
1. Introduction CS1140 Introduction to AI, 2003/2004 (1/119) 1/6

Unit 1. Introduction

Learning Outcomes . You should be able to

- define the term ‘‘Artificial Intelligence’’

- outline the major topics of AI

- describe several example real-world AI applications

- suggest AI techniques appropriate for implementing
various features of your example applications

- list and describe 6 eras in the history of AI from 1943,
naming at least one landmark in each

- describe the Turing test and discuss its weaknesses

Contents .

- AI objectives, definition, scope

- classification of AI techniques

- landmarks in AI history

- Turing test and Loebner Prize

The term Artificial Intelligence (AI) is reputed to have been coined by John McCarthy
in 1956.

The long-term objective of AI is to build intelligent machines, that can reason, learn,
see, communicate and operate in complex environments at the human level, or possi-
bly, even better. The essence of AI is not to replace human intelligence but rather to
complement it — intelligent humans and intelligent machines can realise opportuni-
ties together that neither can realise alone (e.g. in business computers can help us to
locate pertinent information, to allocate resources, to schedule work and to discover
meaningful regularities in databases).

There are two common approaches to AI. The first is to use computers to simulate the
human mental processes. Psychologists, for example, are interested in AI because it
provides new insights into natural intelligence and the workings of the human brain.
As a common approach to constructing intelligent machines this has some inherent
problems, e.g.:

1. Human intelligence includes mental processes that are difficult if not impossible to
understand and describe.

2. There are considerable differences between the structure and capabilities of the
human brain and the computer.

The second more common approach, adopted by computer scientists, is to attempt to
create intelligent systems independent of the human condition — this is the approach
that will be described in this series of lectures. We will demonstrate in this brief
excursion into AI the power of the human brain — we will see that:

1. Introduction CS1140 Introduction to AI, 2003/2004 (2/119) 2/6

Some tasks considered difficult for humans to accomplish are relatively easy
to program for the computer, whilst other tasks that are taken for granted by
humans are extremely difficult to implement computationally.

It is very difficult to give a concise description, or definition, of the field of Artificial
Intelligence (AI) since workers in many areas claim to be involved in AI — computer
scientists, psychologists, brain theorists, linguists etc. Instead of becoming involved in
the merits of various definitions we will adopt a practical approach to answering the
question “What is AI?”, that is, we will look at those topics that are ‘unquestionably’
considered to be parts of AI.

AI Topics and Major Subdivisions

A commonly accepted structure of AI is that proposed by Nilsson (1974) where the
area is divided into

– CORE TOPICS — concerned with basic AI techniques and methodologies

– APPLICATION AREAS — draw upon research in one of the core areas

Core topics

– Modelling and the Representation of Knowledge

– Heuristic Search

– AI Systems and Language

Application Areas

– Game Playing

– Maths, Science and Engineering Aids

– Automatic Theorem Proving

– Expert Systems

– Intelligent Teaching Systems

– Automatic programming

– Robots

– Machine Vision

– Natural Language Systems

– Information Processing Psychology

The following more recent structure for AI was proposed by Gevarter (1985):

Core Topics

– Modelling and the Representation of Knowledge

1. Introduction CS1140 Introduction to AI, 2003/2004 (3/119) 3/6

– Heuristic Search

– Common Sense, Reasoning and Logic

– AI Languages and Tools

Application Areas

– Expert Systems

– Vision

– Natural Language Processing

– Problem Solving and Planning

Update. To the above we might now add: Neural Networks, Genetic Algorithms and
Intelligent Agents.

Philosophical Issues

AI research makes the fundamental assumption that human intelligence can be re-
duced to the (complex) manipulation of symbols conducted by some appropriate pro-
cessor — not necessarily a biological brain. This assumption does not go unchal-
lenged!!

Searle states that just behaving intelligently is not necessarily a sign of intelligence.
In his “Chinese room” argument he states that given a sufficiently large rule book
it would be possible for a person who could not speak Chinese to reply to Chinese
sentences by simply looking up the appropriate responses in the rule book. Thus com-
puters operating on this principle could not be said to be intelligent.

The following observation made by Marvin Minsky a research pioneer of AI is appro-
priate:

What is intelligence anyway? It is only a word that people use to name those unknown
processes with which our brains solve problems we call hard. But whenever you learn a
skill yourself, you’re less impressed or mystified when other people do the same. This is
why the meaning of “intelligence” seems so elusive: it describes not some definite thing
but only the momentary horizon of our ignorance about how minds might work.

Some AI landmarks

Early AI (1943 – 1956)

– McCulloch and Pitts — artificial neuron (1943)

– Chess playing programs — Alan Turing, Claude Shannon (early 50’s)

– Dartmouth College workshop (1956) — Allen Newell and Herbert Simon devel-
oped the Logic Theorist (LT) — term AI proposed by John McCarthy

1. Introduction CS1140 Introduction to AI, 2003/2004 (4/119) 4/6

Great initial expectations (1952 – 1969)

– A Newell, H Simon — General Problem Solver (GPS)
– A Samuel — checker playing program (1952 onwards)
– J McCarthy — defined programming language LISP (1958)
– Shakey robot built at Stanford Research Institute (1966 onwards)
– Frank Rosenblatt — Perceptron (1962)

Reality (1966 – 1974)

– Machine translation, Natural Language Processing — difficulties
– Combinatorial explosion
– Perceptron deficiencies — M Minsky and S Papert (1969)

Knowledge-based systems (1969 – 1979)

– Recognition of strengths of strong methods over weak methods
– Expert systems — Dendral, Mycin
– Frames

AI — industrial importance (1980 – 1988)

– Commercialisation of expert systems — XCON (R1) in 1982
– Japanese Fifth Generation — 10 year plan (1981)

Recent history

– advances in Genetic Algorithms, Neural Networks
– new directions: Planning, Speech recognition, Intelligent Agents
– IBM Deep Blue beats Kasparov in chess (1997)

AI in Practice

– AI is concerned with automating both mundane tasks (e.g. planning, vision, nat-
ural language understanding) and tasks requiring specialised skills and training
(medical diagnosis, financial planning, equipment repair, computer configuration).

– Paradoxically, it turns out that the mundane tasks are far harder to compute —
tasks which a young child can do without thinking are beyond or at the limits of
current AI research.

– Although AI is still in its infancy it has already achieved some significant accom-
plishments with more likely in the near and distant future.

– Thus AI systems currently serve a wide variety of practical purposes in diagnosing
patient illnesses and suggesting treatments, controlling assembly robots in facto-
ries, generating investment strategies by attempting to predict stock market trends.

– In the future, although some of them exist now, we will have language translation
systems, air traffic control systems, supervisory systems, automated personal assis-
tants, intelligent transport systems, robots for hazardous work environments.

1. Introduction CS1140 Introduction to AI, 2003/2004 (5/119) 5/6

The Industrial Importance of AI

– became apparent to many of the world’s leading countries during the late 1970s.

– The Japanese launched a very ambitious programme, called the Fifth Generation,
which was officially announced in October 1981, in which AI played a central role
— the programme involved a ten-year plan to develop intelligent super computers.

– Other leading countries of the world also announced plans for some form of AI
programme:

– the British with the Alvey project,

– the Europeans with the ESPRIT programme,

– the United States had no formal plan, but several organisations grouped together
on ambitious AI projects e.g. Microelectronics and Computer Technology Corpo-
ration (MCC) at Austin, Texas.

Turing Test

Alan Turing, a British mathematician, who helped to design the world’s first opera-
tional electronic digital computer during the 1940s, effectively launched the field of AI
with a 1950 paper entitled: “Computing Machinery and Intelligence” in which he pro-
posed a test — the Turing test — for determining whether a machine was intelligent.

The Turing test attempts to answer the question:
How will we know if we have constructed an intelligent machine?

– an interrogator communicates with a computer and another person — the inter-
rogator being placed in a separate room from the human and computer

– by asking a series of questions the interrogator attempts to determine which is the
person and which is the machine

– the goal of the machine is to fool the interrogator into believing that it is the person
— if the machine can succeed at this task then we can conclude that the machine
can think

The Turing test has been criticised because its outcome depends on the gullibility of
the interrogator and because it only examines natural language processing ability.

Other criticisms relate to the fact that it is not sufficient to simply judge a machine on
how it acts — we also need to know what internal “mental” states it has — that is
the machine has to be aware of its own mental state and actions — Turing himself ac-
knowledges this by stating that a machine equals a brain when it is capable of not only
writing a sonnet or composing a concerto but knows too that it has accomplished
this.

1. Introduction CS1140 Introduction to AI, 2003/2004 (6/119) 6/6

Loebner Prize Contest

– introduced in 1991 by Hugh Loebner as a kind of competitive Turing test

– in this contest judges can type in questions at a computer terminal which are replied
to either by a human or by one of the computer contestants

– the author of the best computer program receives a prize of $2000 and if the com-
puter program is judged to give better responses than one of the humans then it
receives a prize of $100,000

– the $100,000 prize has not been claimed yet although one program fooled five
judges out of ten into believing that it was a human

2. Search 1/3 CS1140 Introduction to AI, 2003/2004 (7/119) 1/7

Unit 2. Search 1/3

Learning Outcomes . You should be able to

- re-formulate an appropriate problem as a searching
problem (i.e. identify the problem states and operators)

- explain differences between informed and uninformed
searching

- define breadth-first and depth-first search algorithms

- apply these algorithms to concrete problems

- explain the differences between the two algorithms

- decide which one of the two to use for given problems

- define depth-first search with iterative deepening

According to Newell and Simon, intelligent activity in either human or machine, is
achieved through the use of:

1. patterns of symbols to represent significant aspects of a problem domain,

2. operations on those patterns to generate potential solutions to problems,

3. search to select a solution from among these possibilities.

Search clearly forms an important aspect of intelligent activity and is likely to be re-
quired in AI e.g. a robot vehicle searching for a given route to a given destination, a
chess program determining its next move, theorem proving, solving problems etc.

Problem Solving

– Well-defined problems are typically defined in terms of states, and solutions corre-
spond to goal states.

– Solving a problem then amounts to searching through the different states until one
or more of the goal states are found.

– One of the ways of achieving this is through the state-space search method — this
will now be considered.

Problem states and operators

– The notion of problem states and operators can be introduced by considering the
8-puzzle (9-puzzle in some texts)

1 2 3

8 * 4

7 6 5

2 4 6

* 7 8

3 1 5

2. Search 1/3 CS1140 Introduction to AI, 2003/2004 (8/119) 2/7

– Each tile configuration is a possible state e.g. consider other games and puzzles.

– The initial configuration and the desired configuration are known as the initial
state and goal state respectively — the set of all possible states reachable from the
initial state by any sequence of actions is known as the state-space of the problem
— in many problems the state space is very large so search methods must be very
efficient.

– An operator transforms one state into another — there are 4 operators in the 8-
puzzle:

– move blank up

– move blank right

– move blank down

– move blank left

– An operator may not be applicable to every state.

– The problem then is to change the initial state into the goal state by moving the
tiles around according to the available operators.

– A solution to a problem is thus that sequence of operators which will transform
the initial state into the goal state.

– One approach would be to move the tiles at random — the so-called British Mu-
seum algorithm — we shall consider more intelligent approaches to the problem.

Search methods

– Problem solving using either state-space or the problem reduction approach in-
volves two major aspects — the representation of the states and the method of
search.

– A state-space can be conveniently represented as a graph, where each node of the
graph describes a state and arcs between nodes describe the transformation per-
formed by applying an appropriate operator.

– Search methodologies can be classified into uninformed (or blind) search and in-
formed (or directed) search.

Uninformed Search

– The search path selected is blindly or mechanically followed — no information is
used to determine the preference of one child node over another.

– For all the uninformed methods considered in this Unit we shall adopt the con-
vention that processed nodes are placed on a closed list and nodes waiting to be
processed are placed on an open list.

2. Search 1/3 CS1140 Introduction to AI, 2003/2004 (9/119) 3/7

Breadth-First Search

– Expands nodes in the order in which they are generated:

Level 2

Level 1

Level 0

– The breadth-first search method would generate all nodes at level 1, then all nodes
at level 2 and so on.

– By convention, the nodes on any particular level are generated in order from left to
right.

– The algorithm to achieve this, is as follows:

1. Place the start node s on the open list.

2. If the open list is empty, return failure and exit.

3. If the first element on the open list is a goal node g,
return success and stop, otherwise.

4. Remove and expand the first element (n) from the open list
and place all the successors (children) at the end of the
queue - provide pointers back to node n which has been
placed on the closed list.

5. Return to step 2.

– The procedure applied to the 8-puzzle where the problem is:

1 2 3

8 * 4

7 6 5

2 8 3

1 6 4

7 * 5

would give:

9

2 3 4

1

5 6 7 8

2 8 3

1 * 4

7 6 5

2 * 3

1 8 4

7 6 5

2 8 3

1 4 *

7 6 5

2 8 3

* 1 4

7 6 5

2 8 3

1 6 *

7 5 4

2 8 3

* 6 4

1 7 5

2 8 3

1 6 4

* 7 5

2 8 3

1 6 4

7 5 *

2 8 3

1 6 4

7 * 5

2. Search 1/3 CS1140 Introduction to AI, 2003/2004 (10/119) 4/7

– The 8-puzzle search-space is in fact a graph (i.e. some nodes have multiple parents)
but this can be ignored provided we never generate a particular node more than
once.

– In the above search tree a solution will be found after 47 nodes have been generated
and 26 nodes expanded — the solution is at level 5.

– The space utilisation of the breadth-first search is approximately Bn at level n,
where B is the average branching factor at each level — at level n all these states
will have been placed on the open list — thus space requirements can be prohibitive
if solution paths are long.

– The time complexity of the algorithm is also Bn.

Depth-first Search

– Builds the search tree by expanding the most recently generated nodes first.
– the figure below shows part of the search tree generated by a depth-first search

method for the 8-puzzle. Problem is as before to transform:

1 2 3

8 * 4

7 6 5

2 8 3

1 6 4

7 * 5

and the search tree generated is:

3

2

1

5

4

* 5

2 8 3

1 * 4

7 6 5

2 8 3

* 6 4

1 7 5

2 8 3

1 6 4

* 7 5

2 8 3

1 6 4

7 5 *

2 8 3

6 * 4

1 7 5

* 8 3

2 6 4

1 7 5

8 * 3

2 6

1 7 5

4

2 8 3

1 6 4

7

2. Search 1/3 CS1140 Introduction to AI, 2003/2004 (11/119) 5/7

– The depth-first algorithm is as follows:

1. Place the start node s of depth zero on the open list.

2. If the open list is empty, return failure and exit.

3. If the first element on the open list is a goal node g,
return success and stop, otherwise.

4. Remove and expand the first element (n) from the open list
and place all the successors (children) at the front of
the queue - provide pointers back to node n which has been
placed on the closed list.

5. Return to step 2.

– The difficulty here is that we may expand along some search path which does not
lead to the goal state — to prevent this we provide a ‘backtracking’ procedure
which makes use of the idea of a depth bound.

– The depth of a node is defined as follows:

– the depth of the root node is zero,

– the depth of any other node is the depth of its parent plus one.

– The depth-first search is halted before it generates a node whose depth would ex-
ceed some depth bound and the search is then continued from the deepest node
not exceeding this bound.

– In the example above, for a depth-bound of 6, 18 nodes have to be generated.

– The depth-first search is preferred over the breadth-first when the search tree is
known to have a plentiful number of goals.

– The algorithm is less demanding in space requirements than the breadth-first method
— the space complexity is just B × d (where d is the depth cut-off) — that is, it is a
linear function of the length of the path, since we do not have to keep all the nodes
at a given level on the open list — at each level open retains only the children of a
single state.

Summary

– Depth-first search is preferred for searching a tree-structured search space with
goal nodes at the leaves of the tree.

– Breadth-first search is often preferred for search trees with small branching factors,
operators that are expensive to apply, and goal nodes expected at reasonable depth.

2. Search 1/3 CS1140 Introduction to AI, 2003/2004 (12/119) 6/7

Depth-first with Iterative Deepening

– Performs a depth-first search of the space with a depth bound of one — if it fails
to find a goal, it performs another depth-first search with a depth bound of two —
this continues, increasing the depth-bound by one at each iteration.

– At each iteration, the algorithm performs a complete depth-first search to the cur-
rent depth bound.

– No information about the space state is retained between iterations.

– Since the algorithm searches the space in a level-by-level fashion it is guaranteed
to find the shortest path to a goal.

– This is the optimal algorithm in terms of space and time for uninformed search —
this seems a paradox an intuitive explanation for which has been given by Korf [
R.E Korf ’Search’ in S.C. Shapiro Ed 1987 Encyclopaedia of AI, Wiley, New York]

– the algorithm for the depth-first with iterative deepening is as follows:

1. Initialise the current depth bound c to 1.

2. Place the start node, s, on the open list.

3. If the open list is empty, increment c and return to step
2.

4. If the first element (n) on the open list is a goal node
then return it and the path from the initial node to n ---
return success and exit, otherwise,

5. Remove the first element (n) from the open list and put it
on the closed list. If the level of n is less than c then
expand n and place all successors at the front of the
queue --- provide pointers back to node n.

6. Return to step 3.

The diagram below shows a search tree and the order in which nodes of the tree
are examined using the above algorithm. Nodes may be examined multiple times,
once per iteration corresponding to different depth bound c.

1,2,7

3,8 4,12 5,15 6,18

9 10 11 13 14 16 17 19 20 21

2. Search 1/3 CS1140 Introduction to AI, 2003/2004 (13/119) 7/7

Bi-directional Search

– Can be used when a problem has a single explicit goal state and all node generation
operators have inverses, e.g. 8-puzzle.

– Performed by searching forward from the initial state and backward from the goal
state simultaneously.

– To do this, the program must store the nodes generated on both search frontiers
until a common node is found.

– All three of the blind search methods considered above may be used in the bi-
directional search method.

Non-systematic search

– Search the problem space in a non-systematic manner — thus some portions of
the search space could be searched several times whilst other portions will not be
searched at all.

– Thus there is no guarantee that a goal node will be found, however studies have
shown that on LARGE search problems the performance of non-systematic meth-
ods is often comparable to that achieved by systematic methods of the type de-
scribed above.

Modifications required for searching graphs

– In a graph a node may have more than one parent, contrast this with a tree in which
each node had at most one parent.

– The modifications required for searching graphs are:

Breadth-first

– If a newly generated node already exists on the list then discard it, i.e. do not
place it on the list.

Depth-first

– this is more complicated since we need to redefine the depth of a node — it is
now:

– the depth of the root node is zero,
– the depth of any other node is the depth of its shallowest parent plus one.

– A depth-first search now selects for expansion the deepest node on the open list
(subject to the depth bound) — when the node is expanded and the successors
that are generated are on either the open or closed list then some re-computation
of depth may be necessary.

3. Search 2/3 CS1140 Introduction to AI, 2003/2004 (14/119) 1/5

Unit 3. Search 2/3

Learning Outcomes . You should be able to

- define the terms ‘heuristic’ and ‘heuristic search’

- explain evaluation function and how it is used in a
best-first search

- define and apply best-first search and the A* algorithms

- define admissibility; state when A* is admissible

Informed Search

– are search strategies which use some of the problem domain information in an
attempt to increase the efficiency of the search process — they often depend on
the use of heuristic information. (Heuristic means a rule of thumb, a method that
provides guidance in decision making.)

– The search methods that use heuristic information are known as heuristic search
methods.

– There are many ways in which heuristic information may be introduced e.g. one
way to limit the search effort is to provide more effective and ‘informed’ operators
that generate fewer successors — this technique can be effective for both depth-first
and breadth-first based approaches.

– a second way in which heuristic information can be used is to order the nodes on
the open list in such a way that the most ‘promising’ node is developed first, that
is, the node judged to be the closest to the goal state is always expanded first —
in general we term heuristics that measure the promise of a node as evaluation
functions.

Note
– Heuristics may discard nodes on the solution path, this means that we are no longer

guaranteed to find a solution even if one exists.

Evaluation Functions

– An evaluation function is a heuristic that assigns a numerical value to a node to
indicate the ’promise’ of that node.

– Given an evaluation function, it is then possible to rank the nodes such that the
most promising one can be considered first.

– Evaluation functions may operate on one of a number of principles e.g., they may
calculate the distance between the ‘current’ node and the goal node or they may
evaluate the probability that the node is on the solution path.

– Construction of a good evaluation function is difficult.
– We shall adopt the convention that the smaller the F value delivered by an eval-

uation function the more promising the node.
– Examples of informed search strategies now follow:

3. Search 2/3 CS1140 Introduction to AI, 2003/2004 (15/119) 2/5

Best-First Search (ordered search)

– uses an evaluation function to order the nodes on the open list — the node on the
open list having the smallest F value is expanded first.

– The algorithm is as follows:

1. Place the start node s on the open list.

2. If the list is empty, return failure and exit.

3. If the first element on the list is a goal node, return
success and exit, otherwise,

4. Remove that element from the list with the smallest F value
(call it n) and place it on the closed list, expand n and
place its successors on the open list together with their
associated F values - provide the successors with pointers
back to n.

5. Return to step 2.

– The best-first search algorithm always selects the most promising node on the open
list for further expansion — however, since it is using a heuristic that may prove
erroneous, it does not abandon all other states but maintains them on the open list.

– The best-first approach is illustrated in the figure below where numbers by the
nodes may be regarded as values determined by an evaluation function and which
indicate the ‘promise’ of a node:

HG

2 1

6

A

B C

Step 2

5
D

3 1

D

6

D

56

5

Step 4

CB

G H

A

E F

I J

2
A

Step 1

A

4
F

B C

Step 5

5

6

A

B C

Step 3

5

6

D

E F

4

3

E

5

– Best-first searches will always find good paths to a goal, even when local anomalies
are encountered — all that it requires is a good evaluation function which will give
a reasonable measure of the distance of a node from the goal node.

– It should be noted that the cost of computing the evaluation function can, in some
cases, be significant.

3. Search 2/3 CS1140 Introduction to AI, 2003/2004 (16/119) 3/5

The A* Algorithm

– The choice of evaluation function critically determines the search results — an
evaluation function that ignores the true promise of some nodes may result in
non-optimal solution paths, whilst functions that over-generously acknowledge
the promise of all nodes will result in too many nodes being expanded.

– One particular form of evaluation function guarantees a minimal cost path to a
goal whilst at the same time maximising one measure of search efficiency.

– At each node along a path to the goal, the A* algorithm generates all successor
nodes and computes an estimate of the distance (cost) from the start node to a
goal node through each of the successors — it then chooses the successor with the
shortest estimated distance for expansion — the successors for this node are then
generated, their distances estimated, and the process continues until a goal is found
or the search ends in failure.

– The form of the heuristic estimation function for A* is:

f∗(n) = g∗(n) + h∗(n)

where g∗(n) is an estimate of the cost (or distance) from the start node to node n,
and h∗(n) is an estimate of the cost (or distance) from node n to a goal node — the
asterisks are used to designate estimates of the corresponding true values

f(n) = g(n) + h(n) .

– the choice of g∗(n) is obvious since it is the cost of the path in the search tree from
s to n - this will be the lowest cost found so far and therefore implies that g∗(n) =

g(n) — note that this is not true in general for graphs, since alternate paths from
the start node to n may exist.

