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• History of computer graphics.

• Conceptual models for computer graphics.

• Briefly introduction to 3D graphics.

• Geometric modelling.

History of Computer Graphics

• 1950: Whirlwind Computer - MIT used a vector Cathode Ray

Tube (CRT) display for output.

• Mid 1960’s: Computer Aided Design (CAD) and Computer

Aided Manufacturing (CAM) systems where being used.

• The 1970’s: development of television technology - cheap raster

displays.

• At the same time colour systems became more common.

• Early 1980’s: the advent of the personal computer, with built in

raster display capabilities.

• Lead to widespread adoption of bitmap and interactive graphics.

History of Computer Graphics

• As the hardware has developed, software has also changed.

• Development of Graphical User Interfaces (GUIs) allowed novice

users to access a large variety of applications.

• Computer screen became the electronic ‘desktop’.

• The first graphics specification to receive an official standard (in

1985) was the Graphics Kernel System (GKS).

• Provided a high level 2D graphics standard.

• Complemented (in 1988) by GKS-3D

History of Computer Graphics

• 1988: the Programmer’s Hierarchical Interactive Graphics

System (PHIGS - pronounced figs)

• Allows a nested hierarchical grouping of 3D sub-primitives called

structures.

• 1992: an extension PHIGS PLUS included pseudo-realistic

rendering.

• Now several ‘standards’: OpenGL (Silicon Graphics), X Windows

System, PostScript (Adobe) and Direct 3D (Microsoft).

• Many of the functions in these graphics specifications are

supported by hardware.

Conceptual models for Computer Graphics

Input Device

System
Graphics

Program
Application

Model
Application

Display
Device

• The software part has three components:

– the application program;

– the application model;

– the graphics system.

Conceptual models for Computer Graphics

• The application program handles the exchange of data between

the application model and the graphics system.

• The application model represents the data or objects to be

visualised on the display device.

• The graphics system produces the output to drive the display

device and parses inputs.

• The design of interactive graphics application programs centres

around the definition of the data items and objects in the

application model.

Application models

• The form that the application model takes will depend on the

aim of the application program.

• E.g. a spreadsheet will store the application model in arrays.

• The application program will then have at least two graphical

aspects: the display of the primary data and graph based

visualisation of the data – which will typically have its own

application model.

• The application models we shall consider, store graphics

primitives, such as points, lines, curve, polygons (2D or 3D) and

polyhedra and surfaces (3D).

• Might also include attributes and connectivity relations.

Displaying the application model

• The application program converts the data in the application

model to commands used in the graphics system to produce a

view of the application model.

• Typically done interactively.

• Either creates and stores a geometrical representation of the

application model, or does it on the fly as it is needed.

• First the application program queries the application database to

extract those parts of the application model required for the

desired view.



Displaying the application model

• This data is then converted into a geometrical description (if

necessary) and sent to the graphics system.

• The primary job of the graphics system is to manage input and

output between the user and the application program.

• In this course the graphics system will be OpenGL, while we will

write the application model and application program.

• Our application models will be quite simple.

What’s in the application model

• In this course it will be geometric objects.

• Composed of points, lines and polygons.

• Next we consider what geometric modelling means.

Geometric modelling

• Modelling is a very familiar concept to computer scientists.

• We use models to represent objects, processes and abstract

ideas in a way which makes understanding more simple.

• More directly, computer graphics might be concerned with

different types of models such as:

– organisation models - hierarchies, flowcharts; directed graph

representations.

– quantitative models - graphs, maps.

– geometric models - engineering and architectural structures,

chemicals, people, real world objects.

Geometric modelling

• Geometric models describe the geometry of the objects which

they represent! This includes:

– spatial layout and shape of the component parts of the object

(geometry),

– connectivity of the component parts (topology),

– attributes (which affect the appearance),

– attributes (which pertain to the object but do not affect

appearance).

• We often use hierarchical constructs to help store geometric

models.
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Geometric modelling

• The hierarchy will start with base components and combine

these to form successive levels of objects, in a manner similar to

programming approaches.

• Can be symbolised using a Directed Acyclic Graph (DAG)

• If each object appeared only once in the hierarchy the resulting

data structure would be a tree.

• The DAG may include details of the topology such as specifying

where the objects are attached (or equivalently about which axes

the objects can rotate or translate).

Geometric modelling

• Object hierarchies are useful because:

– complex models can be constructed in a simple modular

fashion,

– stored efficiently and

– updated simply (the updating of one level in the hierarchy

automatically updates elements below it).

• In OpenGL hierarchies can be built up using display lists (more

on that later).

The application model revisited
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• The application program is composed of several subsystems

which have variable degrees of access to the application model.

• In many industrial application the 80/20 rule is generally true:

– 80% of the program deals with modelling objects (the

database) and interaction,

– 20% deals with producing the pictures.

Retained versus Immediate mode packages

• Retained mode graphics packages store the model details and

draw these when necessary.

• A record of all the primitives exists in the application model

which allows automatic updating of the screen and simple

editing of the primitives.

• Immediate mode graphics packages draw directly to the screen

buffer (lower level).

• The effects on the screen are stored, not the generating

primitives.

OpenGL

• OpenGL is an immediate mode graphics package.

• Many additions to OpenGL have been written to allow the user

to treat it as a retained mode graphics package – these are

often called scene graph description languages.

• Immediate mode packages give the user greater control over the

drawing process and can thus be more heavily optimised.

• Immediate mode packages most often used when speed /

control / flexibility is important.

• At the highest level of abstraction a retained mode graphics

library might use descriptions such as chair, house and tree.

Introduction to viewing in 3D

• Most of the objects that will be stored in the application model

will naturally exist in either:

– 2D (plans, cross-sections, simple graphs),

– 3D (real world objects, more complex graphs).

• Since the viewport is currently a 2D representation of whatever

is in the application model, 3D coordinate systems call for a

little extra work.

• We need to define the 2D projection of the 3D objects.

• First we consider defining and manipulating objects in 3D.

Summary

• Having finished this lecture you should:

– be able to describe the components of a graphics system;

– understand their roles in processing graphical data;

– discuss the different types of models used in computer

graphics;

– contrast the advantages and drawback of retained versus

immediate mode graphics packages;

– explain where OpenGL fits into the equation.


