
Horizontal Pod Autoscaler (HPA). At a high level, the goal of the HPA is to automatically
scale the number of replicas in Deployment or StatefulSets depending on the current CPU
utilization or other custom metrics (including multiple metrics at once). The details of
the algorithm that determines the target number of replicas based on metric values can
be found here: https://kubernetes.io/docs/tasks/run-application/
horizontal-Pod-autoscale/#algorithm-details. HPAs are highly
configurable and, in this chapter, we will cover a standard scenario in which we would like
to autoscale based on target CPU usage.

https://kubernetes.io/docs/tasks/run-application/horizontal-Pod-autoscale/#algorithm-details
https://kubernetes.io/docs/tasks/run-application/horizontal-Pod-autoscale/#algorithm-details

Autoscaling Pods horizontally using a Horizontal Pod Autoscaler 591

Important note
An HPA is represented by a built-in HorizontalPodAutoscaler
API resource in Kubernetes in the autoscaling API group. The current
stable version that supports CPU autoscaling only can be found in the
autoscaling/v1 API version. The beta version that supports autoscaling
based on RAM and custom metrics can be found in the autoscaling/
v2beta2 API version.

The role of the HPA is to monitor the configured metric for Pods, for example, CPU
usage, and determine whether there is a change to the number of replicas needed.
Usually, the HPA will calculate the average of the current metric value from all Pods and
determine whether adding or removing replicas will bring the metric value closer to the
specified target value. For example, you set the target CPU usage to be 50%. At some
point, increased demand for the application causes the Deployment Pods to have 80%
CPU usage. The HPA will decide to add more Pod replicas so that the average usage across
all replicas will fall and be closer to 50%. And the cycle repeats. In other words, the HPA
tries to maintain the average CPU usage to be as close to 50% as possible. This is like a
continuous, closed-loop controller – in real life, a thermostat reacting to temperature
changes in the building is a good, similar example. HPA additionally uses mechanisms
such as a stabilization window to prevent the replicas from scaling down too quickly and
causing unwanted replica flapping.

Tip
GKE has added support for multidimensional Pod autoscaling that
combines horizontal scaling using CPU metrics and vertical scaling based
on memory usage at the same time. You can read more about this feature
in the official documentation: https://cloud.google.com/
kubernetes-engine/docs/how-to/multidimensional-
pod-autoscaling.

As an HPA is a built-in feature of Kubernetes, there is no need to perform any
installation. We just need to prepare a Deployment for testing and create a
HorizontalPodAutoscaler API object.

https://cloud.google.com/kubernetes-engine/docs/how-to/multidimensional-pod-autoscaling
https://cloud.google.com/kubernetes-engine/docs/how-to/multidimensional-pod-autoscaling
https://cloud.google.com/kubernetes-engine/docs/how-to/multidimensional-pod-autoscaling

592 Autoscaling Kubernetes Pods and Nodes

Using an HPA
To test an HPA, we are going to rely on the standard CPU usage metric. This means that
we need to configure requests for CPU on the Deployment Pods, otherwise autoscaling
is not possible as there is no absolute number that is needed to calculate the percentage
metric. On top of that, we again need a Deployment that can consume a predictable
amount of CPU resources. Of course, in real use cases, the varying CPU usage would be
coming from actual demand for your application from end users.

Unfortunately, there is no simple way to have predictable and varying CPU usage in
a container out of the box, so we have to prepare a Deployment with a Pod template
that will do that. We will modify our hamster Deployment approach and create an
elastic-hamster Deployment. The small shell script running continuously in
the container will behave slightly differently. We will assign the total desired work by
hamsters in all Pods together. Each Pod will query the Kubernetes API to check how many
replicas there are currently running for the Deployment. Then, we will divide the total
desired work by the number of replicas to get the amount of work that a single hamster
needs to do. So, for example, we will say that all hamsters together should do 1.0 of work,
which roughly maps to the total consumption of KCU in the cluster. Then, if you deploy
five replicas for the Deployment, each of the hamsters will do 1.0/5 = 0.2 work, so they
will work for 0.2 seconds and sleep for 0.8 seconds. Now, if we scale the Deployment
manually to 10 replicas, the amount of work per hamster will fall to 0.1 seconds, and they
will sleep for 0.9 seconds. As you can see, they collectively always work for 1.0 second,
no matter how many replicas we use. This kind of reflects a real-life scenario where end
users cause some amount of traffic to handle, and you distribute it among the Pod replicas.
The more Pod replicas you have, the less traffic they have to handle and, in the end, the
CPU usage metric will be lower on average.

Querying Deployments via the Kubernetes API will require some additional RBAC setup.
You can find more details in Chapter 18, Authentication and Authorization on Kubernetes.
To create the deployment for the demonstration, please perform the following steps:

1. Create an elastic-hamster ServiceAccount manifest file named
elastic-hamster-serviceaccount.yaml:

apiVersion: v1

kind: ServiceAccount

metadata:

 name: elastic-hamster

 namespace: default

Autoscaling Pods horizontally using a Horizontal Pod Autoscaler 593

2. Create a deployment-reader Role manifest file named deployment-
reader-role.yaml. This role allows Deployments to obtain information from
the Kubernetes API:

apiVersion: rbac.authorization.k8s.io/v1

kind: Role

metadata:

 namespace: default

 name: deployment-reader

rules:

- apiGroups: ["apps"]

 resources: ["deployments"]

 verbs: ["get", "watch", "list"]

3. Create a read-deployments RoleBinding manifest file named read-
deployments-rolebinding.yaml. This RoleBinding associates the
ServiceAccount with the role:

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

 name: read-deployments

 namespace: default

subjects:

- kind: ServiceAccount

 name: elastic-hamster

 namespace: default

roleRef:

 kind: Role

 name: deployment-reader

 apiGroup: rbac.authorization.k8s.io

594 Autoscaling Kubernetes Pods and Nodes

4. Finally, create an elastic-hamster Deployment manifest file named elastic-
hamster-deployment.yaml, which will have Pods running on the elastic-
hamster ServiceAccount. Let's take a look at the first part, without the shell
command (the full file is also available in the book's GitHub repository: https://
github.com/PacktPublishing/Kubernetes-for-Beginners/blob/
master/Chapter20/03_hpa/elastic-hamster-deployment.yaml):

apiVersion: apps/v1

kind: Deployment

metadata:

 name: elastic-hamster

spec:

 selector:

 matchLabels:

 app: elastic-hamster

 replicas: 5

 template:

 metadata:

 labels:

 app: elastic-hamster

 spec:

 serviceAccountName: elastic-hamster

 containers:

 - name: hamster

 image: ubuntu:20.04

 resources:

 requests:

 cpu: 200m

 memory: 50Mi

 env:

 - name: TOTAL_HAMSTER_USAGE

 value: "1.0"

 command:

 - /bin/sh

 - -c

 - |

... shell command available in the next step ...

https://github.com/PacktPublishing/Kubernetes-for-Beginners/blob/master/Chapter20/03_hpa/elastic-hamster-deployment.yaml
https://github.com/PacktPublishing/Kubernetes-for-Beginners/blob/master/Chapter20/03_hpa/elastic-hamster-deployment.yaml
https://github.com/PacktPublishing/Kubernetes-for-Beginners/blob/master/Chapter20/03_hpa/elastic-hamster-deployment.yaml

Autoscaling Pods horizontally using a Horizontal Pod Autoscaler 595

While it is not a good practice to have long shell scripts in the YAML manifest
definitions, it is easier for demonstration purposes than creating a dedicated
container image, pushing it to the image repository, and consuming it. Let's take
a look at what is happening in the manifest file. Initially, we need to have five
replicas. Each Pod container has requests with cpu set to 200m KCU and
memory set to 50Mi. We also define an environment variable, TOTAL_HAMSTER_
USAGE, with an initial value of "1.0" for more readability. This variable defines the
total collective work that the hamsters are expected to do.

5. Now, let's take a look at the continuation of the file, at the part with the shell script
for the container (the indentation has been removed and, in the YAML file, you need
to correctly indent the script, as in the GitHub repository):

Install curl and jq

apt-get update && apt-get install -y curl jq || exit 1

SERVICEACCOUNT=/var/run/secrets/kubernetes.io/
serviceaccount

TOKEN=$(cat ${SERVICEACCOUNT}/token)

while true

 # Calculate CPU usage by hamster. This will dynamically
adjust to be 1.0 / num_replicas. So for initial 5
replicas, it will be 0.2

 HAMSTER_USAGE=$(curl -s --cacert $SERVICEACCOUNT/ca.crt
--header "Authorization: Bearer $TOKEN" -X GET https://
kubernetes/apis/apps/v1/namespaces/default/deployments/
elastic-hamster | jq ${TOTAL_HAMSTER_USAGE}/'.spec.
replicas')

 # Hamster sleeps for the rest of the time, with a small
adjustment factor

 HAMSTER_SLEEP=$(jq -n 1.2-$HAMSTER_USAGE)

 echo "Hamster uses $HAMSTER_USAGE and sleeps $HAMSTER_
SLEEP"

 do timeout ${HAMSTER_USAGE}s yes >/dev/null

 sleep ${HAMSTER_SLEEP}s

done

596 Autoscaling Kubernetes Pods and Nodes

The shell script, as the very first step, installs curl and jq packages from the APT
repository. We define SERVICEACCOUNT and TOKEN variables, which we need to
query the Kubernetes API. Then, we retrieve the elastic-hamster Deployment
from the API using https://kubernetes/apis/apps/v1/namespaces/
default/deployments/elastic-hamster. The result is parsed using the
jq command, we extract the .spec.replicas field, and use it to divide the total
work between all hamsters. Based on this number, we make the hamster work for a
calculated period of time and then sleep for the rest. As you can see, if the number
of replicas for the Deployment changes, either by means of a manual action or
autoscaling, the amount of work to be done by an individual hamster will change.
And therefore, the CPU usage will decrease the more Pod replicas we have.

6. We are now ready to apply all manifest files in the directory with the following
command:

$ kubectl apply -f ./

role.rbac.authorization.k8s.io/deployment-reader created

deployment.apps/elastic-hamster created

serviceaccount/elastic-hamster created

rolebinding.rbac.authorization.k8s.io/read-deployments
created

7. When the Pods are fully started, you will be able to see in the logs that the hamster
work and sleep cycle has begun:

$ kubectl logs elastic-hamster-5897858459-26bdd

...

Running hooks in /etc/ca-certificates/update.d...

done.

Hamster uses 0.2 and sleeps 1

Hamster uses 0.2 and sleeps 1

...

8. After a while, you will see in the output of the kubectl top command that the
CPU usage is about the expected 200m KCU. Of course, this method is not precise
because there is more CPU usage by the container than just the work and sleep cycle:

$ kubectl top pods

NAME CPU(cores)
MEMORY(bytes)

elastic-hamster-5897858459-26bdd 229m 40Mi

Autoscaling Pods horizontally using a Horizontal Pod Autoscaler 597

elastic-hamster-5897858459-f2856 210m 40Mi

elastic-hamster-5897858459-lmphl 236m 40Mi

elastic-hamster-5897858459-m6j58 225m 40Mi

elastic-hamster-5897858459-qfh76 227m 41Mi

9. We can test how it reacts to change in a number of replicas. Scale down the
Deployment imperatively to two replicas using the kubectl scale command:

$ kubectl scale deploy elastic-hamster --replicas=2

deployment.apps/elastic-hamster scaled

10. You can inspect the Pod logs again and, after a while, when metrics are processed,
you will see the CPU usage change in the kubectl top command output, which
is, as expected, around 500m KCU per Pod:

$ kubectl top pods

NAME CPU(cores)
MEMORY(bytes)

elastic-hamster-5897858459-m6j58 462m 40Mi

elastic-hamster-5897858459-qfh76 474m 40Mi

With the Deployment ready, we can start using the HPA to automatically adjust the
number of replicas, which will target 75% of average CPU utilization across individual
Pods. To do that, perform the following steps:

1. Create an elastic-hamster-hpa.yaml YAML manifest file for the HPA:

apiVersion: autoscaling/v1

kind: HorizontalPodAutoscaler

metadata:

 name: elastic-hamster-hpa

spec:

 minReplicas: 1

 maxReplicas: 10

 targetCPUUtilizationPercentage: 75

 scaleTargetRef:

 apiVersion: apps/v1

 kind: Deployment

 name: elastic-hamster

598 Autoscaling Kubernetes Pods and Nodes

The HPA targets elastic-hamster deployment, which we have provided using
.spec.scaleTargetRef. The configuration that we specified ensures that the
HPA will always keep the number of replicas between minReplicas: 1 and
maxReplicas: 10. The most important parameter in the HPA targeting the
CPU metric is targetCPUUtilizationPercentage, which we have set to
75%. This means that the HPA will try to target 75% of the container requests
value for cpu, which we set to be 200m KCU. As a result, the HPA will try to keep
the CPU consumption at around 150m KCU. Our current Deployment with two
replicas only is consuming much more, on average, 500m KCU.

