
© A Barnes, 2003 1 CS1110/Compilation

CS111 Introduction to Systematic Programming
An Overview of the Compilation Process
Computers cannot directly execute programs written in high-level languages such as Ada, C
or Java. The program must first be translated into binary machine instructions that the
computer can execute. This translation process is known as compilation and is peformed by
a program known as a compiler. The particular compiler used in this course is called gcc.

The first stage of the compilation process is to check the program for syntax errors such as
missing semi-colons, mis-spelt keywords etc.. If errors are found error messages are output
to help in the debugging process and the compilation process terminates. If no syntax erros
are found, the compiler goes on to check for semantic errors such as undeclared variables,
type mis-matches in expressions and incorrect calls to library I/O procedures etc.. If errors
are found in the semantics, error messages are again output to help in the debugging process
and the compilation process terminates. If no errors are found, the compiler proceeds to
generate machine code and stores it in an object file. The original high-level language
program in Ada or C is often known as the source file to distiguish it from the binary
program in the object file.

Although the object file contains binary machine instructions, it does not yet form a complete
program that can be directly executed. First it must be linked to form a complete executable
program by a utility called a linker. The linker combines the object file produced by the
compiler with object files containing the libraries used by the program (for performing I/O
etc.) and also with an object file containing some run-time support code. The purpose of the
run-time support code is to pass control from the operating system (in our case UNIX) to our
program when it is executed and to pass control back to the operating system when our
program terminates. See Figure 1 overleaf.

Object code and executables are binary files and are not intended to be read by humans. If
you display them using a pager program such as more or less or if you open the file with
Emacs, the output will be incomprehensible (and may crash the terminal window). Do not
attempt to print binary files on a line-printer as this will waste reams of paper and will
probably crash the printer.

Machine Dependence of Executables and Object Files
When we write a program in a high-level language such as Ada, the source code we write is
the same (more or less) whether we intend to run the program on a Sparc, a PC or a
Macintosh computer. We say that the high-level language is machine-independent or
platform-independent. The same is not true for object code and executable programs. Each
make of machine has a different type of CPU chip and a different set of binary machine
instructions. The machine code for, say, a Sparc processor cannot be run on a PC (which has
a Pentium processor) nor on a Macintosh1 which has yet another type of CPU (called a
PowerPC). We say that the machines have different architectures.

Executables and object code are machine-dependent and so it is not possible to run a
program compiled on a Sparc running Solaris on a PC (even if it is also running under
Solaris) or vice-versa. The program must be completely recompiled for the new machine.

Note that the machines in MB357, MB202, MB268 and MB264/6 all run under Solaris and
present an almost identical working environment. A user who creates a file on a computer in
one room can later access it from a system in another room is accessible on all these system
However the machines in 264/6 are Sparcs whereas those in the other room are PCs.

1 Older Macintoshes have yet another kind of CPU chip called a Motorola 68000.

© A Barnes, 2003 2 CS1110/Compilation

Figure 1

Source File

Compiler

Object File

Linker

Executable File

Run

Input
Data

Output
Results

Library
Source

Library
Object Files

Run-time
Support
Object Files

Executing
Program

Compilation of a High-Level Language

gcc as a Multi-language Compiler
Actually gcc can be used to compile programs written in the high-level languages2 C and
C++ as well as Ada programs. In fact gcc is not really a compiler but rather a compiler
driver. It looks at the extension of the source file supplied to determine which language the
file is written in and then calls the appropriate compiler for the language concerned. gcc can
also be used to assemble (compile) assembly language programs and to link object code. It
behaves as follows:
Type of File Extension Action
Ada source file .ads or .adb Call the Ada compiler proper gnat
C source file .h or .c Call the C compiler proper ccomp
C++ source file .hpp or .cpp Call the C++ compiler proper g++
Assembly Language .s Call the UNIX assembler as (or gas)
Object code .o Call the UNIX linker ld

2 Extended versions are also available for compiling Fortran and Modula-2. although these
are not installed at Aston.

© A Barnes, 2003 3 CS1110/Compilation

Figure 2

gcc as a Multi-Language Compiler

gcc
Compiler Driver

Source File

Ada Compiler
 Proper (gnat)

 Object Files
(extension .o)

Executable File
(no extension)

 gcc calls
Unix linker ld

Assembler
(as or gas)

 C compiler
proper (ccomp)

C++ compiler
 proper (g++)

