
Session Objectives

• Use regular expressions for pattern matching

• Define finite state machines

• Draw a diagram of a finite state machine

• Use a finite state machine to parse words

Pattern Matching with Regular Expressions

• The most common way to put regular expressions to work is in

text processing.

• Some powerful utilities (such as sed, grep and egrep) support

pattern matching using regular expressions to define the

patterns.

• There are even some programming languages such as Perl, Tcl

and Python which provide built-in support for such pattern

matching.

• Perl is the language of choice for writing CGI scripts precisely

because it makes it easy to split apart the complex strings that

POST commands in HTML spit out.

Example Application

A tool that will check for ‘doubled words’ (such as “this this”).

• Accept any number of files, reporting each line of each file that

has doubled words, with the source filename on each line.

• Work across lines, even finding doubled words where a word at

the end of one line also occurs at the beginning of the next line.

• Find doubled words despite capitalisation differences, such as

“The the” as well as allowing differing amounts of whitespace

(spaces, tabs, new-lines etc.) between the words.

• Find doubled words that might be separated by HTML tags,

such as very very

Friedl’s solution (in Perl) consists of three regular expressions with

associated text substitutions (in a program of just six lines).

A Real Application

• While developing the Netlab neural network toolbox, I wrote the
reference manual in LATEX.

• I also needed to generate a reference manual in HTML and help
text for Matlab, the programming language used for the toolbox.

• Clearly, what I didn’t want to do was to type out all the text
with different formatting commands for the different
presentations. This would take a very long time, and whenever
the reference material was updated, it would be necessary to
update two other formats as well.

• LATEX uses a mark-up language to change the presentation of
text: these commands (such as \emph to emphasise text) can be
matched and modified.

• I wrote two Perl scripts that could be run over all the Matlab
programs and reference material to generate the different
formats whenever I created a new release.

Pattern Matching with egrep and grep

• You can’t learn the Perl language in a lecture, so we will not
look at editing text, but just at the pattern matching process.

• A typical egrep command:

egrep ’hello’ *

• This searches for the string “hello” (which is the regular
expression) in all files in the current directory.

• Note the use of quotes around the string. These are not part of
the regular expression, but are needed by the command shell
(the part of the system that accepts typed commands and
executes the programs you specify).

• egrep ’MyInt’ *.adb

finds all occurrences of the type name MyInt in the Ada source
files in the current directory.

Regular Expression Syntax in egrep

• The alphabet Σ is assumed to be all ASCII characters.

• Concatenation is defined by writing words next to each other.

• Kleene closure is defined by the * character.

• Union is denoted by | with round brackets used as delimiters.

For example, the regular expression (m|b)ad matches “mad” and

“bad”, while (From|Subject|Date) matches each of the given

strings.

There are other metacharacters that egrep provides to make it

easier to write compact regular expressions.

Metacharacters in egrep

Start/End of Line The caret ^ and dollar $ represent the start and

end of a line of text. So ^cat matches a line with cat at the

start. The caret anchors the regular expression to the start of

the line. The expression mat$ matches mat at the end of a line.

Character Classes The [] construct, known as a character class, lets

you list the characters you want at a certain point in a regular

expression. So [Tt]his matches both This and this. In this form,

the construct is equivalent to a union of individual characters.

Where such classes really come into their own is to define a

range of characters. So <H[1-6]> matches all levels of HTML

header, from <H1> to <H6>. The expression [0-9a-fA-F] is useful

when matching the characters used in hexadecimal numbers.

The single dot character . is a shorthand for a character class

that matches any character. So .ar matches aar, 2ar etc.

Repetition

There are several useful operators that allow us to specify the

number of times an expression should be repeated with precision.

? Preceding item is matched at most once.
* Preceding item is matched zero or more times.
+ Preceding item is matched one or more times.
{n} Preceding item is matched exactly n times.
{n,} Preceding item is matched n or more times.
{n,p} Preceding item is matched at least n times but not more

than p times.

Examples

HTML directives The HTML specification states that spaces are

allowed immediately before the closing >, so <H1> and <H2 > are

both legal tags. We can match all these variants in a single

regular expression

<H[1-6] *>

Decimal numbers To match all legal natural numbers in base 10, we

can use the expression

(0|[1-9][0-9]*)

This ensures that the number is either zero, or has a leading

digit that is non-zero.

Word Boundaries The symbols \< and \> match the empty string at

the beginning and end of a word (which is any sequence of

alphanumeric characters). The expression \<cat\> matches

cat but not catalogue or scat. The symbol \b matches the

empty string at either beginning or end of a word.