2. Apply the manifest file to the cluster:

$ kubectl apply -f ./elastic-hamster-hpa.yaml

horizontalpodautoscaler.autoscaling/elastic-hamster-hpa
created

3. After a while, the HPA will start adjusting the number of replicas to match the
target CPU usage. Describe the HPA using the kubectl command to see the
details:

$ kubectl describe hpa elastic-hamster-hpa

...

Metrics: (
current / target)

 resource cpu on pods (as a percentage of request):
79% (159m) / 75%

...

Events:

 Type Reason Age From
Message

 ---- ------ ---- ----

 Normal SuccessfulRescale 15m horizontal-pod-
autoscaler New size: 4; reason: cpu resource utilization
(percentage of request) above target

 Normal SuccessfulRescale 14m horizontal-pod-
autoscaler New size: 6; reason: cpu resource utilization
(percentage of request) above target

 Normal SuccessfulRescale 13m horizontal-pod-
autoscaler New size: 8; reason: cpu resource utilization
(percentage of request) above target

Autoscaling Kubernetes Nodes using a Cluster Autoscaler 599

 Normal SuccessfulRescale 11m horizontal-pod-
autoscaler New size: 9; reason: cpu resource utilization
(percentage of request) above target

In the output, you can see that the Deployment was gradually scaled up over time
as it eventually stabilized at 9 replicas. Note that for you, the numbers may vary
slightly. If you hit the maximum number of allowed replicas (10), you may try
increasing the number or adjust the targetCPUUtilizationPercentage
parameter.

Tip
It is possible to use an imperative command to achieve a similar result:
kubectl autoscale deploy elastic-hamster --cpu-
percent=75 --min=1 --max=10.

Congratulations! You have successfully configured horizontal autoscaling for your
Deployment using an HPA. In the next section, we will take a look at autoscaling
Kubernetes Nodes using a CA which gives even more flexibility when combined with an
HPA.

Autoscaling Kubernetes Nodes using a
Cluster Autoscaler
So far, we have discussed scaling at the level of individual Pods, but this is not the only
way in which you can scale your workloads on Kubernetes. It is possible to scale the
cluster itself to accommodate changes in demand for compute resources – at some
point, we will need more Nodes to run more Pods. This is solved by the CA, which is
part of the Kubernetes autoscaler repository (https://github.com/kubernetes/
autoscaler/tree/master/cluster-autoscaler). The CA must be able to
provision and deprovision Nodes for the Kubernetes cluster, so this means that vendor-
specific plugins must be implemented. You can find the list of supported cloud service
providers here: https://github.com/kubernetes/autoscaler/tree/
master/cluster-autoscaler#deployment.

https://github.com/kubernetes/autoscaler/tree/master/cluster-autoscaler
https://github.com/kubernetes/autoscaler/tree/master/cluster-autoscaler
https://github.com/kubernetes/autoscaler/tree/master/cluster-autoscaler#deployment
https://github.com/kubernetes/autoscaler/tree/master/cluster-autoscaler#deployment

600 Autoscaling Kubernetes Pods and Nodes

The CA periodically checks the status of Pods and Nodes and decides whether it needs to
take action:

• If there are Pods that cannot be scheduled and are in the Pending state because of
insufficient resources in the cluster, CA will add more Nodes, up to the predefined
maximum size.

• If Nodes are under-utilized and all Pods could be scheduled even with a smaller
number of Nodes in the cluster, the CA will remove the Nodes from the cluster,
unless it has reached the predefined minimum size. Nodes are gracefully drained
before they are removed from the cluster.

• For some cloud service providers, the CA can also choose between different SKUs
for VMs to better optimize the cost of operating the cluster.

Important note
Pod containers must specify requests for the compute resources to make
the CA work properly. Additionally, these values should reflect real usage,
otherwise the CA will not be able to take correct decisions for your type of
workload.

As you can see, the CA can complement HPA capabilities. If the HPA decides that there
should be more Pods for a Deployment or StatefulSet, but no more Pods can be scheduled,
then the CA can intervene and increase the cluster size.

Enabling the CA entails different steps depending on your cloud service provider.
Additionally, some configuration values are specific for each of them. We will first take a
look at GKE.

Enabling the cluster autoscaler in GKE
For GKE, it is easiest to create a cluster with CA enabled from scratch. To do that, you
need to run the following command to create a cluster named k8sforbeginners:

$ gcloud container clusters create k8sforbeginners
--num-nodes=2 --zone=us-central1-a --enable-autoscaling
--min-nodes=2 --max-nodes=10

You can control the minimum number of Nodes in autoscaling by using the
--min-nodes parameter, and the maximum number of Nodes by using the
--max-nodes parameter.

Autoscaling Kubernetes Nodes using a Cluster Autoscaler 601

In the case of an existing cluster, you need to enable the CA on an existing Node pool. For
example, if you have a cluster named k8sforbeginners with one Node pool named
nodepool1, then you need to run the following command:

$ gcloud container clusters update k8sforbeginners --enable-
autoscaling --min-nodes=2 --max-nodes=10 --zone=us-central1-a
--node-pool=nodepool1

The update will take a few minutes.

You can learn more in the official documentation: https://cloud.google.com/
kubernetes-engine/docs/concepts/cluster-autoscaler.

Once configured, you can move on to Using the cluster autoscaler.

Enabling the cluster autoscaler in the Amazon Elastic
Kubernetes Service
Setting up the CA in Amazon EKS cannot currently be realized in a one-click or
one-command action. You need to create an appropriate IAM policy and role, deploy the
CA resources to the Kubernetes cluster, and undertake manual configuration steps. For
this reason, we will not cover this in the book and we request that you refer to the official
instructions: https://docs.aws.amazon.com/eks/latest/userguide/
cluster-autoscaler.html.

Once configured, you can move on to Using the cluster autoscaler.

Enabling the cluster autoscaler in the Azure
Kubernetes Service
AKS provides a similar CA setup experience to GKE – you can use a one-command
procedure to either deploy a new cluster with CA enabled or update the existing one to
use the CA. To create a new cluster named k8sforbeginners-aks from scratch in the
k8sforbeginners-rg resource group, execute the following command:

$ az aks create --resource-group k8sforbeginners-rg --name
k8sforbeginners-aks --node-count 2 --enable-cluster-autoscaler
--min-count 2 --max-count 10

You can control the minimum number of Nodes in autoscaling by using the
--min-count parameter, and the maximum number of Nodes by using the
--max-count parameter.

https://cloud.google.com/kubernetes-engine/docs/concepts/cluster-autoscaler
https://cloud.google.com/kubernetes-engine/docs/concepts/cluster-autoscaler
https://docs.aws.amazon.com/eks/latest/userguide/cluster-autoscaler.html
https://docs.aws.amazon.com/eks/latest/userguide/cluster-autoscaler.html

602 Autoscaling Kubernetes Pods and Nodes

To enable the CA on an existing AKS cluster named k8sforbeginners-aks, execute
the following command:

$ az aks update --resource-group k8sforbeginners-rg --name
k8sforbeginners-aks --enable-cluster-autoscaler --min-count 2
--max-count 10

The update will take a few minutes.

You can learn more in the official documentation: https://docs.microsoft.com/
en-us/azure/aks/cluster-autoscaler. Additionally, the CA in AKS has more
parameters that you can configure using autoscaler profile. Further details are provided
in the official documentation at https://docs.microsoft.com/en-us/azure/
aks/cluster-autoscaler#using-the-autoscaler-profile.

Now, let's take a look at how you can use the CA.

Using the cluster autoscaler
We have just configured the CA for the cluster and now it may take a bit of time until
the CA performs its first actions. This depends on the CA configuration, which may be
vendor-specific. For example, in the case of AKS, the cluster will be evaluated every 10
seconds (scan-interval), whether it needs to be scaled up or down. If scaling down
needs to happen after scaling up, there is a 10-minute delay (scale-down-delay-
after-add). Scaling down will be triggered if the sum of requested resources divided by
capacity is below 0.5 (scale-down-utilization-threshold).

As a result, the cluster may automatically scale up, scale down, or remain unchanged
after the CA was enabled. If you are using exactly the same cluster setup as we did in the
examples, you will have the following situation:

• There are three Nodes, each with a capacity of 2000m KCU, which means that the
total KCU in the cluster is 6000m.

• elastic-hamster Deployment is currently automatically scaled by the HPA
to 9 replicas, each consuming 200m KCU, which gives us the total 1800m KCU
requested.

• There is a bit of KCU consumed by the kube-system namespace Pods.

• Roughly, the current usage should be around 40%-50% of KCU. You can check the
exact number using the kubectl top nodes command.

This means that the cluster with the current workload will either scale down by one Node
or remain unchanged.

https://docs.microsoft.com/en-us/azure/aks/cluster-autoscaler
https://docs.microsoft.com/en-us/azure/aks/cluster-autoscaler
https://docs.microsoft.com/en-us/azure/aks/cluster-autoscaler#using-the-autoscaler-profile
https://docs.microsoft.com/en-us/azure/aks/cluster-autoscaler#using-the-autoscaler-profile

Autoscaling Kubernetes Nodes using a Cluster Autoscaler 603

But instead, we can do some modifications to our elastic-hamster Deployment
to trigger a more firm decision from CA. We will increase the total amount of work
requested from the elastic-hamster Deployment and also increase the requests
for CPU by its Pods. Additionally, we will allow more replicas to be created by the HPA.
This will result in quickly exceeding the cluster capacity of 6000m KCU and cause the CA
to scale the cluster up. To do the demonstration, please perform the following steps:

1. In elastic-hamster-deployment.yaml, introduce the following changes.
Set the number of replicas to 7 and TOTAL_HAMSTER_USAGE to "7.0" (the
second value should be greater than the number of replicas). Set requests for
cpu to 500m:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: elastic-hamster

spec:

...

 replicas: 7

 template:

...

 spec:

 serviceAccountName: elastic-hamster

 containers:

 - name: hamster

 image: ubuntu:20.04

 resources:

 requests:

 cpu: 500m

 memory: 50Mi

 env:

 - name: TOTAL_HAMSTER_USAGE

 value: "7.0"

...

604 Autoscaling Kubernetes Pods and Nodes

2. In the elastic-hamster-hpa.yaml file, change the number of maxReplicas
to 25:

apiVersion: autoscaling/v1

kind: HorizontalPodAutoscaler

metadata:

 name: elastic-hamster-hpa

spec:

 minReplicas: 1

 maxReplicas: 25

...

3. Apply all YAML manifests in the directory to the cluster again:

$ kubectl apply -f ./

role.rbac.authorization.k8s.io/deployment-reader
unchanged

deployment.apps/elastic-hamster configured

horizontalpodautoscaler.autoscaling/elastic-hamster-hpa
configured

serviceaccount/elastic-hamster unchanged

rolebinding.rbac.authorization.k8s.io/read-deployments
unchanged

4. If you soon check the status of the Pods in the cluster, you will see that some of
them are pending because of insufficient resources:

$ kubectl get pods

NAME READY STATUS
RESTARTS AGE

...

elastic-hamster-5854d5f967-cjsmg 0/1 Pending
0 23s

elastic-hamster-5854d5f967-nsnqd 0/1 Pending
0 23s

...

Autoscaling Kubernetes Nodes using a Cluster Autoscaler 605

5. Check the status of the Nodes in the cluster. The CA should already start
provisioning new Nodes by that time. In our case, Node 3 has been provisioned
successfully, and Node 4 is in the process of provisioning:

$ kubectl get node

NAME STATUS ROLES
AGE VERSION

aks-nodepool1-77120516-vmss000000 Ready agent
22d v1.18.14

aks-nodepool1-77120516-vmss000001 Ready agent
22d v1.18.14

aks-nodepool1-77120516-vmss000002 Ready agent
29h v1.18.14

aks-nodepool1-77120516-vmss000003 Ready agent
2m47s v1.18.14

aks-nodepool1-77120516-vmss000004 NotReady <none>
5s v1.18.14

6. If you inspect some of the Pods that were in the Pending state, you will see that
their events contain information about the CA trigger to create a new Node:

$ kubectl describe pod elastic-hamster-5854d5f967-grjbj

...

Events:

 Type Reason Age From
Message

 ---- ------ ---- ----

 Warning FailedScheduling 5m28s default-scheduler
0/7 nodes are available: 7 Insufficient cpu.

 Warning FailedScheduling 3m6s default-scheduler
0/8 nodes are available: 1 node(s) had taint {node.
kubernetes.io/not-ready: }, that the pod didn't tolerate,
7 Insufficient cpu.

 Normal Scheduled 2m55s default-scheduler
Successfully assigned default/elastic-hamster-5854d5f967-
grjbj to aks-nodepool1-77120516-vmss000007

 Normal TriggeredScaleUp 4m55s cluster-autoscaler
pod triggered scale-up: [{aks-nodepool1-77120516-vmss
7->8 (max: 10)}]

606 Autoscaling Kubernetes Pods and Nodes

7. Eventually, scaling up using the HPA will be finished, all Pods will become ready,
and the CA will not need to autoscale to more Nodes. In our example, we ended at
16 Pod replicas running on 8 Nodes in total, and this resulted in the stabilization of
average CPU usage at 82%:

$ kubectl describe hpa elastic-hamster-hpa

...

