
Overview

• This lecture will:

– extend the complexity of the C you know;

– introduce the use of pointers;

– show how to use pointers for basic vector algebra.

• This will be achieved using practical examples.

• Has some work you must undertake.

Pointer Variables

• A pointer variable contains the address of a piece of memory.

• Assign address with & operator:

px = &x;

• To ‘dereference’ it, the * operator is used:

y = *px;

• A pointer variable is declared in the following way:

type *var_name;
type* var_name;

Simple Use of Pointer Variables

• Example of modifying arguments:

void swap(int *a, int *b)
{

int temp;
temp = *a;
*a = *b;
*b = temp;

}

• The function call is

int x, y;
swap(&x, &y);

• Returning multiple values:

int x, y;
/* Values of both x and y can be altered by foo */
foo(&x, &y);

Arrays

• Pointers and arrays are two ways of viewing one language
construct. Array indexing is equivalent to pointer arithmetic.

int a[10];
int *pa;
pa = &(a[0]); /* pa and a[0] reference same location */
x = *pa;
x = a[0];

• pa+i points to a[i].

• This does not depend on the type of a.

• String constants are arrays of char locations with an additional

element at the end containing the null character \0 (which

always has the value 0).

Arrays and Functions

• When an array name is passed to a function, it is the address of
the start of the array that is passed.

foo(type *name1)
bar(type name2[])

• Inside the function

x = *(name1+3);
x = name2[3];

• Both versions are valid and this gives room for misunderstanding.

Pointers in use – algorithmic complexity.

• Recall (or learn) that we can write the algorithmic (memory or

computational) complexity of an algorithm in terms of the order,

O(), of the number of operations required to process n elements.

• For example O(n) represents linear growth.

• In the labs you will look at code to print a table of the growth in

complexity with increasing n.

• This uses one dimensional arrays, and calls a function to print

the table passing in the arrays.

Writing a function in C

• Write a function which takes in two vectors, v1, v2 (of length 3),

adds them together and returns the result in a third vector

called sum.

• You can assume that the following header exists:

#include <stdio.h>
#include <math.h>
#define VLENGTH 3
typedef float Real;
typedef Real Coordinate;
typedef Coordinate* Vector;
void addVector(Vector v1, Vector v2, Vector sum);

Writing a function in C

• Your result should look something like:

void addVector(Vector v1, Vector v2, Vector sum)
/* Add two vectors together and return result in sum. */
{

int i; /* index variable for loop. */
/* The sum of two vectors is the sum of the elements. */
for (i=0; i<VLENGTH; i++) {

sum[i] = v1[i]+v2[i];
}
return;

}

• There are other versions possible

• The call would be addVector(vec1,vec2,vec3) for example.

Pointers in use – working with vectors.

• Vectors are fundamental to computer graphics – typically

represent vertices or normals. First consider the header:

#include <stdio.h> #include <math.h>
#define VLENGTH 3

/* Define a coordinate type to store x,y and z */
typedef float Real;
typedef Real Coordinate;
/* Define a Vector as a pointer to a coordinate -

a pointer to first element of array of coordinates.
Recall that the type Vector is a pointer. */

typedef Coordinate* Vector;

/* Function prototypes */
void printVector(Vector vec);
/* We could equally well write this function header:

void printVector(Coordinate *vec);
the type Vector is equivalent to Coordinate* */

void crossProduct(Vector vec1, Vector vec2, Vector vec3);
void scalarTimesVector(Vector vec1, Real scale);
Real vectorLength(Vector vec);

Working with vectors.

• The main function is

int main(void)
{

/* Declare three vectors and initialise the first two */
Coordinate v1[VLENGTH] = \{1.0,0.0,0.0\};
Coordinate v2[VLENGTH] = \{0.0,1.0,0.0\};
Coordinate v3[VLENGTH];
Real norm; /* To store the length (norm) of a vector. */

/* Display the initial vectors */
printf("Vector v1 is: ");
/* When we call printVector we pass a Vector,

i.e. a pointer to a Coordinate
- first element of the Vector v1 in this case. */

printVector(v1);
printf("Vector v2 is: ");
printVector(v2);

/* Now compute the cross product v1 x v2, place in v3 */
crossProduct(v1,v2,v3);

/* Display the result */
printf("The cross product result is: ");
printVector(v3);

/* Compute the norm of the vector and display it. */
norm = vectorLength(v3);
printf("This vector has length: %3.1f \n",norm);

/* Display the normalised cross product */
scalarTimesVector(v3,(Coordinate) 1.0/vectorLength(v3));
printf("The normalised cross product result is: ");
printVector(v3);

return 0; /* ANSI C requires main to return an int. */
}

Working with vectors – functions.

Two functions from the program:

void crossProduct(Vector vec1, Vector vec2, Vector vec3)
{

/* The cross product (x1,y1,z1) x (x2,y2,z2) is:
(y1z2 - z1y2,z1x2-x1z2,x1y2-y1x2). */

/* Recall C arrays are indexed from 0 not 1,
and that vec1[0] is the same as *vec1 */

vec3[0] = vec1[1] * vec2[2] - vec1[2] * vec2[1];
vec3[1] = vec1[2] * vec2[0] - vec1[0] * vec2[2];
vec3[2] = vec1[0] * vec2[1] - vec1[1] * vec2[0];
return;

}

Working with vectors – functions.

and

Real vectorLength(Vector vec)
{

/* The length of a vector (x1,y1,z1) is:
sqrt(x1^2 + y1^2 + z1^2). */

int i;
Real length = 0.0; /* Requires initialisation */

/* Recall C arrays are indexed from 0 not 1 */
for (i=0;i<VLENGTH;i++) {

/* Add the squares of the elements together. */
length += vec[i]*vec[i];
/* Equivalent to: length = length + vec[i]*vec[i] */

}
return (Real) sqrt((double)length);

}

Multi-dimensional Arrays

• C does allow the declaration of fixed size two dimensional arrays
with the following syntax:

type name[num_rows][num_columns];

int a[3][2];
/* stored in order */
a[0][0] a[0][1] a[1][0] a[1][1] a[2][0] a[2][1]

• Arrays are stored in row major form, so the rightmost index

varies the fastest.

• As we will see OpenGL expects arrays in column major format

so we have to beware.

Pointers to Functions

• Sometimes useful to pass functions as arguments in function

calls – C uses pointers to functions.

• It can be a little confusing and you really don’t need to know

much other than it is possible.

• This is used in GLUT– see the labs, where you simply need to

use the template provided.

Summary

• Having finished this lecture you should:

– understand the role of pointers in – to variables (and

functions);

– be able to use pointers in your programs;

– be able to write more complex C programs (but this is not a

programming course);

– know a little about algorithmic complexity and vector algebra.

• Although this is all the C I will formally teach, in the labs you

will gain a lot more experience.

