
Highest Common Factor

• It is often useful to be able to calculate the highest common

factor of two numbers a and b (otherwise known as the greatest

common divisor).

• We shall write h = hcf(a, b) for this number. It is the largest

integer that divides exactly into both a and b. For example,

hcf(24,30) = 6.

• What is the hcf of 18 and 25?

Algorithm for Computing H.C.F.

• We shall use the prime factorisations of a and b. Let p1, . . . , pn
be the set of primes that divide either a or b, and write:

a = p
l1
1 · · · p

ln
n and b = p

m1
1 · · · pmn

n .

Here some of the powers li, mi may be zero.

• Then it is not hard to show that

hcf(a, b) = p
k1
1 · · · p

kn
n , (1)

where ki = min(li,mi). For example,

24 = 23 × 31 × 50 and 30 = 21 × 31 × 51. (2)

So k1 = 1, k2 = 1, and k3 = 0. Hence

hcf(24,30) = 21 × 31 × 50 = 6, as before.

• Write down the prime factorisations of 18 and 25. Use them to

calculate hcf(18,25).

Euclid’s Algorithm

So we have a workable algorithm, but it is very inefficient because it

depends on the prime factorisation. One of the most famous (and

earliest) algorithms for any task is Euclid’s algorithm for computing

the hcf(a, b). It is based on the following argument.

• If a ≤ b, then we can divide b by a to obtain a quotient q and a

remainder r, where 0 ≤ r < a. This means that b = qa+ r.

• Now, if r = 0, then a divides b, and hence hcf(a, b) = a and we

are done.

• Otherwise, it is easy to show that hcf(a, b) = hcf(r, a). We can

then continue by dividing r into a.

• Because r < a, we can guarantee that the algorithm will

eventually terminate, and it is much more efficient than using

the prime factorisation.

Euclid’s Algorithm: Worked Example

Let us find the hcf of 568 and 208:

568 = 2× 208 + 152

208 = 1× 152 + 56

152 = 2× 56 + 40

56 = 1× 40 + 16

40 = 2× 16 + 8

16 = 2× 8 + 0

Thus hcf(208,568) = 8.

Euclid’s Algorithm II

• Euclid’s algorithm provides extra information: it enables us to
find integers m and n such that ma+ nb = hcf(a, b). (We shall
see why this is useful when we look at cryptography).

• This is done by working backwards through the computation
from the penultimate line.

8 = 40− 2× 16

= 40− 2× (56− 1× 40) = 3× 40− 2× 56

= 3× (152− 2× 56)− 2× 56 = 3× 152− 8× 56

= 3× 152− 8× (208− 1× 152) = 11× 152− 8× 208

= 11× (568− 2× 208)− 8× 208 = 11× 568− 30× 208

• Use Euclid’s algorithm to find hcf(24,30). Also find integers m
and n such that 24m+ 30n = hcf(24,30).

Solution

Use Euclid’s algorithm to find hcf(24,30). Also find integers m and

n such that 24m+ 30n = hcf(24,30).

30 = 1× 24 + 6

24 = 4× 6 + 0

6 = 1× 30− 1× 24

Hence 6 = hcf(24,30) and 6 = 1× 30− 1× 24.

Rational Numbers

• The next number system extends the integers so that it is closed

under all four arithmetic operators: addition, subtraction,

multiplication and division.

• This is the rational numbers Q, which consists of integer

fractions.

• Thus Q consists of all numbers that can be written in the form

a/b with a and b in Z and b 6= 0.

• Why are the rational numbers important? Every decimal or

binary number which recurs must be rational. Because a number

that is represented on a computer only has a finite number of

non-zero values after the decimal point, eventually it recurs

(with the repeated value 0). Hence every number represented on

a computer must be rational.

Rational Arithmetic

We can define the four arithmetic operators on Q as follows:

a1

b1
+
Q

a2

b2
=
a1b2 + a2b1

b1b2

a1

b1
−
Q

a2

b2
=
a1b2 − a2b1

b1b2

a1

b1
×
Q

a2

b2
=
a1a2

b1b2

a1

b1
÷
Q

a2

b2
=
a1b2
b1a2

if a2 6= 0

We can easily show that Q extends Z by noting that the set of

rationals of the form a/1 is equivalent to Z.

Real Numbers

• The final number system we need is the real numbers, denoted

by R.

• We can take this system to be all the infinite decimal numbers

(both recurring and non-recurring). To be precise, we must note

that certain decimals are exactly the same. For example:

42.7899999 · · · = 42.79000000.

• Arithmetic on the real line is defined in the familiar way.

Real Numbers and Geometry

• Why do we need real numbers? The simple answer is that the

rationals leave a lot of gaps.

