
Outline

• Specification of a 3D view.

• Implementing parallel projections.

• Implementing perspective projections.

• Mapping to the view port.

Specification of 3D views

VRP

View
plane

VUP

VPN
n u

v

• The projection plane = view plane.

• Defined using:

– View Reference Point (VRP), View Plane Normal (VPN)

– and View Up Vector (VUP)

Specification of 3D views

VRP

View
plane

VUP

VPN
n u

v

• Together define the Viewing Reference Coordinate (VRC)

system.

• The VRP (point) and VPN and VUP (directions) are specified in

a right handed world (application model) coordinate system.

Specification of 3D views

• The view window is then defined by (umin, vmin), (umax, vmax).

• The centre of projection and Direction Of Projection (DOP) are

defined by a Projection Reference Point (PRP) and an indicator

of the projection type:

• The coordinates of the PRP are defined in the VRC.

Perspective projection

View
plane

v

u

CW VRP

VPN

n

Center of
projection
(PRP)

Specification of 3D views

• Parallel projection

View
plane

CW

VRP

VPN

n

PRP

DOP

• If the projection is parallel, the the DOP is defined by the

direction between the PRP and the centre of the projection

window.

Specification of 3D views

• It is simpler for the programmer to change the direction of

projection required (rotate / move the camera), at the expense

of extra complexity if the PRP is moved (i.e. to get different

views of the object – change the lens).

• OpenGL uses a very similar method to specify the view volumes

– we will come back to this.

• The camera analogy is very powerful and general.

Specification of 3D views

• Finite view volumes are defined by selecting the signed

quantities F and B which define the locations of the front and

back clipping planes.

• Both these planes are parallel to the view plane, thus F and B

are defined along the VPN.

F B

Back
clipping
plane

View
plane

Front
clipping
plane

VPN

VRP

Specification of 3D views

• We want a finite view volume because we do not want to draw

objects close (or behind us) and objects which we cannot see.

B

F

Front
clipping
plane

View
plane

Back
clipping
plane

VPN

DOP

VRP

Specification of 3D views

• To display the contents of the view volume the objects are

mapped into a unit cube whose axes are aligned with the VRC

system (called the Normalised Projection Coordinates (NPC)).

• Objects which are far away are squashed more (small)!

• To create a wire-frame display of the contents of the 3D

viewport we can simply drop the z coordinate.

Implementing 3D→2D projections

• Define normalising transformations Npar (parallel) and Nper

(perspective) that transform the points in world coordinates

within the view volume to points in the normalised projection

coordinates.

• Can apply clipping and hidden line removal to these canonical

view volumes.

• Next section gives the details necessary to implement (and

understand?) planar geometric projections.

Parallel projections

• Canonical view volume is the unit parallelepiped defined by the

planes, x = −1, x = 1, y = −1, y = 1, z = 0 and z = −1. The

steps necessary to achieve a canonical view volume are

1. Translate the VRP to the origin.

2. Rotate the VRC such that it is aligned with the world

coordinate system.

3. Shear (in x and y) so that the direction of projection is

aligned with the z axis.

4. Translate and scale into the canonical view volume

(parallelepiped).

Parallel projections

• Steps 1 and 2 combined produce the view orientation matrix

(GL MODELVIEW), while steps 3 and 4 give the view mapping matrix

(GL PROJECTION).

• Steps 1 and 2 are logical.

• BUT

Parallel projections

• Step 3, shearing (so that z value represents distance from the

viewer:

yy

DOP

VPN

-z

shear

-z
VPN

DOP’

• Step 4 is not necessary for display, however most clipping

algorithms require a canonical volume element.

• Npar = SparTparHparRT (−V RP)

Perspective projections

• Steps 1 and 2 are the same as those in the parallel case but an

additional step brings the PRP to origin.

1. Translate the VRP to the origin.

2. Rotate the VRC such that it is aligned with the world

coordinate system.

3. Translate so that the centre of projection (i.e. the PRP) is at

the origin.

4. Shear (in x and y) so that the direction of projection is

aligned with the z axis.

5. Scale into the canonical view volume (truncated pyramid).

Perspective projections

• The final composite transformation matrix is given by

N∗

per = SperHparT (−PRP)RT (−V RP).

• Npar and N∗

per will not affect the homogeneous coordinate w.

However the additional step to the computation of Nper

transforming the truncated pyramid to a parallelepiped will:

M =













1 0 0 0
0 1 0 0

0 0 1
1+zmin

−zmin
1+zmin

0 0 −1 0













.

• Nper = MN∗

per.

Clipping and Projection to 2D

• Clipping is usually carried out in the canonical view volume since

the algorithm will be independent of the projection type.

