
RSA Cryptosystem

• Choose two large prime numbers p and q

• Set n = pq.

• The private key is any number k between 1 and n which is

coprime with (p− 1)(q − 1) (for example, we could choose k to

be prime); this means that hcf(k, (p− 1)(q − 1)) = 1.

• By Euclid’s algorithm, there are integers a and b such that

ak + b(p− 1)(q − 1) = 1. (1)

We can assume that 0 < a < (p− 1)(q − 1).

• The pair of numbers (a, n) forms the public key.



RSA Encryption and Decryption

• Suppose that we have an integer M in the range 0 to n− 1.

• To encrypt M we apply the encryption function e

e(M) = Ma mod n. (2)

This clearly only requires knowledge of the public key.

• We can decrypt a message C using the private key k:

d(C) = (C)k mod n. (3)



RSA Example I

• Take p = 3 and q = 5, so that n = 15 and we require k coprime

to (p− 1)(q − 1) = 2× 4 = 8. Because n is so small, it is easy to

factorise, so this algorithm is not secure. Let us choose the

private key k = 3 (which is actually prime).

• Using Euclid’s algorithm we find that

3k − 1× 8 = 1

so a = 3 and the public key is (3,15). Note that in this case, the

private and the public key are the same. This is a coincidence,

and does not alter the security of the algorithm.

• A number M between 0 and 15 is encrypted as M3 mod 15. For

example, if M = 2 this is 23 mod 15 = 8.

• We decrypt this by computing 83 mod 15. 82 = 64 = 4 mod 15

and 83 = 4× 8 = 32 = 2 mod 15.



RSA Example I

• Take p = 11 and q = 13, so that n = 143 and we require k

coprime to (p− 1)(q − 1) = 10× 12 = 120. Because n is so

small, it is easy to factorise, so this algorithm is not secure. Let

us choose the private key k = 11 (which is actually prime).

• Using Euclid’s algorithm we find that

11k − 1× 120 = 1

so a = 11 and the public key is (11,143). Note that in this case,

the private and the public key are the same. This is a

coincidence, and does not alter the security of the algorithm.

• A number M between 0 and 143 is encrypted as M11 mod 143.



Efficient Computation of Modular Powers

To compute L = Mk:

1. Write k as a binary number with d bits; the most significant bit is 1. We
number the bits from most to least significant.

a = b1 . . . bd (4)

2. Compute L = M2. Set the index i = 2.

3. If bi = 1, let L := L×M .

4. If i < d, let L := L2, i := i + 1 and go to step 3.

Suppose that we want to compute M11. The binary representation of 11 is 1011,
which requires 4 bits. So we calculate

b1 b2 b3 b4

M → M2 → M4→ M5 → M10 → M11



Now let us encrypt M = 2 with the public key (11,143).

2→ 22 → 24 = 16→ 25 = 32

→ 210 = 1024 = 23 mod 143

→ 211 = 2× 23 = 46 mod 143.

So e(2) = 46. As a test, let us decrypt C = 46 with the private key
11.

46→ 462 = 2116 = 114 mod 143

→ 464 = 1142 = 12996 = 126 mod 143

→ 465 = 46× 126 = 5796 = 76 mod 143

→ 4610 = 762 = 5776 = 56 mod 143

→ 4611 = 56× 46 = 2576 = 2 mod 143.

So d(46) = 2, as expected.


