
Overview

• Where are we in the Graphics Module?

• Why consider 2D transformations?

• Definition of common 2D affine transformations.

• Homogeneous coordinates.

• Combining transformations.
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2D transformations

• Use the vector and matrix algebra from last lecture.

• Translations are offsets from the existing position of the object.

Consider a point at r.

• Translate it by an amount t = (tx, ty)′: new location will be

r∗ = r+ t.
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2D transformations

• Scalings are stretchings of the object, about the origin. The

scaling matrix S is:

S =

[

sx 0
0 sy

]

,

• r∗ = Sr : sx is the x-axis scaling and sy is the y-axis scaling.

• If sx = sy = s the scaling is said to be uniform. If not the scaling
is called differential.
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2D transformations

• Rotations about the origin by an angle θ are defined by the
rotation matrix R which is given by:

R =

[

cos θ − sin θ
sin θ cos θ

]

.

• The rotated point, r∗ = Rr.

• A positive θ implies an anti-clockwise rotation.
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Homogeneous coordinates

• Homogeneous coordinates allow us to treat all transformations
in the same way, as matrix multiplications.

• The consequence is that our 2-vectors become extended to
3-vectors, with a resulting increase in storage and processing.

• We represent a point (x, y) by the extended triple (x, y, w).

• The normalised homogeneous coordinates are (x/w, y/w,1).

• Points with w = 0 are called points at infinity, and are not
frequently used.

• If you like then you can think of 2D space corresponding to
plane w = 1.

Homogeneous coordinates

• In homogeneous coordinates the transformations are:
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– rotation:
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Homogeneous coordinates

• Apply each of these transformations to a vector [x, y,1]′] and

compute the resulting vector:

– translation:
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– scaling:
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Homogeneous coordinates

• Rigid body transformations preserve length and angles (e.g.

translation or rotation).

• Affine transformations preserve parallelism in lines (e.g.

translation, rotation, scaling and shearing).

• A shear transformation is given by:
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• hx and hy represent the amount of shear along the x and y axes

respectively.

Composition of transformations

• Big advantage of homogeneous coordinates is that

transformations can be very easily combined.

• All that is required is multiplication of the transformation

matrices.

• This makes otherwise complex transformations very easy to

compute.

Composition of transformations

• For instance if we wanted to rotate an object about some point,

p.

• Achieved by:

1. translate object by −p,

2. rotate object by angle θ,

3. translate object by p.

Composition of transformations

• This can be written as:
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• Note the ordering of the transformation matrices.

• For those interested, Matlab provides an excellent platform for

investigating these sort of transformations, since its natural

matrix format makes things very easy to code.

Transformations and OpenGL

• Basic commands are:

– glTranslate#(dx, dy, dz)

– glScale#(sx, sy, sz)

– glRotate#(angle, x, y, z)

• The matrices are applied to the vertices in the opposite order

they are specified (pre-multiplied by existing transformation

matrix).

• Can define our own matrices: glLoadMatrix and glMultMatrix.

Transformations and OpenGL– stacks

• There are two important matrices – GL PROJECTION and

GL MODELVIEW.

• OpenGL stores these as composite transformation matrices.

• We use glPushMatrix() and glPopMatrix() to ‘save’ the matrix

stack.

• OpenGL maintains a matrix stack which is used to store the

composite transformation matrices (of all transformations so far

specified).

Summary

• Having finished this lecture you should:

– be able to write down the transformation matrices in both

Cartesian (normal) and homogeneous coordinates;

– understand the role of homogeneous coordinates in computer

graphics;

– be able to compute composite transformation matrices;

– understand the way OpenGL implements transformations.

• Doing the lab classes is key to understanding much of this

material.