• The real numbers represent all the points on a line: there are

lengths that are not rational numbers, and these are called

irrational numbers.

• Two famous examples of irrational numbers are
√

2 and π.

1

1

2 1

π

Summary

1. There are four main ‘standard’ number systems: natural numbers N; integers
Z; rationals Q; reals R.

2. We must distinguish between mathematical definitions of number systems
and their implementation in software.

3. Natural numbers are for counting; they are defined by a zero and a successor
function Sn = n+ 1.

4. The Σ notation is a compact way of expressing sums.

5. The integers add negative numbers to the natural numbers. There is no first
element.

6. Prime numbers are the basic building blocks for the multiplicative structure of
the integers. The prime factorisation of an integer is essentially unique.

7. Euclid’s algorithm is an efficient method for computing the highest common
factor of two integers.

8. Rational numbers are the ratio of two integers.

9. Real numbers are all infinite decimals.

10.

11.

Modular Arithmetic

Not another number system! What is it good for?

Random number generators. There are many applications where an
element of randomness is needed, and modular arithmetic is a
good way of generating random numbers.

• For a card game you will certainly need to shuffle the pack
(i.e. select all the cards in a random order). For a board
game you will need to roll the dice (i.e. select at random two
integers in the range 1 to 6).

• For an action game, you may want some randomness to
represent external variations and prevent predictability.

• To simulate the randomness in the real world you may need
to generate events with a certain probability. For example, in
a traffic simulation vehicles enter the system at certain
random times.

Cryptography. The transmission of information that you don’t want

to share requires a method of encrypting it so that only the

receiver can decrypt it. Modular arithmetic is the basis of the

most commonly used cryptographic system on the Internet: the

RSA algorithm.

Error-correcting codes. There are many situations in which a large

amount of data has to be transmitted quickly and reliably.

Obvious examples are communication by telephone and the

transmission of television signals to and from satellites. In

practice, noise (random fluctuations or external disturbances)

may corrupt signals. Error-correcting codes are used to encode

values in a digital form and incorporating extra information so

that even if the signal is slightly modified, the original values can

be recovered. Modular matrices are the basis of most practical

error-correcting codes.

Modular Numbers

• If n is a positive integer, then we
denote by Zn the set {0,1, . . . , n−1},
and call it the integers modulo n (or
just mod n).

• We cannot just use the usual defi-
nitions of the integer operations be-
cause then Zn would not be closed
under these operations. For exam-
ple, 2 + 2 = 4, but 4 is not in Z3.

• We shall, however, use the same
symbols + and × to represent mod-
ular addition and modular multipli-
cation. This can be a bit confusing
until you are used to it.

0

1

2

34

6

5

Modular Addition

• To define modular addition a+ b mod n, we first calculate a+ b

using integer addition, and then compute the remainder r when

divided by n; r is guaranteed to be in the range 0 ≤ r < n so is a

member of Zn.

• For example, to calculate 2 + 3 mod 4, we first of all calculate

2 + 3 = 5 using integer addition, and then find the remainder

when 5 is divided by 4, which is 1. We conclude that

2 + 3 mod 4 = 1 mod 4.

Modular Multiplication

• We define modular multiplication a× b mod n by the following

algorithm. First compute a× b in integer arithmetic, and then

find the remainder when it is divided by n.

• For example, to calculate 2× 3 mod 4, we first calculate

2× 3 = 6 using integer multiplication, and then find the

remainder when 6 is divided by 4, which is 2. We conclude that

2× 3 mod 4 = 2 mod 4.

Example: Z5

+ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

× 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

Exercise Draw up modular arithmetic tables for Z4. What are the

key differences between the multiplication tables for Z4 and Z5?

(Hint: look for zeros).

Exercise: Solution

+ 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

× 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1

Note that the rows of the multiplication table for Z5 only have zeros

in the first column, while the row for 2 in Z4 contains a zero

elsewhere. Also the columns after the first in Z5 just permute the

non-zero values, but that is not true for Z4.

Prime Modulus

the product of two non-zero values can give a result of zero: this is
quite different from integer multiplication. For example,

2× 2 = 0 mod 4 and 3× 4 = 0 mod 6.

This can happen only if the modulus n is not prime. If the modulus
p is prime, three important properties hold:

Cancellation

If a 6= 0 and a× b = a× c mod p then b = c mod p (3)

Inverse

If a 6= 0 then ∃y such that x× y = 1 mod p. (4)

Fermat’s Little Theorem

If a 6= 0 ap−1 = 1 mod p. (5)

Multiplicative Inverses

• Fermat’s little theorem tells us that ap−1 = 1 mod p

• It follows that a× ap−2 = 1 mod p, and hence that ap−2 is the

inverse of a. For example,

2−1 = 23 = 8 = 3 mod 5.

