
© A Barnes, 2000-3 1 CS1110/Ada Mode

CS1110 Introduction to Systematic Programming
Emacs Ada-Mode1.
There are a number of modes which affect the way Emacs behaves. There are major modes for
most computer languages: ada-mode, c-mode, html-mode and many others; these provide
special features which are useful for editing computer programs in that language.. The default
mode for Emacs is text-mode which is suitable for editing general text files.

If a file with the extension .adb or.ads is edited with Emacs, Ada mode is entered
automatically. Ada-mode affects the behaviour of Emacs as program text is entered. Try out
the features of Emacs Ada-mode the next time you edit an Ada program in the lab classes.

Automatic Case Adjustment
Ada keywords are automatically changed to upper-case after they have been typed. Similarly
the leading letter of identifiers is capitalised automatically. This is the recommended style for
the ISP module.

The case adjustment feature can sometimes help in the detection of typing errors: for example
suppose the keyword LOOP is mis-spelt with two 0's (zeros) instead of O's (capital oh), then L00p
will be treated as a identifier and not a keyword and so only the first letter will be capitalised.
These visual cues should alert you that sometime is wrong whereas without them it is often
extremely difficult to detect the difference between a 0 and an O on some computer monitors.

Similarly if you accidentally use an Ada keyword as an identifier then Emacs Ada mode will
convert the whole word to capitals and so alert you to the fact that your choice of identifier is
invalid -- choose an alternative name. For example suppose you were to try to use Case as an
identifier, Emacs would convert this to CASE after you had typed it (because it is an Ada
keyword -- see Unit 14), you should choose something else, say Valise or Suitcase!

Automatic Line Indentation
Pressing <Tab>2 automatically adjusts the indentation of the current line of program code so that
it lines up relative to preceding program lines in the recommended ISP style.

It is important that program are properly indented to improve program clarity by emphasizing
the logical structure and so aiding human understanding of the program. As you type in your
programs, make a habit of pressing the <Tab> key at the end of each line to correctly indent
your program. Note that auto-indentation works by aligning the current line relative to earlier
lines and so it is important to start indenting correctly from the start of the file.

As well as keeping lecturers happy by correctly indenting your coursework submissions, auto-
indent can also help detect programming errors, for example if a semi-colon is missed out on the
previous line, the current line will be regarded as a continuation line and will be indented in a
different way from the usual. These visual cues should alert you to the fact that something is
wrong and enable you to find and correct many common typing errors.

Syntax Colouring
Syntax colouring is useful feature of many Emacs modes. In Ada-mode

Ada keywords are displayed in purple
subprogram names blue
comments red
strings pinkish brown
type names green
other Ada text black

This gives additional visual clues to aid in the detection of syntax errors, for instance if an
intended keyword (END IF) is mis-typed (as ENDIF, say) it will not be recognised as a keyword
and so will be displayed in black rather than purple. This may aid detection of such typos.

1 The features described in this hand-out will only work as described if you correctly set up your Unix
environment as described in the labs in week 1.
2 The tab key is sometimes marked as →.

© A Barnes, 2000-3 2 CS1110/Ada Mode

Similarly if the closing double quotes in a string are omitted in a line such as

Put(Item => "Please input an integer); New_Line;

the final portion of the line:); New_Line; will be regarded as part of the string and so will
be displayed in pink rather than black. The additional visual colour cues should help the
detection of typos at an early stage.

A number of useful commands are available from the special Ada-mode menu Ada. We have
discussed use of Build, Compile and Run which allow a program to be compiled, bound,
linked and run from within Emacs in a previous hand-out

The Ada Statements Sub-Menu
Templates for various Ada constructs, WHILE, FOR, IF, ELSE, ELSIF and CASE etc. are available
from the Statements sub-menu of the Ada menu. For example selecting 'while loop' inserts the
template

WHILE <condition> LOOP

END LOOP;

in the edit buffer at the current cursor position point. The user is prompted for the loop entry
<condition> in the mini-buffer3. For example if you type Data /= Terminator in response
and press <Return> the loop template inserted will become

WHILE Data /= Terminator LOOP

END LOOP;

If you are unsure about the precise sysntax of a particular Ada command, using a template from
the menu should help you get the syntax correct.

The Ada Edit Sub-Menu
Other Ada-specific editing commands are available on the Edit sub-menu of the Ada menu.
These include:

Indent Lines Selection indents the lines of a selected region
Adjust Case Selection adjust case of keywords, identifiers etc. in selected region
Comment Selection adds -- at the start of each line of the selected region
Uncomment Selection removes -- from each line of the selected region
Fill Comment Paragraph formats multi-line comments nicely
Format Parameter List formats a parameter list in a subprogram heading

To select a region simply drag over it with the mouse and then select a command from the menu
to act on the region. To format a comment or parameter specification just click the mouse on
the required line and choose the formatting command from the menu. There are also commands
for indenting and case-adjusting all the lines in a file

The Ada GoTo Sub-Menu
This sub-menu contains some useful commands for moving about in an Ada program:

Goto Start if the cursor is on an END, find the matching WHILE, IF etc.
Goto End finds the END of a compound statement
Next procedure move cursor to next procedure declaration
Previous procedure move cursor to previous procedure declaration
Next compilation errror move cursor to next compilation error

The first two commands are useful for detecting missing/misplaced END IF, END LOOP
commands etc.. The next two commands are useful for moving between procedure declarations
(see Units 7 & 8 for information on defining your own procedures). The fifth command is
useful in correcting compilation errors in a file (of course this only works after compiling the
file by selecting Build from the Ada menu). Note you can also move between compilation

3 You are also prompted for the loop name, but as we do not use named loops in the ISP course simply press
<Return> to get an unnamed loop.

