
Session Objectives

• Give an overview of language structure and parsing

• Define the role of formal languages in Computer Science

• Define regular grammars

• Analyse sets of words and define a regular grammar that

generates them



Languages

A language is a set of symbol sequences (called sentences) that can

be interpreted (i.e. have a meaning). Our main aims are to

• look at different ways of formally defining the structure of

languages;

• define methods for parsing (that is, determining whether a

sentence is well-formed) languages;

• show how these ideas can be applied in different domains of

Computer Science.



Looking Forward

1. language theory (a broad overview of our aims);

2. regular languages and regular expressions (the simplest useful

class of languages);

3. finite state automata (simple machines that can parse and

generate regular languages);

4. language definitions and grammars (introducing more general

methods of defining languages);

5. Backus–Naur form (using grammars to define some important

CS languages).



Natural and Formal Languages

• We all use natural language to communicate with each other. In

a natural language there is no strictly formal way of deciding

whether the syntax of a sentence is acceptable (i.e. whether it is

a legal structure).

• The reasons why it is important to use languages with a more

formal structure are mainly based on the fact that if we want to

automate reading (or parsing) a language, there must be a

formal and unambiguous way of deciding whether a sentence is

correctly structured.

• We shall show that for some classes of formal languages a

machine can be constructed to parse sentences.



Applications of Formal Languages

Compilers Programming languages are formal languages. The first

thing that a compiler must do is to parse your text file and

decide if it is a legal program. Only then can it determine the

semantics (i.e. define its meaning, by checking types, etc.)

before translating it into assembly language.

File Parsing Many computer programs require some data to be

stored in a file (for example, configuration information, results,

data structures). While it is easy enough to write such files,

unless some care is taken, it can be difficult to read the files

back in robustly (i.e. checking that the file structure is legal).

By defining a file language formally, both the writing and the

parsing of the file can be automated, thus speeding up the

development process and reducing the likelihood of programming

errors.



Formal Definitions Definitions in formal specifications often require

a language: for example, the structure of wffs in logic. It makes

sense to make these definitions themselves formally (rather than

the semi-formal way they were introduced earlier).

Network Data Distribution The eXtensible Markup Language

(XML) is a developing standard for markup languages that allow

data and information to be shared over the World-Wide Web.

XML permits document authors to create markup for virtually

any type of information: mathematics, chemical structures,

genomics, music, financial data exchange etc. Processing an

XML document requires an XML parser to check the syntax and

convert the text to machine-useable data. To carry out the

parsing, the structure of the markup language must be defined

formally.



Regular Languages and Regular Expressions

• Regular languages are the simplest useful class of formal

language.

• Efficient parsers have been implemented for regular expressions

(that is, sentences in a regular language) and these are readily

accessible in Unix text processing utilities and programming

languages.

• We will define regular languages and show some applications in

text processing.



Regular Expressions

• An alphabet, denoted by Σ, is just a finite set of formal symbols:

for example, lower case letters, or numbers.

• From this we can form strings (or ‘words’), which are finite

sequences whose members are drawn from Σ.

• The empty sequence ε is also included.

If Σ = {0,1} then ε, 0, 1, 001001010 are all words.

Write down all words of length 2 for the alphabet {a, b}.



Solution

Write down all words of length 2 for the alphabet {a, b}.

aa, ab, ba, bb



Concatenation Operator

• The concatenation of two words is formed by juxtaposing the

symbols that form the words.

• If w1 = car and w2 = e, then the concatenation of w1 and w2 is

w1w2 = care.

• This idea can be extended to sets of words in a natural way. If

W1 and W2 are two sets of words, then the concatenation W1W2

or W1 ·W2, is the set of all words formed by concatenating a

word in W1 with a word in W2. Formally, this is

W1W2 = {w1w2|w1 ∈W1 and w2 ∈W2}.

• For example, {car,di} · {d, e, ve} = {card, care, carve,did,die,dive}.

• Powers of W are used to denote the concatenation of W with

itself the appropriate number of times. For instance, W2 = WW

and W3 = WWW . In addition, we let W0 = {ε} and W1 = W .



Exercise

If W1 = {a, b} and W2 = {0,1} write down

1. W1W2

2. W2
1

3. W3
2



Solution

If W1 = {a, b} and W2 = {0,1} write down

1. W1W2:

a0, a1, b0, b1.

2. W2
1 :

aa, ab, ba, bb.

3. W3
2 :

000,001,010,011,100,101,110,111.



Language Closure

• We define W ∗, the Kleene closure of W to be the union of all

the finite powers of W :

W ∗ =
∞⋃
i=0

W i = W0 ∪W1 ∪W2 ∪W3 · · · ∪ .

• This is the set of all words (including ε) that can be formed by

concatenating words from W any number of times.

• If Σ = {0,1} and W = {0,10}, then W ∗ consists of the empty

word ε and all words that can be formed using 0 and the pair 10;

that is, all words formed from 0s and 1s with the property that

every 1 is followed by a 0.



Regular Expressions

The regular expressions over Σ are defined as follows:

1. If a ∈ Σ, then a is a regular expression designating the set {a}.

2. If E and F are regular expressions designating the sets A and B

respectively then:

(a) E + F is a regular expression designating the set A ∪B.

(b) EF is a regular expression designating the set AB, the

concatenation of A and B.

(c) E∗ is a regular expression designating the set A∗, the Kleene

closure of A.



Example

Let Σ = {a, b}. Then the following are regular expressions defining

the given sets of words:

• a denotes the set {a}.

• a∗ denotes the set {ε, a, aa, aaa, . . . }.

• (ab)∗ denotes the set {ε, ab, abab, ababab, . . . }.

• a∗b(ab)∗ denotes the set of all words that begin with any number

(possibly zero) of a’s followed by a single b, followed by any

number (possibly zero) of pairs ab.



Regular Sets

A regular set or regular language over an alphabet Σ is either

1. the empty set;

2. the set consisting only of the empty word;

3. a set defined by some regular expression over Σ.

For each of the following sets, give a regular expression that defines

it. In each case Σ = {a, b, c}.

1. {ε, b, a, aa, aaa, . . . }.

2. {a, ab, ab2, ab3, . . . }.

3. The set of words beginning with any number of pairs ab followed

by a c, followed by any number of triplets abc.



Solution

For each of the following sets, give a regular expression that defines

it. In each case Σ = {a, b, c}.

1. {ε, b, a, aa, aaa, . . . }.

b+ a∗

2. {a, ab, ab2, ab3, . . . }

a(b)∗

3. The set of words beginning with any number of pairs ab followed

by a c, followed by any number of triplets abc.

(ab)∗c(abc)∗



Limitations of Regular Expressions

• Although regular expressions are powerful, it is important to be

aware that they do not generate all possible languages.

• In fact, there are quite simple languages that cannot be

generated by a regular expression.

• Consider the set of sequences of 0s and 1s where a certain

number of 0s are followed by the same number of 1s:

{ε,01,0011,000111,00001111, . . . }.

This set cannot be generated by a regular expression; we will

sketch a proof of this later.



Session Objectives

• Give an overview of language structure and parsing

• Define the role of formal languages in Computer Science

• Define regular grammars

• Analyse sets of words and define a regular grammar that

generates them