.adb

.ads .s

.c

.h
.cpp
.hpp

Ada Library Information Files
When an Ada program is compiled with gcc, two files are actually produced: an object file
(with extension .o) as described above plus an Ada Library Information file (with

© A Barnes, 2003 4 CS1110/Compilation

extension .ali). The Ada Library Information file contains information about the libraries
used by the Ada program and is used to control the linking process. More specifically it is
used to ensure that

that run-time support code is generated (a process called binding). This code ensures
that all the libraries are correctly elaborated (initialised) at run-time.
the object code for all the required libraries and the run-time support code is linked
the correct versions of the library object code and run-time support code are linked

Note that the C and C++ compilers do not generate a Library Information file and so with
these languages it is more difficult to ensure that all the required libraries are linked and it is
sometimes possible to link incompatible object files (perhaps generated by an different
versions of gcc or compiled from out-of-date library source code). Thus it is possible to form
an executable that may crash at run-time even though the source code contains no errors.

This cannot occur with Ada as the library information files provide all the necessary
information to automate the linking process and ensure that a consistent executable is
produced.

The Gnat Ada Compiler
More on the compilation, binding and linking process
To compile an Ada program somefile.adb (say), we usually proceed as follows:

gnatmake somefile.adb

It is instructive to consider more fully what this involves (see also figure 3). First the Ada
program is compiled

gcc -c somefile.adb

The call to gcc causes the Ada program to be compiled (converted into binary machine
instructions or object code) to produce an object file somefile.o plus an Ada library
information file somefile.ali which contains information about the Ada libraries imported
(WITH'ed) by the file somefile.adb.

To convert the object file into an executable file requires two further stages of processing:
1. Binding
This is performed by the program gnatbind

gnatbind somefile.ali

Binding automatically generates an Ada package in files called b~somefile.ads and
b~somefile.adb

The bind files contain an Ada function called main. The Ada code in main is generated
automatically from information in the Ada Library Information file (.ali file).

When an Ada program is executed, UNIX does not call your main Ada procedure directly;
instead it calls main in the bind package. The function main initialises the Ada units making
up the program, that is the main Ada program and any Ada libraries that it uses, (a process
called elaboration) and then it calls your main Ada procedure. When your Ada procedure
terminates, control is returned to the function main which performs certain tidy-up operations
(a process called finalisation) before control is returned to UNIX.

2. Linking
This is performed by the program gnatlink.

gnatlink somefile.ali

and actually consists of two sub-stages:

© A Barnes, 2003 5 CS1110/Compilation

2a. Compile the bind package to produce an object file b~somefile.o (and a library
information file b~somefile.ali)

gcc -c b~somefile.adb

2b. Link all the object files to form an executable called somefile
gcc -o somefile b~somefile.o somefile.o (+ .o files of Ada libraries)

In the last step gcc calls the UNIX linker ld to link all the necessary object files (of the main
Ada program, of any Ada packages required and of the bind file) to produce the final
executable program called somefile.

Note the bind files b~somefile.ads, b~somefile.o etc. are usually deleted automatically by
gnatmake after the program is linked unless the program is compiled with the debug option -
g. In this case the bind files are retained as they need to be accessed by the debugger gdb.
Occasionally bind files may not be deleted if the binding/linking process fails unexpectedly
(for example due to lack of sufficient disk space). See Figure 3 overleaf.

Calling the Compiler and Binder/Linker separately
Rather than invoking the compiler, binder and linker 'in one go' by calling gnatmake.

gnatmake somefile.adb

it is possible to compile the program in two stages:
gcc -c somefile.adb
gnatbl somefile.ali

The first command invokes gcc to compile the program somefile.adb. The second
command gnatbl binds and links the program by calls to gnatbind and gnatlink to
produce the executable somefile (plus object and Ada Library information files somefile.o
and somefile.ali.

Compiling with the switch -g
If a program is compiled with a command of the form

gnatmake -g somefile.adb

the object files produced by the compiler, namely somefile.o and b~somefile.o, contain
extra information embedded in the machine code (this information includes variable names
and line number information from the source file). When a program is run under the control
of a debugger utility (such as gdb, gdbtk or gvd), this extra information is read by the
debugger utility and used to display useful debugging information.

Note if only gcc is invoked with the switch -g as in
gcc -c -g somefile.adb
gnatbl somefile.ali

then only the main object file (somefile.o) contains debugging information; the bind file
(b~somefile.o) does not.

