
2D Geometrical Transformations

• Start by considering 2D objects.

• Later we will consider scan conversion:

objects → primitives → pixels.

• This section discusses the methods we use to model 2D objects

and transformations of those objects: objects → objects.

• In 2D, possible primitives are points, lines and polygons, which

can be combined to give higher level objects.

• In 2D it is generally easy to see how to represent certain objects.

• To understand transformations we need a review of basic vector

algebra!

Vectors

• A vector is an n-tuple of numbers:

r =

[

2
3

]

.

• Vectors are denoted by lower case bold letters.

• The rule for the addition is:

r + s =

r1
r2
r3

+

s1
s2
s3

=

r1 + s1
r2 + s2
r3 + s3

.

• Vector addition is commutative: r + s = s+ r.

Vector addition

r+
s =

 s+
r

s

r

s

r

Vectors – multiplication

• Scalar multiplication is given by:

ar = a

r1
r2
r3

=

ar1
ar2
ar3

.

• Given two vectors r and s we define their dot product

(sometimes called their inner product) to be:

r · s =

r1
r2
r3

·

s1
s2
s3

= r1s1 + r2s2 + r3s3 .

• The length of a vector r, denoted ‖r‖, is given by the square

root of the dot product of the vector with itself:
√

r · r (cf.

Pythagoras).

Vectors – angles

• Dot product can be used to generate unit length vectors: r/‖r‖.

• The angle between two vectors is:

θ = cos−1

(

r · s
‖r‖‖s‖

)

.

• This is very useful when computing lighting where we general

only need:

cos(θ) =

(

r · s
‖r‖‖s‖

)

.

Vectors – projection

• We can also project one vector, r, onto another unit vector, u.

• The length of the projected vector s is:

‖s‖ = ‖r‖ cos(θ) = ‖r‖
(

r · u
‖r‖‖u‖

)

= r · u .

s

u

r

θ

Matrices

n

m p p

n
m

C* =A
B

• A matrix is a rectangular array of numbers.

• A general matrix will be represented by an upper case letter:

A =

a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

.

• The element on the ith row and jth column is denoted by ai,j.

Note that we start indexing at 1, whereas C indexes arrays from

0.

Matrices – multiplication

• Given two matrices, A and B if we want to multiply B by A

(that is form AB) then if A is (n×m), B must be (m× p).

• This produces a result, C = AB, which is (n× p), with elements:

cij =
m
∑

k=1

aikbkj

• Basically we multiply the first row of A with the first column of

B and put this in the c1,1 element of C. And so on

Matrices – C code

/* Define the structure to hold a 3 by 3 matrix. */

typedef struct Matrix3struct { double el[3][3]} Matrix3;

/* Declare the function to multiply C = AB */

void MatMult3(Matrix3* a, Matrix3* b, Matrix3* c)

{

int i,j,k;

for (i = 0; i < 3; i++) { /* - zero indexing */

for (j = 0; j < 3; j++) {

/* Recall we use the -> operator to access an element of */

/* structure when we have a pointer to that structure. */

c->el[i][j] = 0.0; /* Make sure C is initialised. */

for (k = 0; k < 3; k++) {

c->el[i][j] += a->el[i][k]*b->el[k][j];

}

}

}

return (c);

}

Matrices – basics

• Unlike scalar multiplication, AB 6= BA.

• Matrix multiplication distributes over addition:

A(B+ C) = AB+AC

• Identity matrix for multiplication is denoted I.

• The transpose of a matrix, A, which is either denoted AT or A′ is
obtained by swapping the rows and columns of the matrix. Thus:

A =

[

a1,1 a1,2 a1,3
a2,1 a2,2 a2,3

]

⇒ A′ =

a1,1 a2,1
a1,2 a2,2
a1,3 a2,3

.

Summary

• Having finished this lecture you should:

– be able to perfrom basic operation on vectors: addition,

subtraction, multiplication (scalar and vector), compute the

length of a vector, dot product and angle between two

vectors;

– be able to multiply matrices (work with them);

– that is all.

• This basic vector and matrix algebra is key to much of computer

graphics.

• There are many other vector and matrix operators that have not

been introduced here, however we shall deal with these as they

are required.