– The A* algorithm is as follows:

1. Place the start node on the open list.

2. If the list is empty, exit and return failure.

3. Remove from the open list that node that has the smallest
value of f∗(n) - if the node is a goal node, return success
and exit.

4. Expand n, generating all its successors and place n on the
closed list - for every successor, if it is not already on
the open or closed list, attach a pointer to n, compute
f∗(n) and place it on the open list.

5. For each successor node that is already on the open or
closed list, attach pointers which reflect the lowest g∗(n)

path - if the successor node was on the closed list and
its pointer was changed, remove it and place it on the
open list.

6. Return to step 2.

3. Search 2/3 CS1140 Introduction to AI, 2003/2004 (17/119) 4/5

– The way that this algorithm works can best be illustrated by reconsidering the 8-
puzzle. A simple evaluation function for the 8-puzzle is given by:

– g∗(n) = the length of the path from the start node to node n, that is, the depth
of node n,

– h∗(n) = the number of misplaced tiles from their goal position.

– The graph obtained by applying the A* algorithm to the original 8-puzzle using
the above evaluation function is shown below:

1 2 3

8 * 4

7 6 5

2 8 3

1 6 4

7 * 5

2 8 3

* 1 4

7 6 5

2 * 3

1 8 4

7 6 5

2 8 3

1 4 *

7 6 5

* 8 3

2 1 4

7 6 5

2 8 3

7 1 4

* 6 5

* 2 3

1 8 4

7 6 5

2 3 *

1 8 4

7 6 5

1 2 3

* 8 4

7 6 5

1 2 3

8 * 4

7 6 5

1 2 3

7 8 4

* 6 5

2 8 3

1 6 4

7 * 5

2 8 3

1 * 4

7 6 5

2 8 3

1 6 4

* 7 5

2 8 3

1 6 4

7 5 *

g: 0

f: 5

h: 0

g: 5

f: 7

h: 2

g: 5

f: 5

h: 1

g: 4

f: 7

h: 4

g: 3

f: 5

h: 2

g: 3

f: 7

h: 4

g: 3

f: 6

h: 3

g: 3

f: 5

h: 3

g: 2

f: 5

h: 3

g: 2

f: 6

h: 4

g: 2

f: 6

h: 5

g: 1

f: 4

h: 3

g: 1

f: 6

h: 5

g: 1

f: 4

h: 4

In this example 14 nodes were considered of which 6 were expanded — thus a
reduction has been obtained from the previous algorithms. (Best-first search ex-
panded 9, breadth-first search 58 and depth-first search even 178008 states with a
particular order of operators.)

3. Search 2/3 CS1140 Introduction to AI, 2003/2004 (18/119) 5/5

Admissibility

– An admissible heuristic is one that finds the shortest path to a goal whenever it
exists.

– The breadth-first search is an admissible search strategy.

– It is possible to prove that if h∗ is a lower bound on h, then A* is an admissible
algorithm. So an evaluation function, h ′, is admissible if h ′(n) 6 h(n) for all n,
where h(n) is the actual distance to the nearest goal.

– The heuristic function h(n) = 0 is admissible since it leads to expanding nodes in
order of increasing g(n) — since g(n) is the depth of a node then the A* algorithm
becomes the breadth-first search in this case.

Informedness

– Assume that in order to solve a particular problem we adopt two admissible A*
search strategies, A*1 and A*2 such that for node x

A*1 f∗1(x) = g∗(x) + h∗
1(x)

A*2 f∗2(x) = g∗(x) + h∗
2(x).

If h∗
1(x) 6 h∗

2(x) for all states x in the search space, then heuristic h∗
2 is said to be

more informed than h∗
1.

– In this case, h∗
2 will evaluate fewer states than h∗

1 — the set of states examined by
h∗

2 is a subset of those expanded by h∗
1.

Notes

– The g function determines how good a path to a node is whilst the h function
determines how good the node itself is.

– Thus by incorporating g into f we will always expand the node that appears to be
closest to the goal.

– If we are only interested in finding a solution then we can define g = 0.

– If we want to find a path involving the fewest number of steps then we can set g =

depth, that is, the cost of going from a node to its successor is 1.

– If we want to find the cheapest path then we can set g = the sum of costs of going
from one node to another along the path from the initial node.

4. Search 3/3 CS1140 Introduction to AI, 2003/2004 (19/119) 1/7

Unit 4. Search 3/3

Learning Outcomes . You should be able to

- describe problem-reduction approach to problem solving

- represent problem reductions as AND/OR graphs

- read AND/OR graphs correctly

- define and give examples of key operators

- describe and apply the means-ends analysis

- define the three high level goals and algorithms of GPS

- explain the difference between strong and weak AI methods

The Problem-Reduction Approach

– In contrast to state-space search the problem reduction approach attempts to solve
problems by breaking a problem down into simpler sub-problems — if this process
is continued eventually some sub-problems will be reached whose solutions are
regarded as known or trivial — the solution of these sub-problems then constitutes
a solution of the original problem.

– It is often convenient to describe a problem in terms of the elements of a state-space
description — these are:

S is the set of starting states,

F is the set of operators that map one state description into another,

G the set of goal states.

– Thus the triple (S, F,G) defines a problem and can be used as a problem description.

– When problems and sub-problems are described by (S, F,G) triples the sub-problems
are easily recognised as problems of finding paths between certain stepping-stone
states in the state space.

– The decomposition of a problem can be represented by a special kind of graph
known as an AND/OR graph, in which nodes denote problems to be solved.

AND/OR Graphs

– In an AND/OR graph a circular mark joining the arcs represents conjunction (AND)
thus the graph below indicates that a problem A can be solved either by solving
problems B AND C OR by solving D OR by solving problems E AND F:

FECB

ND

A

M

4. Search 3/3 CS1140 Introduction to AI, 2003/2004 (20/119) 2/7

– Nodes whose children are joined with an arc are called AND-nodes and those
joined without an arc are called OR-nodes.

– In the special case where there are no AND-nodes in the graph then we have a
state-space type graph.

– The object of an AND/OR graph search is to show that the start node (the original
problem) can be SOLVED.

– The nodes in the graph that are already solved are called terminal nodes.

To solve an OR-node we only have to solve ONE of its children nodes.
To solve an AND-node we have to solve ALL of its children nodes.

– Failure to do this will result in conceding that the original problem cannot be
solved.

– Below is an example of an AND/OR graph — terminal nodes are indicated by
the letter t, nodes that can be solved include a star and the solution graphs are
indicated by the darkened arcs.

*

t

t

t

t
*

*

*

*

* *

* *

Planning Mechanisms in Problem Reduction

– Suppose that we are given a problem (S, F,G) and we want to reduce it to a set of
simpler (state-space search) problems. If we could identify a set of ’stepping-stone’
states:

g1, g2, g3, g4, . . . , gn

then the original problem could be reduced to a set of problems specified by the
triples:

(S, F, g1), (g1, F, g2), (g2, F, g3), . . . , (gn, F, G)

– Solving all these problems gives a solution to the initial problem:

(S, F,G)

(g1, F, g2)(S, F, g1) (g2, F, g3) (gn, F, G). . .

– Furthermore, if the stepping stone states are clearly specified then it makes no dif-
ference in which order the successor problems are solved.

We have assumed in the discussion thus far that we know how to decompose the problem.
Now we need to discuss how a problem can be decomposed.

4. Search 3/3 CS1140 Introduction to AI, 2003/2004 (21/119) 3/7

Key Operators

– A problem may have many operators that can be applied and hence the task of find-
ing the entire sequence of operators in the solution could be difficult — however
it is often easier to specify the operator necessary for a crucial step in the problem
solution — such operators are called key operators.

– If a key operator can be determined then this can be used to identify a stepping-
stone state in the problem-reduction process. E.g. if f is a key operator and the
first state that it can be applied to is state B (say) — there may be a set of these in
practice — then we have the problem of getting from B to the goal node — this can
be represented by the following AND graph:

(S, F,G)

(S, F, B) (B, F,G)

apply f

– In practice, it may be difficult to identify a single key operator and perhaps the best
that can be achieved is to identify a subset of operators thought to be crucial. In
this case, each operator in the subset will create a pair of successor problems (as
above).

– How can the set of key operators be identified?

– One way is to use the method based on ‘differences’

– This method of finding key operators involves calculating the difference between
a problem state and the goal state, i.e. why is a particular state not the goal state?
There may be several reasons for this. If they can be ranked in some order of impor-
tance then we can use the most important unsatisfied condition as the ‘difference’.

– This is the approach taken in ‘means-ends analysis’.

Means-ends analysis

– A technique used by the General Problem Solver (GPS) of Newell and Simon to
guide search through a problem space.

– The main principle of means-ends analysis is to detect differences between the cur-
rent state and the goal state. One difference is isolated — usually the most signifi-
cant — and an operator is applied to reduce that difference. If the operator cannot
be applied, then a subproblem is identified of getting to a state in which it can be
applied. This process of removing differences between the current state and the
goal state continues until all the differences have been removed, in which case we
have found a solution path from the initial state to the goal state.

– Assume, for example, that we wish to travel from location A to location B and that
the difference between the locations is given simply by the geographical distance.

– The table below shows a possible list of operators available for reducing geograph-
ical distance:

4. Search 3/3 CS1140 Introduction to AI, 2003/2004 (22/119) 4/7

Distance (miles) Aeroplane Train Car Walk

> 500 ✔

100–500 ✔

2–100 ✔

0–2 ✔

– GPS was organised in terms of goals and methods for achieving these goals.

– In GPS there were the following 3 specific goals:

Transform object A into object B.

Reduce difference D between object A and object B.

Apply operator Q to object A.

– A more detailed description of each is shown in Figure 1 overleaf.

– The list of operators relevant to a difference must be ranked in order to indicate the
most likely operator

– and the differences themselves had to be placed in order of difficulty so that GPS
would attempt to reduce the most difficult difference first. This heuristic helped
GPS to restrict the expansion of the tree of subgoals generated during the course of
the problem.

Weak/Strong methods

– Problem-solving paradigms which require only a weak understanding of the do-
mains to which they are applied are said to use weak methods — the reliance
here is on techniques not any knowledge of the domain. GPS is an example of a
problem-solving system using weak methods.

– Problem-solving paradigms which use a knowledge of the problem domain are
said to use strong methods — expert systems, which will be discussed later, fall
into this category.

– AI practitioners now recognise that strong methods are far superior to weak meth-
ods.

Means-ends analysis applied to the monkey and bananas problem

Monkey and bananas problem

A monkey is in a room containing a box and a bunch of bananas. The bananas are
hanging from the ceiling out of reach of the monkey. What sequence of actions will
allow the monkey to get at the bananas?

4. Search 3/3 CS1140 Introduction to AI, 2003/2004 (23/119) 5/7

Goal 1 — Transform object A into object B

D
to find most important

difference D

Subgoal:
Reduce difference D

(goal 2)

Subgoal:
Transform A’ to B

(goal 1)

SUCCESS FAIL
none fail

success
SUCCESS

FAIL
fail

A’Compare A and B

Goal 2 — Reduce difference D between object A and object B

difference D
Apply Q to A

(goal 3)

SUCCESS
none found

FAIL

Q found
SUCCESS

A’ produced

not achieved

Find operator Q
relevant to reducing

Subgoal:

Goal 3 — Apply operator Q to object A

SUCCESS
Apply Q to A”

(goal 3)

Subgoal:
Reduce difference D’

(goal 2)

Compare A with
conditions of Q —

find most important
difference D

no difference

Apply Q to A SUCCESS

D’ found

FAIL
not achieved

A” produced

FAIL

A’ produced

not achieved

Subgoal:

Figure 1: Goals and Algorithms of GPS

4. Search 3/3 CS1140 Introduction to AI, 2003/2004 (24/119) 6/7

– Clearly the significant elements of the problem are:

the monkey’s position in the room,

the box’s position in the room,

whether the monkey has the bananas.

– For this problem state description schemas of the following form can be used:

(w, x, y, z)

where

w = horizontal position of monkey (a 2-D vector),

x = 1 when monkey was on top of the box, 0 otherwise,

y = horizontal position of the box (a 2-D vector),

z = 1 when the monkey has the bananas, 0 otherwise.

Thus the problem for the monkey to solve is:

(a, 0, b, 0) −→ (c, 1, c, 1)

where c is the floor location directly under the bananas.

– The 4 operators available to the monkey are:

goto(u) : (w, 0, y, z) −→ (u, 0, y, z)

pushbox(v) : (w, 0,w, z) −→ (v, 0, v, z)

climbbox : (w, 0,w, z) −→ (w, 1,w, z)

grasp : (c, 1, c, 0) −→ (c, 1, c, 1)

– Applying means-ends analysis we note that (a, 0, b, 0) fails to satisfy the goal state
because the final element is not a 1 — we can reduce this difference by applying
the grasp operator.

– However, we cannot apply the grasp operator because

the box is not at c, the monkey is not at c and the monkey is not on the box.

– Taking this list of statements as the difference in this case, we identify the following
key operators:

pushbox(c), goto(c), climbbox

– The pushbox operator cannot be applied to the state (a, 0, b, 0) because the monkey
is not at position b. To reduce this difference we have to apply the goto(b) operator
obtaining state (b, 0, b, 0).

– The pushbox(c) operator can now be applied giving (c, 0, c, 0), and then the climbbox
operator can be applied to give (c, 1, c, 0) and finally the grasp operator to give the
goal state (c, 1, c, 1).

4. Search 3/3 CS1140 Introduction to AI, 2003/2004 (25/119) 7/7

GPS algorithm execution for the monkey and bananas problem

A summary of the meaning of state tuples:(
monkey’s position,

1 = monkey on box
0 = monkey on floor

, box’s position,
1 = monkey has banana
0 = monkey is hungry

)
G1 Transform A = (a, 0, b, 0) to B = (?, ?, ?, 1)

step1: D = pos4
step2: G2 Reduce difference D = pos4 between A = (a, 0, b, 0) and B = (?, ?, ?, 1)

step1: Q = grasp (i.e. (c, 1, c, 0) −→ (c, 1, c, 1))
step2: G3 Apply operator Q = grasp to state A = (a, 0, b, 0)

step1: D ′ = pos3
step2: G2 Reduce difference D = pos3 between A = (a, 0, b, 0) and B =

(c, 1, c, 0)

step1: Q = pushbox(c) (i.e. (w, 0,w, z) −→ (c, 0, c, z))
step2: G3 Apply operator Q = pushbox(c) to state A = (a, 0, b, 0)

step1: D ′ = (pos1 6= pos3)

step2: G2 Reduce difference D = (pos1 6= pos3) between
A = (a, 0, b, 0) and B = (w, 0,w, z)

step1: Q = goto(b) (i.e. (w, 0, y, z) −→ (b, 0, y, z))
step2: G3 Apply operator Q = goto(b) to state A =

(a, 0, b, 0)

return: (b, 0, b, 0)

return: (b, 0, b, 0)

A ′′ = (b, 0, b, 0)

step3: G3 Apply operator Q = pushbox(c) to state A =

(b, 0, b, 0)

return: (c, 0, c, 0)

return: (c, 0, c, 0)

return: (c, 0, c, 0)

A ′′ = (c, 0, c, 0)

step3: G3 Apply operator Q = grasp to state A = (c, 0, c, 0)

step1: D ′ = pos2
step2: G2 Reduce difference D = pos2 between A = (c, 0, c, 0)

and B = (c, 1, c, 0)

step1: Q = climbbox (i.e. (w, 0,w, z) −→ (w, 1,w, z))
step2: G3 Apply operator Q = climbbox to state A =

(c, 0, c, 0)

return: (c, 1, c, 0)

return: (c, 1, c, 0)

A ′′ = (c, 1, c, 0)

step3: G3 Apply operator Q = grasp to state A = (c, 1, c, 0)

return: (c, 1, c, 1)

return: (c, 1, c, 1)

return: (c, 1, c, 1)

return: (c, 1, c, 1)

step3: G1 Transform A = (c, 1, c, 1) to B = (?, ?, ?, 1). DONE

5. Game Playing CS1140 Introduction to AI, 2003/2004 (26/119) 1/6

Unit 5. Game Playing

Learning Outcomes . You should be able to

- describe and apply the (depth-bounded) minimax procedure

- list two methods of assessing how good is a particular
evaluation function used in the minimax procedure

- state how to compensate for a less accurate evaluation
function in the minimax procedure

- describe and apply the alpha-beta procedure

- list three ways of improving the minimax and alpha-beta
procedures, explain why these are improvements

Game Playing

– Games have always been an important application area for heuristic algorithms
since they provide some interesting opportunities for developing and testing heuris-
tics.

– A (two-player) game can be represented by a directed graph of the form shown
below:

Player 1

Player 1

Player 2

– Several game-playing algorithms have been proposed. Possibly the most popular
one is:

Minimax Procedure

– Originally introduced into game playing by Shannon (Sci. Amer 1950, 48, 182).

– Based on the strategy that your opponent will always make the move that causes
you the maximum loss.

– Assume that we have an evaluation function through which every game position
can be assigned a numerical value of ‘promise’.

– The convention we shall adopt is that the more positive the numerical value the
greater the promise or desirability of the game position — obviously the converse
will apply to our opponent.

– The opponents in a game are referred to as MIN and MAX. Although this is partly
for historical reasons, the significance of these names is straightforward — MAX
represents the player trying to win, or to MAXimise their advantage, whilst MIN
is the opponent who attempts to MINimise MAX’s score.

5. Game Playing CS1140 Introduction to AI, 2003/2004 (27/119) 2/6

– We assume that MIN always uses the same information and always attempts to
move to a state that is worst for MAX.

– In implementing minimax, we label each level in the search tree according to whose
move it is at that point in the game, MIN or MAX — in the example shown below
MAX is allowed to move first.

– The values in the leaf nodes are static values derived from some (heuristic) evalua-
tion function appropriate for the game.

– Minimax propagates these values up the graph through successive parent nodes
according to the rule:

If the parent state is a MAX node, then give it the maximum value among its
children.

If the parent state is a MIN node, then give it the minimum value among its
children.

MAX

MIN

MAX

123 6 7 3 1 6 9 17 5 2911

– Ideally, the computer should be able to search through the entire tree down to the
leaf nodes which represent the end of the game — but because of the large number
of states generated for non-trivial games this is rarely possible except near the end-
game.

– The diagram in Figure 2 shows the minimax procedure applied to the game of
noughts-and-crosses (tic-tac-toe).

Notes

– Suppose that the evaluation function used is infallible and so the promise of a node
is calculated accurately — in such a case we would need to construct a game tree
of only depth 1.

– This is difficult to achieve in practice however, so we must search the game tree
down to some depth if we are to make a good move since the leaf nodes are ex-
pected to be closer to game termination than the non-leaf nodes.

– Clearly, the effectiveness of the game playing system is heavily dependent on the
evaluation function — thus how can we increase the accuracy of the evaluation
function?

5. Game Playing CS1140 Introduction to AI, 2003/2004 (28/119) 3/6

1

MIN

MAX

5-4=1 6-4=2

5-5=0 6-5=1 5-5=0 4-5=-1

5-6=-1 5-6=-1 6-6=0 4-6=-2

Level 0

Level 1

Level 2

-1 1 -2

6-5=1

6-6=0

Figure 2: Minimax procedure applied to the opening moves of noughts-and-crosses.
States that are symmetrical to some earlier encountered state are omitted.
The evaluation function estimates how much advantage crosses have over noughts.
It is computed as the the number of potential winning triples (in rows, columns and
diagonals) for crosses minus the same for noughts.

– For the root node (or current node) we can calculate the promise of the node di-
rectly from the evaluation function and then compare this value against that prop-
agated up from the leaf nodes — the closer the two values the more accurate is the
evaluation function — thus if over the game tree searched the difference

|promise of the node calculated directly − propagated value|

is on average greater than some threshold value then the evaluation function may
need to be amended.

– Additionally, a comparison can be made between the moves calculated by the mini-
max procedure and those suggested by experts or textbooks — again amendments
can be made to the evaluation function to obtain agreement.

5. Game Playing CS1140 Introduction to AI, 2003/2004 (29/119) 4/6

The Alpha-Beta Procedure

– In the minimax procedure, the process of position evaluation only begins after tree
generation is completed. Thus the process of tree generation is completely separate
from the process of position evaluation which is rather inefficient.

– A considerable reduction in the search effort can be achieved if backed up values
are calculated at the same time as tree generation. The alpha-beta procedure ac-
complishes this and in so doing will always choose the same move as the minimax
procedure but with much less search effort.

– Consider the following fragment of a game tree:

MIN

MAX

10 25

A B

C

– Two values, called alpha and beta are created during the search. The alpha value
associated with MAX nodes, can never decrease, and the beta value, associated
with MIN nodes, can never increase.

– In the above example, MAX’s alpha value is 5 for node A (taken from the backed-
up value from the left fragment of the tree). As MAX will be maximising his score
we know immediately that MAX can get a score of at least 5 without even examin-
ing node B. Evaluating node C, we find that this has a value of 2 — thus the score
for node B therefore cannot exceed 2 since MIN is trying to minimise his score. Thus
there is no point in evaluating any more nodes in this part of the game tree since it
will not affect the eventual outcome, namely, that MAX will choose node A.

– To begin alpha-beta search, we descend so many levels in a depth-first fashion
and apply our heuristic evaluation to the states. The maximum of these values is
then backed up to the parent (assume it is a MAX node, otherwise it will be the
minimum value that is backed up). This value is then offered to the grandparent
as a potential beta cut-off. Next, the algorithm descends to other grandchildren
and terminates exploration of their parent if any of their values is equal to or larger
than this beta value.

Two rules for terminating search, based on alpha and beta values are:

1. Search can be stopped below any MIN node having a beta value less than or
equal to the alpha value of any of its MAX ancestors.

2. Search can be stopped below any MAX node having an alpha value greater than
or equal to the beta value of any of its MIN node ancestors.

– The diagram in Figure 3 shows the alpha-beta approach applied to the opening
moves of noughts-and-crosses.

5. Game Playing CS1140 Introduction to AI, 2003/2004 (30/119) 5/6

5-6=-1

MIN

MAX

5-4=1 6-4=2

5-5=0 6-5=1 5-5=0 4-5=-1

Level 0

Level 1

Level 2

-1 1 -2

6-5=1

1

Figure 3: Alpha-beta procedure applied to the opening moves of noughts-and-crosses.

Additional refinements

– The approach to game playing just described suffers from a number of limitations.

Quiescent state

– Some portions of a game tree may be quiescent (i.e. tactically uninteresting) whilst
other portions are non-quiescent, involving, for example, long tactical exchanges
of pieces.

– Tactical portions of the game tree can be identified by rapidly changing values of
the evaluation function.

– These portions of the game tree should be searched to greater depth until either a
depth bound is exceeded or a state of quiescence reached.

Horizon effect

– If a game playing program searches all paths to the same depth then a ”horizon” is
established beyond which unknown disasters can lurk.

5. Game Playing CS1140 Introduction to AI, 2003/2004 (31/119) 6/6

– The danger here is that low-valued pieces can be seized along paths which will
lead — just over the horizon — to the loss of high-valued pieces later.

