
Distributed Applications

Shared data and distributed transactions
BS Doherty

b.s.doherty@aston.ac.uk

Aston University

c©BS Doherty – p. 1/22



Introduction

There are two conflicting requirements:
• Client operations must be prevented from

interfering with one another
• Clients should be able to use servers to share and

exchange information

c©BS Doherty – p. 2/22



Preventing interference

• Single thread operation
• Atomic operations at server
• Synchronisation of server operations in client

transactions

c©BS Doherty – p. 3/22



Client-server interaction

• Software support as client and server need to
converse

• open and close conversation
• Stateful servers

c©BS Doherty – p. 4/22



Distributed Transactions

• Distributed and nested transactions .
• Simple distributed transactions
• Co-ordination of distributed transactions

c©BS Doherty – p. 5/22



Transactions

• atomic
• synchronize changes of state so that they all

occur, or none occur.

c©BS Doherty – p. 6/22



Atomicity

There are two aspects of atomicity:
• all-or-nothing - a transaction either completes

correctly and alters system state or it fails and
does not alter system state. There are two
subgroups:
• failure atomicity:
• durability:

• isolation

For failure atomicity and durability, data items must be
recoverable

c©BS Doherty – p. 7/22



Transactional service

• A transactional service ... waiting for a
closeOperation signal from the client

• At this stage the server performs a commit
operation, and returns a commit signal.

• If the transaction has not proceeded normally an
abort signal is returned.

• Abortion of a transaction can be initiated either by
client or server.

• Both should be capable of recovery from failure,
either their own or the other party, preferably
without human intervention.

c©BS Doherty – p. 8/22



one-phase commitment protocol

• In a distributed transaction, the client has
requested operations at more than one server.

• A transaction comes to an end when the client
requires that a transaction should be committed or
aborted.

• A simple way to complete the transaction in an
atomic manner is for the coordinator to
communicate the commit or abort request to all of
the servers in the transaction and keep on
repeating the request until all of them have
acknowledged that they have carried it out.

c©BS Doherty – p. 9/22



“ACID” properties

• Atomicity All the operations of a transaction must
take place, or none of them do

• Consistency The completion of a transaction
must leave the participants in a “consistent” state,
whatever that means. For example, the number of
owners of a resource must remain at one

• Isolation The activities of one transaction must
not affect any other transactions

• Durability The results of a transaction must be
persistent

c©BS Doherty – p. 10/22



two-phase commit protocol

.
This requires that participants in a transaction be
asked to “vote” on a transaction.
If all agree to go ahead, then the transaction
“commits”, which is binding on all the participants.
If any “abort” during this voting stage then it forces
abortion of the transaction on all participants.

c©BS Doherty – p. 11/22



Example

A service may decide to charge for its use.
If a client decides cost is reasonable, it will first credit
the service and then request that the service be
performed.
The actual accounts will be managed by an accounts
service, which will need to be informed of the credits
and debits that occur.
A simple accounts model is that the service gets, say,
a customer ID from the client, and passes its own ID
and the customer ID to the accounts service which
manages both accounts.
Similar to the way credit cards work!

c©BS Doherty – p. 12/22



Simple transaction

Client Service Accounts

Result

Request service

Pay

Cost

GetCost

Reduce balance

Paid

c©BS Doherty – p. 13/22



Two-phase commit

Client Service Accounts

Result

Request service

Pay

Cost

GetCost

Reduce balance

Paid

Transaction
Manager

Create

Transaction ID

Client obj 
joins Transaction

Accounts obj 
joins Transaction

Commit

Service obj 
joins Transaction

Prepare

Prepare

Prepare

Commit

Commit

Commit

c©BS Doherty – p. 14/22



Points of failure in transaction

• The cost may be too high for the client.
• The client may offer too little by way of payment to

the service.
• There may be a time delay between finding the

price and asking for the service.
• After the service is performed, the client may

decide that the result was not good enough, and
refuse to pay.

• The accounts service may abort the transaction if
sufficient client funds are unavailable

c©BS Doherty – p. 15/22



Concurrency control

[Coulouris et al., 2001]
The lost update problem: Consider that case where
there are three bank accounts, X,Y,Z, initially with
balances of £100, £200, £300 respectively.
Transaction T1 transfers £4 from X to Y making the
balances of X and Y £96 and £204 respectively.
Transaction T2 transfers £3 from Z to Y, leaving the
balances of Y as £207 and the balance of Z as £297.
The net effect is to increase the balance of Y by 7.

c©BS Doherty – p. 16/22



Concurrent running

If however both T1 and T2 run concurrently, they both
read the balance of Y as £200, add the amount they
are transferring to £200, and write back the new
balance - which will be £204 or £203, depending on
which writes later.

c©BS Doherty – p. 17/22



Inconsistent retrievals

occur if for example a bank balance is read by a
process T1 in the middle of a processing sequence T2
which is altering the balance.

c©BS Doherty – p. 18/22



Recoverability

[Coulouris et al., 2001]
The effects of all committed transactions must be
recorded, and none of the effects of aborted
transactions should be recorded.

• Dirty reads
• Recoverability of transactions
• Cascading aborts
• Premature writes
• Strict execution of transactions

c©BS Doherty – p. 19/22



Fault tolerance and recovery

• stateless server [Coulouris et al., 2001].
• Recoverable data items

c©BS Doherty – p. 20/22



TP monitors

Transaction processing monitors control the
transaction process, managing concurrent execution
of threads and processes involved in the transaction.

TP monitors also ensure that the ACID properties are
met. [Ince, 2004]

Enterprise Java Beans

Ince [Ince, 2004]gives an example of implementation
of a TP monitor using Enterprise Java Beans
technology.

c©BS Doherty – p. 21/22



References

References

[Coulouris et al., 2001] Coulouris, G., Dollimore, J.,
and Kindberg, T. (2001). Distributed Systems
Concepts and Design. Addison-Wesley, third
edition.

[Ince, 2004] Ince, D. (2004). Developing Distributed
and E-commerce Applications. Addison Wesley,
second edition.

c©BS Doherty – p. 22/22


	Introduction
	Preventing interference
	Client-server interaction
	Distributed Transactions
	Transactions
	Atomicity
	Transactional service
	one-phase commitment protocol
	``ACID'' properties
	two-phase commit protocol
	Example
	Simple transaction
	Two-phase commit
	Points of failure in transaction
	Concurrency control
	Concurrent running
	Inconsistent retrievals
	Recoverability
	Fault tolerance and recovery
	TP monitors
	References

