
Number and Arithmetic

God created the natural numbers, and all the rest is the

work of man. Leopold Kronecker



Number Systems

You have, of course, been using numbers for most of your life. Why

then do we need to talk about number systems here?

1. They make a good starting point to introduce rigour to your

thought processes.

2. Because we need to understand the relationship between

computer arithmetic and mathematical arithmetic, and that can

only be done with a sound understanding of the latter.

3. Thirdly, we will need to define some variants of standard

arithmetic, and need a firm foundation before we do that.

It is important to remember that we are studying the abstract (or

pure) number systems, not their implementation on computers.



Natural Numbers

The natural numbers, denoted by N, is defined to be the set of

counting numbers including zero:

N = {0,1,2,3, . . .}. (1)

Zero is included for (good) technical mathematical reasons that

don’t concern us here.

For every natural number n we can define its successor Sn as

Sn = n+ 1. A key property of the natural numbers is that every

natural number can be reached from zero by applying the successor

function S a finite number of times.



Successor and Loop

The successor function maps directly onto the idea of a loop in

programming languages.

1 -- Output a line of stars

2 FOR Index IN Margin + 1 .. Margin + Length LOOP

3 Put("*");

4 END LOOP;

• The Integer variables Margin and Length are assumed to be

initialised before the start of the loop. The index variable Index

counts through the Length repetitions of the loop.

• If Length is less than or equal to zero, then the body of the loop

is not executed at all (i.e. is executed zero times). This partly

explains why the natural numbers include zero.



Induction

We can prove statements about natural numbers by a technique

called induction. Suppose that we can prove the following two

statements about a property P (n):

1. P (0) is true;

2. if P (n) is true then P (n+ 1) is true.

Then P (n) is true for all natural numbers n.

This is a very useful tool, as it means that we only need to prove

one special case (which is usually very easy) and one general case

which involves a small step (from n to n+ 1). Induction is often

used when proving the correctness of an algorithm, particularly if it

involves a loop. Here P (n) is the statement that the algorithm is

correct for an input value of n.



Arithmetic Operations

• It is clear that if you add or multiply two natural numbers, you

get another natural number. The technical phrase for this is

that “N is closed under addition and multiplication”.

• N is not closed under subtraction or division: give one

counterexample of each (i.e. one pair of numbers for which

subtraction takes you outside N, and one pair of numbers for

which division takes you outside N).



Solution

N is not closed under subtraction or division: give one

counterexample of each (i.e. one pair of numbers for which

subtraction takes you outside N, and one pair of numbers for which

division takes you outside N).

1− 2 /∈ N.

1/2 /∈ N.

This algebraic flaw is fixed in other number systems.



Radix Notation

• When we write down numbers we usually use decimal notation.
Another way of putting this is that we are using a radix 10
representation.

• The Σ notation is a very compact way of expressing sums, i.e.
adding up a collection of terms.

• If a1, . . . , an are numbers, then
∑n
i=1 ai stands for a1 + · · ·+ an.

Usually, ai will be expressed as some algebraic formula. For
example

3∑
i=1

2i+ 1 = 3 + 5 + 7 = 15. (2)

• Calculate
3∑
i=0

3i+ 2.



Solution

Calculate
3∑
i=0

3i+ 2.

3∑
i=0

3i+ 2 = (3× 0 + 2) + (3× 1 + 2) + (3× 2 + 2) + (3× 3 + 2)

= 2 + 5 + 8 + 11

= 25.



Representing Numbers

The usual representation of a natural number n has the form

akak−1 . . . a2a1a0 where each ai is a digit: that is a natural number

between 0 and 9. This means that

n =
k∑
i=0

ai10i (3)

where 10i is 10 multiplied by itself i times. Remember that

101 = 10 and 100 = 1. For example, the two digits ‘4’ followed by

‘2’ represent the number

2× 100 + 4× 101 = 2 + 4× 10 = 2 + 40 = 42.

Write 5829 as a sum.



Solution

Write 5829 as a sum.