– More difficult to eliminate.

– One approach to combat the horizon effect is to conduct a shallow search beyond
the apparently best move.

Book moves

– Book moves (sequences of moves recommended by experts in certain complex cru-
cial situations) can be used, especially in the opening and ending sequences of a
game.

– The program must recognise when the opening sequence ends and the ending se-
quence begins.

Game playing programs

Chess

– Received the greatest attention.

– Deep Blue uses a parallel array computer of 1024 VLSI chips — this enables it to
search the equivalent of 1 billion positions/sec. and to reach a depth of 14.

– The program has a rating of 2600 putting it among the top 100 human players.

Checkers draughts

– Samuel’s program is probably the most famous here — it was developed in 1952
and subsequently improved to a point where it regularly beat Samuel.

– Another program — Chinook — won the 1992 US Open in Checkers using an alpha-
beta search.

Others

– Othello — computer programs better than humans.

– Backgammon — Gerry Tesauro used a neural network technique to develop a pro-
gram which is ranked among the top 3 players of the world.

– Go — branching factor here approaches 360, so brute force search techniques are
hopeless. This needs more sophisticated reasoning methods.

6. Knowledge Repr. CS1140 Introduction to AI, 2003/2004 (32/119) 1/7

Unit 6. Knowledge Representation

Learning Outcomes . You should be able to

- outline production system architecture and explain its
functioning

- define and apply forward and backward chaining

- correctly write and read semantic networks

- list several predicates common in semantic networks

- explain and use inheritance within semantic networks
(including exceptions)

- describe and use intersection search

- list three problems of semantic networks

- explain what a frame is and give an example

- list the kinds of items that may be stored in frame slots

- introduce the concept of script and give an example

- list some strengths and weaknesses of frames and scripts

Several knowledge representation schemes have been used in AI programs — we shall
consider some of these.

Production Systems

– A production system is a set of rules, called productions, that embodies knowledge
about a particular domain, and which can be used for making inferences in that
domain.

– In AI, production systems are also known as rule-based systems.

– A production states that if a certain set of conditions holds then a certain set of
actions can be performed — the terms condition and action are interpreted broadly.

– Production systems are modular — new productions corresponding to new bits of
knowledge can be added without affecting the way the production system works.

– A rule can be considered to consist of a condition and an action, also referred to as
’antecedent’ and ’consequent’ — the general form of which is:

IF C THEN A

which stands for: ‘if the conditions C are true then perform the actions A’.

6. Knowledge Repr. CS1140 Introduction to AI, 2003/2004 (33/119) 2/7

Overview

A system based on production rules will usually have 3 components:

1. A rule base, consisting of a set of production rules.

2. A working memory, consisting of one or more data structures which contain the
known facts relevant to the domain of interest.

3. An interpreter which has the special task of deciding which rule to fire next and
then initiating the corresponding action. It may happen that more than one rule is
enabled and can fire — to establish which of the enabled rules to fire, the interpreter
will invoke a conflict resolution strategy which will determine the candidate. Sev-
eral conflict resolution strategies have been proposed.

The rules have a syntax which is known to the interpreter, which can therefore manip-
ulate these logically deciding on their truth or otherwise.

Classification of interpreters

One way of characterising an interpreter (or inference engine) is according to the way
in which it tries to apply the rules — there are two possible approaches:

In forward chaining, we start from a set of initial conditions and perform the actions
described. This step creates a new set of conditions in which further productions are
triggered. This process continues until the required conclusion is reached.

In backward chaining, the goal or statement to be proved is taken as the starting point.
The set of productions which refer to this goal are then tested to see if their conditions
are true — if so the goal has been reached, otherwise, an attempt is made to prove the
conditions are true by considering other production rules which refer to the conditions.
This process continues until either the goal has been reached or all the rules have been
considered in which case the goal cannot be reached

Simple example

Rule Base:
R1 IF suckles young THEN mammal
R2 IF has feathers THEN bird
R3 IF has fur or mammal THEN lives in forest
R4 IF bird and does not fly and does not live in forest THEN penguin
R5 IF lives in forest and very heavy THEN bear
R6 IF very heavy and mammal THEN whale

Initial Facts:
FACTS = (suckles young, very heavy)

Execution — forward chaining

Interpreter is invoked with the conflict resolution strategy of always picking the rule
with the lowest serial number.

6. Knowledge Repr. CS1140 Introduction to AI, 2003/2004 (34/119) 3/7

1. R1 fires
WM = (suckles young, very heavy, mammal)

2. R1, R3 and R6 are enabled — R1 is rejected because it duplicates a property already
known — so R3 is selected.

WM = (suckles young, very heavy, mammal, lives in forest)

3. R1, R3, R5 and R6 are enabled — R5 is selected.
WM = (suckles young, very heavy, mammal, lives in forest, bear)

4. R6 is now selected, executed and the system halts.
WM = (suckles young, very heavy, mammal, lives in forest, bear, whale)

In the case of backward chaining we would hypothesise that the animal was a bear
and then attempt to prove this.

Semantic networks

– Used to encode information about meaning — when used for other purposes they
have been referred to as associative networks.

– Introduced by Quillian to model the semantics of English sentences and words.

– are directed graphs in which nodes represent objects or concepts in the problem
domain and the arcs represent relations or associations between them. for example:

John house
owns

– a number of arc relations have become common among users — they include such
predicates as:

isa, member-of, subset-of, ako (a-kind-of), has-parts, instance-of, agent, attributes,
shaped-like

– An example of a semantic network is shown in Figure 4.

– When we talk about parent and children concepts, we mean those that are linked
by the isa relation.

– Properties possessed by parent concepts are often ‘inherited’ by their children. (E.g.
a Bird can Breathe because Bird isa Animal and Animal cam Breathe.)

– Shared properties are attached only to the highest node in the structure to which
they apply.

– Several benefits come from the inheritance of properties — they allow information
to be stored at the highest level of abstraction, which reduces the size of the knowl-
edge bases and helps prevent inconsistencies caused by improper updates.

– Inheritance can be recognised as a form of default reasoning.

– Semantic networks implement inheritance — for example, the canary inherits all
the properties of birds — thus the network could be used with appropriate infer-
ence rules to answer a range of questions about canaries, birds and ostriches. These
inferences are made by following the appropriate links to related concepts.

6. Knowledge Repr. CS1140 Introduction to AI, 2003/2004 (35/119) 4/7

cannot

Animal

Breathe

Skin

Move

can

has

Bird

Fly

Wings

Feathers

can

has

has

can

isa

isa

Ostrich
Tall

Fly

can

is

Canary
Sing

Yellow
isa

is

Figure 4: A Semantic Network

– When exceptions are to be dealt with then this can be done at the specific level.
(E.g. Bird can Fly in general but Ostrich is an exception, explicitly marked in the
network.)

– To establish a relationship (i.e. a path of links) between two concepts, we can use an
intersection search in which we move outwards by one link from each concept in
every step. If this spreading activation intersects then a relationship will have been
established between the concepts since there is a path from each to the other. The
nature of this relationship will naturally depend upon the links that were traversed
in establishing the intersection. For example, consider the network in Figure 5 and
note that relationships between FRED and Meat found by the intersection search
are:

– FRED is an Animal and so is Cow which gives Meat.
– FRED owns FIDO who eats Meat because he.is a Dog.

– There are several problems with semantic nets, including:

1. Notation has not been uniform.
2. The intersection search ‘explodes’ very quickly as the number of links increases

— raising the possibility of combinatorial explosion.

6. Knowledge Repr. CS1140 Introduction to AI, 2003/2004 (36/119) 5/7

owns

Animal

isa isaisa

FIDOFRED Meat

DogPerson Cow

isa isa eats gives

Figure 5: A Semantic Network

3. Difficult to distinguish between an individual and a class of individuals:

isa
Endangered

Species
studied by

Naturalists

RobinRoger
isa

We conclude that Roger is studied by naturalists which may or may not be true.
The problem is that Roger is a particular Robin while Robin as a class of birds is an
Endangered Species.

Frames

– First introduced by Marvin Minsky (1975).

– Minsky described frames as ‘data structures for representing stereotyped situa-
tions’, originally proposed as a basis for understanding visual perception, natural
language dialogue and other complex behaviour.

– For example, the prototypical car has four wheels, a chassis, engine etc. This in-
formation could be stored in a frame representing all the common attributes of all
cars. Any specific car could then inherit this information from the prototypical
representation.

– A frame is a description of an object that contains slots for all the information asso-
ciated with the object.

– Slots may store values, default values, pointers to other frames, sets of rules, or
procedures by which values may be obtained.

– An example of a frame of a particular car is in Figure 6.

– The top levels of a frame are fixed, and represent things that are always true about
the supposed situation — the lower levels have many slots that must be filled by
specific instances of data.

– Collections of related frames are linked together into frame systems.

– A property inheritance hierarchy may be established among the frames.

6. Knowledge Repr. CS1140 Introduction to AI, 2003/2004 (37/119) 6/7

CAR

Slots Entries

Owner Jones
Type Saloon
Colour Blue
Wheels Default: 4
Doors Default: 4
Engine 1600cc
Petrol consumption If needed — see handbook
Registration Unknown
Insurance class If needed — consult company

Figure 6: A frame for a car

– Default and inherited values are relatively inexpensive methods of filling in slots
— they do not require powerful reasoning processes.

– The inclusion of procedures in frames joins together in a single representational
strategy two complementary (and historically, competing) ways to state and store
facts — procedural and declarative representations.

– Declarative and procedural representations are alternative strategies which achieve
the same effect — frames gain power, generality and popularity by their ability to
integrate both representations.

– A number of frame-based languages have been developed (e.g. KRL, FLAVORS,
LOOPS) — these typically have functions to create, access, modify, update and
display frames.

Schemata

– A frame is often associated with a class of objects or a category of situations. E.g. a
frame “vacation” may provide slots for all the usual important features of a vaca-
tion: where, when, principal activities, cost etc.

– Frames for particular vacations are then created by instantiating this general frame.
Such a general frame is called a schema and the frames produced by instantiating
the schema are called instances.

– To instantiate a schema a new frame is created by allocating memory for it and then
filling in the necessary slots — note not all slots need to be filled.

Scripts

– Used to represent sequences of commonly occurring events — introduced by Roger
Schank for understanding natural language texts.

– A script is a predefined frame-like structure which contains expectations, infer-
ences and other knowledge relevant to a stereotypical situation.

6. Knowledge Repr. CS1140 Introduction to AI, 2003/2004 (38/119) 7/7

– They are constructed using basic primitive concepts and rules of formation e.g.

script name supermarket

roles shopper
checkout person
stacking attendant
seafood/meat attendant
other shoppers

entry conditions shopper needs groceries
supermarket open

props shopping carts
market items
display aisles
checkout units
cashier
money

scene 1 enter supermarket
shopper enters supermarket
shopper acquires shopping cart

scene 2 shop for items
shopper moves through aisles
shopper transfers items to shopping cart

scene 3 check out
shopper moves to checkout stand
. . .
supermarket sacker gives bags to shopper

scene 4 exit market
shopper exits market

– Using the script, the system can then answer relevant questions to the above sce-
nario. E.g. if it is known that John entered a supermarket, it can be inferred that
he needed groceries, shopped for items, paid for them so that when he left the su-
permarket he had the relevant items but had less money than when he entered the
supermarket.

– Scripts have the difficulty of matching the problem being considered with the rele-
vant script. It is often difficult to determine which of two or more potential scripts
should be used, no algorithm exists for guaranteeing correct choice.

– The script representation has a certain inflexibility so that it cannot deal with any
untoward events, e.g. fire in supermarket curtailing acquisition and payment of
items.

7. Expert Systems CS1140 Introduction to AI, 2003/2004 (39/119) 1/6

Unit 7. Expert Systems

Learning Outcomes . You should be able to

- define what expert system is

- describe a typical user interaction with an expert system

- describe three successful expert systems

- list eight typical tasks tackled by expert systems

- list three weaknesses of expert systems from 1980’s

- decide when a task is worthy of developing an expert
system for

‘Machines that lack knowledge seem doomed to perform intellectually trivial tasks. Those
that embody knowledge and apply it skilfully seem capable of equalling or surpassing
the best performance of human experts. Knowledge provides the power to do work;
knowledge engineering is the technology that promises to make knowledge a valuable
industrial technology’.

What is an Expert System?

An expert system (ES) has been defined as ‘a computing system which embodies or-
ganised knowledge concerning some specific area of human expertise, sufficient to
perform as a skillful and cost-effective consultant.’

Alternative terms with a broadly similar meaning are:

“knowledge-based systems”, “expert consulting skills”, “rule-based systems”,
“intelligent knowledge-based systems”

Intelligent knowledge-based systems (IKBS) was one of the four fields singled out by
the Alvey Report — a remarkable change in attitude since 1973 when the Lighthill
Report almost single-handed stunted the growth of Artificial Intelligence in the UK —
AI has gained respectability from the advent of Expert Systems.

Example Expert Systems

AI researchers have built up an impressive collection of expert system programs in
diverse areas; the following show some of the achievements:

PROSPECTOR (1974–1983) — discovered a molybdenum deposit of value >

$1,000,000,000.

XCON (R1) (1980–1987) — configures VAX computer systems. Resident experts
thought it would not be possible.

DENDRAL (late 1960’s) — capable of chemical structure elucidation

7. Expert Systems CS1140 Introduction to AI, 2003/2004 (40/119) 2/6

MYCIN (mid 1970’s) — early and still famous medical diagnosis tool. Identification
of bacteria in blood and urine samples; prescription of antibiotics.

CADUCEUS — embodies more knowledge of internal medicine than any human
and can correctly diagnose complex test cases that confuse human experts. In
1982 system possessed 100,000 associations representing nearly 85% of all relevant
knowledge.

Example of an Expert System Consultation — MYCIN Dialogue

The example dialogue with the MYCIN expert system in Figure 7 illustrates the capa-
bility of expert systems.

Expert System Architecture

The main components of an expert system are shown below:

Inference Engine

Knowledge Base

Knowledge Base (KB)

– Contains the knowledge about a specific domain and is quite separate from the
program.

– A number of advantages ensue from this architecture:

1. Knowledge can be represented in a more natural fashion than computer code.

2. In developing a KB attention can be given to the acquisition and organisation of
knowledge rather than the details of computer implementation.

3. Changes can be made to the KB without creating side effects in other parts of the
program code.

4. Removal of the KB provides an expert system shell which can be used in variety
of systems.

Inference Engine (IE)

– Manipulates the rules to make inferences, diagnoses etc.

– Feigenbaum states that ‘expert systems must be knowledge rich even if they are
methods poor.’

7. Expert Systems CS1140 Introduction to AI, 2003/2004 (41/119) 3/6

22 Was any chemotherapy recently begun specifically to combat ORGANISM-1?

NO

23 Is Jeremiah Sample (PATIENT-1) a burn patient?

RULE

RULE 047

IF: 1. THE SITE OF THE CULTURE IS BLOOD, AND

2. THE IDENTITY OF THE ORGANISM IS NOT KNOWN WITH

CERTAINTY, AND

3. THE STAIN OF THE ORGANISM IS GRAMNEG, AND

4. THE MORPHOLOGY OF THE ORGANISM IS ROD, AND

5. THE PATIENT HAS BEEN SERIOUSLY BURNED

THEN: THERE IS WEAKLY SUGGESTIVE EVIDENCE (.4) THAT

THE IDENTITY OF THE ORGANISM IS PSEUDOMONAS

NO

24 Is the patient’s illness with ORGANISM-1 a hospital-acquired infection?

YES

25 Do you consider Jeremiah Sample (PATIENT-1) to be a compromised host ?

(alcoholic, immunosuppressed, etc):

NO

26 Has Jeremiah Sample (PATIENT-1) had any gu surgery or manipulation

of the urinary tract? (e.g. indwelling catheter, etc.)

WHY

I AM TRYING TO FIND OUT ABOUT THE IDENTITY OF THE ORGANISM.

I ALREADY KNOW THAT:

THE PORTAL OF ENTRY OF THE ORGANISM IS UPPER-GU

THE MORPHOLOGY OF THE ORGANISM IS ROD

THE STAIN OF THE ORGANISM IS GRAMNEG

THE SITE OF THE CULTURE IS BLOOD

THEREFORE, IF:

1. THE PATIENT HAS NOT HAD A GENITO-URINARY MANIPULATIVE

PROCEDURE, AND

2. URINARY-TRACT-INFECTION IS NOT A PROBLEM FOR WHICH THE

PATIENT HAS BEEN TREATED

THEN:

THERE IS SUGGESTIVE EVIDENCE (.6) THAT THE IDENTITY OF THE

ORGANISM IS E.COLI

(RULE 156)

Figure 7: Example of a MYCIN dialogue

7. Expert Systems CS1140 Introduction to AI, 2003/2004 (42/119) 4/6

– Patched-together methods are likely to run into trouble with failure to detect all the
relevant (or the most relevant) situations. Difficulties include circular applications
of subsets of rules, duplications of steps and general computational inefficiency
due to ’combinatorial explosion’. (In a world where there is a combinational rate
of increase of paths through the rule-set as the number of steps on the paths in-
crease.)

Explanation

– Expert systems should provide an ‘explanation’ facility which enables the user to
consult the system interactively to ask for explanations of the system’s decisions,
diagnoses etc. and the ’lines of reasoning’ used to obtain them.

– Such explanations (which may involve listing of rules etc.) are themselves given
in the form of English text meaningful to the user — not internal codes. Some
systems (e.g. MYCIN) provide the capability for the user to examine the system’s
line of reasoning in detail and suggest modifications to rules or include new rules
if this is felt to be appropriate.

Knowledge Acquisition

– It is the task of a “knowledge engineer” to extract the expert knowledge and organ-
ise it. To achieve this generally involves a period of intensive discussion with one
or more subject experts and the analysis of a selected set of test cases.

– At the moment, KNOWLEDGE ACQUISITION is a bottleneck in the construction
of expert systems.

– Knowledge for an expert system can be acquired in several ways — figures below
illustrate two possible interactions.

THEN. . .

?!

Expert Knowledge Engineer

IF. . .

Knowledge Base

THEN. . .

Expert

IF. . .

intelligent Knowledge Editor

Knowledge Base

7. Expert Systems CS1140 Introduction to AI, 2003/2004 (43/119) 5/6

– A knowledge-acquisition method that may become feasible in the future is to ac-
quire the knowledge directly from textbooks using an induction program to build
the knowledge base. It is not currently feasible.

Types of Problems Tackled by Expert Systems

Useful to sort applications in terms of problem-solving paradigms:

Control — controls the behaviour of a given system (e.g. control the manufacturing
process, the treatment of a patient)

Design — designing a system given possible problem constraints (e.g. design of elec-
tronic circuits)

Diagnosis — diagnose faults from given information — sometimes offers prescription
(e.g. diagnosis of patient’s ills and possible treatment of)

Instruction — to guide the education of a student in a given topic (e.g. GUIDON for
teaching students about bacterial infections)

Interpretation — attempts to produce an understanding of a situation from available
information — the information may derive from such sources as sensors, instru-
ments, test results etc. (e.g. FXAA provides auditing assistance in foreign exchange
trading)

Monitoring — compare observable information on the behaviour of a system against
that considered crucial for normal behaviour (e.g. NAVEX monitors position and
velocity of the space shuttle)

Planning — planning systems attempt to form plans, actions to achieve a given goal
subject to certain constraints (e.g. PLANPOWER provides a wide range of financial
plans for wealthy households)

Prediction — attempt to predict the future by inferring likely consequences from a
given situation (e.g. likely effect of natural catastrophes on plant production)

Prescription — recommend solutions to overcome given system malfunction (e.g. BLUE-
BOX recommends appropriate therapy for patients suffering from depression)

Selection — selection systems attempt to identify the best choice from a list of possibil-
ities (e.g. IREX assists in the selection of industrial robots in a work environment)

Simulation — simulation systems model a process or system to permit operational
studies under various conditions (e.g. STEAMER simulates and also explains the
operation of the Navy’s frigate steam propulsion plant to aspiring naval engineers)

Importance and Benefits of Expert Systems

1. Have the capacity to improve qualitative factors (better decisions, enforce consis-
tent methods, preserve expertise).

2. Encapsulate codified knowledge which can then be evaluated.

3. Expert Systems offer standardised problem-solving.

4. Always available.

7. Expert Systems CS1140 Introduction to AI, 2003/2004 (44/119) 6/6

Selecting a Problem for Expert System Development

It is appropriate to invest in developing an expert system if:

1. Benefits justify the cost and effort of building an ES.

2. The problem may not be solved using traditional computing methods.

3. The problem domain is well defined.

4. The problem may be solved using symbolic reasoning techniques and does not
require commonsense reasoning.

5. The problem is of a realistic size and scope.

6. Experts exist who are co-operative and articulate.

Representation of Knowledge

– In AI, a REPRESENTATION OF KNOWLEDGE is a combination of data structures
and interpretative procedures that, if used in the right way in a program, will lead
to ‘knowledgeable behaviour’

– The different expert knowledge representation approaches used in AI are as fol-
lows:

– Logic

– Procedural representation — e.g. in a LISP, C or ADA program

– Semantic networks

– Production systems (= rule-based systems)

– Frames

– Scripts

8. Comp. Vision 1/2 CS1140 Introduction to AI, 2003/2004 (45/119) 1/8

Unit 8. Computer Vision 1/2

Learning Outcomes . You should be able to

- define the goal of computer vision, name several
application areas

- define the usual five stages of computer vision, briefly
explain each

- list three reasons why computer vision is hard to
implement, comparing it with the human vision system

- explain how thresholding works and what it is good for

- explain what smoothing is for

- apply a given filter mask

- describe edge detection process that uses a given
difference operator

- describe and apply basic line finding procedure based on
observing changes in line direction

- describe the main idea of the Hugh transform line finding
procedure

- describe Guzman’s procedure and apply it to simple scenes

– Computer vision is an intensely studied area of AI

– The ultimate goal of computer vision is to build systems that equal or exceed the
capabilities of the human visual system. Ideally, a computer vision system would
be capable of interpreting and describing any complex scene in complete detail.

– Some typical areas of application: screening of medical images, robotics, sorting
picking and bin packing of items, terrestrial image mapping, weapons guidance,
parts inspection for quality control, face and fingerprint identification.

– A typical computer vision system should be able to perform: image acquisition,
image segmentation, shape interpretation and recognition.

– These activities are realised in stages as follows.

Stage 1: digitisation (getting a picture into the computer)

an analog camera picture −→ brightness array

– It requires a camera for image acquisition — two or more images are required for
stereoscopic vision.

– The brightness array is a 2-D array whose elements describe pixels (picture ele-
ments). To obtain a brightness array from a picture or a scene, its elements are
extracted from some form of light sensitive surface. A typical computer display
screen can be viewed as a brightness array.

8. Comp. Vision 1/2 CS1140 Introduction to AI, 2003/2004 (46/119) 2/8

– The colour of each pixel is stored as a sequence of 1 or more bits. In the simplest
case of monochrome pictures, only 1 bit is required to hold the colour information
(0 normally corresponds to black, 1 to white). 8 bits will describe one of 256 colours.