Metrics: (
current / target)

 resource cpu on pods (as a percentage of request):
82% (410m) / 75%

Min replicas: 1

Max replicas: 25

Deployment pods: 16
current / 16 desired

8. Node CPU usage is not distributed evenly though – the reason for this is that
scaling to new Nodes does not trigger any rescheduling of Pods:

$ kubectl top nodes

NAME CPU(cores) CPU%
MEMORY(bytes) MEMORY%

aks-nodepool1-77120516-vmss000000 981m 51%
2212Mi 48%

aks-nodepool1-77120516-vmss000001 1297m 68%
2121Mi 46%

aks-nodepool1-77120516-vmss000002 486m 25%
883Mi 19%

aks-nodepool1-77120516-vmss000003 475m 25%
933Mi 20%

aks-nodepool1-77120516-vmss000004 507m 26%
945Mi 20%

aks-nodepool1-77120516-vmss000005 902m 47%
987Mi 21%

aks-nodepool1-77120516-vmss000006 1304m 68%
1028Mi 22%

aks-nodepool1-77120516-vmss000007 1263m 66%
1018Mi 22%

Autoscaling Kubernetes Nodes using a Cluster Autoscaler 607

This shows how the CA has worked together with the HPA to seamlessly scale the
Deployment and cluster at the same time to accommodate the workload. We will now
show what automatic scaling down looks like. Perform the following steps:

1. To decrease the load in the cluster, we can simply change the value of the TOTAL_
HAMSTER_USAGE environment variable, for example, to "1.0". This will cause
a rapid decrease in the load on Pods – if we currently have 16 replicas, the CPU
utilization will be roughly 63m KCU per Pod, which gives 13% average CPU usage
per Pod. This will cause the HPA to scale down after the stabilization window time
has passed, which is, by default, 5 minutes. Introduce the changes to the elastic-
hamster-deployment.yaml manifest file:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: elastic-hamster

spec:

...

 template:

...

 spec:

...

 containers:

 - name: hamster

...

 env:

 - name: TOTAL_HAMSTER_USAGE

 value: "7.0"

...

2. Apply the manifest file to the cluster:

$ kubectl apply -f ./elastic-hamster-deployment.yaml

deployment.apps/elastic-hamster configured

3. Now, you have to wait patiently for a bit. First, the HPA must get past the
stabilization window, which can take around 5 minutes, and after the Deployment is
scaled down to around 3 replicas, you will still have to wait around 10 minutes
for the cluster to scale down following the recent scale-up. It's time for a good cup
of coffee!

608 Autoscaling Kubernetes Pods and Nodes

4. The HPA has eventually scaled down the Deployment to three Pods and stabilized
the CPU usage at 66%:

$ kubectl describe hpa elastic-hamster-hpa

...

Metrics: (
current / target)

 resource cpu on pods (as a percentage of request):
66% (331m) / 75%

Min replicas: 1

Max replicas: 25

Deployment pods: 3
current / 3 desired

5. At some point, you will notice that the Nodes are being deprovisioned:

$ kubectl get nodes

NAME STATUS ROLES
AGE VERSION

aks-nodepool1-77120516-vmss000000 Ready agent
22d v1.18.14

aks-nodepool1-77120516-vmss000001 Ready agent
22d v1.18.14

aks-nodepool1-77120516-vmss000003 NotReady agent
56m v1.18.14

aks-nodepool1-77120516-vmss000004 Ready agent
53m v1.18.14

aks-nodepool1-77120516-vmss000005 NotReady agent
51m v1.18.14

aks-nodepool1-77120516-vmss000006 NotReady agent
47m v1.18.14

aks-nodepool1-77120516-vmss000007 NotReady agent
42m v1.18.14

6. And finally, you will end up with a cluster with only two Nodes, which is the
minimum number that we preconfigured:

$ kubectl get nodes

NAME STATUS ROLES AGE
VERSION

aks-nodepool1-77120516-vmss000000 Ready agent 22d

Summary 609

v1.18.14

aks-nodepool1-77120516-vmss000001 Ready agent 22d
v1.18.14

This shows how efficiently the CA can react to a decrease in the load in the cluster when
the HPA has scaled down the Deployment. Earlier, without any intervention, the cluster
scaled to eight Nodes for a short period of time, and then scaled down to just two Nodes.
Imagine the cost difference between having an eight-Node cluster running all the time
and using the CA to cleverly autoscale on demand!

Tip
To ensure that you are not charged for any unwanted cloud resources, you need
to clean up the cluster or disable cluster autoscaling to be sure that you are not
running too many Nodes.

This demonstration concludes our chapter about autoscaling in Kubernetes. Let's
summarize what we have learned in this chapter.

Summary
In this chapter, you have learned about autoscaling techniques in Kubernetes clusters. We
first explained the basics behind Pod resource requests and limits and why they are crucial
for the autoscaling and scheduling of Pods. Next, we introduced the VPA, which can
automatically change requests and limits for Pods based on current and past metrics. After
that, you learned about the HPA, which can be used to automatically change the number
of Deployment or StatefulSet replicas. The changes are done based on CPU, memory, or
custom metrics. Lastly, we explained the role of the CA in cloud environments. We also
demonstrated how you can efficiently combine using the HPA with the CA to achieve the
scaling of your workload together with the scaling of the cluster.

There is much more that can be configured in the VPA, HPA, and CA, so we have just
scratched the surface of powerful autoscaling in Kubernetes!

In the last chapter, we will explain how you can use Ingress in Kubernetes for advanced
traffic routing.

610 Autoscaling Kubernetes Pods and Nodes

Further reading
For more information regarding autoscaling in Kubernetes, please refer to the following
PacktPub books:

• The Complete Kubernetes Guide, by Jonathan Baier, Gigi Sayfan, Jesse White
(https://www.packtpub.com/virtualization-and-cloud/
complete-kubernetes-guide)

• Getting Started with Kubernetes – Third Edition, by Jonathan Baier, Jesse White
(https://www.packtpub.com/virtualization-and-cloud/getting-
started-kubernetes-third-edition)

• Kubernetes for Developers, by Joseph Heck (https://www.packtpub.com/
virtualization-and-cloud/kubernetes-developers)

• Hands-On Kubernetes on Windows, by Piotr Tylenda (https://www.packtpub.
com/product/hands-on-kubernetes-on-windows/9781838821562)

You can also refer to the official documentation:

• Kubernetes documentation (https://kubernetes.io/docs/home/), which
is always the most up-to-date source of knowledge regarding Kubernetes in general.

• General installation instructions for the Vertical Pod Autoscaler are available
here: https://github.com/kubernetes/autoscaler/tree/master/
vertical-pod-autoscaler#installation. EKS documentation offers
its own version of the instructions: https://docs.aws.amazon.com/eks/
latest/userguide/vertical-pod-autoscaler.html.

https://www.packtpub.com/virtualization-and-cloud/complete-kubernetes-guide
https://www.packtpub.com/virtualization-and-cloud/complete-kubernetes-guide
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/kubernetes-developers
https://www.packtpub.com/virtualization-and-cloud/kubernetes-developers
https://www.packtpub.com/product/hands-on-kubernetes-on-windows/9781838821562
https://www.packtpub.com/product/hands-on-kubernetes-on-windows/9781838821562
https://kubernetes.io/docs/home/
https://github.com/kubernetes/autoscaler/tree/master/vertical-pod-autoscaler#installation
https://github.com/kubernetes/autoscaler/tree/master/vertical-pod-autoscaler#installation
https://docs.aws.amazon.com/eks/latest/userguide/vertical-pod-autoscaler.html
https://docs.aws.amazon.com/eks/latest/userguide/vertical-pod-autoscaler.html

21
Advanced Traffic

Routing with Ingress
This last chapter will give an overview of advanced traffic routing in Kubernetes using
Ingress resources. In short, Ingress can be used to expose your Pods running behind a
Service object to the external world using HTTP and HTTPS routes. We have already
discussed ways to expose your application using Service objects directly, especially the
LoadBalancer Service. But this approach works fine only in cloud environments where
you have cloud-controller-manager running and byconfiguring external load balancers
to be used with this type of Service. And what is more, each LoadBalancer Service
requires a separate instance of the cloud load balancer, which brings additional costs and
maintenance overhead. We are going to introduce Ingress and Ingress Controller, which
can be used in any type of environment to provide routing and load-balancing capabilities
for your application. You will also learn how to use the nginx web server as Ingress
Controller and how you can configure the dedicated Azure Application Gateway Ingress
Controller for your AKS cluster.

In this chapter, we will cover the following topics:

• Refresher: Kubernetes services

• Introducing the Ingress object

• Using nginx as an Ingress Controller

• Azure Application Gateway Ingress Controller for AKS

612 Advanced Traffic Routing with Ingress

Technical requirements
For this chapter, you will need the following:

• A Kubernetes cluster deployed. We recommend using a multi-node, cloud-based
Kubernetes cluster. It is possible to use Ingress in minikube after enabling the
required add-ons.

• An AKS cluster is required to follow the last section about Azure Application
Gateway Ingress Controller.

• The Kubernetes CLI (kubectl) needs to be installed on your local machine and
configured to manage your Kubernetes cluster.

Basic Kubernetes cluster deployment (local and cloud-based) and kubectl installation
have been covered in Chapter 3, Installing Your First Kubernetes Cluster.

The following previous chapters can provide you with an overview of how to deploy a fully
functional Kubernetes cluster on different cloud platforms and install the requisite CLIs to
manage them:

• Chapter 14, Kubernetes Clusters on Google Kubernetes Engine.

• Chapter 15, Launching a Kubernetes Cluster on Amazon Web Services with the
Amazon Elastic Kubernetes Service.

• Chapter 16, Kubernetes Clusters on Microsoft Azure with the Azure
Kubernetes Service.

You can download the latest code samples for this chapter from the official GitHub
repository at https://github.com/PacktPublishing/The-Kubernetes-
Bible/tree/master/Chapter21.

Refresher: Kubernetes services
In the previous chapters, you have learned about Service objects, which can be used to
expose Pods to load-balanced traffic, both internal as well as external. Internally, they are
implemented as virtual IP addresses managed by kube-proxy at each of the Nodes. We
are going to do a quick recap of different types of services:

• ClusterIP

• NodePort

• LoadBalancer

https://github.com/PacktPublishing/The-Kubernetes-Bible/tree/master/Chapter21
https://github.com/PacktPublishing/The-Kubernetes-Bible/tree/master/Chapter21

Refresher: Kubernetes services 613

To make it easier to explain, we will assume that we have a Deployment running three
replicas of Pods running the nginx container, which has the following YAML manifest:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: nginx-deployment-example

spec:

 replicas: 3

 selector:

 matchLabels:

 environment: test

 template:

 metadata:

 labels:

 environment: test

 spec:

 containers:

 - name: nginx

 image: nginx:1.17

 ports:

 - containerPort: 80

The Pod exposes TCP port 80, which is used by the nginx process to serve the requests,
and we will now discuss the details of using the ClusterIP Service to expose this
Deployment internally.

The ClusterIP Service
Let's now take a look at the ClusterIP Service type. This type of Service exposes Pods
using internally visible virtual IP addresses managed by kube-proxy on each Node.
This means that the Service will be reachable from within the cluster only. Consider the
following manifest for the service:

apiVersion: v1

kind: Service

metadata:

 name: nginx-deployment-example-clusterip

spec:

614 Advanced Traffic Routing with Ingress

 selector:

 environment: test

 type: ClusterIP

 ports:

 - port: 8080

 protocol: TCP

 targetPort: 80

The ClusterIP Service is configured in such a way that it will map requests coming
from its IP and TCP port 8080 to the container's TCP port 80. The actual ClusterIP
address is assigned dynamically, unless you specify one explicitly in the specifications.
The internal DNS Service in a Kubernetes cluster is responsible for resolving the
nginx-deployment-example name to the actual ClusterIP address as a part
of service discovery.

Important note
In the rest of the section, we will provide diagrams that represent how the
Service types are implemented logically. In fact, under the hood, kube-proxy is
responsible for managing the virtual IP addresses on the Nodes and modifying
all forwarding rules. So, services exist only as a logical concept inside the
cluster. There is no physical process that runs inside the cluster for each Service
and does the proxying.

We have visualized the ClusterIP Service principles in the following diagram:

Figure 21.1 – ClusterIP Service

Refresher: Kubernetes services 615

The diagram includes references to the Kubernetes objects specifications to make it easier
to understand the connections. ClusterIP Services are the most basic type of Service
in Kubernetes and they are part of other Service types that allow Pods to be exposed to
external traffic: NodePort and LoadBalancer.

NodePort service
This type of Service is similar to the ClusterIP Service but additionally, it can be
reached by any cluster node IP address and specified port. To achieve that, kube-proxy
exposes the same port on each Node in the range 30000-32767 (which is configurable)
and sets up forwarding so that any connections to this port will be forwarded to
ClusterIP.