5829 = 5× 103 + 8× 102 + 2× 101 + 9× 100

Here, the number 10 is the radix of the representation. Any natural

number r > 1 can be used. r = 2 gives the binary number system,

familiar to all computer scientists.



Integers

• We have already commented that the natural numbers are not
closed under subtraction. The set of integers (or whole
numbers) Z solves that problem.

Z = {. . . ,−2,−1,0,1,2, . . .} (4)

• Why Z? The reason is that these number systems were
formalised in the 19th century by German mathematicians, and
‘Zahlen’ is the German for numbers.

• We can now perform addition, multiplication and subtraction
and stay safely inside the number system, but it is still possible
to divide two numbers and move outside it (e.g. divide 1 by 2).

• We have lost the induction property. The successor function still
exists (which is why Ada loops work with integer variables), but
there is no longer a ‘first element’. If you try to name one, I can
always name another element that is smaller.



Prime Numbers

• Certain numbers form multiplicative building blocks for all the

others. These are the primes: an integer greater than 1 is prime

if the only numbers that divide it exactly are itself and 1. The

first few primes are

2,3,5,7,11,13, . . .

• Every integer can be written uniquely as a product of primes.

n = p
m1
1 · · · pmr

r . (5)

In this equation both the prime numbers pi and the powers mi

are uniquely defined, provided that we exclude any mi = 0, since

these just give a value of 1.

• For example

18 = 21 × 32 42 = 21 × 31 × 71.



Prime Factorisation

• While we are guaranteed that every integer can be written as

the product of primes, finding the prime factorisation of a large

integer takes a long time. This has important consequences

later when we come to look at coding algorithms.

• Testing whether a number is prime is a bit easier. In the
simplest approach, we note that if n is not prime, then there
must be a smaller number that divides it exactly. Also, if
n = lm, then at least one of l and m can be no greater than

√
n,

the square root of n. Thus an effective (if not super-efficient
algorithm) is the following:

1 for l = 1..sqrt(n)
2 if l div n
3 return true;
4 end
5 return false;

• Use the algorithm to test whether 61 is prime.



Highest Common Factor

• It is often useful to be able to calculate the highest common

factor of two numbers a and b (otherwise known as the greatest

common divisor).

• We shall write h = hcf(a, b) for this number. It is the largest

integer that divides exactly into both a and b. For example,

hcf(24,30) = 6.

• What is the hcf of 18 and 25?



Algorithm for Computing H.C.F.

• We shall use the prime factorisations of a and b. Let p1, . . . , pn
be the set of primes that divide either a or b, and write:

a = p
l1
1 · · · p

ln
n and b = p

m1
1 · · · pmn

n .

Here some of the powers li, mi may be zero, unlike in (5).

• Then it is not hard to show that

hcf(a, b) = p
k1
1 · · · p

kn
n , (6)

where ki = min(li,mi). For example,

24 = 23 × 31 × 50 and 30 = 21 × 31 × 51. (7)

So k1 = 1, k2 = 1, and k3 = 0. Hence

hcf(24,30) = 21 × 31 × 50 = 6, as before.

• Write down the prime factorisations of 18 and 25. Use them to

calculate hcf(18,25).



Solution

Write down the prime factorisations of 18 and 25. Use them to

calculate hcf(18,25).

18 = 21 × 32 × 50

25 = 20 × 30 × 52

Hence l1 = 1, l2 = 2, l3 = 0; m1 = 0, m2 = 0, m3 = 2. Thus

k1 = k2 = k3 = 0 and

hcf(18,25) = 20 × 30 × 50 = 1× 1× 1 = 1.



Euclid’s Algorithm

So we have a workable algorithm, but it is very inefficient because it

depends on the prime factorisation. One of the most famous (and

earliest) algorithms for any task is Euclid’s algorithm for computing

the hcf(a, b). It is based on the following argument.

• If a ≤ b, then we can divide b by a to obtain a quotient q and a

remainder r, where 0 ≤ r < a. This means that b = qa+ r.

• Now, if r = 0, then a divides b, and hence hcf(a, b) = a and we

are done.

