
Session Objectives

• Use De Morgan’s laws to simplify logical expressions

• Define disjunctive and conjunctive normal forms

• Check if an expression is in CNF or DNF

• Rewrite an expression in DNF

• Define the Natural Deduction System

• Read and check a proof that uses Natural Deduction



De Morgan’s Laws

¬p ∧ ¬q ⇔ ¬(p ∨ q) (1)

¬p ∨ ¬q ⇔ ¬(p ∧ q) (2)

De Morgan’s laws for propositional logic can be used to prove the

corresponding laws for set theory. This is done by letting each basic

proposition represent x ∈ S for each set S. If p represents x ∈ A and

q represents x ∈ B, then p ∧ q is equivalent to x ∈ (A ∩B), etc.



Applications of De Morgan’s Laws

• Suppose you want to write a loop which inputs and processes
pairs of data values until two zeros are found.

LOOP
Get(First); Get(Second);
EXIT WHEN First = 0 AND Second = 0
-- Process the pair of values First and Second

END LOOP;

• An alternative way to write this loop would be using a WHILE

construction. We need the loop to continue while the condition

First=0 AND Second=0 is false.



• In logical notation, we let the proposition p represent First=0

and q represent Second=0.

• We require the loop to continue while p ∧ q is false, or

equivalently, while ¬(p ∧ q) is true.

• By De Morgan’s second law (2), this is equivalent to ¬p ∨ ¬q so
we can write the loop in Ada as

Get(First); Get(Second);
WHILE First /= 0 OR Second /= 0

-- Process the pair of values First and Second
Get(First); Get(Second);

END LOOP;

Here we have written First /= 0 for NOT (First = 0).



Normal Forms

• Truth tables are very handy for checking the effect of

combinations of logic gates when designing hardware.

• When the expressions become more complicated, the size of the

truth tables grows rapidly: if there are n simple propositions,

then we require 2n combinations of truth values.

• This becomes unmanageable (at least by hand) and so more

algebraic methods are needed: these involve the application of

laws (amongst them logical equivalences like distributivity and

De Morgan’s laws) to make the process more automated; an

alternative approach is resolution, which you studied in

Introduction to AI.



Choice of Operators

• There are many possible choices of operators.

• We want to be able to model all possible truth functions.

• p ∧ q is logically equivalent to ¬(p→ (¬q)).

• p ∨ q is logically equivalent to (¬p)→ q.

• We cannot reduce the set {¬,→} to a single logical operator.

p ∧ q ¬ (p → (¬ q))

T T T T T F F T
T F F F T T T F
F F T F F T F T
F F F F F T T F

Logical equivalence of p ∧ q and ¬(p→ (¬q)).



Choice of Operators II

• The operator NAND (‘not and’), which I shall write Z, it is true

that any formula is logically equivalent to a formula using only

this operator.

• Why then should we use four logical operators where one will

do? The answer is in readability; we are used to expressing

ourselves with the four operators, and hence it is easier to

understand formulae written with them. For example p ∨ q is a

much clearer expression than (p Z p) Z (q Z q).

• For machinery, the story is quite different. An electronic logical

network can always be constructed from a single kind of

component, namely a NAND gate, rather than several types. This

makes the construction of large scale integrated circuits easier

and cheaper than it would be if several different types of

component were used.



DNF and CNF

• A formula p1 ∨ p2 ∨ · · · ∨ pn is called the disjunction of p1, p2, . . . ,

pn.

• The formula p1 ∧ p2 ∧ · · · ∧ pn is called the conjunction of p1, p2,

. . . , pn.

• A fomula which is either a propositional variable or its negation

is called a literal.

• A formula is in disjunctive normal form (DNF) if it is a

disjunction of a conjunction of literals. A formula is in

conjunctive normal form (CNF) it is a conjunction of

disjunctions of literals.

• A truth function is one possible truth table. For a given set of

propositional variables {p1, . . . , pn} the value T or F is listed

against each of the 2n possible assignments of truth values to

the variables.



Examples

1. The following are literals: p, ¬p, p7.

2. The following are in disjunctive normal form: (p ∧ q) ∨ (¬p ∧ ¬q),

¬p ∧ ¬q.

3. The following are in conjunctive normal form: (p ∨ q) ∧ (¬p ∨ ¬q),

p ∧ ¬q.

4. Which of the following formulas are literals, in DNF, or in CNF?

(Hint: some may be more than one).

p

(¬p ∧ q) ∨ (p ∧ ¬r) ∨ (¬q ∧ ¬r ∧ ¬s)

(¬p ∨ q) ∧ (¬q ∨ ¬r ∨ ¬s) ∧ (p ∨ ¬q)



Solution

Which of the following formulas are literals, in DNF, or in CNF?

(Hint: some may be more than one).

1. p

2. (¬p ∧ q) ∨ (p ∧ ¬r) ∨ (¬q ∧ ¬r ∧ ¬s)

3. (¬p ∨ q) ∧ (¬q ∨ ¬r ∨ ¬s) ∧ (p ∨ ¬q)

1. literal, CNF and DNF.

