- Choose two large prime numbers p and q
- Set $n = pq$.
- The private key is any number k between 1 and n which is coprime with $(p-1)(q-1)$ (for example, we could choose k to be prime); this means that hcf $(k, (p-1)(q-1)) = 1$.
- By Euclid's algorithm, there are integers a and b such that

$$
ak + b(p - 1)(q - 1) = 1.
$$
 (1)

We can assume that $0 < a < (p-1)(q-1)$.

• The pair of numbers (a, n) forms the public key.

RSA Encryption and Decryption

- Suppose that we have an integer M in the range 0 to $n-1$.
- To encrypt M we apply the encryption function e

$$
e(M) = M^a \bmod n. \tag{2}
$$

This clearly only requires knowledge of the public key.

• We can decrypt a message C using the private key k :

$$
d(C) = (C)^k \bmod n. \tag{3}
$$

- Take $p = 3$ and $q = 5$, so that $n = 15$ and we require k coprime to $(p-1)(q-1) = 2 \times 4 = 8$. Because *n* is so small, it is easy to factorise, so this algorithm is not secure. Let us choose the private key $k = 3$ (which is actually prime).
- Using Euclid's algorithm we find that

 $3k - 1 \times 8 = 1$

so $a = 3$ and the public key is $(3, 15)$. Note that in this case, the private and the public key are the same. This is a coincidence, and does not alter the security of the algorithm.

- A number M between 0 and 15 is encrypted as M^3 mod 15. For example, if $M = 2$ this is 2^3 mod $15 = 8$.
- We decrypt this by computing 8^3 mod 15. $8^2 = 64 = 4$ mod 15 and $8^3 = 4 \times 8 = 32 = 2 \text{ mod } 15$.
- Take $p = 11$ and $q = 13$, so that $n = 143$ and we require k coprime to $(p - 1)(q - 1) = 10 \times 12 = 120$. Because *n* is so small, it is easy to factorise, so this algorithm is not secure. Let us choose the private key $k = 11$ (which is actually prime).
- Using Euclid's algorithm we find that

 $11k - 1 \times 120 = 1$

so $a = 11$ and the public key is $(11, 143)$. Note that in this case, the private and the public key are the same. This is a coincidence, and does not alter the security of the algorithm.

• A number M between 0 and 143 is encrypted as M^{11} mod 143.

Efficient Computation of Modular Powers

To compute $L = M^k$:

1. Write k as a binary number with d bits; the most significant bit is 1. We number the bits from most to least significant.

$$
a = b_1 \dots b_d \tag{4}
$$

2. Compute $L = M^2$. Set the index $i = 2$.

3. If
$$
b_i = 1
$$
, let $L := L \times M$.

4. If $i < d$, let $L := L^2$, $i := i + 1$ and go to step 3.

Suppose that we want to compute M^{11} . The binary representation of 11 is 1011, which requires 4 bits. So we calculate

$$
b_1 \t b_2 \t b_3 \t b_4
$$

$$
M \to M^2 \to M^4 \to M^5 \to M^{10} \to M^{11}
$$

Now let us encrypt $M = 2$ with the public key (11, 143).

$$
2 \rightarrow 2^{2} \rightarrow 2^{4} = 16 \rightarrow 2^{5} = 32
$$

$$
\rightarrow 2^{10} = 1024 = 23 \text{ mod } 143
$$

$$
\rightarrow 2^{11} = 2 \times 23 = 46 \text{ mod } 143.
$$

So $e(2) = 46$. As a test, let us decrypt $C = 46$ with the private key 11.

> $46 \rightarrow 46^2 = 2116 = 114 \text{ mod } 143$ \rightarrow 46⁴ = 114² = 12996 = 126 mod 143 \rightarrow 46⁵ = 46 \times 126 = 5796 = 76 mod 143 \rightarrow 46¹⁰ = 76² = 5776 = 56 mod 143 \rightarrow 46¹¹ = 56 \times 46 = 2576 = 2 mod 143.

So $d(46) = 2$, as expected.