• Otherwise, it is easy to show that hcf(a, b) = hcf(r, a). We can

then continue by dividing r into a.

• Because r < a, we can guarantee that the algorithm will

eventually terminate, and it is much more efficient than using

the prime factorisation.



Euclid’s Algorithm: Worked Example

Let us find the hcf of 568 and 208:

568 = 2× 208 + 152

208 = 1× 152 + 56

152 = 2× 56 + 40

56 = 1× 40 + 16

40 = 2× 16 + 8

16 = 2× 8 + 0

Thus hcf(208,568) = 8.



Euclid’s Algorithm II

• Euclid’s algorithm provides extra information: it enables us to
find integers m and n such that ma+ nb = hcf(a, b). (We shall
see why this is useful when we look at cryptography).

• This is done by working backwards through the computation
from the penultimate line.

8 = 40− 2× 16

= 40− 2× (56− 1× 40) = 3× 40− 2× 56

= 3× (152− 2× 56)− 2× 56 = 3× 152− 8× 56

= 3× 152− 8× (208− 1× 152) = 11× 152− 8× 208

= 11× (568− 2× 208)− 8× 208 = 11× 568− 30× 208

• Use Euclid’s algorithm to find hcf(24,30). Also find integers m
and n such that 24m+ 30n = hcf(24,30).



Solution

Use Euclid’s algorithm to find hcf(24,30). Also find integers m and

n such that 24m+ 30n = hcf(24,30).

30 = 1× 24 + 6

24 = 4× 6 + 0

6 = 1× 30− 1× 24

Hence 6 = hcf(24,30) and 6 = 1× 30− 1× 24.



Rational Numbers

• The next number system extends the integers so that it is closed

under all four arithmetic operators: addition, subtraction,

multiplication and division.

• This is the rational numbers Q, which consists of integer

fractions.

• Thus Q consists of all numbers that can be written in the form

a/b with a and b in Z and b 6= 0.

• Why are the rational numbers important? Every decimal or

binary number which recurs must be rational. Because a number

that is represented on a computer only has a finite number of

non-zero values after the decimal point, eventually it recurs

(with the repeated value 0). Hence every number represented on

a computer must be rational.



Rational Arithmetic

We can define the four arithmetic operators on Q as follows:

a1

b1
+
Q

a2

b2
=
a1b2 + a2b1

b1b2

a1

b1
−
Q

a2

b2
=
a1b2 − a2b1

b1b2

a1

b1
×
Q

a2

b2
=
a1a2

b1b2

a1

b1
÷
Q

a2

b2
=
a1b2
b1a2

if a2 6= 0

We can easily show that Q extends Z by noting that the set of

rationals of the form a/1 is equivalent to Z.



Real Numbers

• The final number system we need is the real numbers, denoted

by R.

• We can take this system to be all the infinite decimal numbers

(both recurring and non-recurring). To be precise, we must note

that certain decimals are exactly the same. For example:

42.7899999 · · · = 42.79000000.

• Arithmetic on the real line is defined in the familiar way.



Real Numbers and Geometry

• Why do we need real numbers? The simple answer is that the

rationals leave a lot of gaps.

• The real numbers represent all the points on a line: there are

lengths that are not rational numbers, and these are called

irrational numbers.

• Two famous examples of irrational numbers are
√

2 and π.

1

1

2 1

π



Summary

1. There are four main ‘standard’ number systems: natural numbers N; integers
Z; rationals Q; reals R.

2. We must distinguish between mathematical definitions of number systems
and their implementation in software.

3. Natural numbers are for counting; they are defined by a zero and a successor
function Sn = n+ 1.

4. The Σ notation is a compact way of expressing sums.

5. The integers add negative numbers to the natural numbers. There is no first
element.

6. Prime numbers are the basic building blocks for the multiplicative structure of
the integers. The prime factorisation of an integer is essentially unique.

7. Euclid’s algorithm is an efficient method for computing the highest common
factor of two integers.

8. Rational numbers are the ratio of two integers.

9. Real numbers are all infinite decimals.

10.

11.