– These sequences of bits encode numbers. In case of B&W pictures, these numbers
correspond to the grey level intensity of each pixel. For colour images, the pixel’s
value typically comprises three separate numbers, one for the intensity value of
each of the three basic colours: red, green and blue.

– The size of a brightness array is called its resolution.

– In order to give a quality comparable to the traditional TV, we need a resolution
of at least 500x500. A typical resolution of a computer display screen is between
800x600 and 1600x1200.

– Required resolution always depends on the application. In some cases a lower
resolution (30x50) may be acceptable whilst in other cases 1000x1000 is insufficient.

Stage 2: signal processing

brightness array −→ better brightness array

Low-level processing of the digital image in order to enhance significant features. E.g.
smoothing of neighbouring points to reduce noise and thresholding.

Stage 3: edge and region detection

brightness array −→ edge point description

– Here, simple features are identified such as lines or edges in the image to produce
an output, called the primal sketch, which is essentially a line drawing of the im-
age.

– Edges or boundaries = sites of significant intensity or colour gradients (i.e. changes
in colour or intensity).

Stage 4: object recognition

edge point description −→ object shape representation

– Fit line segments to edge points and identify closed regions.

– It involves connecting, filling in, and combining boundaries, determining regions
and then assigning descriptive labels to objects that have been identified during
this process.

– Objects will be identified as a line drawing with lines, regions and junctions.

– The output is sometimes referred to as the 2 1/2D sketch.

8. Comp. Vision 1/2 CS1140 Introduction to AI, 2003/2004 (47/119) 3/8

Stage 5: image understanding

object shape representation −→ spatial knowledge representation

– Making sufficient sense of the image to use it.

– Consists of identifying the important objects in the image and their relationships.
(For example: object X is a ball, object Y is a goal, X is near Y.)

– Some systems may also require 3-D analysis and motion detection. (E.g. X is not
yet really inside Y, X is moving towards Y.)

Human Vision

– very sophisticated and highly evolved.

– In terms of image acquisition, the eye is totally superior to any camera system yet
developed.

– The retina contains 2 classes of discrete light receptors — rods and cones.

– The cones of which there are 6-7M in the eye are highly sensitive to colour. Each
cone is connected by its own nerve to the brain.

– There are at least 75M rods in the eye distributed across the retina surface. They
are sensitive to light intensity but not colour. They share nerve endings.

– The range of intensities to which the eye can adapt is of the order of 1010 = 10

billion from the lowest visible light to the highest bearable glare.

Problems of Computer Vision

Vision is a challenge for AI because:

1. The world is 3-D (i.e., as we imagine it, not in reality) and the images from which a
description must be formed are only 2-D projections.

2. Technical problems encountered in getting a “clean” image.

3. large amount of data to process

Low level processing (stages 2 and 3)

– A raw digitised image will contain some noise and distortion.

– Low level processing will often require local smoothing of the array to eliminate
this noise.

– Other low level operations include threshold processing to help define homoge-
neous regions and different forms of edge detection to help define boundaries.

8. Comp. Vision 1/2 CS1140 Introduction to AI, 2003/2004 (48/119) 4/8

Thresholding

– used to sharpen object regions by enhancing some portions and reducing others
(e.g. noise and unwanted features).

– It is the process of transforming a grey-level representation to a binary representa-
tion of the image.

– All digitised array values above some threshold T are set equal to the maximum
grey level value (black) otherwise set equal to zero (white).

– Selecting an appropriate threshold level settings can be done by producing a his-
togram of the image grey-level intensities. This is then analysed to determine
where concentrations of different intensity levels occur. A value of T is chosen
at which the histogram shows a clear separation between intensity levels.

Smoothing

– used to reduce noise and other unwanted features.

– Various techniques have been employed.

– One common method of smoothing is to replace each pixel in the array with a
weighted average of the pixel and its neighbouring values. This can be accom-
plished with the use of filter masks.

– Two typical masks are shown below — one using 4 neighbourhood pixels, the other
8, where the central pixel is the one to be processed.

1/2

1/8

1/2

1/8

1/8 1/8

1/32 1/32

1/321/32

3/32 3/32

3/32

3/32

For example, a block of pixels having the values shown below

0

1

1

1 1

1

1 0

0

would, when applying the latter filter, give a value for the central pixel of:

1 × 1
32

+ 1 × 3
32

+ 0 × 1
32

+

1 × 3
32

+ 1 × 1
2

+ 0 × 3
32

+

1 × 1
32

+ 1 × 3
32

+ 0 × 1
32

= 27
32

which would be assigned the value 1 (i.e. black)

8. Comp. Vision 1/2 CS1140 Introduction to AI, 2003/2004 (49/119) 5/8

– This calculation can be repeated for almost all the remaining pixels. Note that
the technique cannot be applied at the boundaries and so the smoothed image is
smaller than the original by the width of the smoothing filter.

– Applying a mask to an image array has the effect of reducing spurious noise as
well as sharp boundaries.

– The sliding and summing operations are called convolution.

Edge detection

– Edges of objects can be found by looking for places where the intensity at nearby
pixels is significantly different.

– At the simplest level, we could measure the difference between two adjacent pixels
in the image array and mark an edge if the difference exceeds some threshold.

– A better technique is to use difference operators which are small masks (2x2 or 3x3
arrays) that are placed over groups of points in the image. The difference operation
now involves taking each mask value multiplying it by the corresponding image
intensity value and summing the result. E.g. if we have a mask

−1 +1

−1 +1
operating on

1 2

5 6

then the result is: +1× 2 + 1× 6 − 1× 1 − 1× 5 = 8 − 6 = 2. We can conclude there
is an edge if the magnitude of the resulting number is greater than some threshold.

– A variety of difference operators have been proposed in the literature, e.g. Sobel
operator listed below for the horizontal (x) and vertical (y) directions. Some opera-
tors, including the Sobel operator, combine finding differences with smoothing.

−1 0 1

−2 0 2

−1 0 1

1 2 1

0 0 0

−1 −2 −1

Line Finding

– Several techniques have been used here.

– A simple approach is to follow edge pixels noting when there are dramatic changes
in direction.

– For example, consider the following array:

8. Comp. Vision 1/2 CS1140 Introduction to AI, 2003/2004 (50/119) 6/8

– Let the angle between adjacent pixels be measured in a clockwise direction from the
vertical and then starting from the lower left hand corner we obtain the following
angle changes:

45 0 45 0 45 0 45 135 135 135

and the calculated angle differences between the above being:

−45 45 − 45 45 − 45 45 90 0 0

– If we now apply a threshold of 90◦ to the above angle differences, then we find that
the topmost pixel corresponds to a junction, that is, a point at which 2 or more lines
meet. When the junctions have been found, we can approximate the two lines as
shown below:

– This is a very simple approach which has limitations: in practice, the threshold an-
gle is dynamically calculated in terms of the average angle between neighbouring
pixels.

Hough Transform

– Another way to find lines is to start with an edge point and then travel along, look-
ing for other connected edge points. This unfortunately does not work well in
practice because there are usually breaks in the line.

– A better approach for line finding is the Hough transform.

– The idea in the Hough transform is to consider equations of line or curved seg-
ments. Thus, if we are looking for straight lines, we know that they can be repre-
sented by the equation y = mx + c for some coefficients m and c.

– Starting with an edge point, we consider all possible straight lines (i.e. all values of
m and c in suitable discrete steps) and then check for each resulting line how many
points fall on it. We then assume that lines containing the most points are actual
lines in the image.

– This can be repeated for curves where the equation is:

y = ax3 + bx2 + cx + d

with various combinations of a, b, c and d.

8. Comp. Vision 1/2 CS1140 Introduction to AI, 2003/2004 (51/119) 7/8

Guzman 1968

adopted an empirical approach to scene segmentation (stage 4). Consider the following
simple scene:

B
A

C

D

1. A Y-junction (i.e. one with 3 edges resembling the letter “Y”, e.g. point A in the
scene above) gives evidence that the three regions meeting at the junction should
be grouped together.

2. A W-junction (e.g. the points B, C, D in the scene above) gives evidence that the
two regions included between the narrow angles of the “W” should be grouped
together.

7

G H
E

1

3

4

2

5 6

7

3. An X-juction (e.g. point E in the scene above) gives evidence for grouping together
the regions on each side of the ‘straight-through’ line of the “X”. I.e. group together
regions 1 and 2 and regions 3 and 4 in the left-hand-side scene above.

4. Two collinear T-junctions (e.g. points G, H in the scene above) give evidence for
grouping together the regions on the same side of the stem of the “T”s (e.g. region
5 is grouped with region 6).

Below is another scene and a graph showing all grouping evidence links derived
using the above rules:

A

7

A

B

C
D

E F
G

1
2

6

4 5 3

7

7

7

1

2 3

D
D

B

C

D G

F

4

5
E

G

6

G

8. Comp. Vision 1/2 CS1140 Introduction to AI, 2003/2004 (52/119) 8/8

5. Two nodes (i.e. regions) are to be grouped together if there are at least 2 links
between them.

4

7 7

2 3 5 6

1 4

2,3 5,6

1

1,2,3 4,5,6 1,2,3 4,5,67 7

9. Comp. Vision 2/2 CS1140 Introduction to AI, 2003/2004 (53/119) 1/6

Unit 9. Computer Vision 2/2

Learning Outcomes . You should be able to

- describe and recognise the four types of polyhedron
vertices considered by Huffman in his work on Impossible
Solid Objects

- list Huffman’s labels used for edges in a line drawing
and define their meaning

- correctly label (using Huffman’s approach) the edges in a
given line drawing of a scene with polyhedra

- do the previous as a state-space search, thus being able
to find all possible labellings or prove that there is no
correct labelling for a given drawing

- recognise vertices and points whose outgoing edges are
labelled in a way which cannot be achieved in a real
scenario

- list three ways in which Waltz extended Huffman’s
labelling

- give at least one reason why Waltz’s algorithm is fast

Huffman’s work on Impossible Solid Objects

D A Huffman ’Impossible Objects as Nonsense Sentences’
Machine Intelligence 1971, vol 6, 295-325.

– Huffman considered the analysis of scenes containing solid polyhedrons.

– The solid polyhedrons were assumed to have exactly 3 planar surfaces at each of
the vertices and 2 surfaces associated with each edge.

– There are 4 basic ways in which 3 plane surfaces can come together at a vertex. We
call them vertex types and use the numbers 1 , 3 , 5 , 7 to identify them. All
four can be illustrated in the picture of a fireplace and raised hearth shown in Fig.
below.

5

7

5

1

5

33

5 5 57

1

T

T

T

One by one, the 4 vertex types are illustrated in Figure 8.

9. Comp. Vision 2/2 CS1140 Introduction to AI, 2003/2004 (54/119) 2/6

1

75

3

Figure 8: Huffman’s four vertex types

– By analysis of the above four scenes and with the following definitions

+ convex edge
– concave edge
−→ looking in the direction of the arrow the face to the right is visible

we obtain the scenes shown in Figure 9 listing all the possible ways of viewing the
given vertices.

– From this, we finally derive the following catalogue of all possible representations
of the vertices of trihedral solids:

+

–

––
– –

–

––

+ +

++
+ +

+

+

–

– Moreover, at each T-junction in a scene, the three edges normally have one of the
following labellings:

–+

– Figure 10 shows a search for a valid labelling in an example scene. The junctions
in the image are processed one by one in the order A, B, C,. . . For each junction,
the catalogue is looked up to find all possible labellings of its neighbouring edges.
Some of these edges might have already been labelled by the other junctions. Only
the labellings of the new junction consistent with the previous labelling are consid-
ered. For each of the possible consistent labellings, a new branch in the search tree
is created. If there is no consistent labelling, the previous labelling was wrong and
the current branch is terminated.

9. Comp. Vision 2/2 CS1140 Introduction to AI, 2003/2004 (55/119) 3/6

– –

–
––

7

–

– –

5

–

+
+
+ +

+ +

+ +

+

1

3

Figure 9: Huffman’s four vertex types viewed from various angles as Y, W and L
vertices with edge type annotations.

9. Comp. Vision 2/2 CS1140 Introduction to AI, 2003/2004 (56/119) 4/6

. . .

+

– –

– –

++

++

++

+

+

++

+

++

+

– –

–

–
+ +

–

–

+

–

–

–

!

! ! !
! !

B

L

K

J

C C C C

DDDD

FE
A

CB
D

E

F

I

H

G

A

B B

Figure 10: Application of Huffman’s method on an example scene.

9. Comp. Vision 2/2 CS1140 Introduction to AI, 2003/2004 (57/119) 5/6

Waltz

– builds upon the work of Huffman/Clowes and demonstrates that the physical
world severely constrains the way links and vertices can fit together in line draw-
ings. E.g. a constraint imposed by Huffman’s work and carried through in Waltz’s
work is that a line cannot change its nature from one end to the other.

– Huffman analysed drawings as if they were suspended in isolation and hence no
shadows are present in the drawings. Without shadows there are several ways
of interpreting a cube. For example, each of the following cubes looks exactly the
same, even though one is resting on the floor, one is attached to the right-hand wall
and one is attached to the left-hand wall:

– Waltz’s program introduces shadows and this resolves the ambiguity, e.g.:

block on RH wallblock on table block on LH wall
– Waltz’s program expanded the Clowes-Huffman theory by introducing labels for

shadows and introducing appropriate constraints for their interaction with other
line labels. The shadow edges are labelled by a perpendicular arrow:

– The arrow of the shadow line always points into the darker area. The number of
the possible interpretations is limited, e.g. the following would be impossible:

9. Comp. Vision 2/2 CS1140 Introduction to AI, 2003/2004 (58/119) 6/6

– The theory was also extended to include ‘cracks’ which were denoted by C labels.

– Altogether, Waltz recognised eleven different line types.

– It seems reasonable to assume that such forbidden combinations might be rare, but
in fact the reverse is the case: The rarity of valid labellings is illustrated by the
table of possible and physically realisable labellings for the simplest of the possible
vertex types:

Junction type Approx. No of Physically
possible labellings possible labellings

L >1000 92
W >35,000 86
Y >35,000 826
T >35,000 623

– This totally unexpected result has become known as ‘The Waltz Effect’.

– Although the number of possible labellings is relatively small, it is still too large
to make searching feasible. Waltz’s program uses elimination, i.e. it assigns all
possible labellings to each of the nodes in isolation, it then considers adjacent nodes
and eliminates labellings not consistent with those on the adjacent nodes. This is
iteratively performed until a single labelling is left at each vertex.

– A typical result of an analysis by Waltz’s program is shown below.

–

+ +

+

+

C C
–

– Waltz’s program works very well and an encouraging aspect is that analysis time
increases linearly with scene complexity.

Final Note

Recognising and finding the precise position of objects in practice is a challenging
problem: objects may be very complex, they may be occluded, shiny and appear in
different orientations.

10. Logic 1/2 CS1140 Introduction to AI, 2003/2004 (59/119) 1/7

Unit 10. Logic 1/2

Learning Outcomes . You should be able to

- recognise examples of well-formed propositional formulas
from badly-formed ones, describe how to do it in general

- translate propositional formulas into plain English

- translate suitable English statements into propositional
formulas

- write a truth table for a given propositional formula,
explain its results

- describe and apply the propositional resolution algorithm
to prove or disprove a theorem

Logic — the formal treatment of knowledge and thought, as developed in philosophy,
has been applied to the development of computer programs that can reason.

Logic has two important and inter-locking branches:

1. language — what can be said — what relations and implications one can formalise

2. deductive structure — the rules of inference that determine what can be inferred if
certain axioms are taken to be true.

Propositional Calculus

– is the simplest common form of logic.

– A properly formed statement, or proposition, has one of two possible truth values:
true or false.

– Typical propositions are:

It is raining.
Five plus three equals nine.

– Note that each of the sentences is a proposition, NOT to be broken down into its
constituent parts.

– The symbols of propositional calculus are:

the propositional symbols: P,Q, R, S, . . .

the truth symbols: TRUE, FALSE
and the connectives: AND = ∧

OR = ∨

NOT = ¬

IMPLIES = ⇒
EQUIVALENT = ⇔

10. Logic 1/2 CS1140 Introduction to AI, 2003/2004 (60/119) 2/7

– Propositions on their own are not particularly interesting. However, they can be
combined using the connectives shown above, for example:

The book is on the table or it is on the chair.
If Socrates is a man, then he is mortal.

– A precedence rule is applied to the connectives, which may be overridden by the
use of parentheses.

– The precedence in decreasing priority is:

1. NOT (¬)

2. AND (∧), OR (∨)

3. IMPLIES (⇒), EQUIVALENT (⇔)

– Note: the symbols () have the highest priority and are used to group symbols into
subexpressions and so control their order of evaluation and meaning.

– If X and Y are any two propositions, the connectives have the following meaning:

X ∧ Y is TRUE if both X and Y are TRUE, otherwise FALSE.

X ∨ Y is TRUE if either, or both, X or Y is TRUE, otherwise FALSE.

¬X is TRUE if X is FALSE, and is FALSE if X is TRUE.

X ⇒ Y is FALSE only when X is true and the value of Y is false,
otherwise it is always TRUE.

X ⇔ Y is TRUE only when X and Y have the same truth values,
otherwise it is FALSE.

– Formulas in propositional logic can be constructed from syntactic combinations of
variables and connectives:

(X ⇒ (Y ∧ Z)) ⇔ ((X ⇒ Y) ∧ (X ⇒ Z))

”X implies Y and Z is the same as saying that X implies Y and X implies Z”

– Every propositional symbol on its own is a formula, although tiny. Also TRUE and
FALSE on their own are formulas. If P and Q are any formulas, then the following
are also formulas:

¬P P ∧ Q Q ∨ P P ⇒ Q P ⇔ Q

– Formulas are also called well-formed formulas or WFFs (’wuffers’) in contrast to
“badly-formed formulas”, i.e. sequences of symbols which do not conform to the
rules above and are no formulas at all even if they may look similar to a formula.
(E.g. Z ∨ Y¬ and ⇒ X are not formulas.)

– Only expressions that are formed of legal symbols through some proper sequence
of the connectives are well-formed formulas, for example:

((P ∧ Q) ⇒ R) ⇔ ¬P ∨ ¬Q ∨ R

is a well-formed formula in the propositional calculus since:

10. Logic 1/2 CS1140 Introduction to AI, 2003/2004 (61/119) 3/7

P,Q and R are propositions and thus formulas.

P ∧ Q, the conjunction of two formulas, is a formula.

((P ∧ Q) ⇒ R), the implication of a formula for another, is a formula.

¬P and ¬Q, the negations of formulas, are formulas.

¬P ∨ ¬Q , the disjunction of two formulas, is a formula.

¬P ∨ ¬Q ∨ R, the disjunction of two formulas, is a formula.

((P∧Q) ⇒ R) ⇔ ¬P∨¬Q∨R, the equivalence of two formulas, is also a formula.

Rules of Inference

– An inference rule allows the deduction of a new formula from previously given
formulas.

– The best-known inference rule is Modus Ponens, which states that if we know that
two formulas of the form X and X ⇒ Y are true, then we can infer that the formula
Y is true.

– Using the plain English translation of propositional calculus: if we know that

“John is an uncle” is true
and “If John is an uncle, then John is male” is true

then we can conclude that:

“John is male” is true.

– Note that the Modus Ponens rule allows us to replace the 2 entries X and X ⇒ Y

with the single statement Y, thus eliminating one occurrence of the connective ⇒.

– The Modus Ponens rule can be expressed in the propositional calculus itself as
follows:

(X ∧ (X ⇒ Y)) ⇒ Y

Proving theorems in Propositional Calculus

There are two main methods for proving theorems in propositional calculus: truth
tables and formal deductions.

Truth Tables

– This method evaluates the truth table of the formula for all possible combinations
of truth values assigned to proposition variables. Each combination takes one row
in the table. Columns correspond to the individual variables and all sub-formulas
of the formula to be proved. The truth values are represented by letters T and F.

10. Logic 1/2 CS1140 Introduction to AI, 2003/2004 (62/119) 4/7

– First, the values of the smallest sub-formulas are filled in and then the values of the
larger sub-formulas. Finally, the value of the whole formula is established. If the
formula gets T in all rows, then it is proved true.

– For example, the truth table shown below demonstrates the equivalence of P ⇒ Q

and ¬P ∨ Q:

proposition variables sub-formulas

P Q ¬P ¬P ∨ Q P ⇒ Q (¬P ∨ Q) ⇔ (P ⇒ Q)

T T F T T T
T F F F F T
F T T T T T
F F T T T T

– Although this method can clearly be programmed, it is inefficient: It requires 2N

rows in the truth table for an N-variable problem. (E.g. 4 rows for 2 variables, 1024
rows for 10 variables)

– The following propositional equivalences can be proved using truth tables. These
expressions represent commonly used identities in the propositional calculus.

¬(¬P) ⇔ P

(P ⇒ Q) ⇔ (¬P ∨ Q)

¬(P ∨ Q) ⇔ (¬P ∧ ¬Q)

¬(P ∧ Q) ⇔ (¬P ∨ ¬Q)

The bottom two are called de Morgans’s laws.

Propositional Resolution

– The other general approach attempts to prove theorems by following a set of rules
of inference. Different methods of inference are possible. The most popular is that
known as the resolution method.

– Resolution is a syntactic method of proof (deduction).

– To express the resolution method a few additional concepts need to be defined.

– Two formulas are said to be equivalent if whenever their corresponding variables
are given the same values, they always have the same truth values. E.g.

¬(P ∧ Q) and ¬P ∨ ¬Q

are equivalent expressions as can be seen by generating the truth tables.

– A clause is a propositional formula of a special kind: it has to be a sequence of
proposition variables with or without negation (¬) joined by OR (∨). For example,
the following three are clauses:

P ∨ Q ∨ ¬R S ¬P ∨ S

In addition, the proposition FALSE is also a clause.

10. Logic 1/2 CS1140 Introduction to AI, 2003/2004 (63/119) 5/7

– FALSE could be viewed as an empty sequence of proposition variables joined by OR.
This empty clause is sometimes written Π. The clause Π is never true, in the same
way as “white equals black” is a proposition which is never true.

– A formula is said to be in conjunctive normal form (CNF) if it is a sequence of
clauses joined by AND (∧). For example, the following is a formula in CNF:

(P ∨ Q ∨ ¬R) ∧ S ∧ (¬P ∨ S)

and ¬(P ∧ Q) is not in CNF.

– An alternative description of a formula in CNF:

1. It is composed solely of variables and the four symbols: ¬,∨,∧ and FALSE, i.e.
there are no ⇒, ⇔ and TRUE.

2. Negation symbols (¬) apply only to variables, never to bracketed expressions.

3. “Or” symbols (∨) apply only to variables or negated variables, never to brack-
eted expressions containing “and” symbols (∧).

– Why do we define CNF? CNF formulas are in a special, much simpler, form. There-
fore, it is easier to work with formulas in CNF than with arbitrary propositional
formulas. Most importantly, any propositional formula can be simplified to an equivalent
formula which is in CNF.

– In propositional resolution we prove a theorem T as follows:

– Assume that the theorem T is false, and therefore its negation ¬T is true.

– Show that the assumption together with the premises leads to an impossible
situation.

– Therefore, the negation of the theorem cannot be true. Thus, the theorem must
be true.

