
Basic Raster Algorithms for 2D Graphics

• The conversion: primitives → pixmap is scan conversion.

• The most simple scan conversion task, is scan converting a line.

• Theoretically, any scan conversion algorithm should produce a line with
constant brightness (independent of orientation and length) and do it quickly.

• It should also be able to cope with lines greater than one pixel in width and
be able to display different styles and attributes.

• It is also necessary to minimise the jaggies on the line, by using anti-aliasing
methods to set pixel intensities.

Scan converting lines

• Assume that pixels are disjoint circles on an integer, (x, y) grid.

• Line starts and ends at integer coordinates (x0, y0) and (xe, ye).

• The simplest algorithm to scan convert the line is an
incremental one:

– Compute the slope m =∆y/∆x,

– Start at the leftmost point and increment x by 1,

– Calculate yi = mxi+ c,

– Set the intensity at the pixel value (xi,Round(yi)).

• Inefficient, works only for |m| < 1.

Scan converting lines

• Note that yi+1 = mxi+1+ c = m(xi+∆x) + c = yi+m∆x.

• ∆x = 1 gives:

xi+1 = xi+1 ,

yi+1 = yi+m .

• More efficient algorithm, which works so long as |m| < 1.

• If this is not the case, it is necessary to swap x and y, which will

give a slope of 1/m.

• It is also necessary to check for the special conditions of
horizontal, vertical and diagonal lines.

Scan converting lines

void Line (int x0, int xe, int y0, int ye, int value)
{ /* Assumes -1 <= m <= 1, x0 < xe */

int x;
float y,dx,dy,m;

dx = xe - x0;
dy = ye - y0;
m = dy / dx;
y = y0;

for (x = x0; x <= xe; x++){
WritePixel(x,(int) floor(y + 0.5),value);
y += m;

}
}

• The algorithm is referred to as the digital differential analyser.

• One potential problem with the method arises because the float
m has a finite precision.

Scan converting lines

• A more advanced algorithm is the midpoint line algorithm.

• Does not use floating point arithmetic.

• Generalisation of Bresenham’s well known incremental technique.

• Works only for 0 ≤ m ≤ 1.

• Other slopes are catered for by reflection about the principal
axes of the 2D plane.

• (x0, y0) is the lower left endpoint and (xe, ye) the upper right
endpoint.

Scan converting lines

• Incremental method:

M
Q

NE

E

Choices

pixel
current

Choice for
pixel

Previous
for next

pixel

• Restrictions on the slope of the line implies that if we are at
some pixel (xp, yp), we now need to choose between only two

pixels.

Scan converting lines

M
Q

NE

E

Choices

pixel
current

Choice for
pixel

Previous
for next

pixel

• Either the east pixel, E, or the northeast pixel, NE, is chosen
depending upon which side of the midpoint, M, the crossing

point, Q, lies.

• Write the implicit functional from: f(x, y) = ax+ by+ γ = 0.

Scan converting lines

• Noting:

y = mx+ c =
∆y

∆x
x+ c ,

gives:

f(x, y) = ∆y · x−∆x · y+∆x · c .

• Now a =∆y, b = −∆x and γ =∆x · c.

• For any point on the line, f(x, y) is zero, any point above the
line, f(x, y) is negative and any point below has f(x, y) positive.

• d = f(M) = f(xp+1, yp+1/2) = a(xp+1)+ b(yp+1/2) + γ.

If d is positive we choose NE, otherwise we pick E (including

when d = 0).

Scan converting lines

• So what happens to the location of the next midpoint, Mnew?
This depends on whether E or NE was chosen. If E is chosen
then the new dnew will be:

dnew = f(Mnew) = f(xp +2, yp +1/2)

= a(xp +2)+ b(yp +1/2) + γ .

• dnew = dold+∆E, ∆E = a.

Similarly ∆NE = a+ b.

• First d = f(x0+1, y0+1/2) = a(x0+1)+ b(y0+1/2) + γ =

f(x0, y0)+ a+ b
2, since this on the line d = a+ b/2 = ∆y −∆x/2.

• Using d = 2f(x, y), which will not affect the sign of the decision

variable and keep everything integer.

Scan converting lines

void MidpointLine (int x0, int xe,
int y0, int ye, int value)

{ /* Assumes 0 <= m <= 1, x0 < xe, y0 < ye */
int x,y,dx,dy,d,incE,incNE;

dx = xe - x0;
dy = ye - y0;
d = 2*dy - dx;
incE = 2*dy;
incNE = 2*(dy-dx);
x = x0;
y = y0;
WritePixel(x,y,value);
while (x < xe) {

if (d <= 0) {
d += incE;
x++;

} else {
d += incNE;
x++;
y++;

}
WritePixel(x,y,value);

}
}

Scan converting lines

• There are several improvements that could be envisaged to the
midpoint algorithm.

