
Outline

• History of computer graphics.

• Conceptual models for computer graphics.

• Briefly introduction to 3D graphics.

• Geometric modelling.

History of Computer Graphics

• 1950: Whirlwind Computer - MIT used a vector Cathode Ray

Tube (CRT) display for output.

• Mid 1960’s: Computer Aided Design (CAD) and Computer

Aided Manufacturing (CAM) systems where being used.

• The 1970’s: development of television technology - cheap raster

displays.

• At the same time colour systems became more common.

• Early 1980’s: the advent of the personal computer, with built in

raster display capabilities.

• Lead to widespread adoption of bitmap and interactive graphics.

History of Computer Graphics

• As the hardware has developed, software has also changed.

• Development of Graphical User Interfaces (GUIs) allowed novice

users to access a large variety of applications.

• Computer screen became the electronic ‘desktop’.

• The first graphics specification to receive an official standard (in

1985) was the Graphics Kernel System (GKS).

• Provided a high level 2D graphics standard.

• Complemented (in 1988) by GKS-3D

History of Computer Graphics

• 1988: the Programmer’s Hierarchical Interactive Graphics

System (PHIGS - pronounced figs)

• Allows a nested hierarchical grouping of 3D sub-primitives called

structures.

• 1992: an extension PHIGS PLUS included pseudo-realistic

rendering.

• Now several ‘standards’: OpenGL (Silicon Graphics), X Windows

System, PostScript (Adobe) and Direct 3D (Microsoft).

• Many of the functions in these graphics specifications are

supported by hardware.

Conceptual models for Computer Graphics

Input Device

System
Graphics

Program
Application

Model
Application

Display
Device

• The software part has three components:

– the application program;

– the application model;

– the graphics system.

Conceptual models for Computer Graphics

• The application program handles the exchange of data between

the application model and the graphics system.

• The application model represents the data or objects to be

visualised on the display device.

• The graphics system produces the output to drive the display

device and parses inputs.

• The design of interactive graphics application programs centres

around the definition of the data items and objects in the

application model.

Application models

• The form that the application model takes will depend on the

aim of the application program.

• E.g. a spreadsheet will store the application model in arrays.

• The application program will then have at least two graphical

aspects: the display of the primary data and graph based

visualisation of the data – which will typically have its own

application model.

• The application models we shall consider, store graphics

primitives, such as points, lines, curve, polygons (2D or 3D) and

polyhedra and surfaces (3D).

• Might also include attributes and connectivity relations.

Displaying the application model

• The application program converts the data in the application

model to commands used in the graphics system to produce a

view of the application model.

• Typically done interactively.

• Either creates and stores a geometrical representation of the

application model, or does it on the fly as it is needed.

• First the application program queries the application database to

extract those parts of the application model required for the

desired view.



Displaying the application model

• This data is then converted into a geometrical description (if

necessary) and sent to the graphics system.

• The primary job of the graphics system is to manage input and

output between the user and the application program.

• In this course the graphics system will be OpenGL, while we will

write the application model and application program.

• Our application models will be quite simple.

What’s in the application model

• In this course it will be geometric objects.

• Composed of points, lines and polygons.

• Next we consider what geometric modelling means.

Geometric modelling

• Modelling is a very familiar concept to computer scientists.

• We use models to represent objects, processes and abstract

ideas in a way which makes understanding more simple.

• More directly, computer graphics might be concerned with

different types of models such as:

– organisation models - hierarchies, flowcharts; directed graph

representations.

– quantitative models - graphs, maps.

– geometric models - engineering and architectural structures,

chemicals, people, real world objects.

Geometric modelling

• Geometric models describe the geometry of the objects which

they represent! This includes:

– spatial layout and shape of the component parts of the object

(geometry),

– connectivity of the component parts (topology),

– attributes (which affect the appearance),

– attributes (which pertain to the object but do not affect

appearance).

• We often use hierarchical constructs to help store geometric

models.

A hierarchical description of a robot

feet

legarm

lower_bodyupper_bodyhead

robot

Geometric modelling

• The hierarchy will start with base components and combine

these to form successive levels of objects, in a manner similar to

programming approaches.

• Can be symbolised using a Directed Acyclic Graph (DAG)

• If each object appeared only once in the hierarchy the resulting

data structure would be a tree.

• The DAG may include details of the topology such as specifying

where the objects are attached (or equivalently about which axes

the objects can rotate or translate).

Geometric modelling

• Object hierarchies are useful because:

– complex models can be constructed in a simple modular

fashion,

– stored efficiently and

– updated simply (the updating of one level in the hierarchy

automatically updates elements below it).

• In OpenGL hierarchies can be built up using display lists (more

on that later).

The application model revisited

interaction
and

displaytraversal
for

handler

graphics
system

display

code

data
model

reader and writers
of the model

application

traversal
for

analysis

modification
building

manipulation

input device

display
device



The application model revisited

interaction
and

displaytraversal
for

handler

graphics
system

display

code

data
model

reader and writers
of the model

application

traversal
for

analysis

modification
building

manipulation

input device

display
device

• The application program is composed of several subsystems

which have variable degrees of access to the application model.

• In many industrial application the 80/20 rule is generally true:

– 80% of the program deals with modelling objects (the

database) and interaction,

– 20% deals with producing the pictures.

Retained versus Immediate mode packages

• Retained mode graphics packages store the model details and

draw these when necessary.

• A record of all the primitives exists in the application model

which allows automatic updating of the screen and simple

editing of the primitives.

• Immediate mode graphics packages draw directly to the screen

buffer (lower level).

• The effects on the screen are stored, not the generating

primitives.

OpenGL

• OpenGL is an immediate mode graphics package.

• Many additions to OpenGL have been written to allow the user

to treat it as a retained mode graphics package – these are

often called scene graph description languages.

• Immediate mode packages give the user greater control over the

drawing process and can thus be more heavily optimised.

• Immediate mode packages most often used when speed /

control / flexibility is important.

• At the highest level of abstraction a retained mode graphics

library might use descriptions such as chair, house and tree.

Introduction to viewing in 3D

• Most of the objects that will be stored in the application model

will naturally exist in either:

– 2D (plans, cross-sections, simple graphs),

– 3D (real world objects, more complex graphs).

• Since the viewport is currently a 2D representation of whatever

is in the application model, 3D coordinate systems call for a

little extra work.

• We need to define the 2D projection of the 3D objects.

• First we consider defining and manipulating objects in 3D.

Summary

• Having finished this lecture you should:

– be able to describe the components of a graphics system;

– understand their roles in processing graphical data;

– discuss the different types of models used in computer

graphics;

– contrast the advantages and drawback of retained versus

immediate mode graphics packages;

– explain where OpenGL fits into the equation.