• Projecting the 3D canonical volumes to 2D is very simple, we

just retain the x and y coordinates.

• The matrix to do this is just:

Mort =











1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1











or Mper =











1 0 0 0
0 1 0 0
0 0 0 0
0 0 −1 1











.

3D Viewport transformation

• This is similar to the 2D case.

• The objects transformed by the projection will then be
transformed into the viewport coordinates using the following
matrices:







1 0 0 xvmin

0 1 0 yvmin

0 0 0 zvmin

0 0 0 1















xvmax−xvmin

2
0 0 0

0 yvmax−yvmin

2
0 0

0 0 zvmax−zvmin

1
0

0 0 0 1















1 0 0 1
0 1 0 1
0 0 1 1
0 0 0 1






.

• To plot the resulting 2D object we divide by w and then simply

ignore the z coordinate and plot the x and y coordinates.

Summary

• To summarise the process of 2D viewing of 3D objects is:

– 3D → homogeneous,

– apply Npar or Nper,

– homogeneous → 3D,

– clip,

– 3D → homogeneous,

– project using Mort or Mper,

– transform into device coordinates (window to viewport):

homogeneous → 2D.

Viewing in OpenGL

• OpenGL viewing definition uses the camera analogy.

• Two matrices define the total projection:

• GL PROJECTION defines the projection using the matrices:

MSperHpar as given in the notes.

• Use the command glFrustum to set the viewing parameters.

• Define the viewing window (xmin, ymin and xmax, ymax), and the

near and far clipping planes.

• Think of this like the lens of a camera.

Viewing in OpenGL

• The other matrix to set is the GL MODELVIEW matrix which

controls both the objects and the view.

• Use gluLookAt with the eye, location to look at and up vector to

define the view of the object.

• This is like the matrices SparTpar as given in the notes.

• Think of this like aiming the camera.

Practical viewing in OpenGL

• Easy to get lost in space: keep the far clipping plane to a large

value – changing the near clipping plane changes the degree of

perspective distortion.

• Use asymmetric (xmin, ymin and xmax, ymax) to achieve false

perspective – make VPN non-parallel to DOP.

• Start with a large front clipping plane: (xmin, ymin and

xmax, ymax) – then focus in on the object.

• Set the viewport using glViewPort and give the origin and width

/ height (keep the same as the aspect ratio of the front clipping

plane.

• If it ain’t broke don’t fix it!

Viewing in OpenGL

• The OpenGL viewing pipeline looks like:

Volume

Clip
Coordinates

World
Coordinates

/w

View

z
w

model
view

y

Eye
Coordinates

x’
y’

x

matrix viewport
Screen

CoordinatesCanonical

toprojection
matrix

perspective
division window

• For both projection and model view matrices use glMatrixMode to

define which to use and then don’t forget to initialise them using

glLoadIdentity.

Viewing in OpenGL

• Can also use parallel projections: use glOrtho to set the

projection matrix.

• The model view matrix is set in the same way as before.

• Use glLoadMatrix to define our own projection matrices

(masochists only).

• Beware the difference between modelling and viewing

transformations.

• Viewing transformations are always set first in the code, since

they are applied last to the animated models.

Lighting OpenGL

• OpenGL uses simplified models to compute lighting. This is a

complex issue – it is covered in the lectures, where I will discuss

its use.

• Main thing is we need to set the material properties (with

respect to the different lighting types: ambient, diffuse and

specular). We then need to define the lights – position and

colour.

• To compute lighting we must know the surface normals, as well

as vertex location and material properties which can be different

on different faces (front and back).

• Need to initialise and use the depth buffer to get proper 3D

effect.

Animation with OpenGL

• For this we are constrained by GLUT– it is quite particular

about animation.

• Main tool to use is to set the glutIdleFunction – whenever

GLUT has processor time it runs the specified function.

• Can pass in the NULL function (no animation).

• There can only ever be one glutIdleFunction so this must

process all the animation instructions and then call

glutPostRedisplay which sets a redraw flag.

• There are several methods we can use for animation: remember

to use GLUT DOUBLE mode, and glutSwapBuffers.

Methods of animation in OpenGL

• Animation is about change over time.

• Most natural method is to employ the glutIdleFunction to

increment time and make what is drawn depend on time – solar

system example.

• But we could directly change the transformation matrices,

without worrying about their dependence on time – the house

spinning example.

• Or we could use procedural animation and call functions to do

higher level things, like open or close jaws – the robot arm

example (but note GLUT is not designed to work this way).

Summary

• Having finished this lecture you should:

– understand how to implement projection in computer

graphics;

– contrast perspective and parallel projections;

– be able to set the projections in OpenGL;

– understand how OpenGL can be used for animation.

• The course gets no harder than this, I think!