Saving Disk Space
Object files and Ada Library Information take up valuable disk space and periodically such
unwanted files should be deleted. This can be done by issuing the UNIX command clean in
the directory where the files are located. Unwanted executable files and core files
(sometimes formed when a program crashes) should also be deleted periodically (using the
UNIX command rm) to save disk.space. Provided the Ada source files are retained the
executables can be regenerated simply by recompiling.

© A Barnes, 2003 6 CS1110/Compilation

The Gnat Ada Compilation Process

Ada Source File

Ada Library Source Ada Library Source

Ada Compiler
Ada Compiler
during system
 installation

Ada Library Info File

 Object Files
of Ada Library

Object File

Gnat Binder

 Gnat Linker
calls Ada Compiler

Bind Files

 Ada Library Info
Files of Ada Library

 Gnat Linker calls gcc
which calls Unix Linker ld

Executable File

myprog.adb

gcc

gcc

.ads files .adb files

.ali filesmyprog.ali

myprog.o gnatlink -> gcc

gnatbind

.o files

b~myprog.ads
b~myprog.adb

Compiled Bind Files
b~myprog.ali
b~myprog.o

gnatlink->gcc->ld

myprog

gnatlink

Figure 3

© A Barnes, 2003 7 CS1110/Compilation

File naming Conventions
With the Gnat Ada the following file naming conventions are used3:

The source files for Ada programs must have the extension .adb
The source files for Ada libraries must have the extensions .ads and .adb.
Object file have the same basename as their source files but with the extension .o
Ada Library Information files have the same basename as their source files but with
the extension .ali
Executable files have the same basename as their source files but with no extension
(or with the extension .exe on Windoze)
The basename of the file containing the program should be the same as the name of
the main Ada procedure, but with all letters converted to lowercase.

Both gnatmake and gcc issue warning messages if the main program is stored in a file with a
basename that is not the same as the unit name (the name of the main procedure converted to
lowercase). However these are only warning messages and the program will be compiled and
linked even though the the main procedure name does not match the name of the source file.
How gcc finds the Ada Libraries
During compilation of an Ada program the compiler needs to be able to locate the source code of
the Ada Libraries imported (WITH’ed). It does this by looking in the current directory and if the
required files can't be found there it inspects the environment variable ADA_INCLUDE_PATH. This
variable specifies a list of directories to search for the Ada library package specifications (.ads
files). If the required files can't be found in any of the directories on ADA_INCLUDE_PATH the
compiler looks for the file in a directory containing the standard Ada libraries (the location of
this directory is decided when the compiler is installed).
During the binding and linking process the object files holding the compiled versions of the
libraries (.o and .ali files) need to be located. Again this is done by first looking in the current
directory. If the required files are not to be found there, the compiler inspects the environment
variable, ADA_OBJECTS_PATH in this case, which specifies a list of directories which the binder
gnatbind should search for Ada Library Information files (.ali files) and that the linker
gnatlink should search for Ada Library Information files (.ali files) and object files (.o files).
If the required files can't be found in any of the directories on ADA_OBJECTS_PATH, the compiler
looks for the file in a directory containing the standard Ada libraries (the location of this
directory is decided when the compiler is installed).
These environment variables are set to appropriate values as part of the login process and so it is
not necesary for novice users of the system to bother about these details. To inspect the current
values of the Ada include and object paths issue the commands (in a terminal window)

printenv ADA_INCLUDE_PATH
printenv ADA_OBJECTS_PATH

Location of the Ada Libraries
The source and object files for the special CS libraries (CS_Int_IO, etc.) used in the ISP course
may be found in the directory:

/usr/local/staffstore/CSAdaLib/

The source files for the standard Ada libraries on Sparc systems (Ada.Text_IO, etc.) may be
found in the directory:

/usr/local/gnat3.12p/lib/gcc-lib/i386-pc-solaris2.6/2.8.1/adainclude/

The Ada Library Information files for standard Ada libraries may be found in the directory:
/usr/local/gnat3.12p/lib/gcc-lib/i386-pc-solaris2.6/2.8.1/adalib/

The corresponding object files are in a UNIX object archive file libgnat.a in this directory.

3 For ways of avoiding these restrictions consult the Gnat User Guide in the file
/usr/local/gnat3.12p/gnat.3.12p-docs/gnat_ug.txt