© A Barnes, 2000-3 3 CS1110/Ada Mode

errors by selecting Next Error or Previous Error from the Compile menu in the compilation
buffer that appears when a file is compiled from within Emacs.

Emacs Quick Keys
The normal way of invoking Emacs commands is via the various menus at the top of the Emacs
window. This is useful for novice users, however it can be rather slow as one hand must be
removed from the keyboard to move the mouse. All Emacs commands can be invoked by a few
key-strokes. The most commonly used Emacs 'quick keys' involve control characters which are
typed by pressing a key with the <Control> key held down. For brevity we denote the control
characters <Control-a> and <Control-e> by C-a and C-e and so on. Here are a few useful
quick-keys.

C-a Move cursor to start of current line
C-e Move cursor to end of current line
C-v Scroll down one page
C-d Delete character under the cursor
C-k Delete to end of line (second C-k deletes the empty line so formed)
C-x C-s Save buffer to file
C-x C-w Write buffer to a new file
C-x C-c Quit Emacs

Note that C-d deletes the character under the cursor whilst <Delete> deletes the character
before the cursor. Hence repeatedly pressing (or holding down) the <Delete> deletes
backwards from the current point whilst repeatedly pressing (or holding down) C-d deletes
forwards from the current point.

Other quick sequences are invoked with the meta-key (usually the same as the escape key). For
example <Meta-x> or M-x for short is invoked by pressing the <Escape> key followed by the x
key.

M-v Scroll up one page
M-> Scroll to end of buffer
M-< Scroll to start of buffer
M-f Move to end of current word
M-b Move to start of current word
M-d Delete current word
M-<Delete> Delete previous word

Note that many quick key sequences appear on the Emacs menus next to the correspponding
command. For a full listing of all quick key bindings (several hundred) select Describe Key
Bindings from the Emacs Help menu.

Repeating Commands
Some times it is useful to repeat an edit command several times, this can be done by giving the
command a numerical argument with C-u. For example

C-u 6 M-f move forward six words
C-u 10 M-<Delete> delete previous 10 words
C-u M-b move back four words (if no numerical argument given,

the default value of 4 is used)
C-u C-u M-b move back sixteen (=4*4) words
C-u 60 - type a line of exactly 60 hyphens (useful for sectioning up

Ada code)

Changing Emacs Major Modes Manually
Usually Emacs automatically enters the correct mode corresponding to the type of the file being
edited and so it is not usually necessary to change mode manually. However occasionally you
may wish to change mode from the default. To do this is to type <ESC> X, Emacs will prompt
you in the mini-buffer with M-X. Now type the mode name in the Emacs mini-buffer, for
example

M-x ada-mode M-x text-mode M-x c-mode

In fact all Emacs commands can be entered by typing <ESC>x followed by the command name.

© A Barnes, 2000-3 4 CS1110/Ada Mode

Minor Modes
Emacs modes may either be major or minor; only one major mode may be active in a given
buffer at one time and this may be supplemented by one or more minor modes. Minor modes
modify the behaviour of Emacs in less fundamental ways than major language modes.

line-number-mode causes Emacs to display the current line number of the cursor on the status
line. By default Ada mode also starts line-number-mode.

auto-fill-mode is mainly useful in text-mode. It affects whether words are wrapped at the
end of a line (i.e. whether a word which won't fit onto a line is moved to the next line or whether
the line is extended beyond its normal width).

overwrite-mode affects what happens when characters are inserted (by typing) in the middle
of an existing line. The default is overwrite-mode off: characters are inserted as they are typed
and the rest of the line is shifted to the right to make room. In overwrite-mode existing
characters are overwritten one by one as you type. Usually overwrite-mode is best avoided.

Changing Emacs Minor Modes
You can toggle4 the states of auto-fill-mode and line-number-mode by doing

M-x auto-fill-mode M-x line-number-mode

as appropriate. To change from normal insert-mode to overwrite-mode:

M-x overwrite-mode

To turn off overwrite-mode, the command must be given a negative argument:

C-u -1 M-x overwrite-mode

where C-u means Control-u, that is press the Control and u keys together.

Emacs Automatic Back-up Files
As a safety measure, Emacs retains the previous version of any file that you edit. This is useful
if you completely mess up an edit and make the mistake of saving the changes; you still have a
copy of the original version safely stored on disk. The original file is saved as an automatic
back-up. The name of the back-up file is obtained by appending a tilde (~) to the original file
name. For example if the original file was called prog1.adb, the back-up will be called
prog1.adb~. Note if you completely mess up an edit, rename the backup file to be the original
file name

mv prog1.adb~ prog1.adb

and then edit the file -- don't edit the automatic back-up file directly with Emacs.

Emacs Auto-Save Files
As an extra insurance, as you edit a file, Emacs always creates (and updates every few minutes)
an auto-save file so that if the system crashes in the middle of a long editing session you only
lose a few minutes work. The name of the auto-save file is automatically generated by Emacs
by adding the hash character # to the front and end of the filename. For example the auto-saved
version of prog1.adb is called #prog1.adb#. If Emacs exits normally the auto-save file is
deleted, but if Emacs exits abnormally (due perhaps to a system crash or a quit without save) the
auto-save file will be retained.

Again if you want recover a file after a system crash, rename the auto-save file to have its
original name

mv #prog1.adb# prog1.adb

Then edit the file in the normal way. Beware editing the auto-save file directly with Emacs as
this turns off the auto-save protection!

4 Toggle:- if the state is on, change it to off, whereas if the state is off, change it to on.

