
Public Key Cryptography

I recall thinking that this paper would be the least

interesting paper that I will ever be on. Leonard Adleman

• The principle of a public-key cryptosystem is that it should be

easy to transmit information in a secure format, but special

knowledge (known as the private key) is needed to retrieve (or

decode) the information.

• The information is encrypted using a public key which is

available to everyone.

• The important notion is of a trapdoor or one-way function

which is easy to compute but whose inverse is hard to compute.

Here encryption is easy, but decryption is difficult.



RSA Cryptosystem

• Named after its inventors Ronald Rivest, Adi Shamir, and

Leonard Aldeman.

• Normally we want to transmit text, made up of characters.

However, the RSA system works with natural numbers, so we

must first convert characters into numbers: this is easily done

using the ASCII format which defines a 7-bit number for each

letter of the alphabet.

• We start by choosing p and q, two distinct large prime numbers

(the difficulty of cracking the code depends on the size of the

numbers). Recall that it is relatively easy to decide if a number

is prime. We let n = pq.



RSA Keys

• The private key is any number k between 1 and n which is

coprime with (p− 1)(q − 1) (for example, we could choose k to

be prime); this means that hcf(k, (p− 1)(q − 1)) = 1.

• By Euclid’s algorithm, there are integers a and b such that

ak + b(p− 1)(q − 1) = 1. (1)

We can assume that 0 < a < (p− 1)(q − 1).

• The pair of numbers (a, n) forms the public key.



RSA Encryption and Decryption

• Suppose that we have an integer M in the range 0 to n− 1.

• To encrypt M we apply the encryption function e

e(M) = Ma mod n. (2)

This clearly only requires knowledge of the public key.

• We can decrypt a message using the private key k:

M = (e(M))k mod n. (3)



RSA Example

• Take p = 53 and q = 61, so that n = 3233 and we require k

coprime to (p− 1)(q − 1) = 3120 = 24 × 3× 5× 13. Let us
choose k = 1013 (which is actually prime).

• Using Euclid’s algorithm we find that

77k − 25× 3120 = 1

so a = 77 and the public key is (77,3233).

• A number M between 0 and 3233 is encrypted as
M77 mod 3233. For example, if M = 10 this is
1077 mod 3233 = 2560.

• We decrypt this by computing 25601013 mod 3233 = 10.

• If we wanted to transmit a string of decimal digits, we would
have to split it into blocks of length 3 to ensure that every
number was less than 3233. A string of binary digits could be
split into blocks of length 11, since 211 = 2408 < 3233.



Efficient Computation of Modular Powers

• It is very time consuming to compute powers directly. For

example, calculating M77 by working out M2, M3, M4,

. . . requires 76 multiplications modulo 3233.

• Instead, we express a as a binary number (here 77 = 10011012)

and use multiplications by M and squaring instead. For each

binary digit, we square the number and multiply by M if there is

a 1.



In detail, to compute L = Mk:

1. Write k as a binary number with d bits; the most significant bit

is 1. We number the bits from most to least significant.

a = b1 . . . bd (4)

2. Compute L = M2. Set the index i = 2.

3. If bi = 1, let L := L×M .

4. If i < d, let L := L2, i := i+ 1 and go to step 3.

Suppose that we want to compute M10. The binary representation

of 10 is 1010, which requires 4 bits. So we calculate

b1 b2 b3 b4

M →M2 →M4→M5 →M10 →M10



RSA Security

• We have said that this encryption method is one-way. What we

mean by this is that given the public key (a, n), it is prohibitively

difficult to compute the private key k.

• This is because it is believed to be essentially equivalent to

finding the two prime factors p and q. Certainly, knowing p and

q, it is easy to work out k, since

ak = 1 mod (p− 1)(q − 1).

• At present there are algorithms which will factorise numbers of a

little more than 100 digits on powerful computers, so it seems

safe to use prime numbers p and q of about this size, giving n of

about 200 digits.



RSA Security II

There are two concerns:

1. As computers become more powerful, the size of practically

solvable factorisation problems will increase. This is not too

bad, as we can simply slightly increase the length of primes to

compensate.

2. Someone will discover a fast method for factorising n. This

could completely invalidate the security of the RSA algorithm,

since if factorising is nearly as fast as primality testing, it would

be nearly as fast to decode a message as to set up the code in

the first place.



