
© A Barnes 2003 1 CS1110/Unix

CS1110 Introduction to Systematic Programming

In this lecture I will discuss:

the UNIX file system
use of some of the basic UNIX commands for handling files and directories

UNIX Filenames and Extensions
In UNIX a filename is (usually) of the form

basename.extension

The basename may be chosen freely by the user; normally one should give a file a meaningful
name which indicates briefly its purpose or contents. Thus for a file containing a student's
submission for the first ISP coursework problem the basename ISPCwk1 would in general be
preferable to (say) file1.

Usually UNIX filenames have a short extension (usually three or fewer characters) to indicate
the nature of each file. For example the extension .adb (short for Ada body) might be used
for a file containing an Ada program, .c for a file containing a C program, .o for a object file
(containing binary machine code), .txt for files containing text, .dat for a files containing
data for a program, .ali for files Ada Library Information, .ps for a files PostScript (a page
description language), etc.. In UNIX filenames without an extension are normally reserved for
executable programs (or applications) and for directories (or folders).

For example whilst doing their first Ada coursework assignment students might create the files
ISPCwk1.adb (for the Ada program itself) , ISPCwk1.dat (for test data), ISPCwk1.res (for
program results), ISPCwk1.txt (a text file containing an account of the design of the
program). The final executable program might be called ISPCwk1. The Ada compiler would
also create files ISPCwk1.o and ISPCwk1.ali; these contain the object (binary) code and Ada
library information respectively produced by the Gnat Ada compiler.

In UNIX (unlike Ada) the case of characters in file names and in UNIX commands is
significant. Thus for example ISPCwk1.adb, ISPcwk1.adb and ispcwk1.adb are different
filenames and cp is the UNIX file-copying command whereas CP is not.

Although filenames in UNIX can contain virtually any characters available on a keyboard,
generally for convenience filenames in UNIX should contain only letters, numbers,
underscores and hyphens. In particular spaces and punctuation characters (except full-stops to
separate basenames and extensions) should be avoided in UNIX filenames. In UNIX there is
virtually no limit on the length of filenames or extensions -- the complete filename with
extension must be no longer than 1023 characters, but this is more than enough for all practical
purposes!

The UNIX File System & Directories
Like all other modern operating systems UNIX allows users to keep their programs and data
on-line in files that are immediately accessible. As there are often thousands of files on the
computer system, for ease of access related files are usually stored together in a directory (or
folder). A file containing a piece of text, a program or data is called a regular file, whereas
a file containing the names and information on the location of other files is called a directory.

Each user on a UNIX system is given a home directory in which store their files. The home
directory of a user is denoted by ~userid where userid is the user's UNIX log-in name.
When users log-in to a UNIX system, their home directory becomes their current working
directory.

A directory may contain a mixture of regular files and other (sub-)directories. Thus the internal
nodes of the file system tree are directories and 'leaf' nodes are regular files. Different
branches of the file system tree may reside on different physical devices (usually magnetic
disks). The device may not even be connected directly to the computer, but may belong to
another machine on the same network, but owing to NFS (network file service) this is largely

© A Barnes 2003 2 CS1110/Unix

transparent to the user. The system administrator mounts physical devices containing file
systems on nodes of the file system tree making them accessible to users.

The UNIX file system is a hierarchical tree structure with a root denoted by the character /.
Each file or directory in the file system is identified by a character string known as its
absolute (or full) pathname: this lists the names of all the directories on the path from the
root node / to the file or directory required. These directories are separated by the character /.

For example /usr/local/bin/emacs specifies a file named emacs (the Emacs editor) which
is in a sub-directory bin which itself is a sub-directory of the directory local which itself is a
sub-directory of the directory usr which is a sub-directory of the root directory /.

The name of the home directory is usually the same as the user's UNIX userid. For Aston
staff and students in the School of Engineering & Applied Science, the home directory is
usually a 'descendant' directory of the top-level directory /eas. For example, on the file-
server helios at Aston a typical user's home directory might be /eas/d205/barnesa.

To access a file in the current working directory one simply needs to specify the name of the
file. For example if a file (prog1.adb, say) resides in the current working directory we could
refer to it simply by its name and extension prog1.adb. However if the file is in another
directory we need to specify both the name of the directory and the name of the file. For
example if it resided in the home directory of another user (csweb4 , say) we would need to
specify the directory and the name as follows: ~csweb4/prog1.adb. If instead the file resided
in the directory

/usr/local/staffstore/CSAdaLib

we would specify it as

/usr/local/staffstore/CSAdaLib/prog1.adb

and so on.