Escaping Because some characters are actually metacharacters, they

can’t be used directly in regular expressions. For example, to

search for text representing a sum of money in dollars, we would

like to type $[0-9]+.[0-9]{2}, but the initial dollar sign matches

an end of word, and the decimal point matches any character.

We can make sure that we match these two problematic cases

as characters by escaping them with a preceding backslash \. So

egrep ’\$[0-9]+\.[0-9]{2}’

successfully matches strings like $145.62

Exercise

How would you modify the regular expression

egrep ’\$[0-9]+\.[0-9]{2}’

so that whole numbers of dollars like $10020 are also matched?

Solution

How would you modify the regular expression

egrep ’\$[0-9]+\.[0-9]{2}’

so that whole numbers of dollars like $10020 are also matched?

\$[0-9]+(\.[0-9]{2})?

Remembering Matches

• An extension to regular expressions that is supported by some

versions of egrep that takes us slightly outside the regular

languages but can still be parsed by variants on the standard

parser (though potentially at the expense of a significantly

slower running time).

• Parentheses can ‘remember’ text matched by the subexpression

they enclose. To refer to a matched subexpression, the

expression \n is used, where n is the index of the bracketed

expression.

• For example,

(a)(b)(c)\3\2\1

matches the string abccba.

Example

• We can use this construct to give a partial solution to the

doubled word problem mentioned at the start of this section.

egrep -i ’\b([a-z]+)(+)(\1\b)’ test.txt

• This command searches in a case-insensitive way (the -i flag)

for a word (of at least one character) \b([a-z]+) followed by an

arbitrary number of spaces (+) before matching the same word

again (\1\b).

• The \b metacharacters ensure that we don’t match strings like

then the or this is.

• The only important part of the problem that this does not solve

is the case when the two word occurrences are separated by a

line break.

When I ran this command on the current set of lecture notes, this

was the output:

\emph{conjunctive normal form} (\emph{CNF}) it is is a conjunction

\emph{conjunctive normal form} (\emph{CNF}) it is is a conjunction

the \emph{scope} of the quantifier. An occurrence of a a variable x

(such as ‘‘this this’’), a common problem in documents. Your job is to

are called compiler compilers. YACC (Yet Another Compiler Compiler),

wittily called Bison, generate C programs. The Java Compiler Compiler,

The fourth of these refers to the definition of a repeated word, and

the fifth and sixth refer to a type of program (called a compiler

compiler), so are OK, but the other three are incorrect (and have

now been fixed).

Automata and Parsing

• A parser for a regular expression can be implemented as a

simulation of a simple type of abstract machine.

• A machine is an abstract computer that can read strings in a

certain language and which tells us, after a finite number of

steps, whether a given string belongs to the language.

Deterministic Finite Automata

• There is a finite set of internal states Q.

• There is a finite alphabet of symbols Σ that the machine can

read.

• The machine has an initial state q0 ∈ Q.

• The machine has a set of final (or accepting) states F ⊆ Q.

• There is a transition (or next-state) function f : Q×Σ→ Σ so

that when the machine is in state q and reads character a, it

moves to f(q, a).

The machine is deterministic in the sense that it operation is

completely determined by the input string. If the machine ends up in

a final state, then it is said to accept the input; otherwise it rejects

it.

Properties of DFA

• DFA are extremely rudimentary machines. Once an input symbol

has been read, it is lost. There is a sort of memory associated

with the internal states, but it is severely limited.

• It is easy to see how a DFA can act as a parser for the language

that it accepts.

• The key result for the application of DFAs is Kleene’s theorem

that a language is accepted by some DFA if and only if it is

regular.

• The proof of this theorem is beyond the scope of this course,

but it does give an algorithm for constructing a DFA that

accepts a given regular language.

Drawing DFA

Consider a DFA with state set

{A,B,C}, alphabet {0,1}, initial

state A, accepting state B and

transition function:

Input 0 1
Present State

A A B
B C B
C C C

Consider what happens when the

string 00110 is read.

C

BA
Initial
state

0 1

0, 1
0

1 Accepting
state

Example Continued

• Careful consideration of the transition function shows that the

DFA will read an initial sequence of 0s of arbitrary length staying

in state A.

• A single 1 will move it to B, where it will stay so long as it

continues to read 1s.

• After the next zero, it moves to C, where it will then stay for

ever. (Such a state is called a dead state).

• It is relatively easy to see that the regular expression 0*1* defines

the language accepted by this DFA.

Session Objectives

• Use regular expressions for pattern matching

• Define finite state machines

• Draw a diagram of a finite state machine

• Use a finite state machine to parse words

