
© A Barnes, 2003 1CS1110/Lab 4.2

CS1110 Introduction to Systematic Programming
Practical Class 2 Week 4
Tracing Program Execution with GDB
In this practical we will be using the Gnu Run-time Debugger gdb via its graphical user
interface gdbtk to trace the execution of an Ada program.

First copy the files
factors04.adb savings08.adb

to your own Ada directory from the directory
/usr/local/staffstore/cs1110/unit-programs/

The file factors04.adb contains the example factorisation program from Unit 4 and the file
savings08.adb contains the procedurised version of the savings program from Unit 8.

Change directory to your Ada sub-directory then compile the factorisation program for use
with the debugger by supplying the option -g on the UNIX command-line:

gnatmake -g factors04.adb

or use Build from the Ada menu (which supplies the option -g automatically.

Start the debugger with the UNIX command (from a terminal window)1

gdbtk factors04

Do not start gdbtk in the background2 as program I/O from the Ada program being
debugged will be directed to the terminal window.

After a short delay a number of windows will appear: a Source window where the source
code of the program will be displayed, a Commands window where gdb commands can be
entered and where gdb output appears3. The source window also contains a number of
buttons for the most frequently used debug commands and a number of menus. Arrange the
windows on the screen so that all are visible.

The program factors04 is now ready to be run under debugger control. Do this by clicking
on the Start button in the Source window. Do NOT use the Run button as this is will run
the program ‘at full speed’ as no breakpoints have been set to allow the debugger to gain
control.
The program factors04 is launched and the debugger gains control just as the main Ada
procedure is about to start. The Source window displays the source file factors04.adb with
the first executable statement in highlighted in blue. As the program is executed under the
control of the debugger the highlighting moves through the source file and always indicates
to the next line of Ada code to be executed.

Program I/O
As Put and other output procedures are executed, their output appears in the terminal
window. Similarly, as input procedures (such as Get) are executed, you must type the
required data into the terminal window and press <Return>.

Arrange the Source, Command and Terminal windows on the screen so that you can see
them all.

1 Don't use the Emacs Ada menu command Debug because this currently start a different
debugger gvd. The version of gvd on PC-Solaris machines does not currently work properly.
2 That is don’t terminate the command with an ampersand &.
3 Do NOT close the Commands Window as this may cause problems.

© A Barnes, 2003 2CS1110/Lab 4.2

Single-stepping
The simplest way to use the debugger is to 'single-step' the program from the start (that is
execute it one line at a time), checking that the program is behaving as you expect. There are
two single-step commands Step and Next both available on buttons in the Source Window.

These commands behave in the same way for most Ada commands: the instruction is
executed and the debugger regains control. However they behave differently for procedure
calls:

Step steps into the procedure body allowing the procedure body to be executed step by step.
Next steps over the procedure regarding it as a single step and the debugger regains control
when execution of the procedure is complete.

Step is useful if you suspect that there may be a bug in the procedure whereas Next is useful
if you are confident that a procedure is bug-free. For calls to standard Ada library procedures
Step and Next both step over the procedure call4. This is sensible since you can be
reasonably confident that the standard libraries are bug free.

After you have executed the step
Put(Item => "Type in a number greater than 1 (0 or 1 to quit): ");

notice how the output appears in the terminal window. When you step past the command
Get(Item => Number);

you will need to type a suitable value (12 say) in the terminal window and (of course) press
<Return>.

Inspecting the Value of Variables
When the debugger is in control the value of program variables may be inspected. To see the
value of a variable:

in the Source Window, double-click on the variable
The Expressions Window will appear with the variable’s value displayed in a sub-window.

Display the variables Number, TrialDivisor and NumOfDivisors by doubling clicking on
each variable in turn in the source Window. In the Expressions Window, arrange the boxes
for each variable so that the contents of each are visible. Then drag the Expressions
Window so that it does not overlap the other windows.

Now single-step through the program noting how the variables change as execution proceeds.

Step through the program until its terminates normally.

Setting Breakpoints and using Continue
Sometimes it can be tedious to single-step all the way through a lengthy program. If the
program contains a large loop, thousands of instructions may have to be executed. We would
like to be able to run the sections of the program at ‘full speed’5 and then have the debugger
gain control when a certain program step is reached. To do this we need to set a breakpoint
at the required point in the program.

To set a breakpoint at a particular point in a program click on a line number at the
appropriate point in the left-hand edge of the Source Window. A red cross will appear
next to the line number indicating that a breakpoint is set. To clear a breakpoint simply click
on the line number which will change back to its original state6.

4 unless the library has been compiled with the debug option -g.
5 Actually programs run somewhat slower when under debugger control, but still at a very
fast speed in human terms.
6 You can also create and delete breakpoints by using the Create and Delete buttons in the
Breakpoints window.