Since absolute pathnames can be rather long, UNIX allows users to refer to a file by specifying
its relative pathname, that is by specifying its location relative to the current working
directory (cwd). Note that absolute pathnames start with a / whereas relative
pathnames do not.

For example assuming the current working directory is /eas/d205/barnesa, a user could
refer to the file /eas/d205/barnesa/.login by using the simple file name .login.
Similarly the file unit4.adb in the sub-directory ISP/unit-programs of
/eas/d205/barnesa could be referred to by the relative pathname:

ISP/unit-programs/unit4.adb

which is clearly easier than using its full pathname namely

/eas/d205/barnesa/ISP/unit-programs/unit4.adb

Basic UNIX commands
UNIX commands may be entered at the UNIX shell prompt in an active xterm window.

Listing the contents of a directory
In order to see the names of files contained in a directory the UNIX command ls (short for
list) is used.

ls list the names of files in the current working directory

ls mydir list the names of files in the directory mydir

For example
ls /usr/local/bin list the names of the files in the system directory /usr/local/bin
ls ~csweb5 list the names of the files in the home directory of user csweb5

© A Barnes 2003 3 CS1110/Unix

ls ~ list the names of the files in your home-directory (even if it is not the
current working directory). Note that ~ is UNIX shorthand for the
home directory of the current user.

Displaying the contents of a text file
UNIX provides a command cat (short for concatenate) for this:

cat file display the contents of the specified file on standard output
(usually the terminal window). The whole file is displayed 'in
one go'.

To display long files it is usually more convenient to use a pager program which displays one
screen-full (often referred to as one page) at a time. There are usually several pager programs
available on UNIX systems for example page, more and less (less is probably the best of
these).

less file display the contents of the specified file one screen-full at a
time Press the space-bar (or the 'f' key) to display the next
'page', press the 'b' key to move back one page or press the
'q' key to terminate the display of the file. 'g' and 'G' move
to the start and the end of the file respectively. For help on more
advanced features of less, press the 'h' key followed by
<Return>.

The program more behaves in a more or less similar fashion to less, but the program
terminates automatically whenever the end of the file is reached. Incidentally the reason (such
as it is) for the bizarre names is that pager programs often display a prompt at the bottom of the
page displayed of the form "More 25%" to indicate that there is more of the file than appears on
the display and that the currently displayed page is about one quarter of the way through the
file. less is a rather ironic name for a program with more features than more!

An alternative way of viewing a text file is to open the file in Emacs.

Generally one should only display text files with utilities such as cat, less, more etc..
Never attempt to display binary files such as executable programs with these utilities --if you
do attempt to display binary files, certain 'control characters' in these files are likely to crash
your terminal window making it unusable; then you may need to kill the xterm window.
Actually if you really want to see what an binary file looks like, it is safe to open it with Emacs
-- however it simply looks like gobble-de-gook.

Often you can guess the type of file from its extension. For example typical text files might
have the extension .txt (plain text files), .adb & .ads (Ada program text files) .c (C program
source files) whereas typical binary files might have the extensions .o (relocatable binary) .a
(UNIX archive file) and no extension (executable binary). However in cases of doubt you
should use the UNIX utility file to check that file-type is text before attempting to display a
file. Here are a few examples of the use of the command file and the output it produces:

file /usr/local/bin/emacs
ELF 32-bit MSB executable SPARC Version 1

file /usr/local/staffstore/CSAdaLib/cs_int_io.o
ELF 32-bit MSB relocatable SPARC Version 1

file /usr/local/staffstore/CSAdaLib/cs_file_io.adb
ascii text

file /usr/local/staffstore/CSAdaLib/cs_file_io.ali
ascii text

In the first two examples the files are binary files (of various kinds); only the third and fourth
are text-files.

Changing the current directory
As we have said, when a simple file name is given to a UNIX command the file is assumed to
be in the current working directory. In order to specify a file in another directory we must give
both the directory and the file name -- and since UNIX directory names are often rather long

© A Barnes 2003 4 CS1110/Unix

this can involve a considerable amount of typing! To avoid this hassle, users may change the
current working directory using the command cd. Note also as you change directory, the TC-
shell prompt alters automatically to display the current working directory.

cd directory make the specified directory into the current working directory

For example

cd /usr/local/gnat312p/gnat-3.12p-docs
make the system directory /usr/local/gnat312p/gnat-
3 . 1 2 p - d o c s into the current working directory
(/usr/local/gnat312p contains miscellaneous files relating to
the Ada system you will be using in the ISP course).

less gnat_ug.txt then display the contents of file gnat_ug.txt in that directory.
This contains documentation regarding the gnat Ada system.
Without the prior cd command one would need to specify the
name of the directory and the file:

 less /usr/local/gnat312p/gnat-3.12p-docs/gnat_ug.txt

and if you were going to do a lot of work involving files in this
directory, this would soon become irksome.

cd ~csweb5 make the home directory of user csweb5 into the current
ls working directory and then list the files that it contains

cd CSLib make the sub-directory CSLib of the current working directory
ls (i.e. the ~csweb5/CSLib) into the current working directory and

then list its contents

cd (or cd ~) 'return' to your home directory, i.e. make the user's home
directory into the current working directory.