Summary

1. Modular arithmetic has applications in random number generators,
cryptography, and error-correcting codes.

2. Modular addition, subtraction and multiplication use clock arithmetic.

3. If the modulus is not prime, then the product of two non-zero values can be
zero.

4. Fermat’s little theorem, ap−1 = 1 mod p, gives us a way of finding the
multiplicative inverse of a modular number.

5. Ada contains modular types.

6. A pseudo-random number generators is a deterministic algorithm that
generates a sequence of numbers that appear to be random under statistical
tests.

7. The algorithm Ij+1 ≡ aIj mod m can be used as a RNG for suitable choice of
a and m.

8. A public-key cryptosystem allows anyone to encode information (with the
public key), but only privileged people can decode information (with the
private key).

9. The security of the RSA algorithm is based on the difficulty of finding the
prime factorisation of large numbers.



Floating Point Arithmetic

The problems of representing real numbers, rounding and the errors

it introduces.

The usual way to represent real numbers in a computer is by means

of a binary ‘floating point’ notation. This is similar to ‘scientific

notation’ with some technical alterations to represent negative

numbers and zero.



Scientific Notation

• In radix 10, the scientific notation for a positive real number a

takes the form a = b× 10c where 1 ≤ b < 10 and c is an integer.

3279.5524 = 3.279 552 4× 103

0.000 000 000 000 197 704 = 1.977 04× 10−13

• To find the scientific notation for a number, the decimal point is

moved to the left or right until the result lies between 1 and 10,

which gives the value of b.

• The number of places the decimal point was moved to the left is

recorded as c (and if it had to be moved to the right, c is the

corresponding negative integer, or if it didn’t move at all, then

c = 0).



Exercise

Express the following numbers in scientific notation:

1. 9 800 270 =

2. 0.001 010 1 =

3. 2.775 13 =



Solution

Express the following numbers in scientific notation:

1. 9 800 270 = 9.80027× 106

2. 0.001 010 1 = 1.0101× 10−3

3. 2.775 13 = 2.77513× 100



IEEE Floating Point Standard (32 bit)

• Given a positive number a, write both its integer and fractional

parts in binary form, and transform this by moving the binary

decimal point to the left or right until a = b× 2c, where 1 ≤ b < 2

and c is an integer.

1. The first bit is 0.

2. The next eight bits store the binary form of c+ 127 (provided

−126 ≤ c ≤ 128). These are called the exponent bits.

3. The remaining 23 bits store the first 23 places of the

fractional part of b. These are called the mantissa bits.

• For negative reals, we use 1 as the first bit instead of 0, while 0

is represented by the all zero string. The significant bits are

those in the mantissa.



Machine Numbers

Given a fixed number of bits for the exponent and mantissa, there is

a set A ⊆ R of exactly representable numbers; the elements of A are

known as machine numbers. Not all real numbers are machine

numbers.

• There are some whose magnitude is too big, i.e. the exponent

can’t be represented at the positive end; in the example, this

occurs if c > 128. This is called exponent overflow.

• There are some whose magnitude is too small, i.e. the exponent

can’t be represented at the negative end; in the example, this

occurs if c < −127. This is called exponent underflow.

• There are some whose fractional part cannot be represented in

the mantissa; in the example, this occurs if the fractional part is

not an integer multiple of 2−23. This requires rounding.



Rounding

We define the rounding function rd : R→ R as follows, where t bits

are used in the mantissa. If

a = b× 2c,

with 1 ≤ |b| < 2,

|b| = 1.β1 . . . βtβt+1 . . . where β1 = 1,

then let

b′ =

1.β1 . . . βt if βt+1 = 0

1.β1 . . . βt + 2−t if βt+1 = 1.

Then we define rd by

rd(a) := sign(a) · b′ × 2c.

This is just a formalisation of the usual rounding up/down rule.



Machine Precision

• The machine precision is given by eps := 2−t, so for 32-bit
numbers, machine precision is 2−23. Then

rd(a) = a(1 + ε), (5)

where |ε| ≤ eps = 2−t. This expresses the fact that rounding
introduces an error of relative size ε.

• Unfortunately the rounded value rd(x) may not be in A (that is,
may not be a machine number) because the exponent may not
fit.

