Outline 3D coordinate systems

e 3D coordinate systems. e Although very similar to the 2D system we need to take some
care in 3D.
¢ Transformations in 3D. Axis of rotation Dir. of 4ve rotation

x —Z

e Transforming objects. Y
Yy zZ—x
z T —y

e Transformations as a change in coordinate system.

Yy

(D

A

3D coordinate systems Transformations in 3D

y

e A general point r = [z,y, 2]’ will be represented in homogeneous
coordinates by r = [z/w,y/w, z/w, 1]’

(4_\ e translation:

X z* 1 0 0 tz] [z
/ « |y _ |01 0 ty| |y| _
z =T loo 1 |2 T
1 000 1)1
e We assume a right handed coordinate system. e scaling:
z* sy 0 0 O] [z
e It means that objects further away from you have a smaller z « _ |yl _ |0 sy O Of|y| _
rf =7 = =Sr.
value. z 0 0 sz O] |z
1 0O 0 0 1|1
e This may mean a more negative value
Transformations in 3D Transformations in 3D
e Rotation is a little more tricky, since we need to be careful e Finally rotation about the y axis:
about which axis we are rotating. e cos§ 0O sing 0] [z
«_ |y _ 0 1 0 0| |y| _
e Rotation about the z axis (seen this before): =10 = |_sing 0 cos ol |- =B
[2*] [cosf —sind 0 0] [z] 1 0 o o0 111
* sinf cosf 0 O
= z* =10 o 10 Z = R.r, e Recall OpenGL uses: glRotate#(angle, x, y, z).
1 0 0 0 1] |1
T o7 e Thus the messy matrix stuff is hidden from us.
e Rotation about the z axis:
[2*] 1 0o 0 0] [z]
«_ |y*| _ |0 cos@® —siné Of |y| _
"= || T o sing cosd of |z = Rar,
| 1] 0 O 0 1] [1]
Transformations in 3D Transformations in 3D
e A shear in (z,y) is given by: e All the above transformation matrices have inverses.
* 1
Z* 0 ? Zm 8 ; e We can again combine the transformations to give a general
= > = 1o o ly ol |2 = Hawr transformation matrix M =
1 00 0 1|1

11 T2 T13 tz

21 722 T23 ty| _
e Included for completeness. T31 Tao T3z ts|
0 0 0 1

R* t*
5 5l

e r* = Mr can be computed using:
z* T

Y| =R"|y| +t".

z* z

Transforming lines and planes

Lines are generally transformed by transforming the two end
points separately.

Three points define a plane and we can transform planes by
transforming these three points.

However, planes are often defined by the (implicit) equation for
a plane, f(z,y,2) =arx+by+cz+d=0.

Define a column vector, a = [a,b, c,d]’ then writing an arbitrary
point as p = [z,v, z, 1]’, points on the plane satisfy a-p =0 or
a'p=0.

Transforming planes

e If we transform all points p, with a transformation matrix M
(p* = Mp), this is equivalent to transforming a so that the
condition a},p* = 0 defines the transformed plane, where
anp = Qa and Q is the transformation matrix for a. Now:

(Qa)'(Mp) =0,
e Use the identity (AB)' = B’A’ to write a’'Q'Mp = 0.
e This is true if Q'M = al. Assuming a = 1 leads us to:
Q=1

e Must ensure M1 exists.

Transformations - useful identities

One useful coordinate system transformation is given by:

10 O O
01 0 O

Mper =g g _1 ol =MLk,
00 0 1

which transforms from a left handed to a right handed
coordinate systems (and is its own inverse).

e When using multiple transformations we can use the matrix
identity (AB)~1 = B~14-1 to work out the inverse
transformation when the transformation is composite.

Transformations: a change of coordinate

system?

e There are two ways to regard any transformation:

— as a change applied to the object in a fixed coordinate
system;

— as a change in the coordinate system of a fixed object.

e Which interpretation makes most sense will depend on the
context.

Transformations in OpenGL

Basic commands are:

— glTranslate#(dx, dy, dz)
— glScale#(sx, sy, sz)

— glRotate#(angle, x, y, 2z)

e We use glPushMatrix() and glPopMatrix() to ‘save’ the matrix
stack.

e The matrices are applied to the vertices in the opposite order
they are specified.

e Can define our own matrices: glLoadMatrix and glMultMatrix.

Modelling in OpenGL

e Imagine we want to build a very simple robot in OpenGL with
one arm, which can swing about its body.

e First we will create functions or display lists to draw the objects,
which will start at the origin.

e Now we need to work out where to put the translations so that
the model will animate as we want — this is not easy.

e We will need to use the OpenGL transformations and the matrix
stack.

OpenGL example

/* Assume this is called from the display function */
glPushMatrix(); /* Store the current composite transformation matrix */
glTranslate the object to where we want to draw it
drawRobotBody;
glPushMatrix(); /* Store the current composite transformation matrix */
glTranslate the arm to the shoulder location
glRotate the arm to the desired angle
glTranslate the arm to the rotation point
drawRobotArm;
glPopMatrix(); /* Restore the previous matrix */
now draw any other parts of the robot

glPopMatrix(); /* Restore the previous matrix */

now draw any other objects -- probably another function

Summary

e Having finished this lecture you should:
— understand the different 3D coordinate systems;
— know how 3D transformations are applied;
— be able to transform planes as well as points;
— see transformations as changes in the coordinate system;

— use transformations with OpenGL.

