
OpenGL and Computer Graphics

• OpenGL provides a Hardware Abstraction Layer, through its

Applications Programmer Interface.

• It:

– provides low level, platform independent, graphics.

– allows non-standard extensions.

• It does not:

– provide windowing facilities (we use GLUT for that).

– contain high level modelling constructs, such as scene graphs.

OpenGL– it is a low level thing

• OpenGL should work on almost all systems.

• Most graphics cards support hardware implementations of

OpenGL commands.

• OpenGL is largely an immediate mode graphics library (except

display lists) – you specify what is to be drawn and it is sent to

the display buffer.

• We would have to write our own higher level retained mode

library – or use one of the existing ones.

OpenGL Primitives

• OpenGL uses only a very small number of primitives:

– points,

– lines,

– polygons,

– bitmaps / images.

• These primitives are then passed through:

– the lighting / shading algorithms,

– the 3D viewing algorithms,

– and finally rasterisation (scan conversion).

GLUT

• GLUT is the OpenGL Utilities Toolkit – provides us with a basic

window and interaction management system.

• glutInit(&argc, argv); – Initialise GLUT.

• glutInitDisplayMode(GLUT SINGLE | GLUT RGB); – allows us to set

up the way OpenGL will run – other options GLUT DOUBLE,

GLUT DEPTH. Can create and position, size and name a window.

• Callbacks provide event (interrupt) driven interaction with

keyboard, mouse, display and resizing.

• Callback functions must receive the specified parameters.

Basic OpenGL

• The basic command is glVertex*#.

* defines the number of coordinates we will give – generally 2, 3

or 4. # defines what type the arguments are. The most

commonly used options are:

– i for int (GLint), f for float (GLfloat),

– d for double (GLdouble), ub for unsigned char (GLubyte).

• Other OpenGL commands such as glColor*#, glRasterPos*#,

glNormal3# also have this syntax.

• An additional v may be specified at the end if we want to pass

an array (vector).

Drawing with OpenGL

• The way the primitives are drawn on screen is determined by the

drawing mode.

• glBegin(mode); and glEnd(); must always enclose calls to

glVertex*#.

• The drawing mode can be:

– GL POINTS, GL LINES, GL LINE STRIP, GL LINE LOOP,

– GL TRIANGLES, GL QUADS, GL POLYGON.

• There are other options (we won’t use them).

Colour and OpenGL

• Before drawing, clear the screen buffer using glClear with option

GL COLOR BUFFER BIT.

• Set the background colour using glClearColor(0.0,0.0,0.0,0.0).

• Set the colour of the vertices using glColor*# – note each vertex

can be a different colour.

• We always use RGB colours, for different types we have:

– f and d take 0.0 to 1.0, ub takes 0 to 255.

• The fourth value specifies the alpha value, used in blending to

mimic transparency.

Styles and OpenGL

• The way polygons are drawn can be set using glPolygonMode

which applies to either face (GL FRONT or GL BACK) and can be:

– GL POINT,

– GL LINE,

– GL FILL.

• Lines can be styled using glLineWidth(GLfloat width), and

glLineStipple(GLint factor, GLushort pattern).

• Points can be changed in size using glPointSize(GLfloat size).

• This is really for basic 2D drawing.



Controlling OpenGL

• glFlush() causes OpenGL to flush to the screen buffer – draw

the image.

• When animating, use glutSwapBuffers() and the double buffer

mode, giving smoother animation.

• GLUT also provides us with a glutIdleFunction which contains

the animation routine which typically calls glutPostRedisplay().

• Sometimes we use global variables to control the animation (if

we haven’t produced a higher level scene graph).

• Make them static and use with care!

Transformations and OpenGL

• Basic commands are:

– glTranslate#(dx, dy, dz)

– glScale#(sx, sy, sz)

– glRotate#(angle, x, y, z)

• We use glPushMatrix() and glPopMatrix() to ‘save’ the matrix

stack.

• The matrices are applied to the vertices in the opposite order

they are specified.

• Can define our own matrices: glLoadMatrix and glMultMatrix.

Viewing in OpenGL

• OpenGL viewing definition uses the camera analogy.

• Two matrices define the total projection:

• GL PROJECTION defines the projection – the lense.

• GL MODELVIEW controls both the objects and the view – the

positioning.

• We will come back to this once we have looked at 3D → 2D

projections.

Display Lists and Vertex Arrays in OpenGL

• Display lists allow precompiled objects, but these must be static.

Can give a significant speed up, since the compiled OpenGL can

be stored on the graphics card, and quickly drawn.

• Vertex arrays allow objects to be stored in arrays (of vertices,

colours and normals). It is agreed that they do not always

provide a speed up.

• Use display lists to define complete, static objects on which you

want to apply transformations.

OpenGL

• We have covered the very basics of OpenGL.

• There remains a great deal of material which will be covered:

– viewing and 3D graphics; lighting and materials;

• and this will not be covered:

– texture, bump and environment mapping; NURBS curves.

• If in doubt consult the online manual, a reference book or me.


