
Overview

• This lecture will:

– justify the use of C for teaching graphics;

– introduce the C language (syntax);

– show how to write simple C programs;

– show how to compile C programs.

• This will be achieved using practical examples.

C, OpenGL and Computer Graphics

• C is the most commonly used low level graphics programming

language.

• OpenGL is the most commonly used API.

• So in this module we will combine both.

• C is much like Java in syntax (almost identical).

• C structure is very different:

– Java is OO – everything is a class;

– C is procedural – everything is a function (Ada).

• C always has a main function which controls program executing.

• C is compiled rather than interpreted.

A typical C program

• The hello.c program is shown below:

/* C program: the hello world favourite, for manic depressives.

20/12/01 (c) Dan Cornford 2001 */

/* We need to include standard IO library (printf) */

#include <stdio.h>

/* Main function. */

int main(void)

{

/* Call the printf function passing in the string Goodbye

world, with the \n to force a line feed */

printf("Goodbye world!\n");

return 0; /* ANSI C requires main to return an int. */

}

Variables and constant

• Variable names are made up of letters, numbers and the

underscore character.

• The first character must be a letter. The number of significant

characters is reasonably large, but not infinite.

• All variables should be declared (at the top of the functions)
before use.

type variable = initial_value; /* Description */

int course_number = 215; /* Code of the course */

• Use symbolic constants for all but the most obvious values in a

program. These are best defined at the head of the file (outside

the function definitions) as in the following example:

#define GOLD 1.618034

Types

• There are four basic types in C:

– char for single characters,

– int for integers,

– float for floating point numbers and

– double for double precision floating point numbers

• Modifiers: signed, unsigned, short and long.

• Can declare our own types:

typedef type type_name;

typedef float Real;

• Created to describe the logical rather than physical type.

More on Types

• Enumerated types can be useful for storing fixed non-numeric

data. The syntax is

enum tag {enum_list} var_list;

• The machine type of an enumerated type is an int. Example:

enum VarType {discrete, ordinal, continuous};

• Can have constant variables! (Compile time type checking)

const type variable = value;

So we can replace

#define GOLD 1.618034

by

const float GOLD = 1.618034;

Operators

• C has all the usual arithmetic operators: +, -, *, / and %.

• Comparison operators are >, >=, <, <=, ==, and !=.

• We will not use bitwise operators, but these are one of the more

powerful features of C.

• Assignment operator is =. Can combine with arithmetic
operators:

i += 2;

is equivalent to

i = i + 2;

• Increment and decrement operators ++, --.

i++;

Statements

• A C program consists of a sequence of statements.

• There are 10 different statements in C.

• Any sequence of statements surrounded by curly braces { and }

is treated as a single (compound) statement.

• An expression can be made into a statement by adding a

semi-colon at the end.

• Expression statements are usually one of the assignment

expressions or a function call.

x = 3;

i += 4;

Conditional Statements

• Conditional statements in C use the if construct.

• The general form is:

if (expression)
statement 1

else
statement 2

• Be careful about compound statements in branches:

if (a > b) | if (a > b) {
z = b; | foo = bar;

else | z = a;
z = a; | }

| else
| z = b;

Switch Statement

• If we want to choose between a number of different conditions
then a switch statement is more appropriate than lots of ifs.

VarType var;
....
switch (var) {

case ordinal:
/* Do ordinal type things */

case discrete:
/* Do things for ordinal AND discrete types */
break; /* Don’t fall through to next case */

case continuous:
/* Do continuous type things */
break;

default: /* Treats all other cases */
fprintf(stderr,"Unknown value in switch statement\n");
break;

}

• Don’t forget to specify a default behaviour – often used to

process keyboard input in graphics.

Loops

• Two main types in C:

while (e) | for (e1; e2; e3)
s; | statement;

• Example:

char c, s[];
int i, j;
for (i = 0, j = strlen(s) - 1; i < j; i++, j--) {

c = s[i];
s[i] = s[j];
s[j] = c;

}

• Do while statement

int num;
do {

scanf("%d", &num);
} while (num >= 0);

Function Syntax

• Functions are the building blocks of C programs.

• The general form is:

return_type function_name(arguments)
{

declarations
statement

}

• Arguments should be declared together with their type in a
comma separated list.

int foo(int bar, double baz)
{

/* function body */
}

• If a function returns no value, it has return value void.

Function Arguments and Local Variables

• Function arguments should be used to communicate values
rather than have global variables.

int x = 6;
int y = 0;
y = foo(x);
/* x still has the value 6 */
....
int foo(int x)
{

x *= 2;
return x + 2;

}

Function Arguments and Local Variables

• Any variables declared in the function body are local to the
function.

int bar = 0;
int baz = 0;
baz = foo(bar);
...
int foo(int x)
{

int bar = 6;
return x * bar;

}

• To modify and return multiple values we need to use pointers.

More on Functions

• When putting multiple functions in one file (as we shall do) they

should either:

– be in the order they are called, above the main program;

– or have function headers (prototypes) at the top of the code.

• In most code you write you will need to use some standard C

libraries:

– #include <stdio.h>,

– #include <math.h>,

are the most common ones.

• We will come back to functions – also very important when

using OpenGL.

General form of a C program:

/* Please don’t forget to comment me */

#include <libraries>
#define CONSTANT 215
typedef double Real;
global variables

Real myfunc(int arg1, double arg2);
void myotherfunc(int arg);

int main(void)
{

local variables
statements;
return 0;

}

Real myfunc(int arg1, double arg2)
{

Real value;
statements;
return value;

}

void myotherfunc(int arg)
{

statements;
return;

}

Compilation

• We will use Solaris and emacs for the coding in the labs, with

the gcc compiler.

• To compile code:

gcc -c program.c

• To link code:

gcc -o program program.o

• This gets a bit boring so later we will write a Makefile for the

code – covered in the labs.

• Of course everything also works with MS Visual Studio, so you

can also use this readily.

Summary

• Having finished this lecture you should:

– understand why C was chosen for the course;

– be able to use: variables and constants, types, operators,

statements, conditional statements, switch statements, loops

and functions in C;

– be able to write simple C programs;

– be able to compile C programs.

