Overview

This lecture will:
— extend the complexity of the C you know;
— introduce the use of pointers;

— show how to use pointers for basic vector algebra.
This will be achieved using practical examples.

Has some work you must undertake.

Pointer Variables

A pointer variable contains the address of a piece of memory.
Assign address with & operator:

pPx = &x;
To ‘dereference’ it, the * operator is used:
y = *px;

A pointer variable is declared in the following way:

type *var_name;
type* var_name;

Simple Use of Pointer Variables

Example of modifying arguments:
void swap(int *a, int *b)

int temp;
temp = *a;
*a *b;

*b temp;

The function call is

int x, y;

swap (&x, &y);

Returning multiple values:
int x, y;

/* Values of both x and y can be altered by foo */
foo(&x, &y);

Arrays

Pointers and arrays are two ways of viewing one language
construct. Array indexing is equivalent to pointer arithmetic.

int a[10];

int *pa;

pa = &(a[0]); /* pa and a[0] reference same location */
X = *pa;

x = al0];

pa+i points to alil.
This does not depend on the type of a.

String constants are arrays of char locations with an additional
element at the end containing the null character \0 (which
always has the value 0).

Arrays and Functions
When an array name is passed to a function, it is the address of
the start of the array that is passed.

foo(type *namel)
bar (type name2[])

Inside the function

*(name1+3) ;
name2[3];

Both versions are valid and this gives room for misunderstanding.

Pointers in use — algorithmic complexity.

Recall (or learn) that we can write the algorithmic (memory or
computational) complexity of an algorithm in terms of the order,
O(), of the number of operations required to process n elements.

For example O(n) represents linear growth.

In the labs you will look at code to print a table of the growth in
complexity with increasing n.

This uses one dimensional arrays, and calls a function to print
the table passing in the arrays.

Writing a function in C

Write a function which takes in two vectors, vi, v2 (of length 3),
adds them together and returns the result in a third vector
called sum.

You can assume that the following header exists:

#include <stdio.h>

#include <math.h>

#define VLENGTH 3

typedef float Real;

typedef Real Coordinate;

typedef Coordinate* Vector;

void addVector(Vector vi, Vector v2, Vector sum);

Writing a function in C

Your result should look something like:

void addVector(Vector v1, Vector v2, Vector sum)
/* Add two vectors together and return result in sum. */
{

int i; /* index variable for loop. */

/* The sum of two vectors is the sum of the elements. */

for (i=0; i<VLENGTH; i++) {

sum[i] = v1[il+v2[il;
}

return;

There are other versions possible

The call would be addVector(vecl,vec2,vec3) for example.

Pointers in use — working with vectors. Working with vectors.

e Vectors are fundamental to computer graphics — typically e The main function is

represent vertices or normals. First consider the header: . . .
int main(void)

#include <stdio.h> #include <math.h> {
#define VLENGTH 3 /* Declare three vectors and initialise the first two */
Coordinate v1[VLENGTH] = \{1.0,0.0,0.0\};
/* Define a coordinate type to store x,y and z */ Coordinate v2[VLENGTH] = \{0.0,1.0,0.0\};
typedef float Real; Coordinate v3[VLENGTH];
typedef Real Coordinate; Real norm; /* To store the length (norm) of a vector. */
/* Define a Vector as a pointer to a coordinate -
a pointer to first element of array of coordinates. /* Display the initial vectors */
Recall that the type Vector is a pointer. */ printf("Vector vi is: ");
typedef Coordinate* Vector; /* When we call printVector we pass a Vector,
i.e. a pointer to a Coordinate
/* Function prototypes */ - first element of the Vector vl in this case. */
void printVector(Vector vec); printVector(vi);
/* We could equally well write this function header: printf ("Vector v2 is: ");
void printVector(Coordinate *vec); printVector(v2);

the type Vector is equivalent to Coordinate* */
void crossProduct(Vector vecl, Vector vec2, Vector vec3);
void scalarTimesVector(Vector vecl, Real scale);
Real vectorLength(Vector vec);

Working with vectors — functions.
/* Now compute the cross product vl x v2, place in v3 */
crossProduct (v1,v2,v3);

/% Display the result */ Two functions from the program:
printf("The cross product result is: "); .
printVector (v3) ; void crossProduct(Vector vecl, Vector vec2, Vector vec3)

/* The cross product (x1,y1,z1) x (x2,y2,z2) is:
(y1z2 - z1y2,z1x2-x122,x1y2-y1x2). */

/* Recall C arrays are indexed from O not 1,
and that vec1[0] is the same as *vecl */
vec3[0] = veci[1] * vec2[2] - veci[2] * vec2[1];
vec3[1] = vec1[2] * vec2[0] - vecl1[0] * vec2[2];
vec3[2] = vec1[0] * vec2[1] - vecli[1] * vec2[0];

/* Compute the norm of the vector and display it. */
norm = vectorLength(v3);
printf("This vector has length: %3.1f \n",norm);

/* Display the normalised cross product */
scalarTimesVector(v3, (Coordinate) 1.0/vectorLength(v3));
printf("The normalised cross product result is: ");

printVector (v3); 3 return;
return 0; /* ANSI C requires main to return an int. */
T
Working with vectors — functions. Multi-dimensional Arrays
and e C does allow the declaration of fixed size two dimensional arrays
Real vectorLength(Vector vec) with the following syntax:
/* The length of a vector (x1,yl,zl1) is: type name [num_rows] [num_columns];
sqrt(x172 + y172 + z172). */
int i; int al3]1[2];
Real length = 0.0; /* Requires initialisation */ /* stored in order */
af[0]1[0] afo0l[1] al11[0] al[11[1] al[2][0] al[2][1]
/* Recall C arrays are indexed from O not 1 */
for (i=0;i<VLENGTH;i++) {
/* Add the squares of the elements together. */
length += vec[il#vec[il; e Arrays are stored in row major form, so the rightmost index
/* Equivalent to: length = length + vec[il*vec[i] */ varies the fastest.
}
return (Real) sqrt((double)length);
e As we will see OpenGL expects arrays in column major format
so we have to beware.
Pointers to Functions Summary
e Sometimes useful to pass functions as arguments in function e Having finished this lecture you should:
calls — C uses pointers to functions. . . .
P — understand the role of pointers in — to variables (and
e It can be a little confusing and you really don't need to know functions);
much other than it is possible. — be able to use pointers in your programs;

— be able to write more complex C programs (but this is not a
programming course);

e This is used in GLUT- see the labs, where you simply need to
use the template provided.

— know a little about algorithmic complexity and vector algebra.

e Although this is all the C I will formally teach, in the labs you
will gain a lot more experience.