Keeping track of the current working directory
To find out what the current working directory is at any time, use the UNIX command

pwd

This displays the full name of the current working directory. pwd stands for print working
directory. pwd is useful if you forget where you are when 'navigating' around the UNIX file-
system with cd.

Manipulating Files:

Copying
cp file1 file2 copy the contents of the file file1 to another file called file2.

If file2 already exists, its original contents are overwritten;
otherwise a new file is created.

Renaming
mv file1 file2 rename (or move) file file1 to have the new name file2. If a

file with the name file2 already exists, its original contents are
overwritten.

Deleting
rm file remove (that is delete) the specified file.

These three commands should be used carefully since otherwise one may lose valuable
information by accidentally deleting or overwriting it. Once a file has been overwritten or
deleted its original contents are lost for ever1.

1 A back-up of user files onto magnetic tape is made regularly each night and it is possible for the system
administrator to retrieve deleted files from the back-up tape (provided that the file was created before the last
back-up!). However retrieval is a time-consuming process (and embarassing for the person asking for the file to
be restored!).

© A Barnes 2003 5 CS1110/Unix

Examples
Make a (back-up) copy of prog1.adb called prog1.bak

cp prog1.adb prog1.bak

Rename the file prog1 (perhaps an executable file produced by the Ada compiler) to something
more meaningful

mv prog1 hello_world

Working with Directories
After using UNIX for some time a typical user might have several hundred files in his home
directory. In order to manage a large number of files it is better to place related files together in
sub-directories (or folders) of the user's home directory. To create a new directory the
command mkdir is used, for example you would create a sub-directory in which to store your
Ada programs as follows:

Creating a folder (or directory)
mkdir Ada create a new folder with the name Ada in the current working

directory.

Normally users are only allowed to create new directories and files in their own home directory
(and in sub-directories of their home directory) -- so make sure you do a cd to your home
directory before doing a mkdir.

Removing a folder

rmdir tmp delete (i.e. remove) the directory tmp in the current working
directory.

Normally the directory to be deleted must be empty (i.e. all files must first be deleted from it
using rm). However it is possible to remove a folder and all the files (and sub-folders that it
contains) by using the rm command with the -r option (-r for recursive delete). Obviously this
command should be used with extreme caution!

rm -r tmp remove all files and sub-directories of the directory tmp of the
current working directory and then delete tmp folder itself

More on Copying and Renaming
The second argument of the commands cp and mv may be a directory instead of a file. In this
case the commands behave slightly differently: assuming Ada is a sub-directory of the current
working directory then the command

cp ~csweb5/prog1.adb Ada

creates a copy the file prog1.adb from the home directory of user csweb5 in the sub-directory
Ada of the current working directory. The copy of the file is also called prog1.adb.

Similarly the command

mv prog2.adb Ada

would move the file prog2.adb (from the current working directory) into the sub-directory
Ada. Thus we see the reason for the naming of the mv command -- it is short for move.

What if the first argument of mv is also a directory? For example:

mv dir1 dir2

This behaves differently depending on whether dir2 already exists or not. If dir2 exists, mv
moves directory dir1 (and all its contents) making it a sub-directory of directory dir2. If
dir2 does not already exist, then dir1 is renamed to be directory dir2. In the command

 mv dir1 file2

If file2 exists and is a regular file (rather than a directory), then an error message is output;
we can't change a file into a directory with mv.

© A Barnes 2003 6 CS1110/Unix

Hidden Files
Files (and directories) whose names begin with the full-stop character are not displayed by the
basic ls command. These files are said to be 'hidden' or 'invisible' files. Note that the full-
stop is usually pronounced as 'dot' in UNIX. Conventionally files whose names begin with a
dot are not used for everyday working. Instead they are used to customise a user's
environment. For example if the files: .login, .tcshrc, .dt, .netscape and .emacs exist
in a user's home directory, they are read automatically when a user logs in, starts a new TC-
shell, starts the Window system, launch the Netscape web browser or invokes the Emacs
editor respectively.

Do not change or delete any of these files or you may corrupt your UNIX
environment.