– The “impossible situation” is called a contradiction and is expressed by the empty
clause Π.

– In more detail, the proof by resolution works as follows:

1. Replace all the premises and the negation of the theorem by their equivalent CNF
formulas. All clauses are placed in a single group.

2. Two clauses are selected in such a way that one contains some variable V and the
other its negation ¬V .

3. A new clause, the resolvent, is formed from all the ∨-ed elements of the two
clauses, except for V and ¬V . and any other variables present both in their posi-
tive and negated forms.

4. The resolvent is added to the group.

5. The process in steps 2–4 is repeated until either

– a contradiction (i.e. the empty clause Π) is deduced thus proving the theorem
– no more clauses can be added by resolution, thus the theorem is not proved

(and is not true!)

10. Logic 1/2 CS1140 Introduction to AI, 2003/2004 (64/119) 6/7

Example 1

– Consider the following situation:

Premises: If I am in an AI lecture, then I feel sleepy.
I don’t feel sleepy.

Theorem: I am not in an AI lecture.

– If we represent ‘If I am in an AI lecture’ by L

‘I feel sleepy’ by S

then the two premises are (L ⇒ S), ¬S and the theorem is ¬L.

– Applying resolution, we translate the two premises to CNF getting (¬L ∨ S) and
¬S which consist of one clause each. The negation of the theorem in CNF is simply
L. Put these together we get the following group of three clauses:

¬L ∨ S ¬S L

Now, we follow step 2 of the resolution algorithm above. We can choose, for exam-
ple, the first two clauses because one contains S and the other ¬S. Then we add the
resolvent which is ¬L. The group of clauses now consists of:

¬L ∨ S ¬S L ¬L

Going back to step 2, we pick these two clauses, resolve them and add the resolvent,
i.e. the empty clause Π—the desired contradiction. We proved that L contradicts
the premises (L ⇒ S) and ¬S. Therefore, the theorem ¬L follows from the premises.

Example 2

– Consider the following problem:

If the butler was in the drawing room then he was at home,
if the butler was at home then he must have heard the murderer,
if the butler told the police the truth then he did not hear the murderer,
therefore, if the butler was in the drawing room then he lied to the police.

– We can define the following propositional variables with the following meanings:

P: the butler was in the drawing room
Q: the butler was at home
R: the butler heard the murderer
S: the butler told the truth to the police

– Now we may translate each of the above statements into the following propositions
and convert them to CNF:

Premises: (P ⇒ Q) ¬P ∨ Q

(Q ⇒ R) ¬Q ∨ R

(S ⇒ ¬R) ¬S ∨ ¬R

Theorem: (P ⇒ ¬S) ¬P ∨ ¬S

Negated Theorem: ¬(P ⇒ ¬S) P ∧ S

10. Logic 1/2 CS1140 Introduction to AI, 2003/2004 (65/119) 7/7

– Now we apply the resolution algorithm to disprove the negated theorem as fol-
lows:

¬P ∨ Q

¬Q ∨ R

¬S ∨ ¬R

¬Theorem:

Π

¬S

R

Q

P

S

Premises:

– If we chose the pairs to be resolved differently, we obtain a different proof of the
same theorem:

Premises: ¬P ∨ Q

¬Q ∨ R

¬S ∨ ¬R

¬Theorem:

Π

P

S

¬P ∨ ¬S

¬S

¬P ∨ R

11. Logic 2/2 CS1140 Introduction to AI, 2003/2004 (66/119) 1/4

Unit 11. Logic 2/2

Learning Outcomes . You should be able to

- describe how propositional and predicate calculi differ

- recognise well-formed predicate calculus formulas

- translate predicate formulas to English and vice versa

Inadequacies of Propositional Calculus

– It should be possible in any logical system to refer to objects, to postulate rela-
tionships between those objects and to generalise the relationships over classes of
objects.

– Propositional calculus does not allow us to do that, it is too ‘coarse’ to easily de-
scribe properties of objects, and it lacks the structure to express relations that exist
among two or more entities — these limitations are overcome in predicate calculus.

Predicate Calculus

– is an extension of the notion of propositional calculus. The meaning of the connec-
tives is retained but the focus of logic is changed: instead of considering sentences
that are of interest merely for their truth value, predicate calculus is used to repre-
sent statements about specific objects or individuals.

– We shall first of all consider the syntax of the predicate calculus language and then
discuss its semantics (= meaning).

The Syntax of Predicate Calculus

– There are the five connectives in predicate calculus. They are the same ones as in
the propositional calculus (i.e. ¬ ∧ ∨ ⇒ ⇔).

– Any formula which is syntactically correct in propositional calculus is syntactically
correct in predicate calculus.

– The proposition in predicate calculus is extended to allow a predicate and its ar-
guments to replace the simple variable. In the following example, human is the
predicate and socrates is the argument. More generally, a variable X is the argu-
ment:

human(socrates)
human(X)

– Here we adopt the scheme whereby constants will start with a lower-case letter
and variables will start with an upper-case letter. Other examples:

likes(john, jill) John likes Jill.
likes(jill, john) Jill likes John.
¬likes(david, john) David does not like John.
likes(beth, john) ∧ likes(beth, david) Beth likes John and David.

11. Logic 2/2 CS1140 Introduction to AI, 2003/2004 (67/119) 2/4

– Constants are fixed-value terms. They name specific objects or properties in the
world. Constant names begin with a lower-case letter, thus michael, tree, tall and
blue are examples of well-formed constant names. The constants true and false are
reserved as truth symbols.

– Variables are terms that can take different values, they are used to designate gen-
eral classes of objects or properties in the world. They are represented by names
beginning with an upper-case letter.

– Predicates name a relationship between zero or more objects in the world. Predi-
cate names are written here in lower-case letters. Examples of which are:

likes equals on near part of

– A predicate with no arguments (e.g. i am sleepy) is equivalent to a propositional
variable in propositional calculus (e.g. S).

– Functions denote a mapping of one or more elements in a set (called the domain
of the function) into a unique element of another set (the range of the function).
In addition to common arithmetic functions such as addition and multiplication,
functions may define mappings between non-numeric domains. Function names
(like constants) begin with a lowercase letter.

– A function expression is a function name followed by its arguments. The argu-
ments are elements from the domain of the function. The number of arguments is
the arity of the function and the arguments are enclosed in parentheses and sepa-
rated by commas. For example,

f (X, Y) price(apple)

Quantification

– There are two quantifier symbols, described below together with their meaning:

∀X — the universal quantifier indicates that the formula is true for all val-
ues of the variable X.

∃X — the existential quantifier indicates that the formula is true for some
(i.e. at least one) value(s) of X.

– Examples of the use of the above quantifiers are shown below:

∀X(person(X) ∧ likes(X, chocolate)) Everybody likes chocolate.
∃X(person(X) ∧ likes(X, brussels sprouts)) Some people like brussels sprouts.
∀X(student(X) ⇒ poor(X)) All students are poor.
∃X(bird(X) ∧ ¬flies(X)) There exists some bird that does not fly.
∀X(roses(X) ∧ red(X) ⇒ likes(beth, X)) Beth likes red roses.
∀X(roses(X) ∧ red(X) ⇒ ¬likes(beth, X)) Beth does not like red roses.

11. Logic 2/2 CS1140 Introduction to AI, 2003/2004 (68/119) 3/4

Validity and Satisfiability

– A predicate calculus formula is valid if it is true for all possible interpretations;
otherwise it is invalid, for example, the following is valid:

P(A) ∨ ¬P(A)

– A predicate calculus formula is said to be satisfied if and only if there exists at least
one interpretation, called model, for which it is true. Otherwise, the formula is said
to be unsatisfiable.

An example of a simple proof in the predicate calculus

“All humans are mortal. Socrates is human. Therefore Socrates is mortal.”
Translating to the predicate calculus, we get:

Premises: 1. ∀X(human(X) ⇒ mortal(X))

2. human(socrates)
To prove: 3. mortal(socrates)

By substituting socrates for X in 1, we get
4. human(socrates) ⇒ mortal(socrates)

then from formulas 2 and 4 by Modus Ponens we get finally that
mortal(socrates)

Since these rules have been applied in a mechanistic manner, it is possible to write
computer programs to work out such proofs.

Resolution Theorem Proving

– Resolution is a technique for proving theorems in the predicate calculus. (It can be
used for propositional calculus as a subset of predicate calculus — we learnt about
this simplified resolution in the previous unit.)

– The resolution principle, introduced by J A Robinson (1964), proves a theorem by
negating the statement to be proved and adding this negated goal to the set of
axioms that are known (have been assumed) to be true. It then uses the resolution
rule of inference to show that this leads to a contradiction. Once the negated goal
is shown to be inconsistent with the given set of axioms then it follows that the
original goal must be true — and this proves the theorem.

– The following steps are involved in resolution theorem proving:

1. Put the premises or axioms into clause form.

2. Add the negation of what is to be proved, in clause form, to the set of axioms.

3. Resolve these clauses together, producing new clauses that logically follow from
them.

4. Produce a contradiction by generating the empty clause.

11. Logic 2/2 CS1140 Introduction to AI, 2003/2004 (69/119) 4/4

5. The substitutions used to produce the empty clause are those under which the
opposite of the negated goal is true.

– The conversion of any set of predicate calculus statements to conjunctive normal
form involves a number of steps. We will not consider this any further.

Example of Resolution Theorem Proving

Suppose that we are told that both of the following formulas are true:
trunk(dumbo) (1)
∀X(trunk(X) ⇒ elephant(X)) (2)

and we are asked to prove that the following formula is true:
elephant(dumbo) (3)

then by substituting dumbo for X in (2) and making use of the equivalence of the fol-
lowing formulas (see Logic 1):

P ⇒ Q and ¬P ∨ Q

we arrive at:
¬trunk(dumbo) ∨ elephant(dumbo) (4)

Adding the negation of the formula to be proved (i.e. (3) above), we finally arrive at
the following list of formulas:

trunk(dumbo) (1)
¬trunk(dumbo) ∨ elephant(dumbo) (4)
¬elephant(dumbo) (5)

Clearly, these resolve to the null clause showing that formula (3) above is true.

Logic Programming

– The most widely used logic programming language is Prolog.
– Each sentence in the program corresponds to a formula in predicate logic although

the syntax differs.
– The following shows a simple Prolog program together with the attendant state-

ments in logic

PROLOG LOGIC

father(john, fred). father(john, fred)

father(bill,john). father(bill, john)

grandfather(X,Y) :- ∀X∀Y∀Z(father(X,Z) ∧ father(Z, Y))

father(X,Z), ⇒ grandfather(X, Y)

father(Z,Y).

Given the above program, we could then ask Prolog to prove that
grandfather(bill,fred) was true. It should answer yes .

12. Planning CS1140 Introduction to AI, 2003/2004 (70/119) 1/10

Unit 12. Planning

Learning Outcomes . You should be able to

- define planning and list at least two application areas

- list at least 4 problems of planning

- describe and read operator schemata and Steel’s notation

- describe and apply the STRIPS planning algorithm

- explain, on an example, the problem of interacting
subgoals and three approaches to solving it

- define the frame problem and explain it using an example

Planning is the problem of devising a series of actions that will lead to a desired goal
starting from some initial state. Planning is a large and growing area of AI.

A plan is a sequence of actions which, if followed, will lead to the desired goal by
changing the relations among objects.

Application Domains

Planners have been applied to a variety of application domains:

Domain Planner

Robot Control STRIPS
Simple Program Generator HACKER
Experiment Planning in Molecular Genetics MOLGEN
Naval Logistics NONLIN
Voyager Spacecraft Mission Sequencing DEVISER

Problems

Some of the problems planners have had to address:

1. Representation — correct notation for plans

2. Anticipation and correction of problems (e.g. protection violation)

3. Managing the search through the space of possible plans — many of the issues of
heuristic search (e.g. A* algorithm) are appropriate here.

4. Translating the plans into actual actions in the world.

5. Monitoring the progress of a plan — execution monitoring.

6. Re-planning when things go wrong.

7. The recognition of what is, and what is not changed, by a particular operation —
the so-called frame problem. This will be dealt with later.

12. Planning CS1140 Introduction to AI, 2003/2004 (71/119) 2/10

STRIPS

– Developed at Stanford University, it is an adaptation of Newell and Simon’s GPS.
It draws upon the following:

Means-end analysis
Situational calculus
Backward chaining

State-space search

Use of add-lists and delete-lists

– Traditional planning systems have been introduced in terms of their performance
in a blocks world.

– STRIPS represents a state of the “world” as a series of facts, expressed in predicate
calculus e.g.

Robot

b

a c

on table(a) on table(c) clear(b) clear(c)
stack(b, a) arm empty

– STRIPS represents the actions it may choose to apply in its plans as operator schemata
of the following general form:

name: operator identifier
preconditions: facts that must be true before an operator can be applied

effects: how the current set of facts should change on application of
the operator

thus for the problem above we might have the following operators:

name: pickup(X)

preconditions: on table(X), clear(X), arm empty
deletes: arm empty, on table(X)

adds: holding(X)

name: put down(X)

preconditions: holding(X)

deletes: holding(X)

adds: arm empty, on table(X)

name: stack(X, Y)

preconditions: clear(Y), holding(X)

deletes: clear(Y), holding(X)

adds: on(X, Y), arm empty

12. Planning CS1140 Introduction to AI, 2003/2004 (72/119) 3/10

name: unstack(X, Y)

preconditions: on(X, Y), clear(X), arm empty
deletes: on(X, Y), arm empty

adds: holding(X), clear(Y)

This can be represented graphically using a modified form of Steel’s notation as:

– arm empty

name

preconds
+ adds

- deletes

+ holding(X)

pickup(X)

ontable(X)

clear(X)

arm empty – ontable(X)

– [Once the problem description is given, a possible approach to planning is to con-
duct a breadth-first search trying every operator for which the preconditions are
true. However, this is a poor strategy because it battles against exponential tree
growth.]

STRIPS planning algorithm

Given an initial world description S and a goal specification G1, STRIPS proceeds to
successively reduce the set of differences between S and G1:

S −→ G1 plan actions to achieve G1

S −→ G2 −→ G1 . . . achieve G2 then achieve G1 by O1

etc.
S −→ Gn −→ · · · −→ G3 −→ G2 −→ G1

If G1 is not true in the current state of the world, STRIPS attempts to find an operator
(O1) which will make it true. Before this can be done, the preconditions necessary be-
fore the operator O1 can be applied must be true. To solve (possibly) the preconditions
of the operator O1, STRIPS simply calls itself recursively.

This technique is known as Goal Reduction.

This search process is goal directed and proceeds by a process of backward chaining
so that the operators are selected in reverse order to their intended application. To
implement it, STRIPS maintains a stack of goals which it must achieve. Consider the
problem:

a b a

b

In the beginning, on the goal stack we have only on(b, a). This is not true in the current
state of the world:

on table(a) on table(b) clear(a) clear(b)

12. Planning CS1140 Introduction to AI, 2003/2004 (73/119) 4/10

So STRIPS determines from its table of operators whether one of the operators, when
applied, could achieve the goal. It finds that the operator stack(X, Y) has on(X, Y) in its
add-list, so the planner starts to build a plan which ends with the action stack(b, a).

Instantiating the variables in the operator schema for stack(X, Y) gives the following
preconditions which are pushed onto the stack, and which must be achieved prior to
applying the stack(X, Y) operator:

clear(a)
holding(b)

The stack is popped, yielding clear(a). This is already true and so no action is necessary.
The stack is popped again, yielding holding(b) as the goal. Two operators could now
be applied:

pickup(X) and unstack(X, Y)

since both of them have the fact holding(X) in their add-lists. Which operator is ap-
plied depends on the ordering of the operators in the list. If we apply pickup(X) first
then the stack appears as:

arm empty
clear(b)
on table(b)

The stack can now be popped three times with STRIPS finding that each goal already
holds in the current world, so no further action is required. The stack is empty and so
pickup(b) can be applied and so the plan is as follows:

START −→ pickup(b) −→ stack(b, a) −→ END

In this example, STRIPS is able to go to the correct solution directly. This is not always
the case in practice.

Problem of interacting subgoals

STRIPS reliance on the simple stack-based implementation means that it solves the con-
stituent subproblems of a conjunction of goals as if they were completely decoupled.
Thus it makes use of the linearity assumption: goals G1, G2 and G3 can be achieved
by concatenating the plan for G1 and the plan for G2 and the plan for G3. Whilst this
brings certain benefits, it can lead to inefficient plans or even total failure. Consider,
for example, the following problem:

b

a

ca

c

b

With the given initial state and the conjunctive goal on(a, b)∧on(b, c), STRIPS attempts
to solve firstly on(a, b) completely and then solve on(b, c). The plan for solving the first
goal is:

START −→ unstack(c, a) −→ put down(c) −→ pickup(a) −→ stack(a, b) −→ END

12. Planning CS1140 Introduction to AI, 2003/2004 (74/119) 5/10

which results in:

cb

a

STRIPS now attempts to solve the second goal, on(b, c), but in achieving this, it inad-
vertently undoes the first goal, on(a, b). The planning steps are as follows:

START −→ unstack(a, b) −→ put down(a) −→ pickup(b) −→ stack(b, c) −→ END

a c

b

Intuitively, we can see that the correct plan for this problem is:

START −→ unstack(c, a) −→ put down(c) −→ pickup(b) −→
stack(b, c) −→ pickup(a) −→ stack(a, b) −→ END

[Underlined operators contribute to on(b, a), those in plain text to on(b, c).]

In order to achieve the correct solution, the planning for each conjunctive goal has to
be interleaved in some way.

As a further illustration of the above difficulty, consider the problem of making an
omelette given the following operators:

– have(egg)

clean

+ clean(pan)
have(pan)

have(water)

fry

have(pan)

have(egg)
+ have(omelette)
– clean(pan)

The problem and the series of partial plans that lead to the correct omelette making
plan are shown in Figure 11.

Clearly, in the above problem, if we had cleaned the pan first and then made the
omelette, the final goal would not have been achieved. Thus we need a means of
overcoming unfavourable interactions of this sort.

The above difficulties arise out of the fact that planning involves a series of local ac-
tions in order that a global objective may be achieved.

Handling subgoal interaction

A large part of the research effort in planning has been to deal with subgoal interaction.
The research work falls into one of the following 3 broad categories:

12. Planning CS1140 Introduction to AI, 2003/2004 (75/119) 6/10

– have(egg)

START

have(pan)

have(egg)

have(water)

END

have(omelette)
clean(pan)

END

have(omelette)
clean(pan)

START

have(pan)

have(egg)

have(water)

END

have(omelette)
clean(pan)

(a)

(b)

(c) clean

have(pan)

have(water) + clean(pan)

fry

have(pan)

have(egg)

START

have(pan)

have(egg)

have(water)

+ have(omelette)
– clean(pan)

– have(egg)

fry

have(pan)

have(egg)
+ have(omelette)
– clean(pan)

Figure 11: How to fry an omelette ? — the problem and its solution.

1. Linear planners which accept that their plans may have errors in them and attempt
to debug erroneous goals by backtracking and reordering goals.

2. Linear planners which attempt to spot problems as new actions are added to the
plan and correct by ’regressing’ either the offending action or its parent goal.

3. Non-linear planners which do not commit themselves to any ordering of conjunc-
tive goals except to avoid harmful interaction.

Linear planning — correction by goal reordering

The success or otherwise of planning for a simple problem may be dependent on the
ordering of the conjunctive goals, e.g. in washing a car, the conjunctive ordering of
(clean(roof) ∧ clean(doors)) will be successful, whereas (clean(doors) ∧ clean(roof))
will not be. In more complicated examples, however, it may well be impossible for us
to specify the correct ordering for tackling a conjunction in advance.

One way of overcoming this problem is to allow the planner to save the points at
which it makes the ordering choices, so that in the event of failure it can backtrack
and try a different ordering. This technique is computationally wasteful, since useful

12. Planning CS1140 Introduction to AI, 2003/2004 (76/119) 7/10

!fry

have(pan)

have(egg)
+ have(omelette)
– clean(pan)

– have(egg)

START clean END

have(water)

have(pan)

clean(pan)

have(omelette)have(egg)

Figure 12: Linear planning with range violation — detecting subgoal interaction

planning may have been done on decoupled subgoals which then has to be undone
and re-planned, perhaps several times.

Linear planning — correction by regression

These planners still employ the linearity assumption, but now attempt to anticipate in-
teraction problems as new actions are added rather than wait until plan failure occurs.
They first of all develop a plan for the first conjunct in the normal way, and then plan
the subsequent goals while ensuring that the actions they introduce do not interfere
with the existing partial plan. To ensure this, they need to explicitly record ranges
(protection intervals, holding periods) over which achieved goals must remain true —
typically, these will range from the achieving action to the action which has that goal
as its precondition).

These planners first try to insert a new action at the end of the partial plan on which
they are working. If they find that this action violates a range for some goal G (because
it deletes G) then they search to find a new place in the plan for the action or goal which
gave rise to that interference.

Applying such a technique to our omelette-making, we can get to a situation illus-
trated in Figure 12.

This clearly leads to a plan violation.

One way to proceed with the (partially) successful plan shown above is to ask: Is there
some fact which, if this fact is true before clean, will make have(omelette) true after
clean?

12. Planning CS1140 Introduction to AI, 2003/2004 (77/119) 8/10

have(egg)

range supported by product
of regressed goal

have(egg) have(omelette)
have(omelette)

regressed goal

(b)

(a) START clean END

have(water)

have(pan)

clean(pan)

have(omelette)

START clean END

have(water)

have(pan)

clean(pan)

Figure 13: Example of a goal regression within a partial plan

If there is, it is the regressed version of the original goal fact. In the above example,
regression of have(omelette) over clean yields a regressed goal which is the same as the
original goal — after regression we have the situation shown in Figure 13 (b).

The fry action can be inserted before the clean action without violating any ranges.

Non-linear plans

Although the regression methods are quite successful, they have been generally su-
perseded by non-linear planning which has become the standard approach for coping
with sub-goal interactions. Such planners no longer employ the linearity assumption,
but instead deliberately leave subgoals unordered unless an ordering must be imposed
to avoid interaction problems.

For the omelette-making problem we can draw the non-linear plan, with ranges in-
cluded shown in Figure 14

Note the intentional ambiguity relating to the two total orderings in Figure 14 (a).
Clearly a range violation is possible whenever one has the situation represented in
Figure 14 (b). Thus we need to rule out any interpretation of the ambiguity that would
definitely involve a range violation. In Figure 14 (b), action C must clearly be placed ei-
ther wholly after the range or wholly before it — sometimes only one choice is possible.
This addition of order is called linearising a plan.

If we examine the partial omelette-making plan in Figure 14 (a), then we can see a
possible range violation: of clean(pan) by the effect “– clean(pan)” of the fry action.
The only possible linearisation is to put fry before clean giving the correct plan.

12. Planning CS1140 Introduction to AI, 2003/2004 (78/119) 9/10

START

clean
(a)

END

(b) A B

– P

C

P

fry

have(omelette)
have(pan)

have(water)

have(pan)

clean(pan)

have(egg)

Figure 14: Non-linear planning

Frame Problem

The Frame Problem is the problem of maintaining an appropriate informational con-
text, or frame of reference at each stage during the problem-solving process.