• One method involves looking ahead two pixels at a time (so
called double-step algorithm).

• Another uses the symmetry about the midpoint of the whole
line, which allows both ends to be scan converted simultaneously.

• The midpoint algorithm defines that E is chosen when Q = M so
to ensure lines look the same drawn from each end the algorithm

should choose SW rather than W in the inverted version.

Line clipping

NE

y = y_min

x = x_min

M

E

• It is common to clip a line by a bounding rectangle (often the
virtual or real screen boundaries).

• Assume the bounding rectangle has coordinates, (xmin, ymin),

(xmax, ymax).

Line clipping

NE

y = y_min

x = x_min

M

E

• If the line intersects the left hand vertical edge, x = xmin the

intersection point of the line with the boundary is

(xmin, (m · xmin+ c)).

• Start the line from (xmin,Round(m · xmin+ c)).

Line clipping

x = x_min

y = y_min-0.5
y = y_min

• Assume that any of the lines pixels falling on or inside the clip
region are drawn.

• The line does not start at the point ((ymin − c)/m, ymin) where

the line crosses the bounding line.

• The first pixel is
(

Round

(

(ymin − 0.5− c)

m

)

, ymin

)

.

Line intensity

• Lines of different slopes will have different intensities on the
display, unless care is taken.

• 2 lines, both 4 pixels but the diagonal one is
√
2 times as long as

the horizontal line.

• Intensity can be set as a function of the line slope.

Scan converting area primitives

void FillRectangle (int xmin, int xmax,
int ymin, int ymax, int value)

{
int x,y;
for (y = ymin; y <= ymax; y++) {

for (x = xmin; x <= xmax; x++) {
WritePixel(x,y,value);

}
}

}

• Scan converting objects with area is more complex than scan
converting linear objects, due to the boundaries.

A rule that is commonly used to decide what to do with edge

pixels is as follows.

• A boundary pixel is not considered part of the primitive if the
half-plane defined by the edge and containing the primitives lies

below a non-vertical edge or to the left of a vertical edge.

Filling polygons

• Most algorithms work as follows:

– find the intersections of the scan line with all polygon edges;

– sort the intersections;

– fill those points which are interior.

• The first step involves the use of a scan-line algorithm that
takes advantage of edge coherence to produce a data structure

called an active-edge table.

• Edge coherence simply means that if an edge is intersected in
scan line i, it will probably be intersected in scan line i+1.

Other issues

• Patterns will typically be defined by some form of pixmap
pattern, as in texture mapping.

• In this case the pattern is assumed to fill the entire screen, then
anded with the filled region of the primitive, determining where

the pattern can ‘show through’.

• It is convenient to combine scan conversion with clipping in
integer graphics packages, this being called scissoring.

• Floating point graphics are most efficiently implemented by
performing analytical clipping in the floating point coordinate

system and then scan converting the clipped region.

Scan conversion: OpenGL

• OpenGL performs scan conversion efficiently behind the scenes
– typically using hardware on the graphics card.

• However, we can manipulate pixels using OpenGL with
glRasterPos2i(GLint x, GLint y) and glDrawPixels(·) – in the
labs you will code your own scan conversion routines.

• Speed is often of the essence in computer graphics, so designing
and developing efficient algorithms forms a large part of

computer graphics research.

Anti-aliasing

• All raster primitives outlined so far have a common problem,
that of jaggies : jaggies are a particular instance of aliasing. The

term alias originates from signal processing.

• In the limit, as the pixel size shrinks to an infinitely small dot,
these problems will be minimised, thus one solution is to

increase the screen resolution.

• Doubling screen resolution will quadruple the memory
requirements and the scan conversion time.

Anti-aliasing

• One solution to the problem involves recognising that primitives,
such as lines are really areas in the raster world.

• In unweighted area sampling the intensity of the pixel is set
according to how much of its area is overlapped by the primitive.

• More complex methods involve weighted area sampling.

• Weighted area sampling assumes a realistic model for pixel
intensity. Using a sensible weighting function, such as a cone or

Gaussian function, will result in a smoother anti-aliasing, but at

the price of even greater computational burden.

Anti-aliasing: OpenGL

• Since anti-aliasing is an expensive operation, and may not always
be required OpenGL allows the user to control the level of

anti-aliasing.

• Can be turned on using: glEnable(GL LINE SMOOTH)

• Can also use glHint(GL LINE SMOOTH HINT,GL BEST) to set quality:

GL BEST, GL FASTEST, and GL DONT CARE – hints not always

implemented – based on number of samples.

• Works by using the alpha parameter and colour blending.
Anti-aliasing of polygons treated in the same way in RGBA

mode.

Summary

• Having finished this lecture you should:

– know what scan conversion means;

– be able to contrast different appraoches and sketch their

application;

– provide simple solutions to the problems of clipping and

aliasing;

– understand how scan conversion works in OpenGL.

• This completes the graphics part of the module.