Let's take a look at an example YAML manifest of the NodePort Service:

apiVersion: v1

kind: Service

metadata:

 name: nginx-deployment-example-nodeport

spec:

 selector:

 environment: test

 type: NodePort

 ports:

 - port: 8080

 nodePort: 31001

 protocol: TCP

 targetPort: 80

In this case, TCP port 31001 is used as the external port on each Node. If you do
not specify nodePort, it will be allocated dynamically using the range. For internal
communication, this Service still behaves like a simple ClusterIP Service, and you can
use its ClusterIP address.

616 Advanced Traffic Routing with Ingress

These principles have been visualized in the following diagram:

Figure 21.2 – NodePort service

You will need the NodePort Service if you want to set up load balancing externally,
without using any Kubernetes constructs. They can also be used for communicating
directly with the Pods, but exposing the external IP addresses of Nodes is usually
not a good idea in terms of security. Please note that many other components rely
on NodePort Services; for example, they are used in LoadBalancer Service
implementations or when exposing Ingress Controller, which we are going to discuss in
this chapter.

We will now do a quick recap of the LoadBalancer Service.

The LoadBalancer service
This is the second type of Service that allows external traffic to the Pods. The
LoadBalancer Service is usually used in cloud environments where you have software-
defined networking (SDN), and you can configure load balancers on demand that
redirect traffic to your cluster. The automatic provisioning of load balancers in the cloud
is done by vendor-specific plugins in cloud-controller-manager. This type of service
combines the approach of the NodePort Service with an additional external load
balancer in front of it, which routes traffic to NodePorts.

Refresher: Kubernetes services 617

Let's take a look at an example YAML manifest of the LoadBalancer Service:

apiVersion: v1

kind: Service

metadata:

 name: nginx-deployment-example-lb

spec:

 selector:

 environment: test

 type: LoadBalancer

 ports:

 - port: 8080

 protocol: TCP

 targetPort: 80

When you create such a Service, it will behave as a NodePort Service with a randomly
assigned port and a cloud load balancer that serves requests at TCP port 8080 and
forwards them to NodePorts. The external IP address of the service is provided by the
load balancer and is also available in the Service object in .status.loadBalancer.
ingress[0].ip. These principles have been visualized in the following diagram:

Figure 21.3 – LoadBalancer service

618 Advanced Traffic Routing with Ingress

You can still, of course, use the service internally via its ClusterIP.

It may seem appealing to always use Kubernetes services for allowing external traffic
to the cluster, but there are a few disadvantages of using them all the time. We will now
introduce the Ingress object and discuss why it is needed and when it should be used
instead of Services to manage external traffic.

Introducing the Ingress object
In the previous section, we did a short recap of Service objects in Kubernetes and their
role in routing traffic. From the perspective of external traffic, the most important are the
NodePort Service and the LoadBalancer Service. In general, the NodePort Service
can only be used in conjunction with a different routing and load balancing component,
as exposing multiple external endpoints on all Kubernetes Nodes is not secure. This leaves
us with the LoadBalancer Service, which, under the hood, relies on NodePort. There
are a few problems with this type of Service in some use cases:

• The LoadBalancer Service is used for L4 load balancing, which means it is done
at OSI layer 4 (transport). The load balancer can make the decisions based on the
TCP/UDP protocol. Applications that use HTTP or HTTPS protocols often require
L7 load balancing, which is done at OSI layer 7 (application).

• The L4 load balancer cannot do HTTPS traffic termination and offloading.

• You cannot implement name-based virtual hosting using the same L4 load
balancer for multiple domain names.

• You need an L7 load balancer to implement path-based routing. For example,
configuring requests to https://<loadBalancerIp>/service1 to
be redirected to the Kubernetes Service named service1, and requests to
https://<loadBalancerIp>/service2 to be redirected to the Kubernetes
Service named service2 is not possible with the L4 load balancer – it is not aware
of the HTTP(S) protocol.

• You need an L7 load balancer if you want to implement features such as sticky
sessions or cookie affinity.

Introducing the Ingress object 619

In Kubernetes, you can solve these problems using an Ingress object, which can be used
for implementing and modeling L7 load balancing. The Ingress object is used for defining
the routing and balancing rules only, for example, which path should be routed to which
Kubernetes Service. Let's take a look at an example YAML manifest file, example-
ingress.yaml, for Ingress:

apiVersion: networking.k8s.io/v1beta1

kind: Ingress

metadata:

 name: example-ingress

 annotations:

 nginx.ingress.kubernetes.io/rewrite-target: /

spec:

 rules:

 - http:

 paths:

 - path: /service1

 pathType: Prefix

 backend:

 serviceName: example-service1

 servicePort: 80

 - path: /service2

 pathType: Prefix

 backend:

 serviceName: example-service2

 servicePort: 80

620 Advanced Traffic Routing with Ingress

Simply put, Ingress is an abstract definition of routing rules for your Services. Alone, it
is not doing anything; it requires Ingress Controller to actually process and implement
these rules – you can apply the manifest file, but at this point, it will have no effect. But
first, we will explain how the Ingress HTTP routing rules are built. Each of these rules
in the specification contains the following:

• Optional host: In the example, we are not using this field, so the rule that we
defined is applied to all incoming traffic. If the field value is provided, then the
rule applies only to requests that have this host as the destination – you can
have multiple hostnames resolving to the same IP address. The host field
supports wildcards.

• List of path routings: Each of the paths has an associated Ingress backend that you
define by providing serviceName and servicePort. In the preceding example,
all requests arriving at the path with the prefix /service1 will be routed to Pods
of the example-service1 Service, and all requests arriving at the path with the
prefix /service2 will be routed to Pods of the example-service2 Service.
The path fields support prefixes and exact matching, and it is also possible to
use implementation-specific matching, which is carried out by the underlying
Ingress Controller.

In this way, you can configure complex routing rules that involve multiple Services
in the cluster, but externally they will be visible as a single endpoint with multiple
paths available. This is especially useful when you create API gateways in microservice
architecture for frontend or client applications.

Important note
In Kubernetes 1.19, Ingress has become a networking.k8s.io/
v1 resource. There are a few changes compared to networking.
k8s.io/v1beta1; for example, the backend is defined differently:
https://v1-19.docs.kubernetes.io/docs/reference/
generated/kubernetes-api/v1.19/#ingressbackend-v1-
networking-k8s-io.

To materialize Ingress objects, we need to have an Ingress Controller installed in
the cluster.

https://v1-19.docs.kubernetes.io/docs/reference/generated/kubernetes-api/v1.19/#ingressbackend-v1-networking-k8s-io
https://v1-19.docs.kubernetes.io/docs/reference/generated/kubernetes-api/v1.19/#ingressbackend-v1-networking-k8s-io
https://v1-19.docs.kubernetes.io/docs/reference/generated/kubernetes-api/v1.19/#ingressbackend-v1-networking-k8s-io

Using nginx as an Ingress Controller 621

Using nginx as an Ingress Controller
An Ingress Controller is a Kubernetes controller that is deployed manually to the cluster,
most often as a DaemonSet or a Deployment object that runs dedicated Pods for handling
incoming traffic load balancing and smart routing. It is responsible for processing the
Ingress objects (which specify that they especially want to use the Ingress Controller)
and dynamically configuring real routing rules. A commonly used Ingress controller
for Kubernetes is ingress-nginx (https://www.nginx.com/products/
nginx/kubernetes-ingress-controller), which is installed in the cluster as a
Deployment of an nginx web host with a set of rules for handling Ingress API objects.
The Ingress Controller is exposed as a Service with a type that depends on the installation
– in cloud environments, this will be LoadBalancer.

Important note
In cloud environments, you will often see dedicated Ingress Controllers that
leverage vendor-specific features that allow direct communication from the
external load balancer to the Pods. In such cases, there are no additional Pods
involved and there may even be no need for NodePort Services. The routing
is handled at SDN and CNI levels and the load balancer can use private IPs
of the Pods. We will show an example of such an approach in the next section
when we discuss the Application Gateway ingress controller for AKS.

The installation of ingress-nginx is described for different environments in the
official documentation: https://kubernetes.github.io/ingress-nginx/
deploy/. Note that it is also possible to use Helm to install this Ingress Controller, which
makes management and upgrades a bit easier. For cloud environments, the installation is
usually very simple and involves applying a single YAML manifest file, which creates
multiple Kubernetes objects. Let's demonstrate this in AKS. Please execute the following
command:

$ kubectl apply -f https://raw.githubusercontent.com/
kubernetes/ingress-nginx/controller-v0.44.0/deploy/static/
provider/cloud/deploy.yaml

namespace/ingress-nginx created

serviceaccount/ingress-nginx created

configmap/ingress-nginx-controller created

...

https://www.nginx.com/products/nginx/kubernetes-ingress-controller
https://www.nginx.com/products/nginx/kubernetes-ingress-controller
https://kubernetes.github.io/ingress-nginx/deploy/
https://kubernetes.github.io/ingress-nginx/deploy/

622 Advanced Traffic Routing with Ingress

Now, we can also create our example Services together with the Ingress object that defines
routings for them. First, we will create the Service objects and Deployment objects. There
is no need to explain the YAML manifests as they are simple web servers printing out a
welcome message with information on which Service you have reached:

$ kubectl apply -f https://raw.githubusercontent.com/
PacktPublishing/Kubernetes-for-Beginners/master/Chapter21/02_
ingress/example-services.yaml

deployment.apps/example-service1 created

deployment.apps/example-service2 created

service/example-service1 created

service/example-service2 created

Next, we can apply the Ingress object to the cluster that we created earlier:

$ kubectl apply -f ./example-ingress.yaml

ingress.networking.k8s.io/example-ingress created

By this time, the LoadBalancer Service that is running as part of Ingress Controller
should already be functional and have an external IP address available. You can get it
using the following command:

$ kubectl describe svc -n ingress-nginx ingress-nginx-
controller

...

LoadBalancer Ingress: 137.117.227.83

...

At this point, we can visualize what is happening behind Ingress Controller in the
following diagram:

Using nginx as an Ingress Controller 623

Figure 21.4 – Using nginx as Ingress Controller in a cloud environment

When you perform an HTTP request to http://<ingressServiceLoadBalan-
cerIp>/service1, the traffic will be routed by nginx to example-service1. Simi-
larly, when you use the /service2 path, the traffic will be routed to example-ser-
vice2. Note that you are using only one cloud load balancer for this operation, and that
the actual routing to Kubernetes Services is performed by the Ingress Controller Pods
using path-based routing.

Important note
In practice, you need to set up SSL certificates for your HTTP endpoints to
ensure proper security. In our examples, we are not doing that for simplicity
and to make the demonstrations clearer.

624 Advanced Traffic Routing with Ingress

Let's verify this in practice. In your web browser, navigate to the /service1 path. In
our case, this will be http://137.117.227.83/service1. You will see that you are
served by example-service1 Pods:

Figure 21.5 – Routing to example-service1 via the nginx Ingress Controller

Now, navigate to the /service2 path. In our case, this will be
http://137.117.227.83/service2. You will see that you are served by
example-service2 Pods:

Figure 21.6 – Routing to example-service2 via the nginx Ingress Controller

Congratulations! You have successfully configured Ingress and Ingress Controller in your
cluster. We are now going to explore a special type of Ingress Controller for AKS named
Azure Application Gateway Ingress Controller.

Azure Application Gateway Ingress Controller
for AKS
The Ingress Controller based on the nginx web server that we showed in the last section is
a type of generic Ingress Controller that can be used in almost any environment. It relies
on standard Kubernetes objects such as Deployments, Pods, and Services, and does not
require any external components. If any external components are provisioned, this is done
by cloud-controller-manager, and not the Ingress Controller itself.

This approach has a few drawbacks if you use it in a cloud environment such as Azure
Kubernetes Service:

• You have an Azure load balancer just to proxy the requests to nginx Ingress
Controller Pods via NodePorts. Then, there is another level of load balancing after
the request reaches the Node, performed by kube-proxy as part of the Service object
for Ingress Controller. Request routing based on paths is done by Ingress Controller
Pods. And eventually, the last level of kube-proxy load balancing is at the target
Service (in our demo, example-service1 or example-service2).

• There are more points of failure, especially if you scale cluster Nodes, drain Nodes,
and so on.

