
Floating Point Arithmetic

The problems of representing real numbers, rounding and the errors

it introduces.

The usual way to represent real numbers in a computer is by means

of a binary ‘floating point’ notation. This is similar to ‘scientific

notation’ with some technical alterations to represent negative

numbers and zero.

Scientific Notation

• In radix 10, the scientific notation for a positive real number a

takes the form a = b× 10c where 1 ≤ b < 10 and c is an integer.

3279.5524 = 3.279 552 4× 103

0.000 000 000 000 197 704 = 1.977 04× 10−13

• To find the scientific notation for a number, the decimal point is

moved to the left or right until the result lies between 1 and 10,

which gives the value of b.

• The number of places the decimal point was moved to the left is

recorded as c (and if it had to be moved to the right, c is the

corresponding negative integer, or if it didn’t move at all, then

c = 0).

Exercise

Express the following numbers in scientific notation:

1. 9 800 270 =

2. 0.001 010 1 =

3. 2.775 13 =

Solution

Express the following numbers in scientific notation:

1. 9 800 270 = 9.80027× 106

2. 0.001 010 1 = 1.0101× 10−3

3. 2.775 13 = 2.77513× 100

IEEE Floating Point Standard (32 bit)

• Given a positive number a, write both its integer and fractional

parts in binary form, and transform this by moving the binary

decimal point to the left or right until a = b× 2c, where 1 ≤ b < 2

and c is an integer.

1. The first bit is 0.

2. The next eight bits store the binary form of c + 127 (provided

−126 ≤ c ≤ 128). These are called the exponent bits.

3. The remaining 23 bits store the first 23 places of the

fractional part of b. These are called the mantissa bits.

• For negative reals, we use 1 as the first bit instead of 0, while 0

is represented by the all zero string. The significant bits are

those in the mantissa.

Machine Numbers

Given a fixed number of bits for the exponent and mantissa, there is

a set A ⊆ R of exactly representable numbers; the elements of A are

known as machine numbers. Not all real numbers are machine

numbers.

• There are some whose magnitude is too big, i.e. the exponent

can’t be represented at the positive end; in the example, this

occurs if c > 128. This is called exponent overflow.

• There are some whose magnitude is too small, i.e. the exponent

can’t be represented at the negative end; in the example, this

occurs if c < −127. This is called exponent underflow.

• There are some whose fractional part cannot be represented in

the mantissa; in the example, this occurs if the fractional part is

not an integer multiple of 2−23. This requires rounding.

Rounding

We define the rounding function rd : R → R as follows, where t bits

are used in the mantissa. If

a = b× 2c,

with 1 ≤ |b| < 2,

|b| = 1.β1 . . . βtβt+1 . . . where β1 = 1,

then let

b′ =

1.β1 . . . βt if βt+1 = 0

1.β1 . . . βt + 2−t if βt+1 = 1.

Then we define rd by

rd(a) := sign(a) · b′ × 2c.

This is just a formalisation of the usual rounding up/down rule.

Machine Precision

• The machine precision is given by eps := 2−t, so for 32-bit
numbers, machine precision is 2−23. Then

rd(a) = a(1 + ε), (1)

where |ε| ≤ eps = 2−t. This expresses the fact that rounding
introduces an error of relative size ε.

• Unfortunately the rounded value rd(x) may not be in A (that is,
may not be a machine number) because the exponent may not
fit.

• The IEEE standard mandates that if there is exponent overflow
the value should be rounded to a special number Inf /∈ A.

• If there is exponent underflow, the exponent should be frozen at
its smallest value, but more zeroes allowed in the mantissa. As
the mantissa becomes smaller it should be allowed to tend to
zero.

Floating Point Operators

• Because floating point numbers are not the same as the real
numbers (due to the limited precision), we must define new
arithmetic operators: x +∗ y := rd(x + y) and similarly for
subtraction, multiplication and division.

• These elementary operations are known as flops (short for
‘floating point operations’).

• However, these new operations do not satisfy the usual laws of
arithmetic. For example, x +∗ y = x if |y| < eps|x|, for x, y ∈ A.

• Another way to view eps is that it is the smallest positive
machine number that, when added to 1, gives an answer that
differs from one.

eps = min{g ∈ A | 1 +∗ g > 1 and g > 0}.

