
Session Objectives

• Write simultaneous linear equations in matrix form

• Solve simultaneous linear equations using Gaussian elimination

• Explain how matrices represent linear transformations

• Write down matrices for some common transformations



Simultaneous Linear Equations

• One important use of matrices is to represent and solve

simultaneous linear equations.

• A set of simultaneous linear equations is a group of equations in

several variables each of which is linear and all of which must be

satisfied at the same time.

• Finding the intersection of two lines, planes, etc. requires the

solution of simultaneous linear equations.

• We shall see how an algorithm using row operations can be used

to solve such sets of equations.



Matrix Form

When finding the intersection of two straight lines in parametric
form we derived the following two equations in two variables s and t:

2− 2t = 5− 4s

4 + 2t = 4− 2s

Such equations are usually written with all the variables on the
left-hand side and the constants (i.e. the numbers) on the
right-hand side:

4s− 2t = 3

2s+ 2t = 0

This can be rewritten as a matrix product:[
4 −2
2 2

] [
s
t

]
=

[
3
0

]



Exercise

Write the following set of equations in matrix form:

I1 − I2 − I3 = 0

3I2 − 2I3 = 0

7I1 + 2I3 = 7



Solution

Write the following set of equations in matrix form:

I1 − I2 − I3 = 0

3I2 − 2I3 = 0

7I1 + 2I3 = 7

Solution: 1 −1 −1
0 3 −2
7 0 2


I1I2
I3

 =

0
0
7





Gaussian Elimination

• We solved the equations in the example by a trick: we noticed

that adding them together left a single equation in one variable t

which could then be solved easily.

• By their very nature, tricks don’t work all the time, and what we

really want is a general algorithm that can be used to solve

arbitrary sets of equations.

• We shall use Gaussian elimination (named after the great 19th

century German mathematician Carl Friedrich Gauss) and carry

it out using row operations in a systematic way.

• Suppose that the equations are written in the form Ax = b,

where A is an m× n matrix of coefficients, x is an n× 1 column

vector of variables and b is an m× 1 column vector of constants.



Row Operations

• Gaussian elimination uses certain row operations to reduce the

matrix [Ab] to echelon form where all the entries below the main

diagonal are zero. The two sorts of row operation are:

1. The solutions are unchanged if we replace any row in A and

the corresponding row of the r.h.s. by a linear combination of

itself (not multiplied by zero, of course) and any other row.

2. Interchanging any two rows of A and the corresponding rows

of the r.h.s. just rewrites the equations in a different order.

• The basic form of the algorithm uses only the first operation.

We divide the first row by a11 and zero out the first column.

Then divide the second row by a22 and zero out the second

column etc. The element that we divide by is called the pivot

element or simply the pivot.



Back-Substitution

For a set of four simultaneous equations with four variables we

reduce A to the following form:
α11 α12 α13 α14

0 α22 α23 α24
0 0 α33 α34
0 0 0 α44



x1
x2
x3
x4

 =


β1
β2
β3
β4



Now the equations can be solved by back-substitution:

x4 =
β4

α44
x3 =

β3 − α34x4

α33
etc.



Example

Let us solve the equations 2 1 −2
2 −3 2
−1 1 −1


xy
z

 =

 −1
9
−3.5


We work with the augmented matrix 2 1 −2 −1

2 −3 2 9
−1 1 −1 3.5





Stage 1

We use the first row to eliminate the elements in the first column

below a11.

1. We divide the first row by a11. Note that if a11 were zero, we

would swap row 1 with a row without a zero entry in the first

column. This gives  1 0.5 −1 −0.5
2 −3 2 9
−1 1 −1 −3.5


2. Take Row 2− 2× (Row 1) and Row 3 + Row 1.1 0.5 −1 −0.5

0 −4 0 10
0 1.5 −2 −4





Stage 2

In stage 2 we work on the second column. We can’t use the first
row to zero entries in the second column because that would mess
up the first column. Instead we use the second row.

1. We divide the second row by a22. Again, if this entry were zero,
we would swap row 2 with a later row which had a non-zero
entry in the second column.1 0.5 −1 −0.5

0 1 −1 −2.5
0 1.5 −2 −4


2. Eliminate the entries below a22 in the second column.

Row 3− 1.5× (Row 2).1 0.5 −1 −0.5
0 1 −1 −2.5
0 0 −0.5 −0.25





Stage 3

Divide the third row by a32.1 0.5 −1 −0.5
0 1 −1 −2.5
0 0 1 0.5


The matrix is now in echelon form.



Stage 4

We can now solve the equations easily by back-substitution.

1. From the third row, we see that z = 0.5.

2. Now use the second row to find y:

y − z = −2.5 =⇒ y = −2.5 + 0.5 = −2.

Note how we substitute the value of z into the equation to solve

it.

3. Now use the first row to find x:

x+ 0.5× y − z = −0.5 =⇒ x = −0.5 + 1 + 0.5 = 1.

We can check the solution by substituting the vector [1,−2,0.5]

back into the original equations.



Exercise

Use row reduction to solve the following system of equations.1 −1 −1
0 3 −2
7 0 2


xy
z

 =

0
0
8





Solution: Echelon Form


1 −1 −1 0

0 3 −2 0

7 0 2 8

 −→


1 −1 −1 0

0 3 −2 0

0 7 9 8



−→


1 −1 −1 0

0 1 −2
3 0

0 7 9 8



−→


1 −1 −1 0

0 1 −2
3 0

0 0 41
3 8





Solution: Back-Substitution

• From row 3,

41

3
z = 8⇒ z = 8×

3

41
=

24

41
.

• From row 2,

y −
2

3
z = 0⇒ y =

2

3
z =

2

3
×

24

41
=

16

41
.

• From row 1,

x− y − z = 0⇒ x = y + z =
16

41
+

24

41
=

40

41
.

• To check, substitute x, y and z into the original equations. The

only one which has changed significantly is the third equation:

7x+ 2z = 7×
40

41
+ 2×

24

41
=

280

41
+

48

41
=

328

41
= 8.



Non-unique Solutions

• During the process of Gaussian elimination, we may end up with

a row that consists entirely of zeros; if this is the case, then the

equations are said to be degenerate.

• If the right-hand side of such a row is non-zero, then the

equations are inconsistent and there is no solution.

• If the right-hand side is zero, then the equations are consistent,

but there are infinitely many solutions.



Example

Solve the equations 1 2 1
0 1 1
1 3 2


xy
z

 =

2
1
3


The two steps of row operations reduce the augmented matrix to1 2 1 2

0 1 1 1
0 1 1 1


1 2 1 2

0 1 1 1
0 0 0 0


The matrix is now in echelon form. The third row is equivalent to

the equation 0 = 0, which is trivially true. If the right-hand side

were non-zero, there would clearly be no solution.



• We can still solve these equations by back-substitution, but

there will be a variable left undetermined.

• Solving the second equation, we get y + z = 1. Substituting for

y into the first equation, we get

x+ 2y + z = 2

=⇒ x+ 2(1− z) + z = 2

=⇒ x = z

Hence the general solution is [z,1− z, z] where z can have any

real value. This is the parametric equation of a straight line.

• Geometrically, each equation corresponds to a plane (of

dimension n− 1), and the solution corresponds to the point at

the intersection of all the planes. When the equations are

degenerate, one plane lies in the intersection of the others, and

hence we are left with a line (or a higher dimension linear

structure).