Azure Application Gateway Ingress Controller for AKS 625

Instead, it is possible to leverage a native L7 load balancer service in Azure named
Application Gateway (https://docs.microsoft.com/en-us/azure/
application-gateway/overview). AKS offers Application Gateway Ingress
Controller (AGIC), which uses Application Gateway to directly communicate with
Pods using their private IP addresses. This is achieved by AGIC Pods monitoring the
Kubernetes API and instructing Azure Resource Manager to make changes to Application
Gateway depending on Pods and services changes. Application Gateway can communicate
directly with Pods thanks to Azure SDN features such as VNet peering (https://
docs.microsoft.com/en-us/azure/virtual-network/virtual-
network-peering-overview). This design is shown in the following diagram:

Figure 21.7 – Application Gateway ingress controller in AKS

https://docs.microsoft.com/en-us/azure/application-gateway/overview
https://docs.microsoft.com/en-us/azure/application-gateway/overview
https://docs.microsoft.com/en-us/azure/virtual-network/virtual-network-peering-overview
https://docs.microsoft.com/en-us/azure/virtual-network/virtual-network-peering-overview
https://docs.microsoft.com/en-us/azure/virtual-network/virtual-network-peering-overview

626 Advanced Traffic Routing with Ingress

It is possible to configure AGIC on an existing AKS cluster, and this is described in
the official documentation: https://docs.microsoft.com/en-us/azure/
application-gateway/tutorial-ingress-controller-add-on-
existing. For simplicity, we will create a new AKS cluster with AGIC enabled – this is
a one-command action. To deploy the two-node cluster named k8sforbeginners-
aks-agic in the k8sforbeginners-rg resource group, execute the following
command:

$ az aks create --resource-group k8sforbeginners-rg --name
k8sforbeginners-aks-agic --node-count 2 --network-plugin
azure --enable-managed-identity -a ingress-appgw --appgw-
name AksApplicationGateway --appgw-subnet-cidr "10.2.0.0/16"
--generate-ssh-keys

This will create an Azure Application Gateway named AksApplicationGateway with
the subnet CIDR 10.2.0.0/16.

When the cluster finishes deploying, we need to generate kubeconfig to use it with
kubectl. Run the following command (it will switch to a new context so you will still
have the old context available later):

$ az aks get-credentials --resource-group k8sforbeginners-rg
--name k8sforbeginners-aks-agic

Merged "k8sforbeginners-aks-agic" as current context in .kube/
config

Now, we can apply the same YAML manifest for Deployments and Services as in the
previous section:

$ kubectl apply -f https://raw.githubusercontent.com/
PacktPublishing/Kubernetes-for-Beginners/master/Chapter21/03_
aks-agic/example-services.yaml

deployment.apps/example-service1 created

deployment.apps/example-service2 created

service/example-service1 created

service/example-service2 created

https://docs.microsoft.com/en-us/azure/application-gateway/tutorial-ingress-controller-add-on-existing
https://docs.microsoft.com/en-us/azure/application-gateway/tutorial-ingress-controller-add-on-existing
https://docs.microsoft.com/en-us/azure/application-gateway/tutorial-ingress-controller-add-on-existing

Azure Application Gateway Ingress Controller for AKS 627

The final step will involve creating an Ingress object. We need to modify the
YAML manifest slightly – the reason for this is that AGIC 1.4 does not yet support
apiVersion: networking.k8s.io/v1beta1, and we need to use apiVersion:
extensions/v1beta1, which can use kubernetes.io/ingress.class
annotation instead of the ingressClassName field in the specification. Create an
example-ingress.yaml file with the following content:

apiVersion: extensions/v1beta1

kind: Ingress

metadata:

 name: example-ingress

 annotations:

 kubernetes.io/ingress.class: azure/application-gateway

 appgw.ingress.kubernetes.io/backend-path-prefix: "/"

spec:

 rules:

 - http:

 paths:

 - path: /service1

 backend:

 serviceName: example-service1

 servicePort: 80

 - path: /service2

 backend:

 serviceName: example-service2

 servicePort: 80

For AGIC to pick up this Ingress object, it must define the kubernetes.io/ingress.
class annotation with the value azure/application-gateway. We additionally
need to ensure that the prefix for requests to the backend service is simply "/". After that,
we can apply the manifest to the cluster:

$ kubectl apply -f ./example-ingress.yaml

ingress.extensions/example-ingress configured

628 Advanced Traffic Routing with Ingress

You will need to wait a few minutes for Application Gateway to reconfigure. To get the
external IP address of the Ingress, execute the following command:

$ kubectl get ingress

NAME CLASS HOSTS ADDRESS PORTS AGE

example-ingress <none> * 52.191.222.39 80 36m

In our case, the IP address is 52.191.222.39.

Let's verify whether AGIC works correctly. In your web browser, navigate to the /
service1 path. In our case, this will be http://52.191.222.39/service1. You
will see that you are served by example-service1 Pods:

Figure 21.8 – Routing to example-service1 via Application Gateway Ingress Controller in AKS

Now, navigate to the /service2 path. In our case, this will be
http://52.191.222.39/service2. You will see that you are served by example-
service2 Pods:

Figure 21.9 – Routing to example-service2 via Application Gateway Ingress Controller in AKS

Congratulations! You have successfully configured and tested Application Gateway Ingress
Controller in AKS! This was the last practical demonstration in this book, so let's now
summarize what you have learned.

Summary 629

Summary
In this last chapter, we have explained advanced traffic routing approaches in Kubernetes
using Ingress objects and Ingress Controllers. At the beginning, we did a brief recap
of Kubernetes Service types. We refreshed our knowledge regarding ClusterIP,
NodePort, and LoadBalancer Service objects. Based on that, we introduced
Ingress objects and Ingress Controller and explained how they fit into the landscape
of traffic routing in Kubernetes. Now, you know that simple Services are commonly
used when L4 load balancing is required, but if you have HTTP or HTTPS endpoints
in your applications, it is better to use L7 load balancing offered by Ingress and Ingress
Controllers. You learned how to deploy the nginx web server as Ingress Controller and we
tested this on example Deployments. Lastly, we explained how you can approach Ingress
and Ingress Controllers in cloud environments where you have native support for L7 load
balancing outside of the Kubernetes cluster. As a demonstration, we deployed an AKS
cluster with Application Gateway Ingress Controller (AGIC) to handle Ingress objects.

Congratulations! This has been a long journey into the exciting territory of Kubernetes
and container orchestration. Good luck with your further Kubernetes journey and thanks
for reading.

Further reading
For more information regarding autoscaling in Kubernetes, please refer to the following
Packt books:

• The Complete Kubernetes Guide, by Jonathan Baier, Gigi Sayfan, Jesse White
(https://www.packtpub.com/virtualization-and-cloud/
complete-kubernetes-guide)

• Getting Started with Kubernetes – Third Edition, by Jonathan Baier, Jesse White
(https://www.packtpub.com/virtualization-and-cloud/getting-
started-kubernetes-third-edition)

• Kubernetes for Developers, by Joseph Heck (https://www.packtpub.com/
virtualization-and-cloud/kubernetes-developers)

• Hands-On Kubernetes on Windows, by Piotr Tylenda (https://www.packtpub.
com/product/hands-on-kubernetes-on-windows/9781838821562)

https://www.packtpub.com/virtualization-and-cloud/complete-kubernetes-guide
https://www.packtpub.com/virtualization-and-cloud/complete-kubernetes-guide
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/kubernetes-developers
https://www.packtpub.com/virtualization-and-cloud/kubernetes-developers
https://www.packtpub.com/product/hands-on-kubernetes-on-windows/9781838821562
https://www.packtpub.com/product/hands-on-kubernetes-on-windows/9781838821562

630 Advanced Traffic Routing with Ingress

You can also refer to the following official documentation:

• Kubernetes documentation (https://kubernetes.io/docs/home/), which
is always the most up-to-date source of knowledge regarding Kubernetes in general.

• A list of many available Ingress Controllers can be found at the following link:
https://kubernetes.io/docs/concepts/services-networking/
ingress-controllers/.

• Similar to AKS, GKE offers a built-in, managed Ingress Controller called GKE
Ingress. You can learn more in the official documentation: https://cloud.
google.com/kubernetes-engine/docs/concepts/ingress. You can
also check the Ingress features that are implemented in GKE here: https://
cloud.google.com/kubernetes-engine/docs/how-to/ingress-
features.

• For Amazon EKS, there is AWS Load Balancer Controller. You can find more
information in the official documentation: https://docs.aws.amazon.com/
eks/latest/userguide/alb-ingress.html.

https://kubernetes.io/docs/home/
https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/
https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/
https://cloud.google.com/kubernetes-engine/docs/concepts/ingress
https://cloud.google.com/kubernetes-engine/docs/concepts/ingress
https://cloud.google.com/kubernetes-engine/docs/how-to/ingress-features
https://cloud.google.com/kubernetes-engine/docs/how-to/ingress-features
https://cloud.google.com/kubernetes-engine/docs/how-to/ingress-features
https://docs.aws.amazon.com/eks/latest/userguide/alb-ingress.html
https://docs.aws.amazon.com/eks/latest/userguide/alb-ingress.html

Index

Symbols
--expose flag

avoiding 199

A
adapter design pattern 155, 156
adapter multi-container Pod

creating 156, 157
AKS cluster

accessing, with AAD integration
enabled 537-539

deleting 479, 480
launching 465-468
workload, interacting with 468

AKS cluster, conditional access
reference link 539

AKS cluster, JIT access
reference link 539

Amazon EBS PersistentVolume
YAML 266, 267

Amazon EKS cluster
deleting 454, 455
interacting with 447
launching 444-447
workload, deploying 447-449

Amazon Elastic Block Storage (EBS) 438
Amazon Elastic Kubernetes Service

about 436, 438, 547
Cluster Autoscaler (CA), enabling 601
eksctl, installing 443
Kubernetes cluster, deleting on 88
multi-node Kubernetes cluster,

launching on 81-88
used, for installing Kubernetes

cluster 80, 81
Amazon Machine Image (AMI) 444
Amazon Route 53 438
Amazon Web Services (AWS) 8,

17, 21, 190, 412, 436, 437
ambassador design pattern 152, 153
ambassador multi-container Pod

example 153, 154
annotations

about 109
adding, to Pod 113
versus labels 109

anonymous requests 513
anti-affinity 558
application

decoupling 161

632 Index

Application Gateway
reference link 625

Application Gateway Ingress
Controller (AGIC) 625

application programming
interfaces (APIs) 188, 436

ArtifactHub
URL 485

attribute-based access control
(ABAC) 529

authentication 513, 514
authentication methods

OpenID Connect tokens 525-527
proxy authentication 527
ServiceAccount tokens 516-522
static token files 515
webhook token authentication 527
X.509 client certificates 523-525

authorization 528
autoscaler profile

reference link 602
autoscaling capabilities 575
availability zones 431
AWS account

signing up 439
AWS command-line interface

configuration 441, 442
installing 439
installing, on Linux 440
installing, on macOS 439, 440
installing, on Windows 440

AWS console 449-454
AWS Identity and Access

Management (IAM) 438
AWS Quickstart

reference link 81
az command line 89

Azure Active Directory (AAD)
about 535
prerequisites 536
reference link 526

Azure AKS
multi-node Kubernetes cluster,

launching on 89-91
used, for installing Kubernetes cluster 89

Azure Application Gateway
IngressController

for AKS 624-628
Azure CLI

about 460
configuring 463
installing, on Linux 462
installing, on macOS 460, 461
installing, on Windows 461, 462

Azure Cloud Shell
accessing 464, 465
reference link 464

Azure Container Instances (ACI) 459
Azure Container Service (ACS) 459
Azure free account

URL 460
Azure Kubernetes Service (AKS)

about 295, 404, 459, 535, 547, 554
Cluster Autoscaler (CA), enabling 601
prerequisites 536

Azure Kubernetes Service
Cluster User Role

reference link 538
Azure portal

exploring 469-479
URL 469

Azure RBAC
using, for AKS cluster 539-543

Azure RBAC integration 537

Index 633

B
backoffLimit option, job 116
batch workload 318
bearer token 532
binary releases, Helm

reference link 489
Borg 23
business team 6

C
Cassandra database deployment

reference link 359
central processing unit (CPU) 452
certificate authority (CA) 523
certificates signing requests

reference link 523
chart 487
Chocolatey

URL 485
Classless Inter-Domain

Routing (CIDR) 224
cloud

for scalability 8
Cloud Native Computing Foundation

(CNCF) 24, 51, 413
cloud providers

benefits 9
reference link 599

Cluster Autoscaler (CA)
about 21, 576
enabling, in Amazon Elastic

Kubernetes Service 601
enabling, in Azure Kubernetes

Service 601
enabling, in Google Kubernetes

Engine 600

Kubernetes Nodes, autoscaling 599, 600
reference link 601
using 602-609

cluster Internet Protocol (IP) address 294
ClusterIP service

about 201, 209, 324, 613, 614
creating, with declarative way 213
creating, with imperative way 210
deleting 214
describing 211-213
listing 210
need for 209
need, for exposing Pods 210

cluster nodes 430-432
ClusterRole 530
ClusterRoleBinding 530
completions option

used, for running task multiple
times 117, 118

components, Kubernetes
control plane 29
worker nodes 30

compute resources 577
ConfigMap

about 162, 163
creating 164, 165
creating, from env file 169, 170
creating, from literal values 166
deleting 177
entire configuration files,

storing 167, 168
linking, as environment

variables 172-175
listing 164
mounting, as volume mount 175-177
updating 178
used, for configuring Pods 164
values, reading inside 170, 171

