
Outline

• Window to viewport transformations.

• How OpenGL does it.

• Efficiency.

• Inverse transformations.

Window to viewport transformations

• The objects and primitives represented in the application model

will be stored in world coordinates.

• Usually in terms of logical units for whatever the objects

represent.

• To display the appropriate images on the screen (or other

devices) it is necessary to map from world coordinates to screen

or device coordinates.

• This transformation is known as the window to viewport

transformation.

Window to viewport transformations

World coordinates

Window
Viewport

Screen coordinates

• Think of it as the window (on the world) to viewport (on

screen) transformation.

Window to viewport transformations

Screen coordinatesScreen coordinatesWorld coordinatesWorld coordinates

scaling

y y vv

x x u u

translation translation

• In general the window to viewport transformation will involve a

scaling and translation.

Window to viewport transformations

• Non uniform scalings result in the world coordinate window and

viewport having different aspect ratios.

• The screen window (that is the viewport) typically covers only

part of the screen.

• Generally the region will be clipped in world coordinates and

then transformed.

Screen coordinatesScreen coordinatesWorld coordinatesWorld coordinates

scaling

y y vv

x x u u

translation translation

Window to viewport transformations

• The transformation will be given by:

– a translation;

Tx =







1 0 −xmin
0 1 −ymin
0 0 1






;

– a scaling:

Sxu =









umax−umin
xmax−xmin

0 0

0
vmax−vmin
ymax−ymin

0

0 0 1









;

– and finally another translation;

Tu =







1 0 umin
0 1 vmin
0 0 1






.

Window to viewport transformations

• Combination, Mxu = TuSxuTx =

Mxu =









umax−umin
xmax−xmin

0 −xmin
umax−umin
xmax−xmin

+ umin

0
vmax−vmin
ymax−ymin

−ymin
vmax−vmin
ymax−ymin

+ vmin

0 0 1









.

• Note the inverted order of transformation – Tx will be applied

first.

• Use of homogeneous coordinates has allowed a single

transformation matrix to be written.

Window to viewport transformations – OpenGL

• In OpenGL GLUT sets up the viewport (i.e. screen window)

position and size, OpenGL defines the mapping:

glutInitWindowSize(400,200);

glutInitWindowPosition(100,150);

glViewport(0, 0, 400, 200);

• The window (on the world) is set by the projection matrix – in

2D we have:

glMatrixMode(GL_PROJECTION);

glLoadIdentity();

gluOrtho2D(0.0,400.0,0.0,200.0);

Efficiency – your job

• The composition of transformations involving translation, scaling

and rotation leads to transformation matrices M of the general

form:

M =







r1,1 r1,2 tx
r2,1 r2,2 ty
0 0 1






.

• How many elementary operations (+,−, ∗, /) are required to

multiply a vector [x, y, w]′ by this matrix?

Efficiency

• The composition of transformations involving translation, scaling

and rotation leads to transformation matrices M of the general

form:

M =







r1,1 r1,2 tx
r2,1 r2,2 ty
0 0 1






.

• Multiplying a point [x, y, w]′ by this matrix would take nine

multiplies and six adds.

Efficiency

• Using the fixed structure in the final row of the matrix, the

actual transformation can be written:

x∗ = r1,1x+ r1,2y+ tx ,

y∗ = r2,2y+ r2,1x+ ty ,

• This takes four multiplies and four adds.

• Parallel hardware adders and multipliers effectively remove this

concern.

Inverse transformations

• If a general transformation (which may be composite) is given

by the 3× 3 matrix M , then the inverse transformation, which

maps the new image back to the original, untransformed one is

given by M−1.

• The matrix inverse is defined so that MM−1 = I where I is the

3× 3 identity matrix,

I =







1 0 0
0 1 0
0 0 1






.

• Inverses only exist for one to one transformations, for many

operations they are not defined.

Inverse transformations

• The translation matrix has inverse:

T−1 =







1 0 −tx
0 1 −ty
0 0 1






,

• The scaling matrix has inverse:

S−1 =









1
sx
0 0

0 1
sy
0

0 0 1









.

Inverse transformations

• You can easily determine the inverse transformation matrix in

Matlab.

>> M = [2 0 -3; 0 1 4; 0 0 1]

M = 2 0 -3

0 1 4

0 0 1

>> inv(M)

ans = 0.5 0 1.5

0 1.0 -4.0

0 0 1.0

Inverse of composite transformations

• For a composite transformation matrix C = AB the inverse is

less obvious.

• We know (AB)−1 = B−1A−1 from linear algebra thus:

C−1 = B−1A−1 .

• This is logical – the inverse transformations are applied in the

opposite order.

Summary

• Having finished this lecture you should:

– be able to write down the transformation matrices for the

window to viewport transformation;

– know how OpenGL implements the window to viewport

transformation;

– be able to improve the efficiency of applying transformations;

– understand the role and concept of an inverse transformation.

• It may help to experiment in OpenGL with changing the window

to viewport transformation.

