
Outline

• 3D coordinate systems.

• Transformations in 3D.

• Transforming objects.

• Transformations as a change in coordinate system.

3D coordinate systems

• Although very similar to the 2D system we need to take some

care in 3D.

Axis of rotation Dir. of +ve rotation

x y → z
y z → x
z x → y

x

y

z

3D coordinate systems

x

y

z

• We assume a right handed coordinate system.

• It means that objects further away from you have a smaller z

value.

• This may mean a more negative value

Transformations in 3D

• A general point r = [x, y, z]′ will be represented in homogeneous

coordinates by r = [x/w, y/w, z/w,1]′.

• translation:

r∗ =

x∗

y∗

z∗

1

=

1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1

x
y
z
1

= Tr ;

• scaling:

r∗ =

x∗

y∗

z∗

1

=

sx 0 0 0
0 sy 0 0
0 0 sz 0
0 0 0 1

x
y
z
1

= Sr .

Transformations in 3D

• Rotation is a little more tricky, since we need to be careful

about which axis we are rotating.

• Rotation about the z axis (seen this before):

r∗ =

x∗

y∗

z∗

1

=

cos θ − sin θ 0 0
sin θ cos θ 0 0
0 0 1 0
0 0 0 1

x
y
z
1

= Rzr ,

• Rotation about the x axis:

r∗ =

x∗

y∗

z∗

1

=

1 0 0 0
0 cos θ − sin θ 0
0 sin θ cos θ 0
0 0 0 1

x
y
z
1

= Rxr ,

Transformations in 3D

• Finally rotation about the y axis:

r∗ =

x∗

y∗

z∗

1

=

cos θ 0 sin θ 0
0 1 0 0

− sin θ 0 cos θ 0
0 0 0 1

x
y
z
1

= Ryr .

• Recall OpenGL uses: glRotate#(angle, x, y, z).

• Thus the messy matrix stuff is hidden from us.

Transformations in 3D

• A shear in (x, y) is given by:

r∗ =

x∗

y∗

z∗

1

=

1 0 hx 0
0 1 hy 0
0 0 1 0
0 0 0 1

x
y
z
1

= Hx,yr .

• Included for completeness.

Transformations in 3D

• All the above transformation matrices have inverses.

• We can again combine the transformations to give a general

transformation matrix M =

r1,1 r1,2 r1,3 tx
r2,1 r2,2 r2,3 ty
r3,1 r3,2 r3,3 tz
0 0 0 1

=

[

R∗ t∗

0 1

]

,

• r∗ = Mr can be computed using:

x∗

y∗

z∗

= R∗

x
y
z

+ t∗ .

Transforming lines and planes

• Lines are generally transformed by transforming the two end

points separately.

• Three points define a plane and we can transform planes by

transforming these three points.

• However, planes are often defined by the (implicit) equation for

a plane, f(x, y, z) = ax+ by+ cz+ d = 0.

• Define a column vector, a = [a, b, c, d]′ then writing an arbitrary

point as p = [x, y, z,1]′, points on the plane satisfy a · p = 0 or

a′p = 0.

Transforming planes

• If we transform all points p, with a transformation matrix M

(p∗ = Mp), this is equivalent to transforming a so that the

condition a′np∗ = 0 defines the transformed plane, where

an = Qa and Q is the transformation matrix for a. Now:

(Qa)′(Mp) = 0 ,

• Use the identity (AB)′ = B′A′ to write a′Q′Mp = 0.

• This is true if Q′M = αI. Assuming α = 1 leads us to:

Q = (M−1)′ ,

• Must ensure M−1 exists.

Transformations - useful identities

• One useful coordinate system transformation is given by:

MR←L =

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

= ML←R ,

which transforms from a left handed to a right handed

coordinate systems (and is its own inverse).

• When using multiple transformations we can use the matrix

identity (AB)−1 = B−1A−1 to work out the inverse

transformation when the transformation is composite.

Transformations: a change of coordinate

system?

• There are two ways to regard any transformation:

– as a change applied to the object in a fixed coordinate

system;

– as a change in the coordinate system of a fixed object.

• Which interpretation makes most sense will depend on the

context.

Transformations in OpenGL

• Basic commands are:

– glTranslate#(dx, dy, dz)

– glScale#(sx, sy, sz)

– glRotate#(angle, x, y, z)

• We use glPushMatrix() and glPopMatrix() to ‘save’ the matrix

stack.

• The matrices are applied to the vertices in the opposite order

they are specified.

• Can define our own matrices: glLoadMatrix and glMultMatrix.

Modelling in OpenGL

• Imagine we want to build a very simple robot in OpenGL with

one arm, which can swing about its body.

• First we will create functions or display lists to draw the objects,

which will start at the origin.

• Now we need to work out where to put the translations so that

the model will animate as we want – this is not easy.

• We will need to use the OpenGL transformations and the matrix

stack.

OpenGL example

/* Assume this is called from the display function */

glPushMatrix(); /* Store the current composite transformation matrix */

glTranslate the object to where we want to draw it

drawRobotBody;
glPushMatrix(); /* Store the current composite transformation matrix */

glTranslate the arm to the shoulder location

glRotate the arm to the desired angle

glTranslate the arm to the rotation point

drawRobotArm;

glPopMatrix(); /* Restore the previous matrix */

now draw any other parts of the robot

glPopMatrix(); /* Restore the previous matrix */

now draw any other objects -- probably another function

Summary

• Having finished this lecture you should:

– understand the different 3D coordinate systems;

– know how 3D transformations are applied;

– be able to transform planes as well as points;

– see transformations as changes in the coordinate system;

– use transformations with OpenGL.