634 Index

configuration
decoupling 161

configuration management 160
Container Network Interface

(CNI) 56, 99, 190
Container Network Interface

(CNI) plugins 404
container orchestration 291
container probes

reference link 309
containers

about 13
entering, inside Pod 106
state, managing 355, 356

container volumes 356
continuous feedback loops 295
continuous integration and continuous

deployment (CI/CD) 6
controllers 124
control plane 30, 31
cost of goods sold (COGS) 575
Cronjob

about 121
creating 122, 125
deleting 125

Cronjob execution deadline
controlling 124

Custom Resource Definition (CRD) 582

D
daemon 392
DaemonSet object

about 295, 393
alternatives 405
creating 394-400
deleting 403
managing 394

modifying 400-402
use cases 404

DaemonSet spec
selector 396
template 396

default namespaces 234, 235
deployment

creating 332-335
Deployment object

about 294, 317
best practices 347-350
creating 319-322
deleting 338
replicas number, modifying 321
revisions, managing 338, 339
rolling back 344-346
scaling 335-337
template, modifying 321
updating 340-343
version rollout, managing 338, 339
versus StatefulSet object 357, 358

Deployment Pods
about 568
exposing, with Service objects 323, 324

Deployment spec
reference link 320
replicas 320
selector 320
strategy 320
template 320

Descheduler 560
development team 6
DNS names

generating, for Kubernetes
services 194, 195, 200

dnsutils Docker image
using, to debug Kubernetes

services 197-199

Index 635

Docker
about 13
for microservices 13
URL 72

Docker container isolation
benefits 14, 15

Docker containers
about 97
managing, with Kubernetes 16

Docker-in-Docker (DIND) model 71
Domain Name System (DNS) 192, 438
dynamic Pod IP 190, 191
dynamic provisioning 269, 282
dynamic storage provisioning

PersistentVolumeClaim role 284-287

E
EC2 Auto Scaling 438
eksctl

installing, for Amazon EKS 443
Elastic Compute Cloud (EC2) 437
Elastic Kubernetes Service (EKS) 295
Elastic Load Balancer (ELB) 201
Elastic Load Balancing (ELB) 455
Elasticsearch

about 505
with Kibana 501, 505-507

Elasticsearch chart
reference link 505

emptyDir volume
creating 147
mounting 147-149

env file
ConfigMap, creating from 169, 170

environment variables
ConfigMaps, linking as 172-175
Secrets, consuming as 182, 183

equality-based selector 305
Etcd 33, 36
Etcd datastore

about 50-52
installation requisites 52, 53

eviction loops 567
example chart

deploying 491-498

F
fault tolerance (FT)

ensuring, on Kubernetes 292, 294
for Kubernetes applications 294

filtering 572
Flannel agent

reference link 404
Flux

URL 344
FPM PHP interpreter 98
frequent software releases

need for 5
fully qualified domain name (FQDN) 234

G
GCE PersistentDisk PersistentVolume

YAML 267, 268
GCP account

signing up 414
URL 414

GCP command-line interface
initialization 419, 420
installing 415
installing, on Linux 418
installing, on macOS 416
installing, on Windows 417

generally available (GA) 413

636 Index

GitOps 344
GKE cluster

deleting 430
example workload, launching 424, 425
interacting with 422, 423
launching 421, 422
local client, configuring 423
workload, deploying 422, 423

Go 29
Google Cloud Console

exploring 425
menu options 429
Services & Ingres 427, 428
workloads 426, 427

Google Cloud Console, menu options
Applications 429
Configuration 429
Migrate to containers 430
Object browser 429
Storage 429

Google Cloud Platform (GCP)
about 8, 17, 21, 190, 412
project, creating 415

Google Cloud Shell 418, 419
Google GKE

about 75
multi-node Kubernetes cluster,

launching on 76-79
used, for installing Kubernetes cluster 75

Google Kubernetes Engine (GKE)
about 295, 412, 413, 447
Cluster Autoscaler (CA), enabling 600
VPA, enabling 583

Go templates
reference link 489

H
Hard Node affinity 559
hard rule 558
headless services 214, 215
Helm

about 487
installing, on macOS 491
installing, on Ubuntu 490
installing, on Windows 490
software, releasing to Kubernetes 489
URL 485
use cases 488, 489

Helm chart
about 487
anatomy 499-501
popular solutions, installing 501

Helm chart, by Bitnami
reference link 494

Helm charts repository
reference link 488

Helm chart structure
reference link 500

hierarchical namespace (HNS) 294
high availability (HA)

about 291
ensuring, on Kubernetes 292, 293
for Kubernetes applications 294

Homebrew package manager 491
Horizontal for Nodes 576
Horizontal for Pods 576
HorizontalPodAutoscaler 591
Horizontal Pod Autoscaler (HPA)

about 576
Pods, autoscaling horizontally 590, 591
using 592-599

horizontal scaling 21, 300

Index 637

hostPath volume 150
creating 150
mounting 151

HTTP basic authentication scheme 515
HTTP Secure (HTTPS) 206
HyperText Transfer Protocol (HTTP) 188

I
Infrastructure as a Service (IaaS) 459
Infrastructure-as-Code (IaC) 296, 443
IngressController

about 620, 621
nginx, using as 621-624

Ingress HTTP routing rules
list of path routings 620
optional host 620

ingress-nginx
reference link 621

Ingress object 618-620
initContainers 141-143
internet

growth 4
Internet Protocol (IP) 188, 448
inter-Pod affinity 558

J
job

about 114
backoffLimit option 116
capabilities 114
completed 120
creating, with restartPolicy 115
deleting 120
history limits, managing 124
launching 113

terminating 119
use cases 114

jobTemplate section 124
JSON

objects, listing 104
JSON Web Tokens (JWTs) 517
just in time (JIT) access 539
JWT token

URL 520

K
key and value pair 564
keys, LimitRange

default 255
defaultRequest 255
max 255
min 255

Kibana 505
Kibana chart

reference link 505
Kind

installing, onto local system 72-74
multi-node Kubernetes

cluster, launching 71
kube-apiserver component

about 34-38
installation requisites 40, 41
installing 38, 39

kube-controller-manager component
about 58, 59
installation requisites 59

kubectl
about 42-44
declarative syntax 47-49
imperative syntax 46
installation requisites 49, 50

638 Index

used, for displaying current
namespace 245, 246

used, for switching namespaces 244
working 44, 45
YAML syntax 46-49

kubectl commands 514
kubectl describe command 103
kubectl get command 103
kubectl port-forward command 208, 209
Kubelet agent 54, 55
kube-proxy component 56
Kubernetes

avoiding, cases 22
competitors 24
components 32
container deployment 19, 20
containers, autoscaling 21
current management 24
Docker containers, managing 16
Docker, using in production 16, 17
fault tolerance (FT), ensuring 292, 294
high availability (HA),

ensuring 18, 292, 293
highly available, making 60
history 22, 23
production issues, solving 18
release management 19, 20
role-based access control mode 530-535
round-robin load balancing 193, 194
URL 16

Kubernetes administrator 270
Kubernetes API server 513, 547
Kubernetes application developer 270
Kubernetes cluster

deleting, on Amazon EKS 88
installing, with Amazon EKS 80, 81
installing, with Azure AKS 89
installing, with Google GKE 75

VPA, enabling 584
with master node, and worker nodes 32

Kubernetes cluster, on Azure AKS
deleting 92
stopping 92

Kubernetes cluster, on Google GKE
deleting 80
stopping 80

Kubernetes CPU (KCU) 579
Kubernetes Dashboard 501-504
Kubernetes Enhancement

Proposals (KEP) 1847 376
Kubernetes Nodes

autoscaling, with cluster
autoscaler 599, 600

Kubernetes Pods
state, managing 356, 357

Kubernetes services
about 612, 613
calling 194
ClusterIP service 201, 613, 614
debugging, with dnsutils

Docker image 197-199
DNS names, generating 194, 195, 200
LoadBalancer service 201, 616-618
network, proxying to Pods 195-197
NodePort service 201, 615, 616
types 201
used, for routing traffic to Pods 192, 193

Kubernetes, setups
multi-master multi-node cluster 62-64
single-master cluster 61, 62
single-node cluster 60, 61

Kubernetes volumes
about 145, 146
emptyDir volume, creating 147
emptyDir volume, mounting 147-149
hostPath volume, creating 150

Index 639

hostPath volume, mounting 151
sharing, between containers

in same Pod 144
kube-scheduler component

about 56, 57, 247, 547-549
installation requisites 58

L
L4 load balancing 618
L7 load balancing 618
label, attached to running Pod

deleting 112
labels

about 108
adding 109, 110
adding, to running Pod 111, 112
need for 108
updating, of running Pod 111, 112
used, for configuring

NetworkPolicy 226-229
versus annotations 109

labels, attached to Pod
listing 111

label selectors 396, 554
Lightweight Directory Access

Protocol (LDAP) 215
limit 248
LimitRange

about 251, 254, 255
deleting 256
keys 255
listing 256

Limits 246
Linux

AWS command-line interface,
installing on 440

Azure CLI, installing on 462

GCP command-line interface,
installing on 418

list operation
information, obtaining from 105
used, for backing up resource 104

literal values
about 162
ConfigMap, creating from 166

liveness probe 329
LivenessProbe

about 219, 220
implementing 220-223
need for 220
parameters 223, 224
using 223, 224

load balancer (LB) 294
LoadBalancer service

about 201, 215, 216, 616-618
components 216

local environment
preparing 460

local Kind cluster
deleting 74
stopping 74

local Minikube cluster
deleting 71
stopping 70

local system
Kind, installing onto 72-74

M
macOS

AWS command-line interface,
installing on 439, 440

Azure CLI, installing on 460

640 Index

GCP command-line interface,
installing on 416

Helm, installing on 491
managed AKS cluster

deploying, with AAD 536
MariaDB chart 499
master nodes

about 28, 30, 31
versus worker nodes 30

microservices
Docker, need for 13

microservices architecture
advantages 12
aspects 13
disadvantages 12
exploring 10, 11
selecting 13
versus monolith architecture 12, 13

Microsoft Azure 8, 458, 459
Microsoft.ContainerService

reference link 541
Microsoft Dynamics 459
Microsoft .NET Services 459
Microsoft SharePoint 459
Microsoft SQL Data Services 458
millicores 249
Minikube

advantage 67
drawback 67
single-node cluster, installing 67
single-node Kubernetes cluster,

launching 67-70
monolith architecture

disadvantages 10
exploring 10

Multi Availability Zones (AZs) 438

multi-container Pods
about 128
commands, running 138
creating 130-132
default commands, overriding 139-141
deleting 135
deletion grace period 136
initContainers 141-143
log forwarder example 129
need for 129
proxy server example 130
specific container, accessing 137
specific container, failing

to launch 132-134
specific container logs,

accessing 143, 144
multi-master multi-node cluster 62-64
multi-node Kubernetes cluster

launching, on Amazon EKS 81-88
launching, on Azure AKS 89-91
launching, on Google GKE 76-79
launching, with Kind 71

multiple public repositories, ArtifactHub
reference link 488

multiple YAML manifest files
reference link 405

Mustache
URL 489

MySQL container 100
MySQL server 487

N
namespaces

about 231, 232
active status 236
creating, declarative syntax used 237
creating, imperative syntax used 237

Index 641

current namespace, displaying
with kubectl 245, 246

data of specific namespace,
retrieving 236

default namespaces 234, 235
deleting 238
listing, in cluster 236
need for 232
resource, creating with -n

option 239, 240
resources, impacting 236
resources, listing in specific

namespace 240, 241
scope 241, 242
service, resolving with 243
services, impacting 236
switching, kubectl used 244
terminating status 236
used, for splitting clusters 233
used, for splitting resources

into chunks 233
uses 234

Network Address Translation (NAT) 99
NetworkPolicy

benefits 224, 225
configuring, with labels 226-229
configuring, with selectors 226-229
need for 224, 225

NetworkPolicy object
used, for securing Pods 224

NFS PersistentVolume YAML 268
nginx

using, as IngressController 621-624
NGINX 98
NGINX HTTP server 98
Node affinity

configuring, for Pods 558-563
managing 549

Node affinity rules 567
node-local workload 318
NodePort service

about 201, 202, 208, 209, 615, 616
containous Pods, creating 202, 203
deleting 208
describing 207
listing 207
need for 202
need, for exposing Pods 210
Pods, adding to 207
production, setting up 206, 207
whoami Pods, creating 202, 203
working 206
YAML file, defining 203-205

nodes
about 529
master nodes 28
worker nodes 28

Node taints
using 564

normal user accounts 514

O
objects

listing, in JSON 104
listing, in YAML 104

Omega 23
on-premises

to cloud 7
on-premises hosting 8
OpenID Connect (OIDC)

about 525, 537
reference link 514, 526

642 Index

OpenID Connect tokens
about 525, 526
advantages 526
disadvantages 527

operation team 6
organizational shift

to agile methodologies 5-7

P
parallelism option

used, for running task
multiple times 118

PersistentVolume
about 260, 261, 356
access modes 264
Amazon EBS PersistentVolume

YAML 266, 267
benefits 263
cloud-based storage, handling 266
creating 265
dynamic provisioning 282
GCE PersistentDisk PersistentVolume

