Outline 3D coordinate systems

e 3D coordinate systems. e Although very similar to the 2D system we need to take some
care in 3D.
¢ Transformations in 3D. Axis of rotation Dir. of 4ve rotation
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e A general point r = [z,y, 2]’ will be represented in homogeneous
coordinates by r = [z/w,y/w, z/w, 1]’
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e We assume a right handed coordinate system. e scaling:
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e This may mean a more negative value ....
Transformations in 3D Transformations in 3D
e Rotation is a little more tricky, since we need to be careful e Finally rotation about the y axis:
about which axis we are rotating. e cos§ 0O sing 0] [z
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Transformations in 3D Transformations in 3D
e A shear in (z,y) is given by: e All the above transformation matrices have inverses.
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Transforming lines and planes

Lines are generally transformed by transforming the two end
points separately.

Three points define a plane and we can transform planes by
transforming these three points.

However, planes are often defined by the (implicit) equation for
a plane, f(z,y,2) =arx+by+cz+d=0.

Define a column vector, a = [a,b, c,d]’ then writing an arbitrary
point as p = [z,v, z, 1]’, points on the plane satisfy a-p =0 or
a'p=0.

Transforming planes

e If we transform all points p, with a transformation matrix M
(p* = Mp), this is equivalent to transforming a so that the
condition a},p* = 0 defines the transformed plane, where
anp = Qa and Q is the transformation matrix for a. Now:

(Qa)'(Mp) =0,
e Use the identity (AB)' = B’A’ to write a’'Q'Mp = 0.
e This is true if Q'M = al. Assuming a = 1 leads us to:
Q=1

e Must ensure M1 exists.

Transformations - useful identities

One useful coordinate system transformation is given by:
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which transforms from a left handed to a right handed
coordinate systems (and is its own inverse).

e When using multiple transformations we can use the matrix
identity (AB)~1 = B~14-1 to work out the inverse
transformation when the transformation is composite.

Transformations: a change of coordinate

system?

e There are two ways to regard any transformation:

— as a change applied to the object in a fixed coordinate
system;

— as a change in the coordinate system of a fixed object.

e Which interpretation makes most sense will depend on the
context.

Transformations in OpenGL

Basic commands are:

— glTranslate#(dx, dy, dz)
— glScale#(sx, sy, sz)

— glRotate#(angle, x, y, 2z)

e We use glPushMatrix() and glPopMatrix() to ‘save’ the matrix
stack.

e The matrices are applied to the vertices in the opposite order
they are specified.

e Can define our own matrices: glLoadMatrix and glMultMatrix.

Modelling in OpenGL

e Imagine we want to build a very simple robot in OpenGL with
one arm, which can swing about its body.

e First we will create functions or display lists to draw the objects,
which will start at the origin.

e Now we need to work out where to put the translations so that
the model will animate as we want — this is not easy.

e We will need to use the OpenGL transformations and the matrix
stack.

OpenGL example

/* Assume this is called from the display function */
glPushMatrix(); /* Store the current composite transformation matrix */
glTranslate the object to where we want to draw it
drawRobotBody;
glPushMatrix(); /* Store the current composite transformation matrix */
glTranslate the arm to the shoulder location
glRotate the arm to the desired angle
glTranslate the arm to the rotation point
drawRobotArm;
glPopMatrix(); /* Restore the previous matrix */
now draw any other parts of the robot

glPopMatrix(); /* Restore the previous matrix */

now draw any other objects -- probably another function

Summary

e Having finished this lecture you should:
— understand the different 3D coordinate systems;
— know how 3D transformations are applied;
— be able to transform planes as well as points;
— see transformations as changes in the coordinate system;

— use transformations with OpenGL.



