Outline

e Window to viewport transformations.

How OpenGL does it.

Efficiency.

Inverse transformations.

Window to viewport transformations

The objects and primitives represented in the application model
will be stored in world coordinates.

Usually in terms of logical units for whatever the objects
represent.

To display the appropriate images on the screen (or other
devices) it is necessary to map from world coordinates to screen
or device coordinates.

This transformation is known as the window to viewport
transformation.

Window to viewport transformations

Window

]

World coordinates

e Think of it as the window (on the world) to viewport (on

screen) transformation.

Viewport

= /]

Screen coordinates

Window to viewport transformations

e = i /|

» X
World coordinates

>

Screen coordinates

trangation scaling translation
— — ——

> X >
World coordinates Screen coordinates

e In general the window to viewport transformation will involve a
scaling and translation.

Window to viewport transformations

e Non uniform scalings result in the world coordinate window and

viewport having different aspect ratios.

e The screen window (that is the viewport) typically covers only

part of the screen.

e Generally the region will be clipped in world coordinates and

then transformed.

¥

wandation

2L G

warsaion

Window to viewport transformations

e The transformation will be given by:
— a translation;

—ZTmin
~Ymin|

Ty =

oo
oo

— a scaling:

Umax—Umin 0 0
Tmax—Tmin
e Umax—VYmin .
Tu = 0 —max_—min Qg
Ymax—Ymin '
0

— and finally another translation;

Umin

10
Tu=10 1 vmijn
00 1

Window to viewport transformations

e Combination, Mgy = TuSzuTr =

Umax—Umin . Umax—Umin .
Imax—Lmin 0 7Im'”’£max*®min + min
Mzyy = 0 Ymax—YUmin _ . Ymax—Ymin Vi
Ymax—Ymin Yminymax—=ymin + vmin
0 1

e Note the inverted order of transformation — T, will be applied

first.

e Use of homogeneous coordinates has allowed a single
transformation matrix to be written.

Window to viewport transformations — OpenGL

e In OpenGL GLUT sets up the viewport (i.e. screen window)
position and size, OpenGL defines the mapping:

glutInitWindowSize (400,200) ;
glutInitWindowPosition(100,150) ;
glViewport (0, 0, 400, 200);

e The window (on the world) is set by the projection matrix — in
2D we have:

glMatrixMode (GL_PROJECTION) ;
glLoadIdentity();
glu0rtho2D(0.0,400.0,0.0,200.0) ;



Efficiency — your job

e The composition of transformations involving translation, scaling
and rotation leads to transformation matrices M of the general
form:

r11 ri2 tx
M= |ro1 ™2 ty
0 0o 1

e How many elementary operations (4, —, %, /) are required to
multiply a vector [z,y,w]’ by this matrix?

Efficiency

The composition of transformations involving translation, scaling
and rotation leads to transformation matrices M of the general
form:

1,1 T1,2 ta

M= 21 22 ty
0 o 1

Multiplying a point [z,y,w]’ by this matrix would take nine
multiplies and six adds.

Efficiency

e Using the fixed structure in the final row of the matrix, the
actual transformation can be written:

¥ =ry1z+r1oy+ta,
Yy =rooy+ iz +ty,

e This takes four multiplies and four adds.

Parallel hardware adders and multipliers effectively remove this
concern.

Inverse transformations

If a general transformation (which may be composite) is given
by the 3 x 3 matrix M, then the inverse transformation, which
maps the new image back to the original, untransformed one is
given by M1

The matrix inverse is defined so that MM~1 = I where I is the
3 x 3 identity matrix,

100
I=10 10
001

Inverses only exist for one to one transformations, for many
operations they are not defined.

Inverse transformations

e The translation matrix has inverse:

10 —tg
T =10 1 —ty,
00 1

e The scaling matrix has inverse:

57t =

o o~
o&= o

Inverse transformations

e You can easily determine the inverse transformation matrix in
Matlab.

>M=[20-3; 014; 00 1]

M= 2 0 -3
0 1 4
0 0
>> inv(M)
ans = 0.5 0 1.5
0 1.0 -4.0
0 0 1.0

Inverse of composite transformations

e For a composite transformation matrix C = AB the inverse is
less obvious.

e We know (AB)~1 = B~14~! from linear algebra thus:
cl=p7la"1.

e This is logical — the inverse transformations are applied in the
opposite order.

Summary

e Having finished this lecture you should:

— be able to write down the transformation matrices for the
window to viewport transformation;

— know how OpenGL implements the window to viewport
transformation;

— be able to improve the efficiency of applying transformations;

— understand the role and concept of an inverse transformation.

e It may help to experiment in OpenGL with changing the window
to viewport transformation.



