
Outline: Curves

• Piecewise curves

• Hermite curves, Bézier curves and B-splines

• Which to use?

• 3D curves.

• Curved surfaces.

Curves

• Most of the curves used in computer graphics are parametric

curves – that is they are based on a certain equation.

• The explicit form of the functions, such as y = f(x), are

generally not appropriate because:

– it is impossible to get multiple y values for a given x value,

– the form is not rotationally invariant and,

– you cannot describe curves with a vertical tangent.

Curves

• The implicit form of a function, such as f(x, y) = 0, is not very

suitable for representing curves either because:

– the given equation may have more solutions than we want,

– to restrict the solution to one branch we need extra

constraints,

– joining curves can be a problem.

• The solution is to use parametric functions.

Parametric Curves

• Let x = x(t) and y = y(t) where t is some index – the parameter.

• Piecewise cubic polynomial curve is the most commonly used.

• Individual elements are now cubic functions of t.

• The general form of a curve segment is given by

q(t) = (x(t), y(t))′ where:

x(t) = axt3 + bxt2 + cxt+ dx ,

y(t) = ayt3 + byt2 + cyt+ dy .

Parametric Curves
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Random cubic parametric curves (coefficients a, b, c, d are random).

Parametric Curves

• Using matrix and vector notation we can write:
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, C =

[

ax bx cx dx

ay by cy dy

]

.

and now q(t) = Ct.

• To join segments we ensure continuity and smoothness by

matching the tangents or derivatives of the curves at the joining

points.

Parametric Curves

• To join segments we ensure continuity by computing:
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• If the last point of curve 1 is the first point of curve 2 and the

derivatives are equal at this point they will join smoothly.

Continuity

• It is possible to define many types of continuity:

– G0 geometric continuity - the curves join

– G1 geometric continuity - the curves join with equal tangent

directions.

– C1 continuity - the curves join with equal tangent directions

and magnitude (first derivatives equal).

– Cn continuity - the curves join with equal n’th derivatives.

• Which is desired will depend on the context.

• We are basically solving a system of (linear) equations when we

compute the coefficients from the given constraints.



Hermite curves

• A Hermite polynomial form is specified by the definition of two

end points p1, p4 and two end tangent vectors, r1, r4.

• Expand C into two matrices:

x(t) = axt3 + bxt2 + cxt+ dx = Cxt = GxMHt ,

• Gx is the x-component of the geometry matrix.

• MH is the Hermite basis matrix.

• Gx is
[

p1,xp4,xr1,xr4,x

]

.

• Thus we can derive MH (not shown).

Hermite curves
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• We can now write x(t) in two ways: axt3 + bxt2 + cxt+ dx, or

GxBH(t) where BH(t) = MHt are the Hermite blending functions.

• Now given the geometry matrix, G, and MH, we can compute

C = GMH.

• To draw the curves we simply evaluate x(t) and y(t).

Hermite curves
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• The Hermite basis matrix is:

MH =
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
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1 −2 1 0
1 −1 0 0
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Bézier curves

• Bézier curves are very similar to Hermite curves except that we

use four control points, p1, p2, p3 and p4.

• r1 = 3(p2 − p1) and r4 = 3(p4 − p3).

• Gx is
[

p1,xp2,xp3,xp4,x

]

.

• This means that the Bézier basis matrix will be:

MB =
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−1 3 −3 1
3 −6 3 0
−3 3 0 0
1 0 0 0
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Bézier curves
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The Bézier blending functions.

Drawing curves

• To draw parametric curves we need to know the so called

control points (e.g. p1, p2, p3 and p4 for a Bézier curve).

• Then we can use x(t) = GxMHt, y(t) = GyMHt to compute the

location of the curve for any t value.

• In practice we loop over t (from 0 to 1) in small increments and

connect the short line segments.

• If the increment is small enough we can just set the pixel (bad

idea?).

Bézier curves

• If we need to join two Bézier curves, with control points p1, p2,

p3, p4 (in both), p5, p6, p7 then we need an extra condition.

• Having p4 in both curves ensures G0 or C0 continuity.

• We have:

– G1 continuity if p3 − p4 = k(p4 − p5) where k > 0,

– C1 continuity if p3 − p4 = p4 − p5.

• This gives us the recipe for constructing arbitrarily long curves

with the desired properties.

• The curve is contained within the convex hull of the points.

B-splines

• Splines have a long history in computer graphics.

• The natural cubic spline has C2 continuity and is thus smoother

than the Hermite and Bézier curves. The B stands for Basis.

• Geometry matrix: GBs,j =
[

pj−3pj−2pj−1pj

]

.

• B-spline basis matrix is given by:

MBs =
1
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• We can derive the basis (blending) functions BBs(t).



B-splines
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The B-spline blending functions.

B-splines

• The effect of each (control) point is local.

• B-splines share control points across segments:
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B-splines

• We can use duplicated control points to change the continuity

of the B-spline:
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Other Splines

• Non-uniform splines are more flexible:

– interpolate, continuity and can easily add points

• Rational splines,

x(t) =
X(t)

W (t)
, y(t) =

Y (t)

W (t)
,

can be arbitrarily transformed (including the perspective

projection).

• Can define all conic sections.

• NURBS (Non-Uniform Rational B-Splines) curves are widely

used in computer graphics.

Comparison of curves

• There are several criteria by which we can select a method

including:

– degree of continuity of the complete curve,

– speed of computation to generate the curve,

– ease of definition of the curve,

– ability of the curve to represent desired objects.

• Distinction not so crucial because we can rewrite the uniform

curves.

• Often use different representations in one program.

Curves in 3D and surfaces

• Simple add an extra polynomial z(t) to give us the behaviour in

the third dimension.

• Parametric bicubic surfaces use two parameters s and t to

parametrise the cubic patch.
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• Hermite surfaces: define the vertices of the four sided polygon,

together with the tangents along the curves in the t and s

directions and the twist – 16 conditions to specify a single cubic

patch.

Curved surfaces
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• Bézier surfaces: defined by 16 control points.



Curved surfaces

• Parametric surface, q(s, t), the tangents to the surface in the s

and t directions are:

∂q(s, t)

∂s
and

∂q(s, t)

∂t
,

• The normal to the surface is easy to compute and is:

∂q(s, t)

∂s
×

∂q(s, t)

∂t
,

• We can display the surface by fixing one of s or t and

incrementing the other (in small steps).

Summary

• Having finished this lecture you should:

– be able to use parametric functions;

– understand how curved objects are represented in computer

graphics;

– be able to draw a curved object given a series of control

points;

– extend curved objects into 3D and patches.

• OpenGL implements curves but we will not explore this in the

labs.


