2D Geometrical Transformations

e Start by considering 2D objects.

e Later we will consider scan conversion:
objects — primitives — pizels.

This section discusses the methods we use to model 2D objects
and transformations of those objects: objects — objects.

e In 2D, possible primitives are points, lines and polygons, which
can be combined to give higher level objects.

In 2D it is generally easy to see how to represent certain objects.

To understand transformations we need a review of basic vector
algebra!

Vectors

e A vector is an n-tuple of numbers:

= 2
=3
e Vectors are denoted by lower case bold letters.

e The rule for the addition is:

r1 s1 r1+ s1
r+s=|r2| + |s2| = |r2+s2
r3 53 r3+s3

e Vector addition is commutative: r+s=s-+1r.

Vector addition

v

Vectors — multiplication

e Scalar multiplication is given by:

T ary
ar =a |rp| = |arp
T3 ars

e Given two vectors r and s we define their dot product
(sometimes called their inner product) to be:

T1 s1
r-8=|rp|-|s2| =711+ roso+r3s3.
T3 53

e The length of a vector r, denoted ||r||, is given by the square
root of the dot product of the vector with itself: /r -7 (cf.
Pythagoras).

Vectors — angles

e Dot product can be used to generate unit length vectors: r/||r||.

e The angle between two vectors is:

rT-S
6 =cos™! < ) .
Il

e This is very useful when computing lighting where we general

Vectors — projection

e We can also project one vector, r, onto another unit vector, u.

e The length of the projected vector s is:

lsll = Il cos(@) = || (—“) —ru

ll el

only need:

TS

cos(f) = ( ) .
sl

Matrices Matrices — multiplication
m p P
N A . _ c n e Given two matrices, A and B if we want to multiply B by A
m B (that is form AB) then if A is (n x m), B must be (m X p).

e A matrix is a rectangular array of numbers.

e A general matrix will be represented by an upper case letter:
ayl ai2 ai3

A=laz1 a2 a3
a31 az2 a3z

e The element on the ith row and jth column is denoted by a; ;.
Note that we start indexing at 1, whereas C indexes arrays from
0.

e This produces a result, C = AB, which is (n x p), with elements:
m
cij = Y aikby;
k=1

e Basically we multiply the first row of A with the first column of
B and put this in the c; ; element of C. And so on ....



Matrices — C code

/* Define the structure to hold a 3 by 3 matrix. */
typedef struct Matrix3struct { double el[3][3]} Matrix3;
/* Declare the function to multiply C = AB */

void MatMult3( Matrix3* a, Matrix3* b, Matrix3* c)

{
int i,j,k;
for (i = 0; i < 3; i++) { /* - zero indexing */
for (j = 0; j < 3; j++) {
/* Recall we use the -> operator to access an element of */
/* structure when we have a pointer to that structure. */
c->el[i][j1 = 0.0; /* Make sure C is initialised. */
for (k = 0; k < 3; k++) {
c->el[i]1[j] += a->el[il [k]l*b->ell[k][j];
}
}
}
return (c);
}

Matrices — basics

Unlike scalar multiplication, AB # BA.

Matrix multiplication distributes over addition:
A(B+C)=AB+ AC

Identity matrix for multiplication is denoted I.

The transpose of a matrix, A, which is either denoted A7 or A4’ is

obtained by swapping the rows and columns of the matrix. Thus:
ail a2

a a a
A= |91 a12 a13 = A=lats aso
a21 a2 a23 '
a13 a3

Summary

e Having finished this lecture you should:

— be able to perfrom basic operation on vectors: addition,
subtraction, multiplication (scalar and vector), compute the
length of a vector, dot product and angle between two
vectors;

— be able to multiply matrices (work with them);
— that is all.

e This basic vector and matrix algebra is key to much of computer
graphics.

e There are many other vector and matrix operators that have not
been introduced here, however we shall deal with these as they
are required.




