
Session Objectives

• Define polynomials and rational functions

• Use Horner’s algorithm to evaluate polynomials efficiently

• Define and use recurrence relations

• Use series to evaluate elementary functions



Polynomials

• A polynomial is a function of a single variable x; it consists of a

weighted sum of non-negative powers of x:

anx
n + an−1x

n−1 + · · ·+ a1x+ a0 =
n∑
i=0

aix
i. (1)

• The coefficients a0, . . . , an are real numbers, and an 6= 0

(though any other coefficient may be zero). The value a0 is

known as the constant term.

• The degree of the polynomial is n. Linear functions are

polynomials of degree 1 and quadratic functions are polynomials

of degree 2.

• The growth of the polynomial as x→∞ is dominated by the

largest power of x, that is, anxn.



Polynomial Arithmetic

The space of polynomials is closed under addition, subtraction, and

multiplication. If p1(x) =
∑m
i=0 aix

i and p2(x) =
∑n
j=0 bjx

j are both

polynomials, we define their sum, difference and product as follows:

(p1 + p2)(x) =
max(m,n)∑

i=0

(ai + bi)x
i (2)

(p1 − p2)(x) =
max(m,n)∑

i=0

(ai − bi)xi (3)

(p1 × p2)(x) =
m+n∑
i=0

cix
i where ci =

i∑
k=0

akbi−k. (4)



Exercise

For example, if p1(x) = 2x− 1 and p2(x) = x2 − x+ 3, then

(p1 + p2)(x) = x2 + x+ 2

(p1 − p2)(x) = −x2 + 3x− 4

(p1 × p2)(x) = 2x3 − 3x2 + 7x− 3.

Let p1(x) = 3x2 − 1 and p2(x) = x2 + 2x. Compute

1. p1 + p2

2. p1 − p2

3. p1 × p2



Solution

Let p1(x) = 3x2 − 1 and p2(x) = x2 + 2x. Compute

1. p1 + p2 = 4x2 + 2x− 1.

2. p1 − p2 = 2x2 − 2x− 1.

3. p1 × p2 = 3x4 + 6x3 − x2 − 2x.



Horner’s Algorithm

• We need to evaluate polynomials.

• Just taking the definition and computing x2, . . . , xn by repeated

multiplications (or, even worse, using the power operator **) is

terribly inefficient.

• Horner’s algorithm requires just n multiplications and n+ 1
additions. Assume that the array A contains the coefficients
from A(0..n). The algorithm can be written as

1 p = A’LAST;
2 FOR I IN REVERSE A’FIRST..(A’LAST-1) LOOP
3 p = p * x + A(I);
4 END LOOP;



Summary

1. A polynomial is a function of a single variable x that consists of

a weighted sum of non-negative powers of x. Rational functions

are the set of ratios between polynomials.

2. The space of polynomials is closed under addition, subtraction,

and multiplication.

3. Horner’s algorithm is an efficient way of calculating polynomials.



Sequences and Series

• Sequences have two main applications: they are a digital

representation of a signal after analog to digital conversion and

they are a method for solving numerical problems by getting a

sequence of answers, each being closer to the true solution than

the last.

• Sequences are often defined in the form of a recurrence relation,

which defines an element in terms of a finite number of previous

elements. The Fibonacci sequence an = an−1 + an−2 is a

well-known example.

• The sum of a sequence of terms is called a series.

• An important example of a series is the Taylor series which can

be used to approximate a function, and is the basis of algorithms

for computing trigonometric, exponential and logarithmic

functions.



Sequences

• A sequence is a list of numbers. Some examples of sequences are

1,2,3,4,5,6,7,8,9,10

1,−1,1,−1,1,−1,1, . . .

2,3,5,7,11,13,17,19, . . .

1,
1

2
,
1

3
,
1

4
, . . .

• A sequence may be finite (as in the first example), or infinite (as
in the other three examples), which is denoted using dots.

• We will often list the elements of a sequence using letters and
indices: a1, a2, a3, . . . . Sometimes it is more convenient to
start from an index of zero: a0.



Defining a Sequence

• It is a good idea to write down a formula for the ith term in a

sequence, since this makes the definition precise.

• The first sequence may be written as {ai}10
i=1 with ai = i.

• The second sequence may be written as {ai}∞i=0 (where the

symbol ∞ ‘infinity’ means that the list goes on forever) with

ai = (−1)i.

• This is not always possible: the third sequence is the list of

prime numbers, and there is no known formula to generate the

ith prime. (It is a nice theorem that there are an infinite number

of primes).

• Write down a formula for the fourth sequence.

1,
1

2
,
1

3
,
1

4
, . . .



Limits

• We are often interested in the limit of a sequence. The basic

principle is that the difference between the nth term and some

real number should get smaller as n gets larger.

• The values of the fourth sequence become closer and closer to

0. In fact, they can be made arbitrarily close to 0; and we say

that the limit of the sequence is 0 (even though none of the

terms in the sequence is actually equal to 0; this is a simple

example of the slightly tricky nature of limits). We write the

limit as limn→∞ an = 0.

• On the other hand, the second sequence oscillates back and

forth between −1 and +1; it never gets any closer to any real

number, and hence this sequence does not have a limit.

• A sequence like the primes which gets larger and larger is said to

be unbounded.



Recurrence Relations

• Another way of defining a sequence is in terms of a recurrence
relation, so that an = f(an−1, . . . , an−r) for some function f and
fixed window (known as the degree or order of the recurrence) r.
To define the sequence, the first r terms also have to be
determined.

