
© A Barnes, 2003 1CS1110/Lab 5.1

CS1110 Introduction to Systematic Programming

Practical Class 1 Week 5
Debugging with GDB

In the last practical class we used the Ada run-time debugger gdbtk to trace the execution of
an Ada program and to view how the contents of the program variables changed as execution
proceeded. Of course the debugger is normally used when a program contains logical errors,
that is when it compiles and runs but fails to produce the correct results or indeed any results
at all.

In this practical we will be using the gdbtk to debug several simple Ada programs.

First copy the files
dbex1.adb dbex2.adb dbex3.adb

to your own Ada directory from the directory
/usr/local/staffstore/cs1110/debug-exercises/

The first file dbex1.adb contains a buggy version of a program to compute factorials. Note
the factorial of a number N (is denoted by N!)is the product of all the numbers between one
and the number itself

N! = N * (N-1) * (N-2) *4 * 3 * 2 * 1

For example 4! = 4*3*2*1 = 24, and 5! = 5*4* 3*2*1 = 120 etc..

Compile the program for use with the debugger by supplying the option -g on the UNIX
command-line:

gnatmake -g dbex1.adb

or use Build from the Ada menu (which supplies the option -g automatically).

Then run this program in the normal way and observe that it gives erroneous results.

Start the debugger with the command
gdbtk dbex1

Arrange the Source window , the Commands window and the Terminal windowon the
screen so that all are visible.

Now start the program dbex1 under debugger control by clicking on the Start button in the
Source window.
The program dbex1 is launched and the debugger gains control just as the main Ada
procedure is about to start.

The Source window displays the source file dbex1.adb with the first executable statement
highlighted in green. Recall that as the program is executed under the control of the
debugger the highlighting moves through the source file and always indicates to the next line
of Ada code to be executed.

Display the contents of the variables N, I and Productby doubling clicking on each variable
in turn. The Expressions Window will appear with each variable’s value displayed in a sub-
window. Arrange these so that you can see the value of each variable and then drag the
Expressions Window so that it does not overlap the other windows.

Now single-step through the program noting how the variables change as execution proceeds.
Recall that program output appears in the Terminal window and when the program requires

© A Barnes, 2003 2CS1110/Lab 5.1

interactive input from the keyboard you must type the required data into the terminal window
and press <Return>.

Try to deduce what is wrong with the program. There are in fact two bugs1 -- one very
obvious -- the other slightly less so! If necessary, you can restart the program from the
beginning by clicking on Start again and then enter a different value for the variable N.

Exercise
Compile dbex2.adb for use with the debugger. This is a buggy version of the GCD program
whichg appeared in an earlier practical sheet (Lab 2.1). Now start dbex2 under the control of
the debugger.

Single step through the program and enter two non-zero values for the variables First and
Second (say 25 and 16 whose correct greatest common divisor is 1). Try to deduce what is
wrong with the algorithm. Quit the debugger by selecting Quit from the File menu in any
debugger window. Correct the bug (two assignments statements need swapping) using
Emacs, recompile the program after saving the changes made and then run the program again
under the control of the debugger and trace what happens this time. After several loop
iterations the correct result should be obtained.

However the program is still not compeletly correct. It crashes if 0 is entered as the value of
the variable Second. Single step the program and enter a zero value for the variable Second
(and any old value for the variable First. Single-step the program keeping a watchful eye
on the Command Buffer and see when a error occurs. Can you see the problem? Using
Emacs modify the program in such a way as to avoid the division by zero problem
(remember that calculating a remainder involves doing a division). Compile and test the
modified program.

Important Note
When you modify a program and recompile, always quit the debugger and restart it to debug
the modified program. If you don't you will still be debugging the old executable program --
this can become very confusing particularly if the modified source of the program may be
displayed in the source window!

Setting Breakpoints on Exceptions
To allow the debugger to gain control whenever a run-time error occurs (in Ada, run-time
errors are called exceptions), we need to set a Breakpoint on All Exceptions. To do this
open the Breakpoints window from the Windows menu in the Source window, now click
on the Create button, then select Exception and All in the window that appears2.

It is now safe to run a buggy program at full speed using Continue, the debugger will gain
control as the error occurs and will display the offending command.. In future you should
always set a Breakpoint on All Exceptions. when debugging (do this immediately after
clicking on Start to start the program).

Exercise
Finally try to debug the program dbex3.adb. This is a buggy version of procedurised
version of the factorisation program in Unit 8. This exercise is intended to give you some
practice at debugging programs containeing procedures.

Note for most inputs the program will go into an infinite loop and appear to ‘hang’. If you
are running the program normally, you can kill the program by pressing Control-C3. If you
are running it at full speed under the debugger quit the debugger and then restart it.

1 Even if you can spot the bugs just by looking at the source code, use the debugger to
single-step the program and display the value of program variables as execution proceeeds -
- not all bugs are so obvoius and so you will need to become familiar with the debugger.
2 You can also create and delete normal breakpoints by using the Create and Delete buttons
in the Breakpoints window.
3 Press the Control and C keys together.

© A Barnes, 2003 3CS1110/Lab 5.1

Single-step through the loop in ProduceFactors a few times, inspecting the values of
relevant variables such as TrialDivisor and NumOfDivisors, and see if you can deduce the
cause of the problem. If not, set breakpoints at strategic places in ProduceFactors and then
restart the program (using Start and Continue) and then single step from the breakpoint and
try to find the cause of the errors.

Remember always to clear a breakpoint by clicking on it before attempting to Step or
Continue past it.

Some Hints on Debugging Programs containing Procedures
Step and Next
Recall that Next steps over procedures as if they were single instructions whereas Step steps
through procedure bodies line by line.

The Procedure Call Stack
Always display the Procedure Call Stack by selecting Stacks from the Window menu.

Recall that a local variable or formal parameter can only be displayed when GDBTK is in
that variable's frame, that is when the variable is in scope.

We can navigate up and down the call-stack by clicking on a level in the Call Stack window
or using the Up, Down and Bottom buttons in the Source Window.

Even with the use of the call stack, it is only possible to inspect the value of local variables
and formal parameters of a procedure whilst that procedure is active, that is when the
procedure has been called, but has not yet returned. The reason for this should be obvious:
storage for local variables and formal parameter is allocated only when the procedure is
called and that this storage is released as the procedure returns. Hence the formal
parameters, the local variables and the call frame of a procedure do not even exist when the
procedure is not active.

Exercise
Practise navigating up and down the call stack and displaying the values of local variables
and formal parameters of the various procedures in dbex3.adb.

'Magic' Return from Procedures
Occasionally you may accidentally step into a procedure when you meant to step over it. It
can be very inconvenient to step through the procedure body, particularly if it contains a
large loop which is repeated many times. To cater for this situation GDBTK provides the
command Finish on a button in the Source Window. This causes the procedure to be run 'at
full speed' until it returns, at which point the debugger regains control.