In a dynamic environment, there is the problem of knowing what changes have and
have not taken place following some action. Some changes will be the direct result of
the action. Other changes will be the result of secondary or side effects.

Some key aspects of the frame problem can be illustrated by considering the scene in
Figure 15.

Facts: F1 — A table is in the centre of the room

F2 — A book is on the table

F3 — Fred is in the doorway

F4 — some facts relating to window and alcove
Actions: A1 — Fred can go from one place to another

A2 — Fred can move the table from one place to another

12. Planning CS1140 Introduction to AI, 2003/2004 (79/119) 10/10

Fred
table

alcove

book

window

door

Figure 15: Scene illustrating the Frame Problem

Consider the following problems:

– Goal 1 — Fred should be in the alcove

1. Accomplished by an A1-type action. Would change F3 to “Fred is in the alcove”
while F1, F2, F4 would stay unchanged.

2. Accomplished by an A2-type action. F1 would now change.

– Goal 2 — The table should be in the alcove

Ambiguity removed — facts F1 and F3 change.

How can we decide which facts change?

– Proposal 1: Determine which facts change by comparing the goal statement with
the known facts.

– Acceptable if Goal 1 achieved through an A1 action but not A2.

– Goal 2 makes no mention of Fred’s position which must change.

– Proposal 2: Specify which facts are changed by each action operator. E.g.

A1 changes Fred’s position

A2 changes position of both Fred and table.

Occasional difficulties arise, e.g. in the initial state, it can be deduced from F1 and
F2 that

F5 — the book is in the centre of the room

This will no longer be true when Goal 2 has been reached even though F5 has no
apparent relation to A2.

If a representation is exhaustive, there will be no unspecified side effects, and the
frame problem effectively disappears. The difficulty of the frame problem results
from the fact that it is impossible to build a completely exhaustive knowledge base
for most domains

13. NLP 1/3 CS1140 Introduction to AI, 2003/2004 (80/119) 1/6

Unit 13. Natural Language Processing 1/3

Learning Outcomes . You should be able to

- list several common application tasks of NLP

- describe four early NLP systems and their contributions

- list and describe typical levels of a language
understanding system

- draw diagrams illustrating how a given simple sentence is
analysed at different stages

- explain why NLP is very hard

– NLP is an active and significant area of current AI research.

– By far the largest part of human linguistic communication occurs as speech — writ-
ten language is a fairly recent invention and is easier to process (computationally)
than speech.

Machine Translation (MT)

– Machine translation was vigorously pursued in the 1950’s and 1960’s in the USA,
Britain and Russia.

– Early systems had a dictionary and a few rules of grammar. Little success was
achieved.

– Probably the most influential critic of the early work was a linguist, Bar-Hillel, who
in 1964 published a critique which stated that sense disambiguation relies in the
deep understanding of a sentence.

– In 1966, the Pierce Report finally brought the early MT work to an end by stating
that work on MT could not be justified in terms of practical output.

– The main outcome of this research was the realisation that human language is ex-
traordinarily complicated and that considerably more research into grammar and
meaning was needed — as Winograd has stated:

‘With years of hindsight and experience, we now understand better why the early op-
timism was unrealistic. Language, like many human capabilities, is far more intricate
and subtle than it appears on first inspection.’

The Problem

In the act of understanding a seemingly simple sentence, we bring to bear a consider-
able amount of information of widely varying sorts — not only knowledge about the
language but also knowledge about the domain of discourse. The following examples
illustrate:

13. NLP 1/3 CS1140 Introduction to AI, 2003/2004 (81/119) 2/6

‘The city councilmen refused to give the women a permit for a demonstration because
they feared violence’

‘The city councilmen refused to give the women a permit for a demonstration because
they advocated revolution’

Turing Test

– A game played between three people: a man, a woman, and an interrogator who
may be of either sex. The interrogator stays in a room apart from the other two, and
attempts to determine which of the other two is the man and which is the woman.
The man tries to convince the interrogator that he is the woman. Communication
between the participants is via a terminal.

– We now ask the question “What will happen when a machine takes the part of the
man in this game?”

– The central idea of the Turing test is that the ability to successfully communicate
with a discerning person in a free and unbounded conversation is a better indica-
tion of intelligence than any other attribute accessible to measurement.

– Vulnerable to a number of criticisms:

– does not test abilities requiring perceptual skills or manual dexterity

– constrains machine intelligence to fit a human mould

Early Systems

Most of the early systems that claimed to carry out some task other than just pars-
ing (e.g. problem-solving, question-answering) were based on crude searches for key-
words or patterns in the input string

Eliza

– The ELIZA system of Weizenbaum carried this approach to its extreme — mode of
conversation followed the psychiatric interview (‘Tell me about . . . ’). [Weizenbaum
CACM 1966, Jan, 36]

– The program was based on keyword/phrase matching and response. These tech-
niques with a few enhancements produced an amazing level of fluency but the
program could hardly be said to ‘understand’.

– The program could pass the Turing test — this illustrates the difficulty of judging
a program by its output or of defining understanding.

– ELIZA could be described as a first generation system.

– Second generation systems tackled a much larger range of language problems. This
was achieved by restricting the domain of discourse to a narrow field. Examples of
such second generation systems are:

13. NLP 1/3 CS1140 Introduction to AI, 2003/2004 (82/119) 3/6

Lunar

– System developed by Woods in 1967–1972. The system was designed to answer
questions about the mineral samples brought by the astronauts.

– Woods developed transition net grammars to describe the grammatical facts about
English needed for interpreting complicated structures. The system used the gram-
mar to convert sentences into requests in a special query language which was de-
signed to interface with an information retrieval system built for a large data base
e.g.

‘How many rocks have greater than 50ppm nickel?’
‘Of the type A rocks, which is the oldest?’

SHRDLU

– The SHRDLU program of Winograd (1972) had an overwhelming effect on research
into NLP.

– This was a dialogue system that could converse with a human user about a sim-
ple table-top world containing simple building blocks. The program had a crude
simulation of a ‘hand’ and ‘eye’ which it could use within the simulated ‘blocks’
world.

– It can be seen from the sample dialogue in Figure 16 that the program could:

1. answer questions

2. execute commands — robot carries out action

3. accepts information in an interactive English dialogue

LIFER

– is a system for creating English language interfaces to other computer software.
The goal was to provide a systems designer (who is not a linguist) with the ability
to tailor a natural language ‘front-end’ to an application.

– LIFER allowed the systems designer to specify the nature of the processing to be
carried out on the natural language inputs by writing pattern and response expres-
sions. These expressions can be thought of as more complex than, but similar to,
the ELIZA patterns.

– LIFER is able to handle ellipsis, e.g. the series of questions:

“How old is John?” “How tall?” “Mary?”

would be interpreted as:

“How old is John?” “How tall is John?” “How tall is Mary?”

– When a given pattern is recognised by the parser, the associated expression is eval-
uated to produce the desired response. E.g. a specification

13. NLP 1/3 CS1140 Introduction to AI, 2003/2004 (83/119) 4/6

user: How many blocks are on the table?
SHRDLU: FOUR OF THEM

user: Is at least one of them narrower than the one which I told you to pick up?
SHRDLU: YES, THE RED BLOCK

user: Can the table pick up blocks?
SHRDLU: NO

user: Can a pyramid be supported by blocks?
SHRDLU: YES

user: Will you please stack up both of the red blocks and either a green cube or a
pyramid?

SHRDLU: OK

user: Which cube is sitting on the table?
SHRDLU: THE LARGE GREEN ONE WHICH SUPPORTS THE RED PYRAMID

user: Had you touched any pyramid before you put the green one on the little cube?
SHRDLU: YES THE GREEN ONE

user: When did you pick it up?
SHRDLU: WHILE I WAS STACKING UP THE RED CUBE, A LARGE RED BLOCK AND

A LARGE GREEN CUBE

user: Why?
SHRDLU: TO GET RID OF IT

user: Why did you do that?
SHRDLU: TO CLEAN OFF THE RED CUBE

user: Why did you clear of that cube?
SHRDLU: TO PUT IT ON A LARGE GREEN CUBE

user: How many objects did you touch while you were doing it?
SHRDLU: FOUR OF THEM

user: What did the red cube support before you started to clean it off?
SHRDLU: THE GREEN PYRAMID

user: A “steeple” is a stack which contains two green cubes and a pyramid
SHRDLU: I UNDERSTAND

user: Are there any steeples now?
SHRDLU: NO

user: Build one
SHRDLU: OK

blue

red blue

red

red

green

green

green

Figure 16: Sample dialogue with SHRDLU

13. NLP 1/3 CS1140 Introduction to AI, 2003/2004 (84/119) 5/6

“How 〈ATTRIBUTE〉 is 〈PERSON〉”

indicates that when an input sentence such as, “How old is John?” is entered, the
system should identify “old” with 〈ATTRIBUTE〉 and “John” with 〈PERSON〉 . These
interpreted words are then used in appropriate interactions with the application
software.

Components of an understanding system

The process of understanding natural language may be divided into several levels:

1. Signal (acoustical) level

This is concerned with speech input and processing — analysis at this level in-
cludes the extraction of sound units called “phones” — a phoneme is the smallest
unit of sound

2. Morphological analysis

Individual words are analysed into their components and non-word tokens (e.g.
, ;) are separated from the words.

3. Syntactic analysis (e.g. parsing)

The grammatical correctness of the sequence of words is determined. This gives
rise to structures which show how the words relate to one another in abstract
ways.

4. Semantic analysis

The structures determined from the syntactic analysis stage for grammatically
correct sentences are assigned meanings.

5. Pragmatic analysis

This is concerned with the use of high-level knowledge to determine the actual
meaning of a sentence. To achieve this, we may need to use world knowledge:
the knowledge of the physical world, the world of human social interaction, and
the role of goals and intentions in communication.

Some of these components are illustrated in Figure 17.

Levels of analysis of natural language

Linguists have defined different levels of analysis for natural language. The particular
levels of interest to the AI researcher (and to us in this module) are the following.
(They correspond to some of the system components above.)

Syntax analysis

studies the rules for combining words into legal phrases and sentences and the
use of those rules to parse and generate sentences.

13. NLP 1/3 CS1140 Introduction to AI, 2003/2004 (85/119) 6/6

Cheetah

dialogue control,
data base query handler,

etc.

Tarzan

animate

likes
experiencer theme

is

jungle

person

is in is in

instance
of

instance
of

has
pet

instance of chimp

Tarzan

animate

likes
experiencer theme

is

Interpretation

System Routines

Jane

Parsing

Input: Tarzan likes Jane.

Semantic Interpretation

sentence

Jane

verb phrase

noun verb noun

noun phrase

Tarzan likes Jane

noun phrase

Contextual / World Knowledge

Figure 17: Stages of a Text Understanding System

Semantic analysis

concerned with the meaning of words, phrases and sentences and the way in
which it is conveyed in natural language.

Pragmatics

is the study of the way in which language is used and its effects on the listener.
World Knowledge

includes knowledge of the physical world, the world of human social interaction
and the role of goals and intentions in communication — is essential to under-
standing the full meaning of a text or conversation.

Problem of Combinatorial Explosion

– The exhaustive search through all logical possibilities becomes too time-consuming
even for the fastest computer — when only a few extra dimensions of variability
are added to a manageable problem.

– This problem is not unique to NLP.

14. NLP 2/3 CS1140 Introduction to AI, 2003/2004 (86/119) 1/6

Unit 14. Natural Language Processing 2/3

Learning Outcomes . You should be able to

- read and understand PSG rules

- check whether a sequence is legal in a given PSG using
both top-down and bottom-up derivations

- define CFG and CSG and regular grammars

- describe FSTNs and RTNs

- check whether a sequence is accepted by an FSTN or RTN

- describe the relationship between regular grammars and
FSTNs and between CFGs and RTNs

- explain why RTNs are not sufficient for NLP parsing

- define the term ‘semantic grammar’

General Approaches to NLP

There have been three general approaches to natural language processing:

(i) Pattern matching through the recognition of keywords — e.g. Eliza.
(ii) Mapping text to prescribed primitives — use of frames and scripts.

(iii) Analysis of sentences using syntax and semantics — this is the approach consid-
ered in this Unit.

Phrase Structure Grammar (PSG)

– is a tool which can represent a very large number of sentences by a small set of rules.
Each rule consists of a symbol followed by −→ and a string of symbols. There are
two kinds of symbols:

– terminals = parts of sentences (usually words)
– nonterminals = abstract names that do not appear in sentences (e.g. S, VP)

An example grammar:

1. S −→ NP VP
2. VP −→ V NP
3. VP −→ V NP PP
4. PP −→ P NP
5. P −→ to
6. V −→ gave
7. NP −→ N
8. NP −→ the N
9. N −→ John

10. N −→ Mary
11. N −→ book

S = sentence
NP = noun phrase
VP = verb phrase
V = verb
PP = prepositional phrase
P = preposition
N = noun

14. NLP 2/3 CS1140 Introduction to AI, 2003/2004 (87/119) 2/6

gaveJohn book Mary

NP

VP

NP PP

N V N N

the to

P

S

Figure 18: A parse tree.

– A legal sentence is any string of terminals that can be derived using the rules. For
example, a derivation of the sentence “John gave the book to Mary” would be

String apply rule

sentence 1
noun phrase verb phrase 7
noun verb phrase 9
John verb phrase 3
John verb noun phrase prepositional phrase 6
...

...
John gave the book to noun 10
John gave the book to Mary

– This is an example of a top-down derivation.

– A bottom-up derivation starts with a string of terminals and tries to work towards
the sentence symbols through a series of substitutions. For example, a bottom-up
verification that “John gave the book to Mary” is a sentence may look as follows

String apply rule

John gave the book to Mary 9
noun gave the book to Mary 7
noun phrase gave the book to Mary 6
noun phrase verb the book to Mary 11
noun phrase verb the noun to Mary 8
noun phrase verb noun phrase to Mary 5
...

...
noun phrase verb phrase 1
sentence

– A derivation may be represented as a tree structure, known as the parse tree, in
which each node contains a symbol of the grammar. The parse tree reflects the
structure of the sentence according to the specified grammar. The parse tree of the
above sentence using the above grammar is in Figure 18.

– Parsing is the problem of constructing a parse tree for an input string from a formal
definition of a grammar.

14. NLP 2/3 CS1140 Introduction to AI, 2003/2004 (88/119) 3/6

– Top-down parsers begin with the sentence symbol and attempt to derive the input
string.

– Bottom-up parsers begin with the input string and attempt to yield the sentence
symbol.

– Not only does the existence of a parse tree prove that a sentence is legal in the
grammar, but it also determines the structure of the sentence. It plays an essential
role in semantic interpretation by defining intermediate stages in a derivation at
which semantic processing may take place.

– To determine the meaning of a word, a parser must have access to a lexicon. A
lexicon is a dictionary of words where each word contains some syntactic, semantic
and possibly pragmatic information.

– In our example grammar, every rule has one nonterminal symbol on the left-hand
side. Such grammars are called context-free grammars (CFG). Grammars in which
rules can have more than one symbol on the left-hand side are called context-
sensitive grammars (CSG).

Finite State Transition Networks (FSTNs)

– FSTN is a simple theoretical device consisting of a set of states (drawn as nodes)
with arcs leading from one state to another. It is used to represent a simple lan-
guage. An example FSTN follows.

4the

a

very

tasty

bland

meal
F

21 3

– The device can read a sequence of words and decide whether the sequence is a
valid sentence in its own little language or not.

– One of the states is marked as the initial state (in our example, using a big arrow).
This state is the focus of the device before it starts reading.

– As individual words are read, the focus (called current state) of the device changes,
following arcs that are labelled with matching words or symbols.

For example, when reading “a very very tasty meal”, the device will first focus on
state 1, then state 2 then state 2 again, then on state 3 and finally on state 4.

– The device is said to accept a sequence of words if, starting from the initial state
at the beginning of the sequence, it can reach a final state at the end of the input.
(Final states are marked with F in our example.)

For example, the sequence “a very very tasty meal” is accepted by our FSTN but “a
very spicy meal” is not.

– Regular grammars are context-free grammars in which all rules have on their right
hand side either a single terminal or a sequence consisting of one terminal followed
by one nonterminal. For example,

14. NLP 2/3 CS1140 Introduction to AI, 2003/2004 (89/119) 4/6

1. A1 −→ a A2
2. A1 −→ the A2
3. A2 −→ very A2
4. A2 −→ tasty A3
5. A2 −→ bland A3
6. A3 −→ meal

– For every FSTN there is an equivalent regular grammar and vice versa. For exam-
ple, the above regular grammar is equivalent to the FSTN shown earlier.

– Regular languages (and therefore FSTNs) are inadequate for dealing with the com-
plexity of natural languages. A necessary extension to FSTN is to provide a recur-
sion mechanism that increases their recognition power.

Recursive Transition Networks (RTNs)

– RTN is a collection of finite-state transition networks in which a label of an arc
may be not only a word but also a name of the same or another network to be given
temporary control of the parsing process. See an example in Figure 19.

– Network names usually correspond to nonterminals in grammars, i.e. each net-
work represents a syntactic construct, e.g. prepositional phrase.

– RTN operates similarly to an FSTN. If the label on an arc is a word then the arc may
be taken if the word being scanned is the same. Otherwise, if the arc is labelled
with a network name then control is transferred to the corresponding named sub-
network, which continues to process the sentence, returning control when it suc-
cessfully finishes. If the subnetwork fails, the calling network cannot take this arc.

– Any subnetwork may call any other subnetwork including itself — recursion is
allowed.

– For example, the example RTN would accept the following sequences:

S: The little boy in the swimsuit kicked the red ball with force.
NP: The little boy in the swimsuit
NP: the red ball
PP: with force
NP: the red ball with force

– The sentence above can be parsed by our RTN in two different ways. The PP with
force may be parsed either

– as part of the NP “the red ball with force”

– or by the network S.

This structural ambiguity cannot be resolved without some world knowledge.

– The recursive structure of our RTN can be illustrated by the following NP phrases:

a friend with a friend
a friend with a friend with a friend
a friend with a friend with a friend with a friend

14. NLP 2/3 CS1140 Introduction to AI, 2003/2004 (90/119) 5/6

PP: NP
F

〈prep〉

F
〈det〉

S: NP
F

〈verb〉NP

〈noun〉

〈adj〉 PP

PP

NP:

Figure 19: A recursive transition network.

– For every RTN, there is an equivalent CFG and vice versa.

– RTNs (and therefore CFGs) are still insufficient to handle some important gram-
matical aspects of natural languages.

– More importantly, an RTN on its own does not construct any parse tree. It is only
capable of accepting or rejecting a sentence based on the grammar and syntax of
the sentence. An RTN can be augmented to produce a parse tree while parsing a
correct sentence.

– So-called augmented transition networks (ATNs) solve both problems: they allow
to recognise all grammatical complexities and they can naturally produce a parse
tree together with checking the correctness. The description of ATNs is beyond the
scope of this introductory module.

Semantic Analysis

– Transition networks are capable of parsing sentences for different grammars —
how then can we derive semantic knowledge structures?

– Experience has shown that semantic interpretation is the most difficult stage in NL
understanding.

– Semantic interpretation requires that utterances be transformed into appropriate
knowledge structures, semantic networks, frames, scripts etc.

– Semantic interpretation can be approached in several ways:

(i) After parsing, a semantic analyser is invoked to produce a semantic structure.

(ii) A sentence is transformed directly into a target structure with little syntactic anal-
ysis. Such an approach relies, for example, on semantic grammars.

(iii) Perform syntactic and semantic analysis concurrently using semantic informa-
tion to guide the parsing process. This is the approach taken by SHRDLU.

14. NLP 2/3 CS1140 Introduction to AI, 2003/2004 (91/119) 6/6

Semantic grammars

– These are grammars in which semantic information is encoded into a grammar in
which the nonterminals and the production rules are governed by semantic as well
as syntactic functions.

– In addition, there is usually a semantic action encountered with each rule of gram-
mar so that the result of parsing and applying all the associated semantic actions is
the meaning of the sentence.

– Semantic grammars are used in a language interface to a data base management
system in LIFER.

– LIFER used semantic categories like 〈SHIP-NAME〉, 〈ATTRIBUTE〉 in a grammar
such as:

S −→ “What is 〈ATTRIBUTE〉 of 〈SHIP〉?”
〈ATTRIBUTE〉 −→ the 〈ATTRIBUTE〉 〈ATTRIBUTE〉
〈ATTRIBUTE〉 −→ length beam commander fuel . . .

〈SHIP〉 −→ the 〈SHIP-NAME〉 〈SHIP-NAME〉
the 〈SHIP-CLASS〉 〈SHIP-CLASS〉 . . .

〈SHIP-NAME〉 −→ Kennedy Atlantis . . .
〈SHIP-CLASS〉 −→ destroyer submarine convoy . . .

With this grammar sentences of the form:

What is the length of the Kennedy?

Who commands the Kennedy?

What is the name and location of the carrier nearest to New York?

could be posed and answered.

– The difficulty with semantic grammars is that they tend to have a great many pro-
ductions for all but the smallest languages and hence the computational processing
can be time consuming.

15. NLP 3/3 CS1140 Introduction to AI, 2003/2004 (92/119) 1/6

Unit 15. Natural Language Processing 3/3

Learning Outcomes . You should be able to

- describe a user interaction with SHRDLU

- understand simple examples of PLANNER expressions inside
SHRDLU

- illustrate on examples how the SHRDLU parsing process is
guided by semantics and world knowledge

- give examples of semantic markers and of their usage

- discuss several aspects in which SHRDLU is weak when
compared with the human understanding of language

– The SHRDLU program of Winograd (1972) had an overwhelming effect on research
into NLP.

– This was a dialogue system that could converse with a human user about a simple
table-top world containing building blocks. The program had a crude simulation
of a ‘hand’ and ‘eye’ which it could use within the simulated ‘blocks’ world.

– See sample dialogue in NLP 1 lecture notes.

– The program could:

1. answer questions

2. execute commands — virtual robot carries out action

3. accept information in an interactive English dialogue

Detail

– The program is organised to deal with the three different types of knowledge:

(i) syntax analysis,

(ii) semantic analysis,

(iii) the data base of assertions and the procedures (in PLANNER) which represent
the knowledge of the physical world.

– “Language should not be reduced to the separate [areas] of syntax, semantics and pragmat-
ics in the hope that by understanding each of them separately we can understand the whole.
The key to the function of language as a means of communication is in the way these areas
interact.” — Winograd recognised this and introduced it into his program.

– The most important element of his program is the interaction between these com-
ponents. We shall describe each of the 3 subject areas separately and then describe
how they interact.

15. NLP 3/3 CS1140 Introduction to AI, 2003/2004 (93/119) 2/6

Reasoning

– The program makes use of a detailed world model, describing both the current
state of the blocks world and its knowledge of procedures for changing that state
and making deductions about it.

– There is a data base of simple facts describing what is true at any particular time.
E.g. it can contain

(IS B1 BLOCK)
(IS B2 PYRAMID)
(AT B1 (LOCATION 100 100 0))
(SUPPORT B1 B2)
(CLEARTOP B2)
(MANIPULABLE B1)
(COLOUR-OF B1 RED)
(IS BLUE COLOUR)
(CAUSE EVENT 23 EVENT 25)

– Operating on this data, we have procedures written in a abstract language called
PLANNER (more precisely, in its reduced version called Micro-Planner). For exam-
ple, when following the procedure for ‘GRASP’ the set of currently active goals at
a particular point is represented as the following stack.

