Basic Raster Algorithms for 2D Graphics

The conversion: primitives — pixmap is scan conversion.

000000

000
00O

000000

The most simple scan conversion task, is scan converting a line.

Theoretically, any scan conversion algorithm should produce a line with

constant brightness (independent of orientation and length) and do it quickly.

It should also be able to cope with lines greater than one pixel in width and
be able to display different styles and attributes.

It is also necessary to minimise the jaggies on the line, by using anti-aliasing
methods to set pixel intensities.

Scan converting lines

e Assume that pixels are disjoint circles on an integer, (z,y) grid.
e Line starts and ends at integer coordinates (zq,yg) and (ze, ye)-

e The simplest algorithm to scan convert the line is an
incremental one:

— Compute the slope m = Ay/Az,

Start at the leftmost point and increment z by 1,

Calculate y; = mz; + ¢,

Set the intensity at the pixel value (z;, Round(y;)).

e Inefficient, works only for |m| < 1.

Scan converting lines

Note that y;41 = mz;41 +c=m(z; + Az) +c = y; + mAx.
e Ax =1 gives:
i1 =z +1,

Yit1 =Yy +m.

More efficient algorithm, which works so long as |m| < 1.

If this is not the case, it is necessary to swap z and y, which will
give a slope of 1/m.

It is also necessary to check for the special conditions of
horizontal, vertical and diagonal lines.

Scan converting lines

void Line (int x0, int xe, int yo, int ye, int value)
{ /* Assumes -1 <=m <= 1, x0 < xe */

int x;

float y,dx,dy,m;

dx = xe - x0;
dy = ye - yO;
m = dy / dx;
y =50

for (x = x0; x <= xe; x++){
WritePixel(x, (int) floor(y + 0.5),value);
yt=m
}
¥

e The algorithm is referred to as the digital differential analyser.

e One potential problem with the method arises because the float
m has a finite precision.

Scan converting lines

A more advanced algorithm is the midpoint line algorithm.

Does not use floating point arithmetic.

Generalisation of Bresenham's well known incremental technique.
e Works only for 0 <m < 1.

e Other slopes are catered for by reflection about the principal
axes of the 2D plane.

e (z0,y0) is the lower left endpoint and (ze,ye) the upper right
endpoint.

Scan converting lines

e Incremental method:

Fan}
\\P)
<
/, M el
/’ AF
A%
Previous Choicefor Choices
pixel current for next
pixel pixel

e Restrictions on the slope of the line implies that if we are at
some pixel (zp,yp), We now need to choose between only two

pixels.
Scan converting lines Scan converting lines
e Noting:
NE g y=mz+c=ﬂ$+c,
s Az
/fM\Q” gives:
/ E

’ Fany
AV
Previous Choicefor Choices

pixel current for next
pixel pixel

e Either the east pixel, E, or the northeast pixel, NE, is chosen
depending upon which side of the midpoint, M, the crossing
point, Q, lies.

e Write the implicit functional from: f(z,y) = az+by 4+~ =0.

flz,y) =Ay-z—Az-y+Az-c.
e Now a = Ay, b= —-Az and y= Az -c.

e For any point on the line, f(z,y) is zero, any point above the
line, f(=x,y) is negative and any point below has f(x,y) positive.

e d=f(M)=f(azp+1L,yp+1/2) = alzp+ 1) +b(yp + 1/2) + .
If d is positive we choose NE, otherwise we pick E (including
when d = 0).

Scan converting lines

e So what happens to the location of the next midpoint, Myew?
This depends on whether E or NE was chosen. If E is chosen
then the new dpew Will be:

dnew = f(Mnew) = f(xp+ 2,9, +1/2)
= a(z, +2) + by, +1/2) + 7.

o dpew = doig + Ap, Ap =a.
Similarly Ayg =a+b.

e First d= f(zo+ 1,y0+1/2) = a(zo+ 1) + b(yo + 1/2) +~v =
f(x0,90) +a+ 3, since this on the line d = a+b/2 = Ay — Az/2.

e Using d = 2f(x,y), which will not affect the sign of the decision
variable and keep everything integer.

Scan converting lines

void MidpointLine (int x0, int xe,
int yo, int ye, int value)
{ /% Assumes 0 <= m <= 1, x0 < xe, yO < ye */
int x,y,dx,dy,d,incE, incNE;

dx = xe - x0;

dy = ye - y0;

d = 2xdy - dx;
incE = 2xdy;

inclNE = 2*(dy-dx);
x = x0;

y = y0;

WritePixel(x,y,value);
while (x < xe) {
if (d <=0) {
d += incE;
X+
} else {
d += incNE;

WritePixel(x,y,value);

Scan converting lines

e There are several improvements that could be envisaged to the
midpoint algorithm.

e One method involves looking ahead two pixels at a time (so
called double-step algorithm).

e Another uses the symmetry about the midpoint of the whole
line, which allows both ends to be scan converted simultaneously.

e The midpoint algorithm defines that E is chosen when Q = M so
to ensure lines look the same drawn from each end the algorithm
should choose SW rather than W in the inverted version.