Exercise Use Fermat’s little theorem to find the inverses of 3 and 4

modulo 5. Check your answers against the multiplication table

shown in the Z5 table.

Exercise: Solution

3−1 = 3p−2

= 33

= 9× 3 mod 5

= 4× 3 mod 5

= 12 mod 5

= 2 mod 5

4−1 = 4p−2

= 43

= 16× 4 mod 5

= 1× 4 mod 5

= 4 mod 5.

Ada Implementation

In Ada 95, the integer types are subdivided into signed integer types
and modular types. The modular types are unsigned integer types
for which the arithmetic cycles round. We can define a type for
arithmetic modulo 5 as follows:

1 TYPE Mod_5 is MOD 5;
2 A, B, C, D: Mod_5;

We can now add, subtract, multiply and exponentiate values of this
type with the standard arithmetic operators +, -, * and ** and the
arithmetic is automatically performed mod 5.

3 A := 3; B := 4;
4 C := A + B; -- Sets C to 2
5 D := A*C; -- Sets D to 1
6 B := A**3; -- Sets B to 2

• An alternative approach to using modular arithmetic in Ada is to

use the mod operator on integers.

• For example, the following statement is true mathematically:

a+ b mod n = (a mod n+ b mod n) mod n. (6)

• The corresponding statement about Ada expressions is also true:

(a + b) mod n = (a mod n + b mod n) mod n

Random Number Generators

God does not play dice. Albert Einstein

• Whether God does or does not play dice, it is a fact that many

computer programs need a source of random numbers in order

to inject some unpredictability into their operation.

• If you really want truly random numbers, then the only way to

provide is to build some form of complex physical system and

use its output.

• What is needed is an algorithm that generates random numbers.

Of course, this is impossible, since an algorithm is deterministic

(i.e., predictable). Instead, we use an algorithm that generates

pseudo-random numbers. Such an algorithm generates a

sequence of numbers that appear to be random under a wide

range of statistical tests (even though they aren’t truly random).

Pseudo-Random Number Generators

• If we generate numbers which are pseudo-randomly distributed in the range
[0,1], then in a sequence of 1000 such numbers, we would expect about 100
to be in the range [0,0.1], and we can test whether the difference between
the actual number in a given sequence and 100 is statistically significant.

• In any sequence of truly random numbers, all patterns of numbers will occur
eventually.

Congruential Random Number Generators

• Most practical random number generators are based on simple

congruential algorithms of the form

Ij+1 ≡ aIj mod m.

• This algorithm generates a sequence of numbers in Zm given by

I1, I2, I3, etc. If a and m are chosen carefully, you can generate

m− 1 different integers.

• These are usually converted to random numbers in the range

[0,1] by dividing by m.

Seeds

• The first number in the sequence is called the seed.

• Suppose that we set the seed to a particular value (42, say) and
then generate 10 numbers. If we reset the seed to the same
value again and generate 10 numbers, we will get the same 10
numbers.

• This might seem to be a nuisance, given that we want
unpredictable behaviour, but is actually very helpful. Suppose
that you have a large system using a random number generator
and that midway through a run the program goes wrong (e.g. it
crashes). To debug the problem, you will need to run the system
again under identical conditions to find out what has gone
wrong and prove that you have removed the error. However, if
you don’t know what the seed was when you first ran the
system, you cannot run it again in an identical way.

• The solution is to run the system from a known seed, but to use
different seeds for each run.

Example

• We will choose m = 5, a = 2 and the seed I1 = 1.

• Then the sequence of numbers is

I1 = 1, I2 = 2, I3 = 4, I5 = 3, I5 = 1 . . . (7)

• Note how we get 4 distinct integers: we say that the period of

the generator is 4.

• If we want real numbers, we divide by 5 and get

R1 = 0.2, R2 = 0.4, R3 = 0.8, R4 = 0.6, R5 = 0.2 . . . (8)

• What happens if we choose a seed of 0?

Parameter Choice

• It is important to realise that the choice of a and m can have a

big effect on the quality of your random number generator, and

is best left to experts in number theory.

• (That is, don’t just make up some values, but look them up in a

reliable text, and make sure that you transcribe them into your

program accurately.)

• Consider the values a = 2 and m = 2147483647. If we start with

a seed set to 1, then the first ten values will all be less than

210 ≈ 1000; as fractions they will all be less than

10−6 = 0.000001.

• Another way of saying this is that small numbers are followed by

several small numbers; this is a highly undesirable correlation

between numbers in the sequence.