• The Fibonacci sequence is defined by the formula
an = an−1 + an−2 and the first two terms, usually fixed as a1 = 1
and a2 = 1. Then

a1 = 1

a2 = 1

a3 = a2 + a1 = 1 + 1 = 2

a4 = a3 + a2 = 2 + 1 = 3

a5 = a4 + a3 = 3 + 2 = 5

a6 = a5 + a4 = 5 + 3 = 8

• Calculate a7 and a8 for the Fibonacci sequence.



Factorial Function

The factorial function, written n!, is defined for natural numbers as
follows:

n! =


1 n = 0

1 n = 1

2× 3× · · · × n n > 1

So 3! = 2× 3 = 6 and 4! = 2× 3× 4 = 24. The factorial function
grows very quickly. It can be viewed as a sequence with the
following recurrence relation:

a0 = 1

a1 = 1

an = n× an−1 for n > 1



Series

• A series is the sum of a sequence of numbers.

• If the series contains a finite number of terms then it is a finite
series, otherwise it is an infinite series. For example,

1 + 2 + 3 + · · ·+ 10 =
10∑
n=1

n

is a finite series, while

1 +
1

2
+ · · ·+

1

2n
+ · · · =

∞∑
n=0

2−n

is an infinite series.

• To calculate an infinite series, form a sequence of ‘partial sums’
SN =

∑N
n=1 an and find their limit. If it exists and is finite, then

the series is well-defined. For example, the infinite series given
above is equal to 2. A series that evaluates to a well-defined
finite value is said to converge.



Power Series

A power series is like an infinite polynomial:

a0 + a1x+ a2x
2 + · · ·+ anx

n + · · · =
∞∑
n=1

anx
n. (5)

The converence of this series depends on the coefficients an and
may depend on the value of x as well.

Power series are interesting for two reasons:

1. It is possible to derive convergent power series for many
interesting functions using calculus. This is called the Taylor
series for the function.

2. Summing the first few terms in a power series (computing SN
for suitable N) can give a good approximation to the infinite
series. This often yields a good algorithm for calculating these
functions.



Useful Power Series

Sine

sin(x) = x−
x3

3!
+
x5

5!
−
x7

7!
+ · · · =

∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
. (6)

This series converges for all values of x.

Cosine

cos(x) = 1−
x2

2!
+
x4

4!
−
x6

6!
+ · · · =

∞∑
n=0

(−1)n
x2n

(2n)!
. (7)

This series converges for all values of x.



Exponential

ex = 1 + x+
x2

2!
+
x3

3!
+ · · · =

∞∑
n=0

xn

n!
. (8)

This series converges for all values of x. Substituting x = 1 gives

the following identity:

e = e1 = 1 + 1 +
1

2!
+

1

3!
+ · · · =

∞∑
n=0

1

n!
. (9)

Logarithm

ln(1 + x) = x−
x2

2
+
x3

3
−
x4

4
+ · · · =

∞∑
n=1

(−1)n+1x
n

n
. (10)

This series only converges for −1 < x ≤ 1. Note that it is defined

for the natural logarithm (i.e. to base e). To use this power

series for larger values of x, use the fact that

ln(ax) = ln(a) + ln(x).



Computing Elementary Functions

• We shall find sin(0.1) correct to five decimal places using its
power series expansion, substituting x = 0.1 and calculating
terms until the next term is small compared to 5× 10−6.

• We are assuming that the terms are rapidly getting smaller, so
the error in our calculation is approximately equal to the first
term that we leave out of the infinite sum.

sin(0.1) = 0.1−
(0.1)3

3!
+

(0.1)5

5!
− · · ·

= 0.1− 0.00016̇ + 0.00000083̇− · · ·

= 0.09983 to five decimal places

Note that the third term in the sum is smaller than 5× 10−6, so
only the first two terms are used in the final answer.



Exercise

Calculate e0.1 to five decimal places.

ex = 1 + x+
x2

2!
+
x3

3!
+
x4

4!
+ · · ·



Solution

Calculate e0.1 to five decimal places.

e0.1 = 1 + 0.1 +
0.01

2!
+

0.001

3!
+

0.0001

4!
+ · · ·

= 1 + 0.1 + 0.005 + 0.00016̇ + 0.00000416̇ + · · ·

≈ 1 + 0.1 + 0.005 + 0.00016̇

= 1.10516̇



Implementation of Power Series

• The small number of terms needed in these examples is also

dependent on the size of x. If 0 < x < 1, then xn → 0 as n→∞,

and hence the terms become small relatively quickly.

• On the other hand, if x is large, then we might need a large

number of terms from the Taylor series for an accurate

approximation. We rescale x to a smaller value using the

properties of the function.

• For example, sin is periodic, so we can subtract multiples of 2π

from x until it is in the range −π < x ≤ π. We have already

discussed the need for such rescaling for ln(1 + x).

• Issues of this type make the implementations of these algorithms

best left to experts, but they are all based on a suitable power

series expansion.



Summary

1. A sequence is a list of numbers.

2. We write the limit of a sequence an as limn→∞ an.

3. A recurrence relation of degree r has the form an = f(an−1, . . . , an−r) for some
function f .

4. A series is the sum of a sequence of numbers.

5. To calculate an infinite series, we form a sequence of ‘partial sums’
SN =

∑N
n=1 an and look at the limit of that sequence.

6. A power series has the form

a0 + a1x+ a2x
2 + · · ·+ anx

n + · · · =
∞∑
n=1

anx
n.

7. Summing the first few terms in a power series (computing SN for suitable N)
can give a good approximation to the infinite series.

8. The trigonometric, exponential and logarithmic functions are calculated using
power series.
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