All files in a directory including hidden ones can be displayed by using the ls command with
the option -a.

ls -a list the names of all files including hidden ones in the current working directory

The . and .. directories
Every directory contains two irregular hidden entries:

. a pointer to the directory itself

.. a pointer to the parent directory
(i.e. the directory immediately above it in the file system tree).

These pointers can be used in pathnames, for example:

ls .. list the names of all 'visible' files in the parent directory of cwd
ls -a .. list the names of all files (both visible & hidden) in parent directory

cd .. change working directory to the parent of the cwd

cd ../.. move two levels up in the file system hierarchy

less ../Ada/prog1.adb list the contents of the file prog1.adb in the sub-
directory Ada of the parent directory of the cwd.

cp /etc/motd . copy the contents of the message of the day file to the
current working directory (note the final 'dot')

File Name Expansion
Many UNIX commands involve specifying one or more files, UNIX makes it easier to specify
file names by providing file name expansion. A pattern is used in place of a file name and
the pattern is expanded to give a list of all files matching the pattern. Certain characters have a
special meaning when used in a pattern:

? a 'wildcard' character which matches any single character (except for / and leading full-
stops)

* a 'wildcard' character which matches any string of characters of length zero or longer
(except for / and leading full-stops).

~ when used alone, it refers to the current user's home directory. When used with a
userid, it refers to the home directory of the user specified.

[...] match any of the characters enclosed in the square brackets

A few examples should make this clear.

rm * delete all (unhidden) files in the current working directory (use
with extreme care!!)

© A Barnes 2003 7 CS1110/Unix

ls prog1.* list the names all files with the basename prog1 in the current
working directory (e.g.. prog1.adb, prog1.o, prog1.ali,
etc.)

ls test.? list the names of all the files with the basename test and a
single character extension (e.g. test.c, test.o, test.s
etc.) in the current working directory.

rm unit[1234].adb delete the files unit1.adb, unit2.adb, unit3.adb and
unit4.adb (if they exist in the current directory)

ls *.adb list the names of files whose names have the extension .adb in
the current working directory. Note that the wildcard characters
* and ? do not match a leading dot in a file name. So this
command would not list any hidden files with the extension
.adb

ls .??* list the names of all hidden files in the current working directory
whose names are at least three characters long including the dot

cd ~csweb5 'move' to the home directory of user csweb5
cd CSLib 'move' into a sub-directory of this called ISP
cp cs_int_io.ads ~ copy the file cs_int_io.ads from this sub-directory to your

own home directory.

Access Control to Files
A typical UNIX file-system contains many thousands of files owned by hundreds of different
users. The UNIX operating system must provide mechanisms by which users can control
access to their own files and so, for example, prevent unauthorised users from reading or
modifying their files.

For each file UNIX records (among other things) the userid of the owner of the file, the
groupid of the file, the type of the file (for example whether it is a directory or a regular file)
and a protection code. The protection code governs access to a file by three classes of user:
the owner of the file, a member of the owner's group and any other user on the system.

u the owner of the file or directory (referred to as the user)
g members of the owner's group.
o all other users

The creator of a file (normally) becomes the owner of a file. Each user also belongs to a group
and that group becomes the groupid of the file when it is created by a user.

The protection code consists of nine bits: the first three bits of the code specify the u-access
(user's or owner's access), the next three the g-access (group access by users belonging to the
same group as the owner) and the last three the o-access (others access). Each set of three bits
controls the three basic types of access that are permitted by UNIX

r read access the contents of the file may be inspected (e.g. using cat or less)
w write access the contents of the file may be altered (e.g. using an editor)
x execute access the file may be executed (assuming it is an executable program)

Access Control to Directories
The protection code for directories have a somewhat different meaning as compared to regular
files:

r read access the contents of the directory may be listed (for example) using ls.
w write access allows a user to create and delete files in that directory. Note that a

user can delete a file even though (s)he does not have write access to
the file itself!

x search2 access allows the directory to be searched to see if a file is present. Note that
without x (search) access to a directory, a user has no access to any of
the files within that directory. With x access to a directory, users can

2 Clearly 'executing a directory' is meaningless.

© A Barnes 2003 8 CS1110/Unix

access a file subject to that file's individual access permissions but
only if they know the exact name of the file (wildcard characters can
only be used if you have both read and search access).

Notes
In order to have access to a file, a user must have search access x to all the directories on
the full pathname of the file. Thus in particular a user must have search access to the
directory in which the file resides.

Normally if a directory is to be made accessible to a certain class of users, then both read and
search access (rx) is granted; then files in the directory may be accessed (subject to their
individual file access permissions) and ls can be used to find out the contents of the directory
and wildcard characters may be used to specify files.