Line clipping

e It is common to clip a line by a bounding rectangle (often the
virtual or real screen boundaries).

e Assume the bounding rectangle has coordinates, (zmin; Ymin),

(ﬁmaa:’ fl/ma.q;)-

Line clipping

e If the line intersects the left hand vertical edge, x = z,,;, the
intersection point of the line with the boundary is

@mins (M - Tpin + €)).

e Start the line from (z,in, Round(m -z + ¢)).

Line clipping

y=y_min
y=y_min05

=TT

e Assume that any of the lines pixels falling on or inside the clip
region are drawn.

e The line does not start at the point ((Ymin — €)/M, Ymin) Where
the line crosses the bounding line.

e The first pixel is

in—0.5—c¢
(Round <M> 7ymin> .

m

Line intensity

OO0OMO
OO0
O®O0OO0
OO00O
0 000

e Lines of different slopes will have different intensities on the
display, unless care is taken.

e 2 lines, both 4 pixels but the diagonal one is v/2 times as long as
the horizontal line.

e Intensity can be set as a function of the line slope.

Scan converting area primitives

void FillRectangle (int xmin, int xmax,
int ymin, int ymax, int value)

{
int x,y;
for (y = ymin; y <= ymax; y++) {
for (x = xmin; x <= xmax; x++) {
WritePixel(x,y,value);
}
}

e Scan converting objects with area is more complex than scan
converting linear objects, due to the boundaries.
A rule that is commonly used to decide what to do with edge
pixels is as follows.

e A boundary pixel is not considered part of the primitive if the
half-plane defined by the edge and containing the primitives lies
below a non-vertical edge or to the left of a vertical edge.

Filling polygons

e Most algorithms work as follows:
— find the intersections of the scan line with all polygon edges;
— sort the intersections;
— fill those points which are interior.

e The first step involves the use of a scan-line algorithm that

takes advantage of edge coherence to produce a data structure
called an active-edge table.

Edge coherence simply means that if an edge is intersected in
scan line ¢, it will probably be intersected in scan line i 4+ 1.

Other issues

Patterns will typically be defined by some form of pixmap
pattern, as in texture mapping.

In this case the pattern is assumed to fill the entire screen, then
anded with the filled region of the primitive, determining where
the pattern can ‘show through’.

It is convenient to combine scan conversion with clipping in
integer graphics packages, this being called scissoring.

Floating point graphics are most efficiently implemented by
performing analytical clipping in the floating point coordinate
system and then scan converting the clipped region.

Scan conversion: OpenGL

OpenGL performs scan conversion efficiently behind the scenes
— typically using hardware on the graphics card.

However, we can manipulate pixels using OpenGL with
glRasterPos2i(GLint x, GLint y) and glDrawPixels(-) — in the
labs you will code your own scan conversion routines.

Speed is often of the essence in computer graphics, so designing
and developing efficient algorithms forms a large part of
computer graphics research.

Anti-aliasing

5]

All raster primitives outlined so far have a common problem,
that of jaggies : jaggies are a particular instance of aliasing. The
term alias originates from signal processing.

In the limit, as the pixel size shrinks to an infinitely small dot,
these problems will be minimised, thus one solution is to
increase the screen resolution.

Doubling screen resolution will quadruple the memory
requirements and the scan conversion time.

Anti-aliasing

One solution to the problem involves recognising that primitives,
such as lines are really areas in the raster world.

In unweighted area sampling the intensity of the pixel is set
according to how much of its area is overlapped by the primitive.

More complex methods involve weighted area sampling.

L=

Weighted area sampling assumes a realistic model for pixel
intensity. Using a sensible weighting function, such as a cone or
Gaussian function, will result in a smoother anti-aliasing, but at
the price of even greater computational burden.

Anti-aliasing: OpenGL

Since anti-aliasing is an expensive operation, and may not always
be required OpenGL allows the user to control the level of
anti-aliasing.

Can be turned on using: glEnable(GL _LINE SMOOTH)

Can also use glHint (GL LINE SMOOTH HINT,GL BEST) to set quality:
GL BEST, GL FASTEST, and GL DONT CARE — hints not always
implemented — based on number of samples.

Works by using the alpha parameter and colour blending.
Anti-aliasing of polygons treated in the same way in RGBA
mode.

Summary

Having finished this lecture you should:

— know what scan conversion means;

— be able to contrast different appraoches and sketch their
application;

— provide simple solutions to the problems of clipping and
aliasing;

— understand how scan conversion works in OpenGL.

e This completes the graphics part of the module.

