The Visible Surface Problem

Important for determining realistic images.

e The fundamental concept of visible surface determination is
simple - find those surfaces which we can see and draw them.

e Two main implementations:

— the pixel approach is:

for (each pixel in the image) {
determine the object closest to the viewer,
pierced by the projector through the pixel.
draw the pixel in the appropriate colour.

The Visible Surface Problem

e Second implementation:

— the object approach is:

for (each object in the image) {
determine the parts of the object which are not
obstructed by itself or other objects.
draw those parts in the appropriate colour.

e Which is best to use depends upon the image being draw.

Image or Object precision?

e Assume we have an image with p pixels and n objects.
e The cost of the image-precision algorithm would be of order np.
e The cost of the object-precision algorithm would be of order n2.

e The individual steps in the object-precision algorithm are more
complex.

e Object-precision calculations have an advantage if we need to
change the resolution.

e The optimal efficiency can be obtained by combining the
benefits of both methods.

Coherence — some useful examples

e Object coherence

e Face coherence / Area coherence
e Edge coherence

e Scan-line coherence

e Depth coherence

e Frame coherence — time

How to check visibility?

Projectors

Centre of
Projection
P3

e For parallel projections we can simply test for occlusion of two
points p1 = [z1,¥1,21]’ and py = [z, Yo, 25]’ by checking whether
1 =z2 and y1 = yo.

e For perspective projections we must first apply Ny, = M Nper.
This ensures that projectors are parallel to the z axis.

Extents and bounding volumes

e Can simplify the problem (in object precision) using many
methods.

e Bounding elements or volumes are commonly used.

Extents and bounding volumes

Back Face Culling

Observer




Back Face Culling

e For solid objects, in both approaches we can roughly half the
complexity.

In the canonical view volume the DOP will be parallel to the z
axis:

Ny 0
ny 0
Ny -1

will be positive if the face is a back-face: in practice just test
the sign of the z component.

Spatial partitioning and Hierarchical models

By dividing the volume considered into a number of disjoint
regions (such as used in quadtree and octree schemes) we can
readily reduce the number of object comparisons.

Speeds up both methods.

It may often be the case that the bounding volume of the top
level in the hierarchy will define the bounding volume of all the
components in the hierarchy.

This is an example of object coherence.

The z-buffer algorithm

The most widely used algorithm, easily implemented in hardware.

In addition to a frame buffer we also have a z-buffer which
stores 16 to 32 bits of depth information.

Simple to implement but increases memory requirements.

The z-buffer is initialised to zero (back clipping plane).

The largest z value (which depends on the number of bits used
in the z-buffer) is allocated to the front clipping plane.

Polygons are scan converted in arbitrary order.

void zBuffer ()
{
int pz; /* Polygons z at pixel (x,y) */
for (y = ymin; y <= YMAX; y++) {
for (x = xmin; x <= XMAX; x++) {
WritePixel(x,y,BACKGROUND_VALUE) ;
WriteZ(x,y,0);

}
for (each polygon) {
for (each pixel in the polygons prjn.) {
pz = polygons z value at (x,y);
if (pz >= ReadZ(x,y)) {
WritePixel(x,y,polygon colour);
WriteZ(x,y,pz);

The z-buffer algorithm

If the computation of the polygon colour (lighting model) is
expensive, then some pre-sorting of the polygons will produce a
speed up.

The z-buffer algorithm combines scan conversion and visible
surface determination.

A-buffer is very much like the z-buffer algorithm but includes
anti-aliasing.

The z-buffer algorithm

We can use depth coherence to speed up the implementation —
as we use scan line coherence in the mid-point line algorithm.

If the polygon is planar we can write its equation as
ax 4+ by 4+ cz + d = 0. We can solve this equation for z:

_ ax +by+d

- )

c

Can use similar trick to scan conversion e.g.:
a
20 =21 — Az,
c

when we only change the z direction.

Other algorithms

e Scan-line algorithms - active edge tables.

The depth sort algorithm:
— sort all polygons by their z coordinate;

— resolve any ambiguities by splitting polygons that
inter-penetrate;

— scan convert the polygons in order, from the back to the
front.

e Painter’s algorithm, assigns a unique z value to each polygon.

e No inter-penetration allowed, thus works best in 2.5D.

Alternative methods

Binary space partition trees (object precision).

— Can be reused for any view angle - thus quick to recompute if
only camera position changes.

Visible surface ray tracing (image precision).

— Has more powerful cousin, used in illumination modelling.

Area subdivision algorithms (like quadtree) - divide image until it
is easy to decide on occlusion.

— Mix of both object and image precision methods.



Visible Surface Methods

Can use either object or image precision methods.

Both have advantages.

z-buffer algorithm is the most simple and easily implemented.

Some pre-sorting might help speed up algorithm.

Also back-face culling and spatial partitioning are simple and
fast.

Summary

Having finished this lecture you should:

— understand what visible surface determination is;

— be able to contrast object and image precision approaches;
— be able analyse the z-buffer algorithm;

— know the various speed ups which can be used and

understand why they work.

Of course OpenGL implements visible surface determination for
us in practice!.