(GRASP B1)
(GET-RID-OF B2)

(PUTON B2 TABLE 1)
(PUT B2 (453 201 0))
(MOVEHAND (553 301 100))

– Note that the subgoal structure provides the basis for asking ‘WHY?’ questions (e.g.
‘Why did you put B2 on the table?’ ‘. . . to get rid of it’).

– ‘HOW?’ questions are answered by looking at the set of subgoals called directly in
achieving a goal, and generating descriptions of the actions involved.

– The way that Winograd’s system would deal with a simple description like

“a red cube which supports a pyramid”

is shown on the following (somewhat simplified) PLANNER procedure that finds
a matching object.

(GOAL (IS ?X1 BLOCK))
(GOAL (COLOUR-OF ?X1 RED))
(GOAL (EQUIDIMENSIONAL ?X1))
(GOAL (IS ?X2 PYRAMID))
(GOAL (SUPPORT ?X1 ?X2))

where ? indicates a variable.

15. NLP 3/3 CS1140 Introduction to AI, 2003/2004 (94/119) 3/6

– When the object had been found, then it would be incorporated into a command
for doing something with the object.

– The procedure does not show loops, conditional tests and other programming de-
tails. These would be taken care of by the PLANNER programming language —
the loops are implicit in PLANNER’s backtracking mechanism:

– The description is evaluated by proceeding down the list until some goal fails at
which time the system backs up automatically to the last point where a decision
was made and tries a different possibility.

Semantic Analysis

– requires ways to interpret the meanings of individual words and of the syntactic
structures in which they occur.

– Consider how simple words like ‘CUBE’ are defined:

(CUBE
((NOUN

(OBJECT
((MANIPULABLE RECTANGULAR)

((IS *** BLOCK)
(EQUIDIMENSIONAL ***)))))))

where ‘*** ’ stands for the particular object which is talked about.

– The first part of the definition is based on the use of semantic markers. Thus the
system can make quick checks to see whether certain combinations are ruled out
by simple tests. E.g., a semantic marker PHYSICAL of an adjective might express
the fact that “this meaning of the adjective applies only to words which represent physical
objects”. The marker PHYSICAL would be applied to some words like rectangular
and green but not to others like good and quick.

Such markers would give a ready elimination of Chomsky’s sentence

“Colourless green ideas sleep furiously.”

– and a similar example from SHRDLU:

“Can the table pick up blocks?”

– ‘Pick up’ demands a subject that is marked ANIMATE whereas ‘table’ has the in-
compatible marker INANIMATE.

– Although the above definition of CUBE looks like a static rule statement, such def-
initions are in effect calls to procedures which do the appropriate checks and build
the semantic structure.

– Programs need to be flexible: e.g. the phrase ‘pick up’ has different meanings
depending on whether the object is singular or plural:

“Pick up the red block.” vs. “Pick up your toys.”

15. NLP 3/3 CS1140 Introduction to AI, 2003/2004 (95/119) 4/6

– This flexibility is even more important once we get beyond simple words. In defin-
ing words like ‘the’, ‘of’, ‘one’, we can hardly make a simple list of properties and
descriptions of each word similar to that given above. Rather, for instance, presence
of ‘one’ in a noun-group must trigger a program which considers the previous dis-
course to see what objects have been mentioned. Various rules and heuristics are
applied to determine the appropriate reference. E.g.

‘a big red block and a little one’ {one = red block}

– Words like ‘the’ are more complex — ‘the’ refers to a definite article as in:

‘the Moon’ ‘Yesterday I met the strange man.’

– Thus a model of language must be able to account for the role this type of knowl-
edge plays in understanding. Thus the different possibilities for the meaning of
‘the’ are procedures which check various facts about the context, then prescribe
actions such as:

‘look for a unique object in the database which fits the description’
OR

‘assert that the object being described is unique as far as the speaker is concerned’

– For example, assuming a pyramid is in the scene, then the following discourse
would be acceptable:

‘Grasp a pyramid’
‘What is the pyramid supported by?’

Syntax Analysis

– SHRDLU contains a parser and a fairly comprehensive grammar.

– The approach to syntax is based on a belief that the form of syntactic analysis must
be usable by a realistic semantic system. The emphasis of the resulting grammar
differs in several ways from traditional transformational approaches.

– The system first looks for syntactic units which play a primary role in determining
meaning — a sentence such as:

‘Every musician likes long romantic sonatas’

could be parsed to generate the structure shown below:

sonatas

CLAUSE

VERB GROUPNOUN GROUP NOUN GROUP

likes

VERB NOUNADJ ADJNOUNDET

musicianevery long romantic

15. NLP 3/3 CS1140 Introduction to AI, 2003/2004 (96/119) 5/6

– The semantic programs are organised into groups of procedures, each of which is
used for interpreting a certain type of unit.

– For each unit, there is a syntactic program (written in a language called PROGRAM-
MAR, specially designed for the purpose) which operates on the input string to see
whether it could represent a unit of that type. In doing this, it will call on other syn-
tactic programs including possibly itself.

– Each unit has a description of the possible ordering of words and other units, e.g.
a scheme for a noun group

QUALIFIER*DETERMINER

ORDINAL

NUMBER

ADJECTIVE*

CLASSIFIER*

NOUN

– The following phrase would be parsed by the above scheme

“the first three big red fire-hydrant covers without handles. . . ”

– Additional constraints: e.g. the indefinite determiner ‘a’ cannot be followed by an
ordinal and a number as in:

“a first three. . . ”

Program Organisation

– Program does not operate by first parsing a sentence, then doing some semantic
analysis and finally by using deduction produce a response — as Winograd stated:

’Language cannot be reduced into separate cases such as syntax, semantics and prag-
matics in hopes that by understanding each of them separately, we have understood
the whole. The key to the function of language as a means of communication is in the
way these areas interact.’

– The three activities proceed concurrently during the processing of a sentence. As
soon as a piece of syntactic structure begins to take shape, a semantic program is
called to see whether it makes sense and the answer can direct the parsing. E.g.
consider the sentence

“Put the blue pyramid on the block in the box.”

– Parser first comes up with ‘blue pyramid on the block’ as a candidate for a noun
group. Semantic analysis is then invoked and since ‘the’ is definite, a check is
made in the data base for the object being referred to. When no such unique ob-
ject is found, the parsing is redirected to ‘the block in the box’ as a single phrase
indicating a location.

– In other cases, the system of semantic markers may reject a possible interpretation
on the basis of conflicting category information — thus there is a continuing inter-
play between the different sets of analysis with the results of one affecting others.

15. NLP 3/3 CS1140 Introduction to AI, 2003/2004 (97/119) 6/6

– The procedure as a whole operates in a left to right direction through the sentence.
It does not carry multiple possibilities for the syntactic analysis, but instead uses
the backtracking facility if the wrong possibility is chosen. In simple sentences
like those of the example dialogue, very little backup is ever used, since the com-
bination of syntactic and semantic information usually guides the parser down
profitable paths.

Areas of inadequacy

– In Winograd’s program, syntax analysis is first invoked and has the responsibil-
ity of coming up with possibilities. The semantic routines determine the line of
parsing.

– This approach would fail if trying to understand phrases like “Global warming
threat”. Although the phrase is not syntactically well-formed, it invokes a meaning.
So another approach to simulate human understanding of language would be to
swap the roles of syntax and semantics: focus on constructing semantic structure
from words and sometimes use grammar as a supplementary guide.

– Nevertheless, it seems clear that no single approach is really correct. In contract to
the previous example, we are able to interpret sentences syntactically even when
we do not know the meaning of individual words. Indeed, most of our vocabulary
is acquired in this manner.

– In addition, everyday conversation may be of the form

“Then the other one did the same thing to it.”

– Understanding seems to be a coordinated process in which a variety of syntactic
and semantic information can be relevant, and in which whatever is more useful
in understanding a given part of the sentence is taken advantage of.

– Much remains to be done in understanding how to write programs in which a
number of concurrent processes are working in a coordinated fashion without be-
ing under the primary hierarchical control of one of them.

– Language learning is scarcely touched.

– SHRDLU makes only a primitive sort of deduction, whereas humans are continually
constructing models and hypotheses in the process of language understanding. We
try to understand what the speaker is ‘getting at’.

16. Learning CS1140 Introduction to AI, 2003/2004 (98/119) 1/8

Unit 16. Learning

Learning Outcomes . You should be able to

- define supervised and unsupervised learning, discuss
their weaknesses

- list and explain the typical steps of concept learning

- understand examples of geometrical knowledge derivations
in Winston’s learning approach

- define the term ‘inductive learning’

- describe the input, output and the steps of the ID3
algorithm (NO NEED to remember formulas)

- list and explain the advantages and disadvantages of ID3
and inductive learning

The ability to learn must be part of any intelligent system — Simon (1983) has defined
learning as:

‘any change in a system that allows it to perform better the second time on repetition of
the same task or on another task drawn from the same population’

Approaches to Learning

There are two general approaches to learning :

1. Supervised learning
This approach assumes that the system has a co-operative teacher, and that the
teacher will present a succession of samples from which the system can improve
its knowledge. The samples will normally include examples and near misses.

2. Unsupervised learning
The opposite approach is to present all the samples in an unordered fashion through
which the system works to produce some order. Large amounts of memory are re-
quired for this approach since the samples have to be stored and searched. This
does also require large processing times.

The first approach is limited in that the system is only as good as the teacher used. If
the teacher fails to communicate, then the system will not learn.

The second approach is only as good as the searching algorithm used, although the
system can prepare its own examples and has the ability to learn independently.

16. Learning CS1140 Introduction to AI, 2003/2004 (99/119) 2/8

Concept Learning

– Concerned with learning class definitions. The classic example here is the struc-
tural concept learning program of P. H. Winston which operated in a simple blocks
world.

– Program started with a line drawing of a blocks world structure. It constructed a
semantic network representation of the structural description of the objects.

– The basic approach to concept learning can be described as follows:

1. Begin with an example of the class being examined.

2. Examine other samples which are also included in the class. Generalise the clas-
sification rules to include them.

3. Examine other samples which are near misses. Restrict the classification to ex-
clude them.

Winston’s approach will now be illustrated on an example:

1. First sample (must be a positive example)

1
part 1

part 2

part 3
left of right of

ARCH

supports
supports

2

3

The derived semantic network (on the right above) is the first attempt at a defini-
tion of the ‘Arch’ concept.

2. Second sample (near miss)

part 1

part 2

part 3
left of right of

2

3

1

NO ARCH

The concept of support is missing, so assume that this omission caused the failure
of the structure to be an example. Hence, adjust the definition of arch to:

16. Learning CS1140 Introduction to AI, 2003/2004 (100/119) 3/8

must

ARCH
part 1

support
part 2

part 3

support

left of right of

must

3. Third sample (another near miss)

1

3
2

NO ARCH
part 1

supports

supports

right of

part 2

part 3
left of touching

A new concept here is that there must be space between the columns (i.e. they
should not touch). Assume, therefore, that no space between parts 2 and 3 has
caused the failure. Hence, adjust the definition of arch to:

must not

part 1

support

right of

part 2

part 3
left of

touch

mustsupport
must

ARCH

4. Fourth sample (positive)

2
3

1

The derived network is shown in Figure 20 on the left. On the right is a part of the
network derived from the first example. At the bottom is a network combining the

16. Learning CS1140 Introduction to AI, 2003/2004 (101/119) 4/8

part 1

part 2

part 3

isa
ARCH

Prism

isa

isa

isa
Wedge

Block

isa

part 1

part 2

part 3

Blockisa

isa

isa

ARCH

Prism

isa

Prismpart 1

part 2

part 3

isa
ARCH

isa

isa

Block

isa

Figure 20: Generalising the shape of the top piece of an arch.

properties part 1 from the networks above it. (The positioning links are not shown,
they are as before. The shape information (block) was omitted in the previous
drawings.)

We finally arrive at:

touch

Prismpart 1

right of

part 2

part 3
left of

support
must

ARCH
isa

isa Block

isaisa

must
support

must not

16. Learning CS1140 Introduction to AI, 2003/2004 (102/119) 5/8

Rules of learning approach

1. You cannot learn if you cannot know, i.e. the appropriate representation must be
given at the outset.
(This follows from the way we use positive examples.)

2. You cannot learn if you cannot distinguish the important from the incidental.
(This follows from the way we use near misses.)

Summary of the above supervised training procedure

– It uses teacher supplied samples (and is therefore no better than the teacher). The
samples are either examples (correct) or near misses (incorrect). The procedure is:

1. The first sample must be an example of the class being investigated, and is used
to build an initial description in a frame format.

2. The second stage is a repeated loop of subsequent samples. These samples will
either be examples which tend to expand the set of rules by generalisation, or
near misses which tend to constrict the set of rules.

– The supervised learning procedure is an incremental learning procedure, working
on a principle that it is easier, hence more reliable, to learn in small steps.

Martin’s law — you cannot learn anything unless you almost know it already.

Induction Systems

– The most essential component of an Expert System is knowledge. Knowledge ac-
quisition has proved to be the bottleneck of ES development. An expert may be
unable to articulate a rule but usually would say “I’ll give you an example”.

– Given these problems, techniques that can automate the process of knowledge ac-
quisition are appealing. One of these methods is induction. It is the process of
reasoning from a given set of specific facts to conclude general principles or rules.

– Several induction algorithms have been developed — one such is the ID3.

ID3

– It is a general purpose rule induction algorithm developed by Quinlan.

– In the beginning, there are a number of observations, each being either positive or
negative. Observations are classified according to a collection of attributes.

– The aim of the algorithm is to build a decision tree that can predict whether a
future observation will be positive or negative.

16. Learning CS1140 Introduction to AI, 2003/2004 (103/119) 6/8

The ID3 algorithm has the following steps.

1. Select any single attribute A.

2. Categorise the data according to attribute A, setting up a group for each value of
the attribute.

3. For each group, compute a number Bv which expresses how much information about
the result is contained within the group (where v stands for the value of attribute A

corresponding to this group).

Bv is never negative. The smallest value Bv = 0 means that the group contains
perfect information, i.e. all observations in this group share the same result. The
higher Bv is the more variety of results there is within the group, i.e. the less infor-
mation it contains about the result.

The number Bv is computed by the following formula:

Bv = −p+ · log2(p
+) − p− · log2(p

−) (1)

where p+ is the proportion of ‘yes’ decisions under the group with value v and p−

is the proportion of ‘no’ decisions under the same group.

4. Then, compute the measure MA of the information about the result that we gain focus-
ing only on the value of the attribute A.

Again, this number expresses the variety of results depending on the value of
attribute A. Thus MA = 0 means perfect information — by knowing the value of
A, we know the result of the observation. The higher MA it is, the less information
about the result we get by knowing the value of the attribute A.

Number MA is computed as a weighted sum of numbers Bv for all groups:

MA = rv1
Bv1

+ · · · + rvnBvn (2)

where

– v1, . . . , vn are all of the possible values of attribute A and

– for every i = 1, . . . , n, the coefficient rvi
is the proportion of the observations

made with the value vi with respect to the total number of observations.

5. Repeat steps 1–4 for all other decision attributes B, C, etc. to get MB, MC, etc.

6. Choose the attribute with the smallest M and build a level of the decision tree:
make a branch for each value of the chosen attribute.

If all MA, MB, etc. are equal to 0, the decision is trivial — it is always ‘yes’ or always
‘no’ independently of the values of any of the attributes.

7. If we have made new branches in the previous step, repeat steps 1–6 for each of
the branches to select one of the remaining attributes to be used for the next level
of branching.

16. Learning CS1140 Introduction to AI, 2003/2004 (104/119) 7/8

Problem Example

Consider a weather prediction problem in which a small set of observations has been
collected which describe the chance of rain given the attributes ‘sky’, ‘barometer’ and
‘wind’. The following Table summarises the results.

Sky Barometer Wind Rain

clear rising north -
cloudy rising south +
cloudy steady north +
clear falling north -
cloudy falling north +
cloudy rising north +
cloudy falling south -
clear rising south -

The collection of examples above contains four in class + and four in class -. We can
use equation 2 to measure the information uncertainty of the entire collection:

MC = −4/8 · log2(
4/8) − 4/8 · log2(

4/8) = 1.0

Consider firstly the attribute ‘wind’. From equation 1 we have

Bnorth = −3/5 · log2(
3/5) − 2/5 · log2(

2/5) = 0.971

Bsouth = −1/3 · log2(
1/3) − 2/3 · log2(

2/3) = 0.918

From equation 2, the expected information uncertainty is

Mwind = 5/8 · .971 + 3/8 · .918 = 0.951

and so the information gained by using this attribute is

MC − Mwind = 1 − 0.951 = 0.049

Considering now the attribute ‘sky’, we have

Bcloudy = −4/5 · log2(
4/5) − 1/5 · log2(

1/5) = 0.772

The group for ‘clear’ provides no further information uncertainty, and so:

Msky = 3/8 · 0 + 5/8 · .722 = 0.45

and the information gained by using the attribute ‘sky’ is

MC − Msky = 1 − 0.45 = 0.55

In a similar manner to the above, we can deduce that the expected information gained
by testing the ‘barometer’ attribute is 0.156.

Therefore, ID3 indicates that the attribute ‘sky’ should be considered first since it pro-
vides the maximum gain in expected information.

16. Learning CS1140 Introduction to AI, 2003/2004 (105/119) 8/8

The final computed decision tree is the following:

steady

–

Sky ?

Barometer ?

Wind ?

+

+ +
north south

falling rising

cloudyclear

–

Advantages of ID3

– Selects the most discriminatory attribute first — this enhances system efficiency
since it reduces the combinatorial explosion of the decision tree.

Limitations of ID3

– Rules are not probabilistic, therefore:

– Its decision tree does not inform us how strong the evidence is for its results, in
particular:

– Several identical examples have not much more effect than one example.

– Cannot deal with contradictory examples.

– The results are not overly sensitive to small alterations in the training set.

Advantages of induction

– Discovers rules from examples.

– Avoids knowledge elicitation problems.

– Can produce new knowledge.

– Can uncover critical decision factors.

– Can eliminate irrelevant decision factors.

– Can uncover contradictions.

Disadvantages of induction

– Often difficult to choose good decision factors.

– Difficult to understand rules.

– Applicable only for classification problems.

17. Neural Nets CS1140 Introduction to AI, 2003/2004 (106/119) 1/8

Unit 17. Neural Networks

Learning Outcomes . You should be able to

- draw a diagram illustrating the operation of a neuron
in Perceptron, explain its function, show an example
calculation

- describe the Perceptron training algorithm and apply it
on an example

- state what problem was found with Perceptron and how it
can be solved

- describe a multi-layer network and its training
algorithm, explain the roles of layers, individual
neurons, activation function, forward pass and
back-propagation (NO NEED to remember formulas)

– Artificial neural networks are biologically inspired.

– Human brain consists of 1010–1011 nerve cells, called neurons.

– Each neuron is connected to many other neurons which it can influence. It is esti-
mated that there are 1015 interconnections over transmission paths that may range
up to a metre or more.

– A simplified diagram of a neuron is shown below.

cell body

axon

synapse

dendrites

nucleus

– Inputs from other neurons are received at the synapse where the signals are con-
ducted to the cell body. There they are summed, some inputs tending to excite the
cell, others tending to inhibit it — when the cumulative excitation in the cell body
exceeds a threshold, the cell fires, sending a signal down the axon to the dendrites
of other neurons where they receive signals at the synaptic region.

– McCulloch and Pitts (1943, 1947) suggested a simple model, an artificial neuron,
which accounted for most of the main properties of the natural neuron.

17. Neural Nets CS1140 Introduction to AI, 2003/2004 (107/119) 2/8

field

F

weight
elements

summation
and

threshold
element

associative
elementsretinal

sensory

wn

w2

w1A

A

A

I1

I2

In

Figure 21: Schematic operation of a neuron connected to retina.

F

weight
elements

summation
and

threshold
element

F = +ve,
iff

∑n
k=1 wk · Ik > T

F = −ve,
otherwise

wn

w2

w1

I1

I2

In

Figure 22: Schematic operation of an artificial neuron in Rosenblatt’s Perceptron.

– It was left to Rosenblatt (1962) to actually construct a machine called the Percep-
tron which was based on artificial neurons. He also described a training algorithm
through which the network could learn.

– Rosenblatt’s work provided a great impetus to research in the field.

– The ‘learning’ ability is a neural network’s most intriguing property. The network
can modify itself as a result of experience to produce a more desirable pattern.

– Learning can be either supervised or unsupervised. (See Unit 16)

– supervised: the teacher evaluates the behaviour of the system and directs the sub-
sequent modification. In practice, both the input layer and the output layer of the
network have their states clamped (fixed) during the learning phase, and the net-
work instructed on the mapping to be performed.

– unsupervised: the network has no knowledge of the correct answer and thus can-
not know exactly what the correct response should be. The network acts as a regu-
larity detector as it tries to determine the underlying structure of the input vector
set.

– Perceptron learning is of the supervised type.

17. Neural Nets CS1140 Introduction to AI, 2003/2004 (108/119) 3/8

– Rosenblatt provided a Perceptron training algorithm.

– A Perceptron is trained by presenting a set of patterns, the training set, to its inputs
one at a time, and adjusting the weights until the desired output occurs for each
member of the training set.

– A ‘trained’ Perceptron can then be used to predict likely outcomes from similar sets
of data.

Training algorithm

1. Data collected and classified into 2 groups — data coded.

2. Initialise all weight vectors (usually, set to zero).

3. Take next line of data, form the sum

n∑
k=1

Ik · wk = I1 · w1 + I2 · w2 + I3 · w3 + · · · + In · wn

4. If the sign of the computed response (that is,
∑n

k=1 Ik · wk) equals the sign of the
desired response, then go to step 5.

If there is a discrepancy in the responses then the weight vectors must be changed.

If the desired response is negative, then all the weight vectors wk (for k = 1, . . . , n

for which Ik 6= 0) are decremented by 1.

If the desired response is positive, then the all the weight vectors wk (for k = 1, . . . , n

for which Ik 6= 0) are incremented by 1.

5. If all the data points have been classified correctly, the training is complete; other-
wise go to step 3.

An example run of the Perceptron training algorithm is shown in Table 1.

Problems with the Perceptron approach

– The Perceptron approach was questioned by two prominent AI researchers, Min-
sky and Papert in their book ‘Perceptrons’.

– In a rigorous theoretical treatment of Perceptrons, they proved that such networks
could not solve such simple problems as the exclusive or (XOR). I.e. a network
cannot be trained to accept samples that contain either one sub-pattern or another
sub-pattern but not both of them. For example, it is impossible to train a network to
accept inputs that have I1 = 1 or I2 = 1 and, at the same time, reject patterns that
have I1 = I2.

– This serious limitation can be overcome by adding more layers of neurons to the
single-layer network of the Perceptron.

– A number of training algorithms have been suggested for such networks.