YAML 267, 268
life cycle 276
mounting, to Pod claims 269
need for 260
NFS PersistentVolume YAML 268
provisioning, handling 268
reclaiming 278, 279
reclaim policy, updating 279
resource creation, handling 268
static, versus dynamic provisioning 281
status 280
StorageClasses 282-284
storage creation and consumption,

splitting 270

types 262, 263
workflow 271, 272

PersistentVolumeClaim
about 269, 356
Pod, creating with 272-276
role, for dynamic storage

provisioning 284-287
status 280

PHP-Fast CGI Process Manager (FPM) 98
Platform as a Service (PaaS) 458
Pod container

resources, controlling 578, 579
Pod IP

hardcode, avoiding in application
code 191, 192

Pod IP assignment 188-190
Pod liveness probes

using, with ReplicaSet 309-312
Pod Node name 549-553
Pod Node selector 554-557
Pods

about 95, 97, 188, 328
accessing, from outside world 105
annotating 107
annotation, adding to 113
benefits 98
computing resources, requiring 248, 249
ConfigMaps, consuming 163
configuring, with ConfigMaps 164
container, entering inside 106
creating, with declarative

syntax 102, 103
creating, with imperative

syntax 101, 102
creating, with PersistentVolumeClaim

272-276
deleting 107
designing 100

Index 643

information 103
IP address 99
isolation, avoiding 225
labeling 107
launching 101
limits 578-581
metadata 103
resource consumption, limiting 250, 251
resource requests 578-581
resources, consuming 247
scheduling process 548
Secrets, consuming 163
securing, with NetworkPolicy object 224

Pod topology spread constraints
reference link 563

predicates 572
principle of least privilege

(POLP) 522, 528
priorities 573
probes

about 329
liveness 329
readiness 328
reference link 330
startup 329

production 17
Prometheus

about 507
with Grafana 501, 507-509

Prometheus node-exporter
reference link 405

proxy authentication
reference link 527

public key infrastructure (PKI) 34

R
random-access memory (RAM) 452
raw YAML manifests, sharing

disadvantages 487
readiness probe

about 328
configuring 329-332

ReadinessProbe
command 218
HTTP 218
implementing 217-219
need for 217
parameters 223, 224
TCP 218
using 223, 224

region 430
release 488
ReplicaSet

about 303
behavior, testing of 306-308
Pod liveness probes, using with 309-312
scaling 308, 309
versus ReplicationController 303

ReplicaSet object
about 294
creating 304-306
deleting 312, 313

ReplicaSet specification
replicas 304
selector 304
template 304

ReplicationController
about 295, 296
behavior, testing of 299
deleting 302
scaling 300, 301

644 Index

ReplicationController object
about 294
creating 296, 298

ReplicationController specification
replicas 297
selector 297
template 297

repository 488
REpresentational State Transfer

(REST) 188
resource consumption

limiting 250, 251
resource governance 577
resource model

reference link 578
resource overcommit 579
resource quality of service

reference link 578
ResourceQuota

about 246, 251
creating 252, 253
defining 252
deleting 254
listing 254
need for 251
setting 247

resources
about 248
backing up, with list operation 104

REST API 17
restartPolicy

job, creating 115
Role 530
role-based access control

(RBAC) 489, 528
role-based access control (RBAC) mode

in Kubernetes 530-535

RoleBinding 530
rollbacks 300
rolling upgrades 300
running Pod

labels, adding to 111, 112
labels, updating of 111, 112

S
scaling 300
schedule key 123
scheduling policies

reference link 572
scheduling process, Pod

filtering 548
scoring 549

scoring 572
Secret object

sensitive configuration, managing 178
Secrets

about 162, 163, 514
consuming, as environment

variable 182, 183
consuming, as volume mount 183, 184
creating, declaratively 179, 180
creating, imperatively 179
creating, with content from file 180
deleting 184
listing 178
reading 181
updating 184

selectors
used, for configuring

NetworkPolicy 226-229
semantic labeling

reference link 348

Index 645

Service
about 56
creating, declaratively 325-328
creating, imperatively 328

ServiceAccount 513
service accounts 514
ServiceAccount tokens

about 517-522
advantages 522
disadvantages 522

service-level agreements (SLAs) 293
Service objects

used, for exposing Deployment
Pods 323, 324

Services & Ingres 427, 428
set-based selector 305
sidecar design pattern 154, 155
sidecar multi-container Pod

example 155
silos 6
Simple Queue Service (SQS) 437
Simple Storage Service (S3) 437
single-master cluster 61, 62
single-node cluster

about 60, 61
installing, with Minikube 67

single-node Kubernetes cluster
launching, with Minikube 67-70

single sign-on (SSO) 525, 537
soft affinity 558
Soft Node affinity 559
Software as a Service (SaaS) 459
software-defined networking (SDN) 616
stabilization window 591
standard HTTP bearer

authentication scheme 515
startup probe 329

state
managing, in containers 355, 356
managing, in Kubernetes Pods 356, 357

StatefulSet object
about 295, 354
best practices 387-389
creating 359-366
deleting 375, 376
headless Service, using 367-369
managing 359
new version, releasing of app

deployed as StatefulSet 377, 378
replicas 361
rolling back 387
scaling 372-375
selector 361
serviceName 361
stable network identities 367-369
state persistence 369-372
template 361
updating 379-386
versus Deployment object 357, 358
volumeClaimTemplates 361

stateful workload 317
stateless workload 317
Static Pods

reference link 406
static token files 515

advantages 516
disadvantages 516

StorageClasses (SCs) 282-284, 356
superuser 539

T
taint

adding 565
advanced use cases 567-571

646 Index

effect, counteracting 566
effects 565
removing 566

taints, NodeController 565
Tiller 489
tolerations

about 566
using 564

U
Ubuntu

Helm, installing on 490
Uniform Resource Locator

(URL) 198, 448
user management 513, 514

V
values

reading, inside ConfigMap 170, 171
versions, Helm

reference link 489
Vertical for Pods 576
VerticalPodAutoscaler 582
Vertical Pod Autoscaler (VPA)

about 576
admission plugin 582
enabling, for Kubernetes clusters 584
enabling, in Google Kubernetes

Engine 583
Pods, autoscaling vertically 582, 583
recommender 582
updater 582
using 585-590

vertical scaling 21
virtual private cloud (VPC) 82, 190, 444
virtual private network (VPN) 206

vnet peering
reference link 625

volume 355
volume mount

ConfigMap, mounting as 175-177
Secret, consuming as 183, 184

W
watch mechanisms 55
webhook 529
webhook token authentication

reference link 527
Windows

AWS command-line interface,
installing on 440

Azure CLI, installing on 461, 462
GCP command-line interface,

installing on 417
Helm, installing on 490

Windows Azure 459
WordPress 98
WordPress charts, by Bitnami

reference link 494
worker node components 53
worker nodes

about 28, 31
versus master nodes 30

workloads
about 426, 427
batch 318
deploying 468
interacting, with AKS cluster 468
launching 468, 469
node-local 318
stateful 317
stateless 317

Index 647

X
X.509 client certificates 523

advantages 524
disadvantages 525
reference link 523
working, in Kubernetes 523

Y
YAML Ain't Markup Language (YAML) ,

about 189, 296, 447
objects, listing 104

YAML manifest, for kube-proxy
reference link 404

YUM 487

Z
zones 430

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

http://Packt.com
http://packt.com
http://www.packt.com

650 Other Books You May Enjoy

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Kubernetes in Production Best Practices

Aly Saleh, Murat Karslioglu

ISBN: 9781800202450

• Explore different infrastructure architectures for Kubernetes deployment

• Implement optimal open source and commercial storage management solutions

• Apply best practices for provisioning and configuring Kubernetes clusters, including
infrastructure as code (IaC) and configuration as code (CAC)

• Configure the cluster networking plugin and core networking components to get the best
out of them

• Secure your Kubernetes environment using the latest tools and best practices

• Deploy core observability stacks, such as monitoring and logging, to fine-tune
your infrastructure

https://packt.link/9781800202450

Other Books You May Enjoy 651

Cloud Native with Kubernetes

Alexander Raul

ISBN: 9781838823078

• Set up Kubernetes and configure its authentication

• Deploy your applications to Kubernetes

• Configure and provide storage to Kubernetes applications

• Expose Kubernetes applications outside the cluster

• Control where and how applications are run on Kubernetes

• Set up observability for Kubernetes

• Build a continuous integration and continuous deployment (CI/CD) pipeline for
Kubernetes

• Extend Kubernetes with service meshes, serverless, and more

https://packt.link/9781838823078

652 Other Books You May Enjoy

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

Share Your Thoughts
Now you've finished The Kubernetes Bible, we'd love to hear your thoughts! If you
purchased the book from Amazon, please click here to go straight to the
Amazon review page for this book and share your feedback or leave a review on the
site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

http://authors.packtpub.com
http://authors.packtpub.com
https://packt.link/r/1838827692
https://packt.link/r/1838827692

	Cover
	Title page
	Copyright and Credits
	Contributors
	Table of Contents
	Preface
	Section 1: Introducing Kubernetes
	Chapter 1: Kubernetes Fundamentals
	Understanding monoliths and microservices
	Understanding the growth of the internet since the late 1990s
	Understanding the need for more frequent software releases
	Understanding the organizational shift to agile methodologies
	Understanding the shift from on-premises to the cloud
	Understanding why the cloud is well suited for scalability
	Exploring the monolithic architecture
	Exploring the microservices architecture
	Choosing between monolithic and microservices architectures

	Understanding containers and Docker
	Understanding why Docker is good for microservices
	Understanding the benefit of Docker container isolation

	How can Kubernetes help you to manage your Docker containers?
	Understanding that Kubernetes is meant to use Docker in production

	Exploring the problems that Kubernetes solves
	Ensuring high availability
	Release management and container deployment
	Autoscaling containers
	When and where is Kubernetes not the solution?

	Understanding the history of Kubernetes
	Understanding how and where Kubernetes started
	Who manages Kubernetes today?
	Where is Kubernetes today?

	Summary

	Chapter 2: Kubernetes Architecture – From Docker Images to Running Pods
	Understanding the difference between the master and worker nodes
	The kube-apiserver component
	The role of kube-apiserver
	How do you install kube-apiserver?
	Where do you install kube-apiserver?

	Exploring the kubectl command-line tool
and YAML syntax
	The role of kubectl
	How does kubectl work?
	The YAML syntax
	kubectl should be installed on any machine that needs to interact with the cluster

	The Etcd datastore
	The role of the Etcd datastore
	Where do you install Etcd?

	The Kubelet and worker node components
	The Kubelet agent
	The kube-proxy component

	The kube-scheduler component
	The role of the kube-scheduler component
	Where do you install kube-scheduler?

	The kube-controller-manager component
	The role of the kube-controller-manager component
	Where do you install kube-controller-manager?

	How to make Kubernetes highly available
	The single-node cluster
	The single-master cluster
	The multi-master multi-node cluster

	Summary

	Chapter 3: Installing Your First Kubernetes Cluster
	Technical requirements
	Installing a single-node cluster with Minikube
	Launching a single-node Kubernetes cluster using Minikube
	Stopping and deleting the local Minikube cluster

	Launching a multi-node Kubernetes cluster with Kind
	Installing Kind onto your local system
	Stopping and deleting the local Kind cluster

	Installing a Kubernetes cluster using
Google GKE
	Launching a multi-node Kubernetes cluster on Google GKE
	Stopping and deleting a Kubernetes cluster on
Google GKE

	Installing a Kubernetes cluster using
Amazon EKS
	Launching a multi-node Kubernetes cluster on Amazon EKS
	Deleting the Kubernetes cluster on Amazon EKS

	Installing a Kubernetes cluster using
Azure AKS
	Launching a multi-node Kubernetes cluster on
Azure AKS
	Stopping and deleting a Kubernetes cluster on
Azure AKS

	Summary

	Section 2:
Diving into Kubernetes Core Concepts
	Chapter 4: Running Your Docker Containers
	Technical requirements
	Let's explain the notion of Pods
	Each Pod gets an IP address
	How you should design your Pods

	Launching your first Pods
	Creating a Pod with imperative syntax
	Creating a Pod with declarative syntax
	Reading the Pod's information and metadata
	Listing the objects in JSON or YAML
	Backing up your resource using the list operation
	Getting more information from the list operation
	Accessing a Pod from the outside world
	Entering a container inside a Pod
	Deleting a Pod

	Labeling and annotating the Pods
	What are labels and why do we need them?
	What are annotations and how do they differ from labels?
	Adding a label
	Listing labels attached to a Pod
	Adding or updating a label to/of a running Pod
	Deleting a label attached to a running Pod
	Adding an annotation

	Launching your first job
	What are jobs?
	Creating a job with restartPolicy
	Understanding the job's backoffLimit
	Running a task multiple times using completions
	Running a task multiple times in parallel
	Terminating a job after a specific amount of time
	What happens if a job succeeds?
	Deleting a job

	Launching your first Cronjob
	What are Cronjobs?
	Creating your first Cronjob
	Understanding the schedule
	Understanding the role of the jobTemplate section
	Controlling the Cronjob execution deadline
	Managing the history limits of jobs
	Creating a Cronjob
	Deleting a Cronjob