• In fact, pretty well any flop should be thought of as introducing
eps = εm in relative error.

Effect of Rounding Error

• An error of size eps may not look very big.

• For 32-bit floating point numbers this is 2−23 ≈ 1.19× 10−7,

while for double precision numbers this is 2−52 ≈ 2.22× 10−16.

• However, during a long computation rounding errors can

accumulate until the answer is so inaccurate as to be useless.

Now read the example.

Comment on Example

• Ironically, the fact that some programmers had noticed this

problem and had ‘improved’ their part of the code, while others

had not, meant that the inaccuracies did not cancel and made

the problem significantly worse.

• Using the time since booting the system makes the problem

much worse, since the rounding error on 1/10 is multiplied by a

large value. There seems to be no good reason for this choice.

Effect of Rounding Error

• We shall write u for the true real number, and ũ for the

approximation introduced by rounding (and similarly for v).

• The absolute error in u is

∆u := ũ− u (2)

• The relative error in u is

εu :=
∆u

u
, (3)

if u 6= 0.

• We are interested in the relationship between the relative errors

of the inputs (u and v) and the relative error of the output.

Exercise: Calculation of Errors

Suppose that our computer uses floating point arithmetic to five

decimal places. If u = 0.3721448693, what is ũ, the rounded version

of u? What are the absolute and relative error in u?

Exercise: Calculation of Errors

Suppose that our computer uses floating point arithmetic to five

decimal places. If u = 0.3721448693, what is ũ, the rounded version

of u? What are the absolute and relative error in u?

Answer:

ũ = 0.37214

∆u := ũ− u = −0.0000048693 = −4.8693× 10−6

εu :=
∆u

u
=

−4.8693× 10−6

0.3721448693
≈ −1.3084× 10−5.

Rounding Error Analysis of Multiplication

• y = f(u, v) := u× v. Then

εy
.
= εu + εv.

• This means that the relative error in the result is the sum of the

relative errors on the inputs. Thus if we do a lot of

multiplications, the error increases slowly.

• The technical term for this is that multiplication is

well-conditioned.

Rounding Error Analysis of Addition

• y = f(u, v) := u + v. Then

εy
.
=

u

u + v
εu +

v

u + v
εv,

if u + v 6= 0.

• This is OK if u and v have the same sign. In this case,

|εu+v| ≤ max{|εu|, |εv|} and the function is well-conditioned (the

errors are damped).

• If u and v have opposite signs, at least one of∣∣∣∣ u

u + v

∣∣∣∣ and
∣∣∣∣ v

u + v

∣∣∣∣ > 1,

and so errors are magnified; we say that the function is

ill-conditioned. The closer to 0 the value of u + v lies, the worse

conditioned the computation.

Subtractive Cancellation

• We can create catastrophically bad errors with addition; this

effect is called subtractive cancellation.

• Consider a machine with floating point arithmetic accurate to 5

decimal places. Let u = 0.3721448693 and v = 0.3720214371.

Then the machine numbers are ũ = 0.37214 and ṽ = 0.37202.

• It follows that

ũ− ṽ = 0.00012 u− v = 0.0001234322.

We can see that the computed result only contains 2 significant

figures, not the full five. This is confirmed by the size of the

relative error

|ũ− ṽ|
|u− v|

≈ 3× 10−2.

Mathematics Support Office

• MB154

• Staffed by 2 tutors

• Open 10:00 until 17:00, Monday to Friday

• Closed some lunchtimes

Summary

1. The IEEE standard floating point notation for a real number a is a = b× 2c,
where 1 ≤ b < 2 and c is an integer. b is the mantissa and c is the exponent.

2. Given a fixed number of bits for the exponent and mantissa, there is a set a
of exactly representable machine numbers; the elements of A are known as
machine numbers.

3. Rounding is used to convert general real numbers to machine numbers.

4. Machine precision is given by 2−t, where t bits are used in the mantissa. For
32-bit numbers, machine precision is 2−23.

5. Floating point operations (flops) are defined by rounding mathematical
operations, e.g. x +∗ y := rd(x + y).

6. Multiplication is well-conditioned: relative errors of the arguments are
summed.

7. Addition is ill-conditioned: subtractive cancellation can cause catastrophic
errors.