17. Neural Nets CS1140 Introduction to AI, 2003/2004 (109/119) 4/8

I1 I2 I3 I4 w1 w2 w3 w4

∑
wkIk Perc Des Adj w ′

1 w ′
2 w ′

3 w ′
4

0 1 1 1 0 0 0 0 0 * – YES 0 −1 −1 −1

0 0 0 1 0 −1 −1 −1 −1 – + YES 0 −1 −1 0

1 0 0 1 0 −1 −1 0 0 * + YES 1 −1 −1 1

1 0 1 1 1 −1 −1 1 1 + + NO 1 −1 −1 1

0 0 1 1 1 −1 −1 1 0 * – YES 1 −1 −2 0

1 1 0 1 1 −1 −2 0 0 * + YES 2 0 −2 1

1 1 1 1 2 0 −2 1 1 + – YES 1 −1 −3 0

0 1 0 1 1 −1 −3 0 −1 – – NO 1 −1 −3 0

Iteration 2

0 1 1 1 1 −1 −3 0 −4 – – NO 1 −1 −3 0

0 0 0 1 1 −1 −3 0 0 * + YES 1 −1 −3 1

1 0 0 1 1 −1 −3 1 2 + + NO 1 −1 −3 1

1 0 1 1 1 −1 −3 1 −1 – + YES 2 −1 −2 2

0 0 1 1 2 −1 −2 2 0 * – YES 2 −1 −3 1

1 1 0 1 2 −1 −3 1 2 + + NO 2 −1 −3 1

1 1 1 1 2 −1 −3 1 −1 – – NO 2 −1 −3 1

0 1 0 1 2 −1 −3 1 0 * – YES 2 −2 −3 0

Iteration 3

0 1 1 1 2 −2 −3 0 −5 – – NO 2 −2 −3 0

0 0 0 1 2 −2 −3 0 0 * + YES 2 −2 −3 1

1 0 0 1 2 −2 −3 1 3 + + NO 2 −2 −3 1

1 0 1 1 2 −2 −3 1 0 * + YES 3 −2 −2 2

0 0 1 1 3 −2 −2 2 0 * – YES 3 −2 −3 1

1 1 0 1 3 −2 −3 1 2 + + NO 3 −2 −3 1

1 1 1 1 3 −2 −3 1 −1 – – NO 3 −2 −3 1

0 1 0 1 3 −2 −3 1 −1 – – NO 3 −2 −3 1

Iteration 4

0 1 1 1 3 −2 −3 1 −4 – – NO 3 −2 −3 1

0 0 0 1 3 −2 −3 1 1 + + NO 3 −2 −3 1

1 0 0 1 3 −2 −3 1 4 + + NO 3 −2 −3 1

1 0 1 1 3 −2 −3 1 1 + + NO 3 −2 −3 1

0 0 1 1 3 −2 −3 1 −2 – – NO 3 −2 −3 1

Table 1: Example Perceptron training.
Legend: Perc = (perceived) network’s result (sign), Des = desired result (sign),

Adj = weights adjusted, w ′
1 w ′

2 w ′
3 w ′

4 = new weights

17. Neural Nets CS1140 Introduction to AI, 2003/2004 (110/119) 5/8

Multilayer networks and back-propagation

– Invention of the back-propagation algorithm has played a large part in the resur-
gence of interest in artificial neural networks. Back-propagation allows multilayer
networks to be trained in a similar way to Perceptron networks.

– The model of the neuron used as a fundamental building block for multilayer net-
works is shown below.

w2

w1 ∑ NET
F

I1

OUT
I2

In
wn

NET =

n∑
k=1

Ik · wk = I1 · w1 + I2 · w2 + I3 · w3 + · · · + In · wn

– after NET is calculated, an activation function F is applied to modify it, thereby
producing the signal OUT. The purpose of the activation function is to “squash”
the NET values so that OUT would always fall within some numerical range, usu-
ally between 0 and 1.

– The activation function usually used is

OUT =
1

1 + e−NET

Its graph in Figure 23 illustrates its “squashing” effect.
– Back-propagation can be applied to networks with any number of layers.
– In training a network, the weights are adjusted so that application of a set of inputs

produces the desired set of outputs.
– A multilayer network suitable for training with back-propagation is shown below.

wp,q,`

output
layer `

X

Input Outputhidden
layer 1

hidden(more
hidden
layers)

hidden
layer 2 layer `−1

Y = X`

W1 W2 W`

In

I1

I2

q

p

17. Neural Nets CS1140 Introduction to AI, 2003/2004 (111/119) 6/8

10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-10 -5 0 5

Figure 23: A typical activation function.

An overview of Training

1. Initialise the weights to small random numbers.

2. Select the next training pair (comprising input and output vectors) from the train-
ing set; apply the input vector to the network input.

3. Calculate the output of the network.

4. Calculate the error between the network output and the desired output.

5. Adjust the weights of the network in a way that minimises the error.

6. Repeat steps 2–5 for each vector in the training set until the error for the entire set
is acceptably low.

7. When an acceptable value for the error is reached, the network is said to be trained.
The weight values now remain constant — the network can then be used for recog-
nition.

Steps 2 and 3 above constitute a forward pass through the network. An input vector
X = I1, . . . , In is applied and some output vector Y is produced. The training set
provides the input vector X and the desired output Y.

Calculation in multilayer networks is performed layer by layer, starting at the layer
nearest to the inputs. The first layer transforms the input vector X into another vector
of outputs X1. The second layer takes X1 as input and produces X2, etc.

The NET value of each neuron p is calculated on the weighted sum of the inputs of
p. The activation function F then ”squashes” NET to produce the OUT value of the
neuron p. The “squashing” needs to be performed so that OUT is within a certain
numerical range (usually between 0 and 1).

This calculation is done for all neurons in the current layer before proceeding to the
next layer. It can be expressed using vectors and matrices. The weights between two
neighbouring layers j and k can be considered to be a matrix Wk. E.g. the weight from

17. Neural Nets CS1140 Introduction to AI, 2003/2004 (112/119) 7/8

neuron 5 in layer 2 to neuron 7 in layer 3 is w5,7,3 = (W3)5,7. Now we can express the
calculation that happens across a layer k as follows:

Xk = F(Xk−1 × Wk) =

F
(
w1,1,k · x1,k−1 + · · · + wn,1,k · xn,k−1

)
, . . . , F

(
w1,n,k · x1,k−1 + · · · + wn,n,k · xn,k−1

)
The output vector for one layer is the input vector for the next, so calculating the
outputs of the final layer requires the application of the above equation to each layer,
from the first hidden layer to the output layer.

Adjusting the weights of the output layer

Steps 4 and 5 in the training process constitute a reverse pass through the network.

For each neuron in the output layer, we have a target value for the response. Conse-
quently, adjusting the weights in the output layer is easily accomplished. However,
training the interior layers, the hidden layers, is more complicated as their outputs
have no target values for comparison.

The difference ∂, the adjustment to be made to each output neuron, is calculated as
follows

∂ = OUT · (1 − OUT) · ERROR (3)

where ERROR is the difference between the calculated output and the desired output,
thus

∂ = OUT · (1 − OUT) · (TARGET − OUT) (4)

The modification to be made to the weight wp,q,` between a neuron p in the last hidden
layer ` − 1 and neuron q in the output layer ` is

∆wp,q,` = η · ∂q,` · OUTp,`−1 (5)

and the new weight vector is

wNEW
p,q,` = wOLD

p,q,` + ∆wp,q,` (6)

Note that subscripts p and q refer to a specific neuron, whereas subscripts ` − 1 and `

refer to a layer. The other symbols used above are explained below:

∂q,` = the value of ∂ for neuron q in the output layer `.
OUTp,`−1 = the value of OUT for neuron p in the hidden layer ` − 1.

η = constant training rate coefficient (typically between 0.01 and 1.0)
wOLD

p,q,` = value of the weight from neuron p in the hidden layer to neuron q in
the output layer before adjustment

wNEW
p,q,` = the value of the weight after adjustment

17. Neural Nets CS1140 Introduction to AI, 2003/2004 (113/119) 8/8

Adjusting the weights of the hidden layers

– Hidden layers have no target vector, so the training process described above cannot
be used.

– Equations 5 and 6 are used for all layers, both output and hidden. However, for
hidden layers, ∂ must be generated without the benefit of a target vector.

– To accomplish this, ∂ is first of all calculated for each neuron in the output layer,
as in equation 4. It is then used to adjust the weights feeding into the output layer.
These values of δ are then propagated back through the same weights to generate a
value for ∂ for each neuron in the preceding layer.

– These values of ∂ are used, in turn, to adjust the weights of the hidden layer and,
in a similar way, are propagated back to all preceding layers.

– Let us consider this process in a little more detail.

– Consider a single neuron in the hidden layer just before the output layer.

– In the forward pass, this neuron propagates its output value to neurons in the out-
put layer through the interconnecting weights.

– During training, these weights operate in reverse, passing the value of ∂ from the
output layer back to the hidden layer — each of these weights is multiplied by the
∂ value of the neuron to which it connects in the output layer.

– The value of ∂ needed for the hidden-layer neuron is produced by the following
expression:

∂p,j = OUTp,j · (1 − OUTp,j) ·
(∑

q

∂q,k · wp,q,k

)
(7)

– With ∂ having been calculated, the weights feeding the first hidden layer can be
adjusted using equations 5 and 6, modifying indexes to indicate the correct layers.

– For each neuron in a given hidden layer, ∂’s must be calculated, and all weights
associated with that layer must be adjusted. This is repeated moving back toward
the input layer by layer, until all weights are adjusted.

Applications

1. Optical character recognition

2. Machine recognition of hand-written characters (e.g. post codes)

3. Text-to-speech systems — NetTalk (1987)

4. Visual perception

5. Financial market predictions

18. Genetic Alg. CS1140 Introduction to AI, 2003/2004 (114/119) 1/6

Unit 18. Genetic Algorithms (GAs)

Learning Outcomes . You should be able to

- describe the initialisation, main loop and termination of
a genetic algorithm

- describe and follow the steps of a simple generation
cycle

- understand and explain a given simple example of the
generation cycle

- list four main parameters of a genetic algorithm and
describe how their value affects the run of the algorithm

- list a few typical application areas of genetic
algorithms

– GAs are search algorithms based on the mechanism of natural selection — a Dar-
winian survival of the fittest among “string creatures”.

– Developed by John Holland and co-workers by 1975 at the University of Michigan.

– GAs provide a robust search in complex spaces.

– They have generated a great deal of research interest in recent years as the scope of
application and performance of GAs has come to be recognised.

A simple genetic algorithm

This can be surprisingly simple, involving nothing more complex than copying strings
and swapping string portions. Despite this simplicity, the algorithm is quite powerful.

A simple genetic algorithm that yields good results for many practical problems con-
tains the following operators:

(i) fitness evaluation,

(ii) selection of mates,

(iii) crossover,

(iv) mutation.

Modelling assumptions

– Research has defined a fairly general framework for the specification of genetic
algorithms.

– Each point in the problem space can be considered as an individual, represented
uniquely within the system by a fixed length string of symbols. Usually the binary
symbols 0 and 1 are used, although other representations (e.g. floating point) have
been investigated.

18. Genetic Alg. CS1140 Introduction to AI, 2003/2004 (115/119) 2/6

– This string serves as the ‘genetic material’ with specific positions (loci) on the string
(chromosome) containing unique symbols or string features (genes) taking on val-
ues (alleles). (The parenthesised words in the previous sentence are notions used
in genetics that inspired GAs.)

– The system always maintains a population of strings representing the current set
of possible solutions to the problem.

– The process begins either by random generation or designer specification of an
initial population.

– Time is measured in discrete steps called generations. During every generation
step, a new population is produced from the previous population.

– Each string can be assigned a fitness value which is indicative of its worth in the
given environment and also indicative of its likely survival in future generations.

Basic Execution Cycle

The basic (simple version of the) execution cycle is as follows (one run of the cycle
corresponds to one generation step):

1. In the current population, evaluate the fitness of every solution (string).

2. Randomly select candidates for mating. Solutions with a higher fitness have a
greater probability of being selected than solutions with lower fitness.

3. Randomly select pairs from the candidate solutions.

4. Produce offspring for each pair using the crossover operator. All offspring pro-
duced in this step form the next population, replacing their parents.

Crossover is an exchange of a portion of genetic material between the two mates. It
involves selecting a site within the chromosome string where the portion of genetic
material is located that should be exchanged. The selection of site may be random
too.

5. Apply the mutation operator, i.e. make small changes to the new population at
random.

6. Iterate the process by returning to step 1 above or terminate if success has been
achieved or a specified number of generations has been exceeded.

A simple example problem

– Consider the toy ‘problem’ of maximising the function f(x) = x2 in the integer
range 0 to 31, i.e. searching for an integer between 0 and 31, inclusive, which has
the largest square.

– We first decide how to represent x as a finite-length string. Clearly, one possible
representation is as a string of 5 bits. (A bit is either 0 or 1.) E.g. the string 10101

represents the number

1 × 16 + 0 × 8 + 1 × 4 + 0 × 2 + 1 × 1 = 16 + 4 + 1 = 21.

18. Genetic Alg. CS1140 Introduction to AI, 2003/2004 (116/119) 3/6

Number String Value Fitness Select %
i vi fi = v2

i
fi/

∑
k fk

1 01101 13 169 14%
2 11000 24 576 49%
3 01000 8 64 6%
4 10011 19 361 31%

Sum 1170 100%
Average 293 25%

Maximum 576 49%

Table 2: An initial population with fitness values and population statistics.

– A genetic algorithm starts with a population of strings picked at random and
then generates successive populations through fitness evaluation, mate selection,
crossover and mutation.

– Assume that the initial population of four strings shown in Table 2 has been de-
rived by random means.

The table shows also the fitness of each string. In this case, the fitness is the value
of the function which we want to maximise, i.e. the square of the number that the
string represents.

The fitness of each individual is also shown as a percentage of the sum of fitness
over the whole population.

Finally, a statistics of the whole population is included.

– The initial population is now subjected to the process of selection. We select as
many candidates as is the size of the new population. One and the same string
may be selected more than once. Strings with a higher fitness value have a higher
probability of being selected.

In our scenario, we select four strings to maintain the same population size. We
assume the most likely pick: string number 2 is picked twice, strings number 1 and
4 are picked once and string number 3 is not picked at all.

– Next, the pairs are formed. Here, we mate all candidates, so we select two pairs. In
this case, they happen to be: 2 with 1 and 2 with 4.

– In this example, we shall consider one-point crossover in which a position k along
the string is selected at random. Thus the position k is an integer between 1 and
(L − 1), inclusive, where L is the string length. Two new strings are created by
swapping all characters from position k + 1 till the end of the string. For example,
from the pair of strings below on the left with k = 2, the pair of offspring strings
on the right would be produced:

01101 and 11000 −→ 01000 and 11101

In our scenario, L = 5 and k may be any number between 1 and 4. For k = 2 (as
above) we swap the string portions starting from position 2 + 1 = 3 until the end,
i.e. the portion at positions 3, 4, 5.

18. Genetic Alg. CS1140 Introduction to AI, 2003/2004 (117/119) 4/6

number original chosen crossover offspring value fitness
string mate site string vi fi = v2

i

1 01101 2a 4 01100 12 144

2a 11000 1 4 11001 25 625

2b 11000 4 2 11011 27 729

4 10011 2b 2 10010 18 324

Sum 1822

Average 455

Maximum 729

Table 3: Selected pairs and their offspring forming a new population.

– The last operator, mutation, is performed on a bit-by-bit basis. This simply changes
a bit in some randomly chosen string at some random position.

– We assume that the probability of mutation for this problem is 0.01 — e.g. with
20 transferred bit positions we would expect the average of 20 × 0.01 = 0.2 bits to
undergo mutation during one generation.

In our example of a generation step, we assume that one bit underwent mutation.
In Table 3, the mutated bit is underlined.

With the given probability, we would expect no mutation to take place in most
generations. Typically, every one in a few generations a mutation takes place in
one or more bits within the population.

– Table 3 shows the selected strings, the pairs, as well as their offspring created by
crossover and mutation. At the bottom, the fitness statistics of the new population
is stated showing an improvement over the previous one.

– This process will then continue until a satisfactory result is obtained or until a spec-
ified number of iterations has been exceeded.

The first two generations of the GA cycle for the problem of maximising f(x) = x2 are
summarised in Figure 24.

Genetic Parameters

Let us consider the general effect of varying the genetic parameters:

Population Size (N)

– affects both the global performance and the efficiency of the genetic algorithm.

– With small populations, the algorithm usually performs poorly because the popu-
lation provides an insufficient coverage of the problem space.

– A large population is more likely to be representative of the entire problem domain
and will also tend to converge to global instead of local solutions.

18. Genetic Alg. CS1140 Introduction to AI, 2003/2004 (118/119) 5/6

4

01100

11001

11011

10010

crossover
mutation

cycle
generation

11000

2b

11000

2a

k = 4

10011

11000

0100001101

1

2

3

10011

11000

0100001101

1

2

3

4

evaluation
fitness

selection pairing

10011

01101

1

4

k = 2

Figure 24: Example of a generation cycle

Crossover rate (C)

– The frequency with which the crossover operator is applied is controlled by the
crossover rate. In each new population, the average number of N × C structures
undergo crossover.

– The higher the crossover rate the more quickly new structures are introduced to
the population.

– If the crossover rate is too high, then good performance structures are removed
faster than selection can produce improvements.

– A low crossover on the other hand may stagnate the search.

Mutation Rate (M)

– Mutation is random — each fundamental unit (bit, position, or token) in a structure
has a certain (usually small) probability of changing.

– A large mutation rate results in essentially random search.

– Approximately M×N× L mutations occur per generation where L is the structure
length.

18. Genetic Alg. CS1140 Introduction to AI, 2003/2004 (119/119) 6/6

Generation Gap (G)

– The generation gap controls the percentage of the population to be replaced during
each generation.

– N × G structures of a population are chosen to be replaced in the next population.
A value of G = 1.0 means that the entire population is replaced during each gener-
ation.

Note

There are many variations on the basic genetic algorithm. For example, several crossover
operators have been investigated such as two-point crossover, uniform crossover.

Maintaining population diversity during evolution is important and the parameters
should be chosen so as to accomplish this, attaining so-called “genetic diversity.”

A super-performer is an individual with relatively high fitness that dominates the
population until no further improvement is possible. Such a super-performer may
appear early in the process. This so-called “genetic plateau” should be avoided so
that the problem space is sufficiently explored.

Applications

– Optimisation of complicated functions, scheduling

– Computer vision — object recognition in brightness arrays

– Problem-solving

– Neural networks — topology design, training

– Concept learning

– Genetic programming — computer writing programs

	Unit 1: Introduction
	AI Topics and Major Subdivisions
	Philosophical Issues
	Some AI landmarks
	AI in Practice
	The Industrial Importance of AI
	Turing Test
	Loebner Prize Contest

	Unit 2: Search 1/3
	Problem Solving
	Problem states and operators
	Search methods
	Uninformed Search
	Breadth-First Search
	Depth-first Search
	Summary
	Depth-first with Iterative Deepening
	Bi-directional Search
	Non-systematic search
	Modifications required for searching graphs

	Unit 3: Search 2/3
	Informed Search
	Evaluation Functions
	Best-First Search (ordered search)
	The A* Algorithm
	Admissibility
	Informedness
	Notes

	Unit 4: Search 3/3
	The Problem-Reduction Approach
	AND/OR Graphs
	Planning Mechanisms in Problem Reduction
	Key Operators
	Means-ends analysis
	Weak/Strong methods
	Means-ends analysis applied to the monkey and bananas problem
	GPS algorithm execution for the monkey and bananas problem

	Unit 5: Game Playing
	Game Playing
	Minimax Procedure
	The Alpha-Beta Procedure
	Additional refinements
	Game playing programs

	Unit 6: Knowledge Representation
	Production Systems
	..Overview
	..Classification of interpreters
	..Simple example
	Semantic networks
	Frames
	Schemata
	Scripts

	Unit 7: Expert Systems
	What is an Expert System?
	Example Expert Systems
	..Example of an Expert System Consultation --- MYCIN Dialogue
	Expert System Architecture
	..Knowledge Base (KB)
	..Inference Engine (IE)
	..Explanation
	Knowledge Acquisition
	Types of Problems Tackled by Expert Systems
	Importance and Benefits of Expert Systems
	Selecting a Problem for Expert System Development
	Representation of Knowledge

	Unit 8: Computer Vision 1/2
	..Stage 1: digitisation (getting a picture into the computer)
	..Stage 2: signal processing
	..Stage 3: edge and region detection
	..Stage 4: object recognition
	..Stage 5: image understanding
	Human Vision
	Problems of Computer Vision
	Low level processing (stages 2 and 3)
	..Thresholding
	..Smoothing
	Edge detection
	Line Finding
	Hough Transform
	Guzman 1968

	Unit 9: Computer Vision 2/2
	Huffman's work on Impossible Solid Objects
	Waltz
	Final Note

	Unit 10: Logic 1/2
	Propositional Calculus
	Rules of Inference
	Proving theorems in Propositional Calculus
	..Truth Tables
	..Propositional Resolution
	..Example 1
	..Example 2

	Unit 11: Logic 2/2
	Inadequacies of Propositional Calculus
	Predicate Calculus
	The Syntax of Predicate Calculus
	Quantification
	Validity and Satisfiability
	An example of a simple proof in the predicate calculus
	Resolution Theorem Proving
	Example of Resolution Theorem Proving
	Logic Programming

	Unit 12: Planning
	Application Domains
	Problems
	STRIPS
	..STRIPS planning algorithm
	..Problem of interacting subgoals
	..Handling subgoal interaction
	..Linear planning --- correction by goal reordering
	..Linear planning --- correction by regression
	Non-linear plans
	Frame Problem
	..How can we decide which facts change?

	Unit 13: Natural Language Processing 1/3
	Machine Translation (MT)
	..The Problem
	Turing Test
	Early Systems
	..Eliza
	..Lunar
	..SHRDLU
	..LIFER
	Components of an understanding system
	..Levels of analysis of natural language
	..Problem of Combinatorial Explosion

	Unit 14: Natural Language Processing 2/3
	General Approaches to NLP
	Phrase Structure Grammar (PSG)
	Finite State Transition Networks (FSTNs)
	Recursive Transition Networks (RTNs)
	Semantic Analysis
	..Semantic grammars

	Unit 15: Natural Language Processing 3/3
	Detail
	Reasoning
	Semantic Analysis
	Syntax Analysis
	Program Organisation
	Areas of inadequacy

	Unit 16: Learning
	Approaches to Learning
	Concept Learning
	..Rules of learning approach
	..Summary of the above supervised training procedure
	Induction Systems
	ID3
	Problem Example
	..Advantages of ID3
	..Limitations of ID3
	..Advantages of induction
	..Disadvantages of induction

	Unit 17: Neural Networks
	Training algorithm
	Problems with the Perceptron approach
	Multilayer networks and back-propagation
	..An overview of Training
	..Adjusting the weights of the output layer
	..Adjusting the weights of the hidden layers
	..Applications

	Unit 18: Genetic Algorithms (GAs)
	A simple genetic algorithm
	Modelling assumptions
	Basic Execution Cycle
	A simple example problem
	Genetic Parameters
	Note
	Applications

