
Session Objectives

• Practice working with DFA

• Use DFA to model system behaviour

• Understand the relationship between DFA and regular languages

• Apply a phrase structure grammar to generate a language

Exercise

Draw the directed graph that describes the DFA with initial state A,

accepting state D and the following transition function.

Input a b
Present State

A B D
B C D
C C C
D B D

Exercise II

Which of the following words is accepted by this DFA?

1. aabb

2. bbab

3. abbb

4. bbaabaa

Solution II

Which of the following words is accepted by this DFA?

1. aabb: No

2. bbab: Yes

3. abbb: Yes

4. bbaabaa: No

Language is generated by the expression b∗(ab∗)∗

Proof of Non-Regular Languages

• Consider the language whose words all contain a string of 0s

followed by an equal number of 1s.

• If this is regular, there is some DFA that accepts it. Suppose

that the DFA contains m internal states. Then on reading any

string of more than m symbols, the DFA must enter at least one

state twice.

• Now consider the string 0m+11m+1. This string must be

accepted by the DFA, so after reading the last 1 the machine

must be in an accepting state. However, when reading the first

half of the string, consisting of m+ 1 zeros, the DFA must enter

a state (say state Si) twice.

• What would happen if we inserted another k zeros at this point

in the string?

• Since the machine is in state Si it would still return to Si: in

other words with the string 0m+k+11m+1 the machine would end

up in the same state as with the string 0m+11m+1, which is

accepted.

• Thus the DFA would accept a string outside the language, a

contradiction.

DFA for System Modelling

• DFA can also be used to

model computer system oper-

ation, particularly for control

systems.

• Here a finite state machine

models the way a bank ac-

count changes status as it

is first opened, used for de-

posits and withdrawals, all the

money is removed and then

closed.

��������������
Empty

Account

��������������
Normal
Account

���
�

���
�

	�	�	�	
�
�
�

Null

Account

Closed
Account

open deposit

deposit

withdraw

withdraw

close

Summary

1. A deterministic finite automaton (DFA) consists of a set of

states and a transition function that defines the action of the

machine when a character is read.

2. DFAs can be represented as directed graphs with loops.

3. A language is accepted by a DFA if and only if it is regular.

4. DFAs can also be used for system modelling.

Phrase Structure Grammars

Because there are useful languages that are not regular, we need to

expand the way in which we define a language.

A phrase structure grammar consists of four sets:

Terminal alphabet: the symbols (often represented by lower case

letters or numbers) that appear in words (or sentences) of the

language.

Non-terminal alphabet: the symbols (often represented by upper

case letters) that are used to construct grammatical rules but

that do not appear in words.

Start symbol: the symbol that starts the process of generating

words.

Productions: the grammar rules used to derive words.

Generating Language

The procedure for generating a grammatical word/sentence is

1. Begin with the start symbol.

2. Use grammar rules to produce new strings.

3. Continue until there are no non-terminals left in the string.

A derivation of a string Y from a string X is a sequence of

applications of productions which goes from X to Y . We write

X ⇒ Y .

Example

A language L over the symbols a and b is defined by the following
grammar rules, where S is the start symbol.

S → aSb S → ab

What is the set L?

• We start with the symbol S and use one of the grammar rules to
make a replacement. We use rule 1 and get S ⇒ aSb. Applying
the same rule again, we get S ⇒ aSb⇒ aaSbb.

• Continuing with the same rule, we get S ⇒ an−1Sbn−1 after n− 1
applications. This is not a word in L, since it still contains the
non-terminal symbol S. We can remove S by applying rule 2 to
obtain S ⇒ anbn, and so L = {anbn | n > 0}.
• This is equivalent to the language 0n1n which we proved was

not regular. Hence we conclude that phrase structure grammars
can generate new types of language.

Example: Boolean Formulae

The language of Boolean expressions over the set {t, f} with the

binary operations ∧ and ∨ with brackets (and) can be defined with

the following grammar rules:

S → (S)B(S) S → (S)

S → NBN S → (S)BN

S → NB(S) S → N

N → f N → t

B → ∧ B → ∨

Find all the sentences of length at most four, and show that t ∧ tf is

not a sentence.

Solution

For convenience, we summarise the grammar rules using | to

represent ‘or’. Then we can combine rules with the same left-hand

side as follows:

S → (S)BS | (S)BN | NB(S) | (S) | NBN | N

N → f | t

B → ∧ | ∨ (1)

All of the rules have more symbols on the right than the left, so as

we are looking for sentences of up to four terminal symbols, we only

need to consider rules with up to four symbols on the right-hand

side. This rules out the first three productions from S.

• Both N and B are replaced by terminal symbols only, so it is easy

to see that from S → N we can only derive t and f , of length 1.

• From NBN we can only make the derivations f ∧ f , f ∨ f , f ∧ t,
f ∨ t, t ∧ f , t ∨ f , t ∧ t, t ∨ t, all of which have length three.

• Finally, we can derive (S) from S. The only sentences of length

at most four that can be derived from (S) use the rule S → N ,

so we obtain (t) and (f).

• It is easy to see that t ∧ tf is not in the list of valid sentences of

length at most four, and hence it is not part of this language.

Exercise

Using the Boolean grammar, show that (t ∧ t) is a grammatical

sentence.

Hint: work out a series of productions starting from S that end with

this sentence.

Solution

Using the Boolean grammar, show that (t ∧ t) is a grammatical

sentence.

S → (S) S → (S)

→ (NBN) S → NBN

→ (tBN) N → t

→ (t ∧N) B → ∧

→ (t ∧ t) N → t

Exercise

A language L over the symbols a, b, and c is defined by the following

grammar rules, where S is the start symbol and B is a non-terminal

symbol.

S → aS

S → aB

B → bc

Find a definition of the set L.

Solution

A language L over the symbols a, b, and c is defined by the following

grammar rules, where S is the start symbol and B is a non-terminal

symbol.

S → aS

S → aB

B → bc

Find a definition of the set L.

L = a∗bc

Session Objectives

• Practice working with DFA

• Use DFA to model system behaviour

• Understand the relationship between DFA and regular languages

• Apply a phrase structure grammar to generate a language