2. DNF, but not CNF.

3. CNF, but not DNF.



1. Suppose that the propositional variables are p1, p2, . . . ,pn.

Consider the truth table of φ.

2. If every row has the value F , then we can use the formula ⊥
which is in DNF.

3. Otherwise there is a row v where the truth table has the value

T . For each assignment in row v of T and F to the propositional

variables, let φv be the conjunction of literals, one for each

propositional variable, which are pi for the variables assigned T

and ¬pi for the variables assigned F . (e.g. if n = 4 and

v(p1) = v(p4) = T and v(p2) = v(p3) = F , then

φv = p1 ∧ ¬p2 ∧ ¬p3 ∧ p4).

4. By definition, φv is true only in row v of the truth table.

5. List the rows of the truth table where φ has the value T as v1,

. . . , vm. Then let δ be the formula φv1 ∨ φv2 ∨ · · · ∨ φvm.



DNF and CNF

• Hence every wff is logically equivalent to a wff in DNF.

• Using De Morgan’s laws, we can use this result to prove that

every formula is logically equivalent to one in CNF.

1. If φ denotes the formula, put ψ = ¬φ into DNF.

2. φ = ¬ψ: applying negation switches round all the ∧ and ∨
operators. This turns conjunctions into disjunctions and

disjunctions into conjunctions. DNF becomes CNF.



Inference Systems

• So far we have used an informal method of deriving one

proposition from others using truth tables.

• Now we shall consider a more formal approach to logical

inference using a formal inference system.

• The propositional logic together with its inference system is

called the propositional calculus.



Inference Systems and Proof

An inference system has two components.

Axioms: propositions which are asserted to be true.

Inference Rules: rules by which may derive some propositions as

logical consequences of other propositions.

• A proposition p derived from the axioms by repeatedly using the

inference rules is called a theorem of the propositional calculus.

• Note that we do not consider truth tables at all; we are simply

applying rules.

• The process of applying the inference rules to the axioms to

derive the theorem is called a formal proof. In principle, this can

be automated.



Proof and Logical Consequence

If f is a formula and there is a proof of f from a set of axioms S,

then we write S ` f . This is a different statement from S � f .

S � f means that f is a logical consequence of S; whenever

propositional variables are assigned values so that all expressions

in S are true, then f is also true.

S ` f means that f can be inferred from S; by applying inference

rules we can derive f using S as our set of assumptions.

A proposition p that can be proved without any axioms is written as

` p and can be used as an axiom in subsequent proofs.



Natural Deduction System

Negation.

Introduction

P, a ` b P, a ` ¬b
P ` ¬a

.

(3)

This is also known

as proof by contra-

diction.

Elimination

¬¬p
p

(4)

Implication.

Introduction

P, a ` b
P ` a→ b

(5)

Elimination

a, a→ b

b
(6)

This is known as

modus ponens, a

Latin term dating

back to the study of

logic in the Middle

Ages.



Conjunction.

Introduction

p, q

p ∧ q
(7)

Elimination

p ∧ q
p

p ∧ q
q

(8)

Disjunction.

Introduction

p

p ∨ q
(9)

Given p we can de-

duce p ∨ q for any

proposition q.

Elimination

P, a ` c P, b ` c a ∨ b
P ` c

(10)

This is also known

as disjunctive syllo-

gism.



Assumptions

• The three rules (3), (10) and (5) make use of the notion of an

assumption, that is a proposition a which we assert temporarily

for the sake of argument.

• Assumptions cannot be viewed as established propositions, and

nor can anything we derive from them, until the assumption is

discharged by use of one of these three rules.

• The scope of an assumption starts from the line where the

assumption is made until just before the line where it is

discharged.



Formal Proof I

p ∧ q ` p ∨ q

1. p ∧ q Premise
2. p From 1 by ∧-elimination
3. p ∨ q From 2 by ∨-introduction



Formal Proof II

p→ q ` ¬(p ∧ ¬q)

The strategy is proof by contradiction, so we will assume p ∧ ¬q (i.e.

the negation of the statement we are trying to prove). In the proof,

the vertical line denotes the scope of the assumption and ∧-E

stands for ∧-elimination.

1. p→ q Premise
2. p ∧ ¬q Assumption
3. p From 2 by ∧-E
4. q From 1 and 3 by modus ponens (→-E)
5. ¬q From 2 by ∧-E
6. ¬(p ∧ ¬q) From 2, 4 and 5 by proof by contradiction (¬-I)



Properties of Propositional Calculus

Consistency We want the inference rules to be sound: that is, any

theorem that we prove should be true.

Completeness We want the inference rules to be complete so that

there is a proof for every true statement.

We can summarise this by saying that for any set S of propositions,

we want S ` p if and only if S � p. It can be proved (though the

proof is beyond the scope of this module) that this equivalence does

hold for propositional logic. So in the propositional logic we may use

either truth table methods of formal inference to prove a statement.



Session Objectives

• Use De Morgan’s laws to simplify logical expressions

• Define disjunctive and conjunctive normal forms

• Check if an expression is in CNF or DNF

• Rewrite an expression in DNF

• Define the Natural Deduction System

• Read and check a proof that uses Natural Deduction




