
Session Objectives

• Define the Chomsky hierarchy of grammar types

• Define the parse tree for a derivation

• Read and understand languages defined in EBNF

Chomsky Grammar Hierarchy

Type Name Restrictions on productions α→ β

0 phrase structure α contains a non-terminal
1 context-sensitive α contains a non-terminal and the

length of α is less than or equal to the

length of β
2 context-free α consists of a single non-terminal
3 right-linear grammar only producations of the form α → aβ

or α→ a can be used where α and β are

single non-terminals and a is a terminal

• The type 3 Chomsky grammars (right-linear grammars) are in
fact just our old friend the regular languages again.

• The type 2 grammars (context-free grammars) can be parsed by
a DFA supplied with a push-down stack; the resulting machine is
called a push-down acceptor.

Context-Free Grammar: Example

• The grammar for Boolean expressions is a type 2 grammar since

every production rule has a single non-terminal on the left-hand

side.

• The main thing that makes this a non-regular grammar is the

need to balance pairs of brackets (it’s our old nemesis 0n1n in

another guise), and that can be done with a stack, so the fact

that this language can be parsed by a push-down acceptor

makes sense.

Derivation Trees

• We include a vertex for each

symbol, and use edges to de-

note production rules.

• The tree structure is one rea-

son why it is reasonable to

be able to write good pars-

ing algorithms for context-free

grammars.

(

t

N

∧

B

t

N

����
HHHH

S)

`̀ `̀ `̀ `̀

S

Parser Generation

• Parser generators (or compiler compilers) are programs that take

a context-free grammar as input and generate code for the

corresponding parser.

• YACC (Yet Another Compiler Compiler), a standard Unix utility

developed by Bell labs, and the Gnu version, wittily called Bison,

generate C programs. The Java Compiler Compiler, JavaCC,

originally developed by Sun Microsystems, can be downloaded

free from http://www.webgain.com/products/java_cc/

• We can compare this with the situation for regular expressions;

some programming languages (for example, Perl, Tcl, PHP)

offer inbuilt support for parsing regular expressions.

• By contrast, for context-free grammars, parsers are more

complicated, and are generated as code that must be integrated

by the programmer with other parts of a system.

Backus–Naur Form

• Chomsky’s work on grammars influenced John Backus, who

realised that many programming languages are context free (or

nearly so).

• He developed Backus-Naur Form (BNF) in order to specify the

Algol 60 programming language.

• Since then, the grammar has been revised, and many languages

are specified in Extended Backus-Naur Form (EBNF).

EBNF Grammars

• Each rule of an EBNF grammar defines one symbol of the form

symbol ::= expression (1)

In (1) both the symbol and the expression are non-terminals and

represent syntactic categories.

• For example, in the Boolean grammar, N represents truth values

and B represents logical operators.

• Terminal symbols (also known as string literals) are given inside

quotes; this is useful in grammars that are to be read by a

machine so that it can distinguish between the grammar and the

language it generates.

EBNF Metacharacters

In a similar way to regular expressions, there are some

metacharacters used in EBNF to make the representation more

compact.
Symbol Semantics
A? A or nothing: ‘optional A’
AB A followed by B
A | B A or B but not both
A−B any string that matches A but does not

match B
A+ one or more repetitions of A
A∗ zero or more repetitions of A

Note that the or operator | is an exclusive or.

Example: Boolean Expressions

The grammar defined earlier can be written in EBNF as follows:

S ::= “(”S“)”(B(“(”S“)” | N))? | N(B(“(”S“)”|N))?

N ::= “0” | “1”

B ::= “∧” | “∨”

I think that it is arguable that the original context-free grammar was

clearer than this!

Example: Logic

wffs in propositional logic

formula ::= atomic formula | (¬formula) | (formula ∧ formula) |

(formula→ formula) | (formula ∨ formula)

atomic formula ::= ⊥ | p | q | r | p0 | p1 | . . .

predicate calculus We defined a term in predicate logic by

• Any variable or constant symbol is a term.

• If f is an m-ary function and t1, t2, . . . , tm are terms, then f(t1, t2, . . . , tm)
is a term.

We can write this in EBNF as follows:

term ::= variable | constant | f1(term) | f2(term, term) | . . .

variable ::= x | y | z | x1 | . . .

constant ::= 0 | 1 | . . .

Example: XML

1 <?xml version = "1.0"?>
2 <!DOCTYPE letter SYSTEM "letter.dtd">
3 <letter>
4 <contact type = "to">
5 <name>John Smith</name>
6 <address>123 High St.</address>
7 <postcode>B99 1AA</postcode>
8 </contact>
9

10 <contact type = "from">
11 <name>Jane Smith</name>
12 <address>321 Low St.</address>
13 <postcode>B11 9ZZ</postcode>
14 </contact>
15
16 <salutation>Dear John,</salutation>
17 <para>What time will you return?</para>
18 <para>Your dinner is in the oven.</para>
19 <closing>Yours faithfully</closing>
20 <signature>Jane</signature>
21 </letter>

• XML is rapidly becoming the

standard for specifying the

structure of data presented on

the Web. As such, it is very

likely that you will have to

write your own XML language

definitions.

• There are two ways of spec-

ifying XML document struc-

ture: Document Type Defini-

tions (DTDs) and schemas.

• A DTD expresses the set of

rules for document structure

using an EBNF grammar.

DTD for Letter

1 <!ELEMENT letter (contact+, salutation, para+, closing, signature)>
2 <!ELEMENT contact (name, address, postcode)>
3 <!ATTLIST contact type CDATA #IMPLIED>
4
5 <!ELEMENT name (#PCDATA)>
6 <!ELEMENT address (#PCDATA)>
7 <!ELEMENT postcode (#PCDATA)>
8 <!ELEMENT salutation (#PCDATA)>
9 <!ELEMENT para (#PCDATA)>

10 <!ELEMENT closing (#PCDATA)>
11 <!ELEMENT signature (#PCDATA)>

• Each ELEMENT type defines an EBNF
rule (with fairly obvious syntax).
The ATTLIST element type declara-
tion on line 3 defines an attribute
(here type) for the contact element.

• The keyword #IMPLIED means that if
the parser finds a contact element
without a type attribute it can ignore
the attribute.

• The type CDATA specifies character
data.

Example: Programming Languages

In Ada, the rule to define an expression has the form

expression ::= relation{and relation}

| relation{and then relation} | relation{or relation}

| relation{or else relation} | relation{xor relation}

This depends on the definition of a relation:

relation ::=

simple expression[relational operator simple expression]

| simple expression[not]in range | simple expression[not]in subtype mark

Summary

1. Phrase structure grammars use rules to generate words.

2. Words are made up of terminal symbols; non-terminal symbols

represent intermediate states or grammatical constructs.

3. Chomsky defined a four-level hierarchy of grammars. Regular

languages are the smallest class, and the next most complex are

context-free grammars.

4. A context-free language can be parsed by a DFA with a

push-down stack.

5. Computer scientists use Extended Backus-Naur Form (EBNF)

to express context-free grammars.

6. Compiler compilers generate a parser from a machine-readable

context-free grammar.

Session Objectives

• Define the Chomsky hierarchy of grammar types

• Define the parse tree for a derivation

• Read and understand languages defined in EBNF

