
Learning Outcomes

You should be able to

• articulate and justify the role of mathematics in the theory of

Computer Science and its use in application development,

software engineering, and simulation;

• define fundamental mathematical concepts and notation needed

to study the scientific basis of software engineering and

computer systems;

• perform simple calculations and analysis using mathematical

tools;

• implement software that employs mathematical concepts and

techniques.



Learning Resources

Coursework Assignment A software implementation based on a

mathematical algorithm we will study during the module. It

should take about 15–20 hours to complete, assuming that you

have mastered the material in the tutorials. This assignment

counts for 20% of the total mark.

Lectures As well as straight presentation of material, there will be

simulations of difficult points, worked examples, case studies etc.

Lecture notes These will be issued in batches. I suggest that you

add your own comments too. Most of the worked examples have

a blank space for the solution: we will work together on them

during the lecture. You will sometimes be asked to do some

reading between lectures. There will be two lectures each week.

Thanks to Dr. Alan Barnes and Dr. Dan Cornford.



More Resources

Tutorials All tutorials should be attended: I shall keep a register.

Problem sheets will be handed out at lectures and these should

be attempted before the tutorial. The aim of the problem sheets

is for you to practice mathematical skills (such as calculation,

specification and analysis). At the tutorial the answers will be

given and more general issues discussed; you will also have an

opportunity to ask questions in a smaller group (of about 20

students). Some of the problem sheets will be assessed, and will

count for 5% of the total mark.

There will be five tutorials in the module, taking place every two

weeks. Make sure that you bring the problem sheet, your

solution, and all your lecture notes to each tutorial.



Yet More Resources

Syllabus This is available on the CS web site. It specifies in detail

the content of the module, together with useful books (all of

which should be in the main library).

Exam There will be a formal 1.5 hour exam for this module,

counting for 75% of the mark. The first question (40% of the

marks) is compulsory and will test your facility with basic

mathematical techniques, and the other 60% of the marks are

awarded for your choice of two out of four other questions,

which test more advanced ideas.



Contacting Me

Consultation Office hour: 1–2pm on Mondays and Tuesdays, or by

appointment.

i.t.nabney@aston.ac.uk

and my room is 315C. See me early rather than late!

Web site URL

http://www.ncrg.aston.ac.uk/~nabneyit/courses/MCS/

or from the links in the Teaching Material section of the CS web site

http://www.cs.aston.ac.uk/



Prerequisites

CS1110 Introduction to Systematic Programming

Expectations:

• minimum ‘B’ grade at mathematics GCSE;

• can understand and calculate arithmetic expressions;

• aware of what equations are.

You will find a calculator useful for some of the exercises.



Role of Mathematics in Computer Science

• Discrete mathematics and mathematical logic lie at the heart of

the discipline of computer science.

• The rise of the digital computer over the second half of the 20th

century has coincided with (and pushed forward) a growth of

interest in these fields; discrete mathematics is now an area of

mathematics in its own right.

• Mathematics plays a role in computer science in many different

ways; in this course we will consider just a few of them. We

shall focus on mathematics that is useful in building software

systems, as this is most relevant to the degree programme.



Value of Mathematics in system Development

description and specification: it is important to define precisely what

system components are meant to do. This is particularly true on

large, team-based projects, where confusion leads very quickly to

error.

computation and algorithms: some applications are inherently

difficult and require complex algorithms for their solution. For

example, it is not possible to write down a simple algorithm that

can take a speech waveform and output the corresponding text.

analysis and proof: analysis gives us a greater insight into a problem,

and proof makes the results of analysis sure. For example, if you

want to sort a large list of numbers, complexity analysis gives

general results about how long each algorithm takes, while a

proof gives confidence that these results can be relied on.



But Why Mathematics?

In the direction of what reasoning can accomplish,

mathematicians have exercised the greatest care that the

human mind is capable of to secure the soundness of their

results. It is not accidental that mathematical precision is a

byword. Mathematics is still the paradigm of the best

knowledge available.

Kleene



Precision. The formality of mathematics allows us to be extremely

precise in defining meaning. This is of great value in describing

software systems and components. The field of formal methods

essentially takes undiluted set theory and logic and applies it

directly to software specification. This means that data

structures and other features of a program are given

unambiguous definitions, so there is more chance the

implementation will do what it should.

Accuracy. Mathematical procedures consist of a logical sequences of

operations. This makes it straightforward to translate them into

executable programs that perform the same function. Thus we

can be sure that a program carries out the task we expect as

there is a close correspondence between the original form of the

mathematical algorithm and the implementation in software.



Generality. Mathematical proofs are ‘guarantees’ of the truth of

statements. They enable us to be sure that certain properties

are true. It is also possible to prove that some things cannot be

known. G odel’s famous incompleteness theorem states

(roughly) that in any logical system which is powerful enough to

include integer arithmetic there are results that are true but

which cannot be proved. Thus in mathematics we can be sure

of what we know, but can also say something about the limits of

our knowledge.

Understanding. Mathematical analysis helps increase our

understanding of problems in a way that simply repeating large

number of experiments and observing the outcomes cannot. For

example, the time to sort a list using insertion sort grows

quadratically with the size of the list (is O(n2)), while the time

for merge sort grows log-linearly (is O(n logn)), which gives

significant time savings for large lists. Such questions cannot be

answered without the use of mathematics.



Overview of Module Content

Arithmetic You already understand standard arithmetic on integers,
but arithmetic can be defined for other number systems and has
applications to generating random numbers, error-correcting
codes and cryptography.

When it comes to real numbers (i.e. decimals), computer
arithmetic can only approximate true mathematical arithmetic.
The gap between the two arithmetics, which at first sight seems
trivial, can actually have enormous consequences (including
catastrophic system failures).

Elementary Functions Functions other than arithmetic operations,
such as trigonometric functions, exponential and logs, are
required for many applications. These are often calculated using
sequences (infinite strings of numbers) and series (sums of
sequences), and we shall study how these can be implemented in
computer arithmetic.



Geometry The real world is a three-dimensional space, so for any
system that models that world (e.g. graphics, virtual reality) it is
important to be able to define the shape, position and motion of
objects. This is achieved using coordinate geometry, and as well
as defining position vectors, we shall also show how to define
surfaces (such as lines and planes) through algebraic equations.

Formal Methods In the first half of the 20th century, computer
science was as much about logic as it was about hardware (for
example, in the work of Alan Turing). The aim was to work out
what tasks could be computed, and this involved defining
precisely what an algorithm is so that it became possible to
prove results about the boundaries of computation. Logic is also
used in hardware design and plays a role in formulating database
queries.

Set theory, relations and functions are the core building blocks
for a formal view of defining objects and systems; they form the
basis of the Z language used for specifying systems in a formal
way.



Languages and Machines Computer languages themselves must be

defined formally (how can a compiler work without a rigorous

definition of the emphmeaning of a statement?). There are two

stages to this: the syntax of a language defines what are valid

statements; the semantics of a language defines the meaning of

valid statements. We shall study Backus-Naur form: a formal

language that can be used to define the syntax of other

languages. We shall also show how machines (finite state

automata) can be used to define and analyse languages in a way

that translates directly to computer algorithms for tasks like

parsing (extracting information from structured ‘text’) and user

interfaces (defining the paths that users may take through a

system).



Summary

1. The three main areas of system development where

mathematics is valuable are: description and specification;

computation and algorithms; analysis and proof.

2. The features of a mathematical approach that make it so

valuable are: precision; accuracy; generality; understanding.

3. This module focuses on: arithmetic; elementary functions;

geometry; formal methods; languages and machines.

4.

5.