	Summary

	Chapter 5: Using Multi-Container Pods and Design Patterns
	Technical requirements
	Understanding what multi-container Pods are
	Concrete scenarios where you need multi-container Pods
	When not to create a multi-container Pod
	Creating a Pod made up of two containers
	What happens when Kubernetes fails to launch one container in a Pod?
	Deleting a multi-container Pod
	Understanding the Pod deletion grace period
	Accessing a specific container inside
a multi-container Pod
	Running commands in containers
	Overriding the default commands run by your containers
	Introducing initContainers
	Accessing the logs of a specific container

	Sharing volumes between containers in the same Pod
	What are Kubernetes volumes?
	Creating and mounting an emptyDir volume
	Creating and mounting a hostPath volume

	The ambassador design pattern
	What is the ambassador design pattern?
	A simple example of an ambassador multi-container Pod

	The sidecar design pattern
	What is the sidecar design pattern?
	A simple example of a sidecar multi-container Pod

	The adapter design pattern
	What is the adapter design pattern?
	A simple example of an adapter multi-container Pod

	Summary

	Chapter 6: Configuring Your Pods Using ConfigMaps
and Secrets
	Technical requirements
	Understanding what ConfigMaps and
Secrets are
	Decoupling your application and your configuration
	Understanding how Pods consume ConfigMaps and Secrets

	Configuring your Pods using ConfigMaps
	Listing ConfigMaps
	Creating a ConfigMap
	Creating a ConfigMap from literal values
	Storing entire configuration files in a ConfigMap
	Creating a ConfigMap from an env file
	Reading values inside a ConfigMap
	Linking ConfigMaps as environment variables
	Mounting a ConfigMap as a volume mount
	Deleting a ConfigMap
	Updating a ConfigMap

	Managing sensitive configuration with the Secret object
	Listing Secrets
	Creating a Secret imperatively with --from-literal
	Creating a Secret declaratively with a YAML file
	Creating a Secret with content from a file
	Reading a Secret
	Consuming a Secret as an environment variable
	Consuming a Secret as a volume mount
	Deleting a Secret
	Updating a Secret

	Summary

	Chapter 7: Exposing Your Pods with Services
	Technical requirements
	Why would you want to expose your Pods?
	Understanding Pod IP assignment
	Understanding Pod IP assignment is dynamic
	Never hardcode a pod's IP addresses in your application code
	Understanding how services route traffic to Pods
	Understanding round-robin load balancing in Kubernetes
	Understanding how to call a service in Kubernetes
	Understanding how DNS names are generated for services
	How services get a list of the Pods they service
traffic to
	Using the dnsutils Docker image to debug your services
	Why you shouldn't use the --expose flag
	Understanding how DNS names are generated for services
	Understanding the different types of services

	The NodePort service
	Why do you need NodePort services?
	Creating two containous/whoami Pods
	Understanding NodePort YAML definition
	Making sure NodePort works as expected
	Is this setup production-ready?
	Listing NodePort services
	Adding more Pods to NodePort services
	Describing NodePort services
	Deleting NodePort services
	NodePort or kubectl port-forward?

	The ClusterIP service
	Why do you need ClusterIP services?
	How do I know if I need NodePort or ClusterIP services to expose my Pods?
	Listing ClusterIP services
	Creating ClusterIP services using the imperative way
	Describing ClusterIP services
	Creating ClusterIP services using the declarative way
	Deleting ClusterIP services
	Understanding headless services

	The LoadBalancer service
	Explaining the LoadBalancer services
	Should I use the LoadBalancer service type?

	Implementing ReadinessProbe
	Why do you need ReadinessProbe?
	Implementing ReadinessProbe
	What is LivenessProbe and why do you need it?
	Implementing LivenessProbe
	Using ReadinessProbe and LivenessProbe together

	Securing your Pods using the
NetworkPolicy object
	Why do you need NetworkPolicy?
	Understanding Pods are not isolated by default
	Configuring NetworkPolicy with labels and selectors

	Summary

	Chapter 8: Managing Namespaces in Kubernetes
	Technical requirements
	Introduction to Kubernetes namespaces
	Why do you need namespaces?
	How namespaces are used to split resources into chunks
	Understanding default namespaces

	How namespaces impact your resources and services
	Listing namespaces inside your cluster
	Retrieving the data of a specific namespace
	Creating a namespace using imperative syntax
	Creating a namespace using declarative syntax
	Deleting a namespace
	Creating a resource inside a namespace with the -n option
	Listing resources inside a specific namespace
	Listing all the resources inside a specific namespace
	Understanding that names are scoped to a namespace
	Understanding that not all resources are in a namespace
	Resolving a service using namespaces
	Switching between namespaces with kubectl
	Displaying the current namespace with kubectl

	Configuring ResourceQuota and Limit at the namespace level
	Understanding why you should set ResourceQuota
	Understanding how Pods consume these resources
	Understanding how Pods can require computing resources
	Understanding how you can limit resource consumption
	Understanding why you need ResourceQuota
	Creating a ResourceQuota

	Listing ResourceQuota
	Deleting ResourceQuota
	Introducing LimitRange
	Listing LimitRange
	Deleting LimitRange
	Summary

	Chapter 9: Persistent Storage
in Kubernetes
	Technical requirements
	Why you would want to use PersistentVolume
	Introducing PersistentVolumes
	Introducing PersistentVolume types
	The benefits brought by PersistentVolume
	Introducing access modes
	Understanding that not all access modes are available to all PersistentVolume types
	Creating our first PersistentVolume
	How does Kubernetes PersistentVolumes handle cloud-based storage?
	Amazon EBS PersistentVolume YAML
	GCE PersistentDisk PersistentVolume YAML
	NFS PersistentVolume YAML
	Can Kubernetes handle the provisioning or creation of the resource itself?

	Understanding how to mount a PersistentVolume to your Pod claims
	Introducing PersistentVolumeClaim
	Splitting storage creation and storage consumption
	The summarized PersistentVolume workflow
	Creating a Pod with a PersistentVolumeClaim object

	Understanding the life cycle of a PersistentVolume object in Kubernetes
	Understanding that PersistentVolume objects are not bound to namespaces
	Reclaiming a PersistentVolume object
	Updating a reclaim policy
	Understanding PersistentVolume and PersistentVolumeClaims statuses

	Static and dynamic PersistentVolume provisioning
	Static versus dynamic provisioning
	Introducing dynamic provisioning
	Introducing StorageClasses
	Understanding the role of PersistentVolumeClaim for dynamic storage provisioning

	Summary

	Section 3:
Using Managed Pods with Controllers
	Chapter 10: Running Production-Grade Kubernetes Workloads
	Technical requirements
	Ensuring HA and FT on Kubernetes
	High Availability
	Fault Tolerance
	HA and FT for Kubernetes applications

	What is ReplicationController?
	Creating a ReplicationController object
	Testing the behavior of ReplicationController
	Scaling ReplicationController
	Deleting ReplicationController

	What is ReplicaSet and how does it differ from ReplicationController?
	Creating a ReplicaSet object
	Testing the behavior of ReplicaSet
	Scaling ReplicaSet
	Using Pod liveness probes together with ReplicaSet
	Deleting a ReplicaSet object

	Summary
	Further reading

	Chapter 11: Deployment – Deploying Stateless Applications
	Technical requirements
	Introducing the Deployment object
	Creating a Deployment object
	Exposing Deployment Pods using Service objects
	Scaling a Deployment object
	Deleting a Deployment object

	How does a Deployment object manage revisions and version rollout?
	Updating a Deployment object
	Rolling back a Deployment object

	Deployment object best practices
	Use declarative object management for Deployments
	Do not use the Recreate strategy for
production workloads
	Do not create Pods that match an existing
Deployment label selector
	Carefully set up your container probes
	Use meaningful and semantic image tags
	Migrating from older versions of Kubernetes

	Summary
	Further reading

	Chapter 12: StatefulSet – Deploying Stateful Applications
	Technical requirements
	Introducing the StatefulSet object
	Managing state in containers
	Managing state in Kubernetes Pods
	StatefulSet and how it differs from a Deployment object

	Managing StatefulSet
	Creating a StatefulSet
	Using the headless Service and stable network identities
	State persistence
	Scaling StatefulSet
	Deleting a StatefulSet

	Releasing a new version of an app deployed as a StatefulSet
	Updating StatefulSet
	Rolling back StatefulSet

	StatefulSet best practices
	Use declarative object management for StatefulSets
	Do not use the TerminationGracePeriodSeconds Pod with a 0 value for StatefulSets
	Scale down StatefulSets before deleting
	Ensure state compatibility during StatefulSet rollbacks
	Do not create Pods that match an existing StatefulSet label selector

	Summary
	Further reading

	Chapter 13: DaemonSet – Maintaining Pod Singletons on Nodes
	Technical requirements
	Introducing the DaemonSet object
	Creating and managing DaemonSets
	Creating a DaemonSet
	Modifying a DaemonSet
	Deleting a DaemonSet

	Common use cases for DaemonSets
	Alternatives to DaemonSets
	Summary
	Further reading

	Section 4:
Deploying Kubernetes
on the Cloud
	Chapter 14: Kubernetes Clusters on Google Kubernetes Engine
	Technical requirements
	What are GCP and GKE?
	Google Cloud Platform
	Google Kubernetes Engine

	Preparing your environment
	Signing up for a GCP account
	Creating a project
	Installing the GCP command-line interface

	Launching your first GKE cluster
	Deploying a workload and interacting with your cluster
	Configuring your local client
	Launching an example workload
	Exploring Google Cloud Console
	Deleting your cluster

	More about cluster nodes
	Summary
	Further reading

	Chapter 15: Launching a Kubernetes Cluster on Amazon Web Services with Amazon Elastic Kubernetes Service
	Technical requirements
	What are AWS and Amazon EKS?
	AWS
	Amazon EKS

	Preparing your local environment
	Signing up for an AWS account
	Installing the AWS command-line interface
	Installing eksctl, the official CLI for Amazon EKS

	Launching your Amazon EKS cluster
	Deploying a workload and interacting with your cluster
	Deploying the workload
	Exploring the AWS console

	Deleting your Amazon EKS cluster
	Summary
	Further reading

	Chapter 16: Kubernetes Clusters on Microsoft Azure with Azure Kubernetes Service
	Technical requirements
	What are Microsoft Azure and AKS?
	Microsoft Azure
	AKS

	Preparing your local environment
	The Azure CLI

	Launching your AKS cluster
	Deploying a workload and interacting with your cluster
	Launching the workload
	Exploring the Azure portal

	Deleting your AKS cluster
	Summary
	Further reading

	Section 5:
Advanced Kubernetes
	Chapter 17: Working with
Helm Charts
	Technical requirements
	Understanding Helm
	Releasing software to Kubernetes using Helm
	Installing Helm on Ubuntu
	Installing Helm on Windows
	Installing Helm on macOS
	Deploying an example chart

	Helm chart anatomy
	Installing popular solutions using Helm charts
	Kubernetes Dashboard
	Elasticsearch with Kibana
	Prometheus with Grafana

	Summary
	Further reading

	Chapter 18: Authentication and Authorization on Kubernetes
	Technical requirements
	Authentication and user management
	Static token files
	ServiceAccount tokens
	X.509 client certificates
	OpenID Connect tokens
	Other methods

	Authorization and introduction to RBAC
	RBAC mode in Kubernetes

	Azure Kubernetes Service and Azure Active Directory integration
	Prerequisites
	Deploying a managed AKS cluster with AAD and Azure RBAC integration
	Accessing the AKS cluster with AAD integration enabled
	Using Azure RBAC for an AKS cluster

	Summary
	Further reading

	Chapter 19: Advanced Techniques for Scheduling Pods
	Technical requirements
	Refresher – What is kube-scheduler?
	Managing Node affinity
	Pod Node name
	Pod Node selector
	Node affinity configuration for Pods

	Using Node taints and tolerations
	Scheduling policies
	Summary
	Further reading

	Chapter 20: Autoscaling Kubernetes Pods and Nodes
	Technical requirements
	Pod resource requests and limits
	Autoscaling Pods vertically using a Vertical Pod Autoscaler
	Enabling a VPA in GKE
	Enabling a VPA for other Kubernetes clusters
	Using a VPA

	Autoscaling Pods horizontally using a Horizontal Pod Autoscaler
	Using an HPA

	Autoscaling Kubernetes Nodes using a
Cluster Autoscaler
	Enabling the cluster autoscaler in GKE
	Enabling the cluster autoscaler in the Amazon Elastic Kubernetes Service
	Enabling the cluster autoscaler in the Azure Kubernetes Service
	Using the cluster autoscaler

	Summary
	Further reading

	Chapter 21: Advanced Traffic Routing with Ingress
	Technical requirements
	Refresher: Kubernetes services
	The ClusterIP Service
	NodePort service
	The LoadBalancer service

	Introducing the Ingress object
	Using nginx as an Ingress Controller
	Azure Application Gateway Ingress Controller for AKS
	Summary
	Further reading

	Index
	About Packt
	Other Books You May Enjoy

