Outline: Image Processing	Applications
 Efford, N., 2000. Digital image processing, a practical introduction using Java, Addison-Wesley, Harlow, UK. First developed by NASA to aid moon landings. Applications. Contrast enhancement. Filtering. Baxes, G. A., 1994. Digital Image Processing: Principles and Applications, John Wiley & Sons, New York. 	 There are many applications: remote sensing; medical applications; intelligence gathering / law enforcement / 'smart' weapons; document processing; artistic; car guidance and optical correction (Hubble telescope). This is a growing and non-exhaustive list!
Image processing	Contrast enhancement
 Two main classes: image enhancement image restoration but could include image compression and image analysis. Image restoration is concerned with the correction of camera induced errors (photogrammetric correction) viewing induced errors (geometric correction) Inherently a very statistical subject, which this introduction ignores! 	 Aim is to change the contrast in an image. Attained by changing the distribution of the image brightness histogram. Stretching the histogram produces increased contrast. Often used to improve the look of digital photographs. Binary thresholding produces a black and white image, often used prior to some pattern analysis. Thresholds, etc may be set adaptively (that is to vary across the image).
Image Filtering • Filtering is used to change the (local) properties of the image. • Usually locally applied (in space or frequency). • Can be expressed as a matrix representing the weights applied to the central pixels neighbourhood. • A smoothing or blur filter is given by: $\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$. • Applied to each 3 × 3 pixel portion of the image.	Filtering $\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$. • Sum of the filter values is 1, thus no change to the overall brightness. • Called a low pass filter (noise filter) since it leaves low frequency components unchanged. • Another low pass filter that is frequently used is the median filter, which replaces the central pixel with the local median value. Effective at removing speckle noise.
 Filtering The opposite is the high pass filter, which acts to sharpen details: 	Edge filtering / detection • An edge filter is often used prior to edge detection. • The most simple edge filters are: $ \begin{bmatrix} 0 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} $ • These find either horizontal or vertical edges – can you see why?

Edge filtering / detection

• A more effective, but still directional filter is the Prewitt gradient filter:

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & -2 & -1 \\ 1 & -1 & -1 \end{bmatrix}$$

• A non-directional edge filter is the Laplacian filter:

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & -8 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

Image processing – there must be more?

- Relatively new field, based on statistical concepts, but can use empirical methods.
- Contrast enhancement alter the image histogram.
- Filtering alter the image locally (in space or frequency).
- Many uses, typically applied prior to further (statistical) processing.

Summary

- Having finished this lecture you should:
 - be able to discuss the role and application of image processing;
 - be able to apply basic contrast enhancement and filtering;
 - define appropriate filters to use for simple tasks;
- Image processing is a very exciting area of computer science research with many useful outcomes.