Note also the difference between write access to a file and a directory. With only write access
to a file one may alter the file's contents (for example with an editor), but one may not delete
the file completely. With only write access to a directory one may delete completely any file in
that directory, but one may not alter a file's contents in any other way.

It is quite common for users to allow read and execute (search) access to (some of) their files
and directories so that information can be shared. However for fairly obvious reasons it is rare
for users to grant write access to other users.

Full directory listing
A long directory listing may be obtained using the option -l with ls. This listing contains
information on the size of the file, its owner, its date of creation, and its access permissions
etc.

ls -l dir-name give a full directory listing of all visible files in dir-name.

Options may be combined (in any order), for example to get a full directory listing of all files

 ls -l -a dir-name or equivalently ls -la dir-name

Displaying a file's access permissions
The output of the long form of the ls command (ls -l) represents the information about the
file-type and its protection code symbolically as follows:

File-type (1st character) d directory - regular file

Owner read access (2nd character) r read access - no read access
Owner write access (3rd character) w write access - no write access
Owner execute access (4th character) x execute access - no execute access

Group read access (2nd character) r read access - no read access
Group write access (3rd character) w write access - no write access
Group execute access (4th character) x execute access - no execute access

Others read access (8th character) r read access - no read access
Others write access (9th character) w write access - no write access
Others execute access (10th character) x execute access - no execute access

Examples
-rw-r--r-- Regular file. Owner has read/write access. Members of owner's group

and all other users have read-only access.
-rwxr-x--- Regular file. Owner has read/write/execute access. Members of owner's

group have read/execute access. No access by Others
drwxr-xr-x Directory file. Owner has read/write/search access. Group and Others

have read/search access
----r-x--- Regular file with rather bizarre access permissions: all members of

owner's group except the owner can read and execute the file3.

3 Note group permissions refer to everyone in the group except thre owner. Similarly other permissions refer to
everyone except the owner and members of his/her group.

© A Barnes 2003 9 CS1110/Unix

SuperUsers
There is a fourth class of users called root users (or super-users) to whom these file access
restrictions do not apply. A user gets superuser status if (s)he logs in under the userid root.
Of course only the system administrator and a few 'trusted' users should know the root
password as they have unrestricted access to all files on the system.

Getting more info on UNIX commands
The behaviour of most UNIX commands may be modified by using command-line options
(such as the options -l and -a for ls or the option -r for rm. It is not sensible in an
introductory course such as this to describe all the available options for each UNIX command
(since most self-respecting UNIX commands come with at least a dozen options!). However
all this information is available on-line on any UNIX system by using the man (manual)
command.

For example to display the UNIX manual pages for the commands ls, cp and less type

man ls man cp man less

The required UNIX manual page is then displayed page by page on the VDU screen. This
gives information on the purpose of the instruction, a synopsis of how it can be used together
with a information on all the options available with this command, a list of related commands,
known bugs etc..

Emacs Automatic Back-up Files
As a safety measure, Emacs retains the previous version of any file that you edit. This is
useful if you completely mess up an edit and make the mistake of saving the changes; you still
have a copy of the original version safely stored on disk. The original file is saved as an
automatic back-up. The name of the back-up file is obtained by appending a tilde (~) to the
original file name. For example if the original file was called prog1.adb, the back-up will be
called prog1.adb~. Note if you completely mess up an edit, rename the backup file to be the
original file name

mv prog1.adb~ prog1.adb

and then edit the file -- don't edit the automatic back-up file directly with Emacs.

Emacs Auto-Save Files
As an extra insurance, as you edit a file, Emacs always creates (and periodically updates every
few minutes) an auto-save file so that if the system crashes in the middle of a long editing
session you only lose a few minutes work. The name of the auto-save file is automatically
generated by Emacs by adding the hash character # to the front and end of the filename. For
example the auto-saved version of prog1.adb is called #prog1.adb#.

If Emacs exits normally the auto-save file is deleted, but if Emacs exits abnormally (due
perhaps to a system crash or if you quit without saving your work) the auto-save file will be
retained.

Again if you want recover a file after a system crash from the auto-save file, rename the auto-
save file to have its original name

mv #prog1.adb# prog1.adb

Then edit the file in the normal way. Beware editing the auto-save file directly with Emacs as
this turns of the auto-save protection!

Saving Disk Space
Automatic back-up files and auto-save files created by Emacs take up valuable disk space.
Periodically such files should be deleted. This can be done by issuing the UNIX command
clean in the directory where the files are located. Remember this also cleans up object files
and Ada Library Information files and bind files created by the Ada compiler.