• The IEEE standard mandates that if there is exponent overflow
the value should be rounded to a special number Inf /∈ A.

• If there is exponent underflow, the exponent should be frozen at
its smallest value, but more zeroes allowed in the mantissa. As
the mantissa becomes smaller it should be allowed to tend to
zero.



Floating Point Operators

• Because floating point numbers are not the same as the real
numbers (due to the limited precision), we must define new
arithmetic operators: x+∗ y := rd(x+ y) and similarly for
subtraction, multiplication and division.

• These elementary operations are known as flops (short for
‘floating point operations’).

• However, these new operations do not satisfy the usual laws of
arithmetic. For example, x+∗ y = x if |y| < eps|x|, for x, y ∈ A.

• Another way to view eps is that it is the smallest positive
machine number that, when added to 1, gives an answer that
differs from one.

eps = min{g ∈ A | 1 +∗ g > 1 and g > 0}.

• In fact, pretty well any flop should be thought of as introducing
eps = εm in relative error.



Effect of Rounding Error

• An error of size eps may not look bery big.

• For 32-bit floating point numbers this is 2−23 ≈ 1.19× 10−7,

while for double precision numbers this is 2−52 ≈ 2.22× 10−16.

• However, during a long computation rounding errors can

accumulate until the answer is so inaccurate as to be useless.

Now read the example.



Comment on Example

• Ironically, the fact that some programmers had noticed this

problem and had ‘improved’ their part of the code, while others

had not, meant that the inaccuracies did not cancel and made

the problem significantly worse.

• Using the time since booting the system makes the problem

much worse, since the rounding error on 1/10 is multiplied by a

large value. There seems to be no good reason for this choice.



Effect of Rounding Error

• We shall write u for the true real number, and ũ for the

approximation introduced by rounding (and similarly for v).

• The absolute error in u is

∆u := ũ− u (6)

• The relative error in u is

εu :=
∆u

u
, (7)

if u 6= 0.

• We are interested in the relationship between the relative errors

of the inputs (u and v) and the relative error of the output.



Rounding Error Analysis of Multiplication

• y = f(u, v) := u× v. Then

εy
.

= εu + εv.

• This means that the relative error in the result is the sum of the

relative errors on the inputs. Thus if we do a lot of

multiplications, the error increases slowly.

• The technical term for this is that multiplication is

well-conditioned.



Rounding Error Analysis of Addition

• y = f(u, v) := u+ v. Then

εy
.

=
u

u+ v
εu +

v

u+ v
εv,

if u+ v 6= 0.

• This is OK if u and v have the same sign. In this case,

|εu+v| ≤ max{|εu|, |εv|} and the problem is well-conditioned (the

errors are damped).

• If u and v have opposite signs, at least one of∣∣∣∣ u

u+ v

∣∣∣∣ and
∣∣∣∣ v

u+ v

∣∣∣∣ > 1,

and so errors are magnified. The closer to 0 the value of u+ v

lies, the worse conditioned the computation.



Subtractive Cancellation

• We can create catastrophically bad errors with addition; this

effect is called subtractive cancellation.

• Consider a machine with floating point arithmetic accurate to 5

decimal places. Let u = 0.37214 48693 and v = 0.37202 14371.

Then the machine numbers are ũ = 0.37214 and ṽ = 0.37202.

• It follows that

ũ− ṽ = 0.00012 u− v = 0.00012 34322.

We can see that the computed result only contains 2 significant

figures, not the full five. This is confirmed by the size of the

relative error

|ũ− ṽ|
|u− v|

≈ 3× 10−2.



Summary

1. The IEEE standard floating point notation for a real number a is a = b× 2c,
where 1 ≤ b < 2 and c is an integer. b is the mantissa and c is the exponent.

2. Given a fixed number of bits for the exponent and mantissa, there is a set a
of exactly representable machine numbers; the elements of A are known as
machine numbers.

3. Rounding is used to convert general real numbers to machine numbers.

4. Machine precision is given by 2−t, where t bits are used in the mantissa. For
32-bit numbers, machine precision is 2−23.

5. Floating point operations (flops) are defined by rounding mathematical
operations, e.g. x+∗ y := rd(x+ y).

6. Multiplication is well-conditioned: relative errors of the arguments are
summed.

7. Addition is ill-conditioned: subtractive cancellation can cause catastrophic
errors.


