
Overview

• Where are we in the Graphics Module?

• Why consider 2D transformations?

• Definition of common 2D affine transformations.

• Homogeneous coordinates.

• Combining transformations.

Where are we in the Graphics Module?

Projections

and models
Data structures

Surfaces

Curves

Transformations

determination
surface
Visible

modelling
Illumination

graphics
Bit mapped

Hardware

modelling
Solid

primitives

Clipping

Scan conversion

Graphics 

2D transformations

• Use the vector and matrix algebra from last lecture.

• Translations are offsets from the existing position of the object.

Consider a point at r.

• Translate it by an amount t = (tx, ty)′: new location will be

r∗ = r+ t.

After translationBefore translation

2D transformations

• Scalings are stretchings of the object, about the origin. The

scaling matrix S is:

S =

[

sx 0
0 sy

]

,

• r∗ = Sr : sx is the x-axis scaling and sy is the y-axis scaling.

• If sx = sy = s the scaling is said to be uniform. If not the scaling
is called differential.

After scalingBefore scaling

2D transformations

• Rotations about the origin by an angle θ are defined by the
rotation matrix R which is given by:

R =

[

cos θ − sin θ
sin θ cos θ

]

.

• The rotated point, r∗ = Rr.

• A positive θ implies an anti-clockwise rotation.

After rotationBefore rotation

Homogeneous coordinates

• Homogeneous coordinates allow us to treat all transformations
in the same way, as matrix multiplications.

• The consequence is that our 2-vectors become extended to
3-vectors, with a resulting increase in storage and processing.

• We represent a point (x, y) by the extended triple (x, y, w).

• The normalised homogeneous coordinates are (x/w, y/w,1).

• Points with w = 0 are called points at infinity, and are not
frequently used.

• If you like then you can think of 2D space corresponding to
plane w = 1.

Homogeneous coordinates

• In homogeneous coordinates the transformations are:

– translation:

r∗ =







x∗

y∗

1






=







1 0 tx
0 1 ty
0 0 1













x
y
1






= Tr ;

– scaling:

r∗ =







x∗

y∗

1






=







sx 0 0
0 sy 0
0 0 1













x
y
1






= Sr ;

– rotation:

r∗ =







x∗

y∗

1






=







cos θ − sin θ 0
sin θ cos θ 0
0 0 1













x
y
1






= Rr .

Homogeneous coordinates

• Apply each of these transformations to a vector [x, y,1]′] and

compute the resulting vector:

– translation:






1 0 tx
0 1 ty
0 0 1













x
y
1






=







?
?
?






;

– scaling:






sx 0 0
0 sy 0
0 0 1













x
y
1






=







?
?
?






;

– rotation:






cos θ − sin θ 0
sin θ cos θ 0
0 0 1













x
y
1






=







?
?
?






.



Homogeneous coordinates

• Rigid body transformations preserve length and angles (e.g.

translation or rotation).

• Affine transformations preserve parallelism in lines (e.g.

translation, rotation, scaling and shearing).

• A shear transformation is given by:

r∗ =







x∗

y∗

1






=







1 hx 0
hy 1 0
0 0 1













x
y
1






= Hr ,

• hx and hy represent the amount of shear along the x and y axes

respectively.

Composition of transformations

• Big advantage of homogeneous coordinates is that

transformations can be very easily combined.

• All that is required is multiplication of the transformation

matrices.

• This makes otherwise complex transformations very easy to

compute.

Composition of transformations

• For instance if we wanted to rotate an object about some point,

p.

• Achieved by:

1. translate object by −p,

2. rotate object by angle θ,

3. translate object by p.

Composition of transformations

• This can be written as:

T (p)R(θ)T (−p) =





1 0 px

0 1 py

0 0 1









cos θ − sin θ 0
sin θ cos θ 0
0 0 1









1 0 −px

0 1 −py

0 0 1





=





cos θ − sin θ px(1− cos θ) + py sin θ
sin θ cos θ py(1− cos θ)− px sin θ
0 0 1



 .

• Note the ordering of the transformation matrices.

• For those interested, Matlab provides an excellent platform for

investigating these sort of transformations, since its natural

matrix format makes things very easy to code.

Transformations and OpenGL

• Basic commands are:

– glTranslate#(dx, dy, dz)

– glScale#(sx, sy, sz)

– glRotate#(angle, x, y, z)

• The matrices are applied to the vertices in the opposite order

they are specified (pre-multiplied by existing transformation

matrix).

• Can define our own matrices: glLoadMatrix and glMultMatrix.

Transformations and OpenGL– stacks

• There are two important matrices – GL PROJECTION and

GL MODELVIEW.

• OpenGL stores these as composite transformation matrices.

• We use glPushMatrix() and glPopMatrix() to ‘save’ the matrix

stack.

• OpenGL maintains a matrix stack which is used to store the

composite transformation matrices (of all transformations so far

specified).

Summary

• Having finished this lecture you should:

– be able to write down the transformation matrices in both

Cartesian (normal) and homogeneous coordinates;

– understand the role of homogeneous coordinates in computer

graphics;

– be able to compute composite transformation matrices;

– understand the way OpenGL implements transformations.

• Doing the lab classes is key to understanding much of this

material.


