
The Visible Surface Problem

• Important for determining realistic images.

• The fundamental concept of visible surface determination is

simple - find those surfaces which we can see and draw them.

• Two main implementations:

– the pixel approach is:

for (each pixel in the image) {

determine the object closest to the viewer,

pierced by the projector through the pixel.

draw the pixel in the appropriate colour.

}

The Visible Surface Problem

• Second implementation:

– the object approach is:

for (each object in the image) {

determine the parts of the object which are not

obstructed by itself or other objects.

draw those parts in the appropriate colour.

}

• Which is best to use depends upon the image being draw.

Image or Object precision?

• Assume we have an image with p pixels and n objects.

• The cost of the image-precision algorithm would be of order np.

• The cost of the object-precision algorithm would be of order n2.

• The individual steps in the object-precision algorithm are more

complex.

• Object-precision calculations have an advantage if we need to

change the resolution.

• The optimal efficiency can be obtained by combining the

benefits of both methods.

Coherence – some useful examples

• Object coherence

• Face coherence / Area coherence

• Edge coherence

• Scan-line coherence

• Depth coherence

• Frame coherence – time

How to check visibility?

P3

1

2

Centre of
Projection

Projectors

P

P

• For parallel projections we can simply test for occlusion of two

points p1 = [x1, y1, z1]
′ and p2 = [x2, y2, z2]

′ by checking whether

x1 = x2 and y1 = y2.

• For perspective projections we must first apply N∗

per =MNper.

This ensures that projectors are parallel to the z axis.

Extents and bounding volumes

• Can simplify the problem (in object precision) using many

methods.

• Bounding elements or volumes are commonly used.

Extents and bounding volumes

Three possible cases when using bounding elements.

Back Face Culling

x

-z

Observer



Back Face Culling

x

-z

Observer

• For solid objects, in both approaches we can roughly half the

complexity.

• In the canonical view volume the DOP will be parallel to the z

axis:






nx

ny

nz






·







0
0
−1






.

will be positive if the face is a back-face: in practice just test

the sign of the z component.

Spatial partitioning and Hierarchical models

• By dividing the volume considered into a number of disjoint

regions (such as used in quadtree and octree schemes) we can

readily reduce the number of object comparisons.

• Speeds up both methods.

• It may often be the case that the bounding volume of the top

level in the hierarchy will define the bounding volume of all the

components in the hierarchy.

• This is an example of object coherence.

The z-buffer algorithm

• The most widely used algorithm, easily implemented in hardware.

• In addition to a frame buffer we also have a z-buffer which

stores 16 to 32 bits of depth information.

• Simple to implement but increases memory requirements.

• The z-buffer is initialised to zero (back clipping plane).

• The largest z value (which depends on the number of bits used

in the z-buffer) is allocated to the front clipping plane.

• Polygons are scan converted in arbitrary order.

void zBuffer ()

{

int pz; /* Polygons z at pixel (x,y) */

for (y = ymin; y <= YMAX; y++) {

for (x = xmin; x <= XMAX; x++) {

WritePixel(x,y,BACKGROUND_VALUE);

WriteZ(x,y,0);

}

}

for (each polygon) {

for (each pixel in the polygons prjn.) {

pz = polygons z value at (x,y);

if (pz >= ReadZ(x,y)) {

WritePixel(x,y,polygon colour);

WriteZ(x,y,pz);

}

}

}

}

The z-buffer algorithm

• If the computation of the polygon colour (lighting model) is

expensive, then some pre-sorting of the polygons will produce a

speed up.

• The z-buffer algorithm combines scan conversion and visible

surface determination.

• A-buffer is very much like the z-buffer algorithm but includes

anti-aliasing.

The z-buffer algorithm

• We can use depth coherence to speed up the implementation –

as we use scan line coherence in the mid-point line algorithm.

• If the polygon is planar we can write its equation as

ax+ by+ cz+ d = 0. We can solve this equation for z:

z = −
ax+ by+ d

c
,

• Can use similar trick to scan conversion e.g.:

z2 = z1 −
a

c
∆x ,

when we only change the x direction.

Other algorithms

• Scan-line algorithms - active edge tables.

• The depth sort algorithm:

– sort all polygons by their z coordinate;

– resolve any ambiguities by splitting polygons that

inter-penetrate;

– scan convert the polygons in order, from the back to the

front.

• Painter’s algorithm, assigns a unique z value to each polygon.

• No inter-penetration allowed, thus works best in 2.5D.

Alternative methods

• Binary space partition trees (object precision).

– Can be reused for any view angle - thus quick to recompute if

only camera position changes.

• Visible surface ray tracing (image precision).

– Has more powerful cousin, used in illumination modelling.

• Area subdivision algorithms (like quadtree) - divide image until it

is easy to decide on occlusion.

– Mix of both object and image precision methods.



Visible Surface Methods

• Can use either object or image precision methods.

• Both have advantages.

• z-buffer algorithm is the most simple and easily implemented.

• Some pre-sorting might help speed up algorithm.

• Also back-face culling and spatial partitioning are simple and

fast.

Summary

• Having finished this lecture you should:

– understand what visible surface determination is;

– be able to contrast object and image precision approaches;

– be able analyse the z-buffer algorithm;

– know the various speed ups which can be used and

understand why they work.

• Of course OpenGL implements visible surface determination for

us in practice!.


