

Efficiency – your job • The composition of transformations involving translation, scaling and rotation leads to transformation matrices <i>M</i> of the general form: $M = \begin{bmatrix} r_{1,1} & r_{1,2} & t_x \\ r_{2,1} & r_{2,2} & t_y \\ 0 & 0 & 1 \end{bmatrix}.$ • How many elementary operations (+, -, *, /) are required to multiply a vector [<i>x</i> , <i>y</i> , <i>w</i>]' by this matrix?	Efficiency • The composition of transformations involving translation, scaling and rotation leads to transformation matrices M of the general form: $M = \begin{bmatrix} r_{1,1} & r_{1,2} & t_x \\ r_{2,1} & r_{2,2} & t_y \\ 0 & 0 & 1 \end{bmatrix}.$ • Multiplying a point $[x, y, w]'$ by this matrix would take nine multiplies and six adds.
 Efficiency Using the fixed structure in the final row of the matrix, the actual transformation can be written: x* = r_{1,1}x + r_{1,2}y + tx , y* = r_{2,2}y + r_{2,1}x + ty , This takes four multiplies and four adds. Parallel hardware adders and multipliers effectively remove this concern. 	Inverse transformations • If a general transformation (which may be composite) is given by the 3 × 3 matrix M, then the inverse transformation, which maps the new image back to the original, untransformed one is given by M^{-1} . • The matrix inverse is defined so that $MM^{-1} = I$ where I is the $3 × 3$ identity matrix, $I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$. • Inverses only exist for one to one transformations, for many operations they are not defined.
Inverse transformations• The translation matrix has inverse: $T^{-1} = \begin{bmatrix} 1 & 0 & -t_x \\ 0 & 1 & -t_y \\ 0 & 0 & 1 \end{bmatrix},$ • The scaling matrix has inverse: $S^{-1} = \begin{bmatrix} \frac{1}{s_x} & 0 & 0 \\ 0 & \frac{1}{s_y} & 0 \\ 0 & 0 & 1 \end{bmatrix}.$	Inverse transformations • You can easily determine the inverse transformation matrix in Matlab. >> M = $\begin{bmatrix} 2 & 0 & -3 \\ 0 & 1 & 4 \\ 0 & 0 & 1 \end{bmatrix}$ M = $\begin{pmatrix} 2 & 0 & -3 \\ 0 & 1 & 4 \\ 0 & 0 & 1 \end{bmatrix}$ M = $\begin{pmatrix} 2 & 0 & -3 \\ 0 & 1 & 4 \\ 0 & 0 & 1 \end{bmatrix}$ >> inv(M) ans = 0.5 0 0 1.5 \\ 0 & 1.0 & -4.0 \\ 0 & 0 & 1.0 \end{bmatrix}
Inverse of composite transformations • For a composite transformation matrix $C = AB$ the inverse is less obvious. • We know $(AB)^{-1} = B^{-1}A^{-1}$ from linear algebra thus: $C^{-1} = B^{-1}A^{-1}$. • This is logical – the inverse transformations are applied in the opposite order.	 Summary Having finished this lecture you should: be able to write down the transformation matrices for the window to viewport transformation; know how OpenGL implements the window to viewport transformation; be able to improve the efficiency of applying transformations; understand the role and concept of an inverse transformation. It may help to experiment in OpenGL with changing the window to viewport transformation.