Overview

e Where are we in the Graphics Module?

e Why consider 2D transformations?

e Definition of common 2D affine transformations.

e Homogeneous coordinates.

Combining transformations.

Where are we in the Graphics Module?

Solid
modelling
Curves
Surfaces
Graphics

primitives

Trensformations | | PAasuciures
Clipping .

Projections

Iluminati
modelling

Scan conversion

Bit mapped
graphics

2D transformations

e Use the vector and matrix algebra from last lecture.

e Translations are offsets from the existing position of the object.

Consider a point at r.

e Translate it by an amount ¢ = (tz,ty)’: new location will be
r*=r+t.

> >

Before trandlation After trandlation

2D transformations
e Scalings are stretchings of the object, about the origin. The
scaling matrix S is:

9= 0 sy

Sz 0]

e r* = Sr : s; is the x-axis scaling and sy is the y-axis scaling.

e If s; = sy = s the scaling is said to be uniform. If not the scaling
is called differential.

i

Before scaling 4 After scaling

2D transformations

e Rotations about the origin by an angle 6 are defined by the
rotation matrix R which is given by:

cosf —sind

E=lsino coso

e The rotated point, »* = Rr.

e A positive 6 implies an anti-clockwise rotation.

>

Before rotation After rotation

\4

Homogeneous coordinates

e Homogeneous coordinates allow us to treat all transformations
in the same way, as matrix multiplications.

e The consequence is that our 2-vectors become extended to
3-vectors, with a resulting increase in storage and processing.

e We represent a point (z,y) by the extended triple (z,y,w).
e The normalised homogeneous coordinates are (z/w,y/w,1).

e Points with w = 0 are called points at infinity, and are not
frequently used.

e If you like then you can think of 2D space corresponding to
plane w = 1.

Homogeneous coordinates

e In homogeneous coordinates the transformations are:

Homogeneous coordinates

e Apply each of these transformations to a vector [z,v,1]’] and
compute the resulting vector:

— translation:
z* 1 0 tz| |z
rF=ly*| =10 1 ty| |y| =Tr;
00 1|1
— scaling:
z* sy 0 0Of [z
r*=|y*| =0 sy 0| |y| =5r;
0O 0 1|1
— rotation:
z* cosf® —sin® Of |z
r* = |y*| = |sin@ cosé® O |y| =Rr.
1 0 0 1] (1

— translation:
1 0 tz| |z e
0 1 ty| |y =17
00 1|]1 ?
— scaling:
Sz 0| |z
0 sy O] |yl = ;
0 0 1|1 ?
— rotation:
cosf —sing O] |z
sing cosf Of |y| =
0 0 1| |1

Homogeneous coordinates

e Rigid body transformations preserve length and angles (e.g.
translation or rotation).

e Affine transformations preserve parallelism in lines (e.g.
translation, rotation, scaling and shearing).

A shear transformation is given by:

z* 1 hy Of |z
r*= y*| = hy 1 0| |y|=Hr,
1 0O 0 1|1

hg and hy represent the amount of shear along the = and y axes
respectively.

Composition of transformations

e Big advantage of homogeneous coordinates is that
transformations can be very easily combined.

e All that is required is multiplication of the transformation
matrices.

e This makes otherwise complex transformations very easy to
compute.

Composition of transformations

e For instance if we wanted to rotate an object about some point,
p.

e Achieved by:
1. translate object by —p,
2. rotate object by angle 6,

3. translate object by p.

Composition of transformations

1 0 —ps
01 —Py
00 1

cos —sinf p.(1—cosb)+ p,sing
= |sing cosf p,(1—cosf)—p.sind
0 0 1

e This can be written as:

py| |Sin@ cos® O
1 0 0 1

[oNeN
oo

pz| |CcOSO® —sinf O
T(P)R(O)T(-p) =

e Note the ordering of the transformation matrices.

e For those interested, Matlab provides an excellent platform for
investigating these sort of transformations, since its natural
matrix format makes things very easy to code.

Transformations and OpenGL

e Basic commands are:
— glTranslate#(dx, dy, dz)
— glScale#(sx, sy, sz)
— glRotate#(angle, x, y, 2z)
e The matrices are applied to the vertices in the opposite order

they are specified (pre-multiplied by existing transformation
matrix).

e Can define our own matrices: glLoadMatrix and glMultMatrix.

Transformations and OpenGL— stacks

e There are two important matrices — GL PROJECTION and

GL_MODELVIEW.

e OpenGL stores these as composite transformation matrices.

e We use glPushMatrix() and glPopMatrix() to ‘save’ the matrix

stack.

e OpenGL maintains a matrix stack which is used to store the

composite transformation matrices (of all transformations so far
specified).

Summary

e Having finished this lecture you should:

— be able to write down the transformation matrices in both
Cartesian (normal) and homogeneous coordinates;

— understand the role of homogeneous coordinates in computer
graphics;

— be able to compute composite transformation matrices;

— understand the way OpenGL implements transformations.

e Doing the lab classes is key to understanding much of this
material.