© A Barnes, 2003 3CS1110/Lab 4.2

When a program is idle with the debugger in control it can be resumed at ‘full speed’ by
clicking on the Continue button in the Source window. The program will run at ‘full speed’
until it terminates or until a Breakpoint is encountered, at which time the debugger will
regain control and then program variables can be inspected.
Start the program again by clicking the Start button and set a breakpoint at the start of the
inner WHILE loop (line 31). Then run the program at 'full speed' by clicking on the Continue
button, enter a number in the terminal window when prompted to do so and then note how
the program stops at the breakpoint and displays the current values of the program variables.
Clear the breakpoint by clicking on line 31 again and click Step to advance past line 31 and
then click on line 31 to reset the breakpoint. You can then single-step through the
factorisation loop by clicking repeated on Step watching the values of the variables change
as program execution proceeds. Alternatively you can run the loop at 'full speed' by clicking
on Continue, the debugger will gain control again when the breakpoint at line 31 is reached
again.
To proceed past the breakpoint a second time, clear the breakpoint by clicking on line 31
again and click Step to advance past line 31 and then click on line 31 to reset the breakpoint.
Continue in this way until the program terminates. Of course if you don't reset the
breakpoint and click Continue the program will run at 'full-speed' until it terminates.
Important Note It should be possible to simply Step or Continue past a breakpoint
without clearing and then resetting it. However with the current version installed, if you
attempt to continue or step past a breakpoint that is set, the debugger will crash and not
respond to further button clicks -- this is a bug which should disappear when a newer version
of gdbtk is installed. In the meantime always remember to clear the breakpoint, single-step
past it and then reset it (if necessary).
Quit the debugger by selecting Quit from the file menu.

Tracing Programs containing Procedures
Compile the program savings08.adb for use with the debugger (i.e. use the option -g with
gnatmake) and then start gdbtk:

gdbtk savings08

Click Start and then step over the Introduction procedure by clicking Next. Note how the
code for the procedure is executed at full-speed with output appearing in the terminal
window. Display the main program variables TotalSavings, MonthlySavings and
PlanLength in the Expression window by double-clicking on each variable in turn (you will
have to scroll the source window to line 100 or so first). Note how these variables have 'junk'
values as they have not yet been initialised.
Now click Step to step into the code for the procedure GetPlanInfo. Note how the code for
this procedure is displayed.

The Procedure Call Stack
During program execution the main Ada procedure may call a procedure a which in turn may
call another procedure b, procedure b in turn can call a third procedure c and so on. The list
of active procedure calls, that is those that have been called but which have not yet returned,
is called the call-stack. At any stage you can inspect the call stack by:

opening the Stacks Window by selecting Stacks from the Window menu of any
GDBTK window. Do this now!

Suppose that (as above) we have single-stepped through the savings08 program so that the
main procedure Savings has called procedure GetPlanInfo. The stacks window shows
information of the form7:
Lev Lang Location Function
0 ada savings08.adb:45 savings.getplaninfo
1 ada savings08.adb:108 savings

7Note gdb displays all identifiers in lower case.

© A Barnes, 2003 4CS1110/Lab 4.2

2 ada b~savings08.adb:170 main

indicating that the procedure getplaninfo is paused at line 45 in the file savings08.adb
and that getplaninfo was called from procedure savings (at line 108 in the file
savings08.adb) which in turn was called from the procedure main (at line 170 of the bind
file b~savings08.adb).

The procedure which is at the bottom8 of the call stack (getplaninfo in this case) is
highlighted and the source window will display the source code of the getplaninfo
procedure.

Each level in the call-stack is called a frame. If we want to display the source code of the
main procedure savings we can click on the frame of savings and the source code window
will show the source code of savings with the call to getplaninfo highlighted. Similarly if
we click in the frame of main, the source code window will show source code of the bind file
with the call to main highlighted (usually the bind file is of little interest to the Ada
programmer).

Suppose we want to display a local variable or formal parameter of getplaninfo (LumpSum,
say). If we attempt this when in the frame of savings or the bind file, GDBTK will respond
that there is no variable LumpSum in the current context. To get GDBTK to display LumpSum
we must move into the frame of getplaninfo.

To summarise a local variable or formal parameter can only be displayed when GDB is in
that variable's frame, that is when that local variable is in scope. However to display the
value of a main program variable, we can be in the frame of savings (or getplaninfo or of
any other procedure) as the variable is in scope throughout the program.

Even with the use of the call stack, it is only possible to inspect the value of local variables
and formal parameters of a procedure whilst that procedure is active, that is when the
procedure has been called, but has not yet returned. The reason for this should be obvious:
storage for local variables and formal parameter is allocated only when the procedure is
called and that this storage is released as the procedure returns. Hence the formal
parameters, the local variables and the call frame of a procedure do not even exist when the
procedure is not active and the corresponding box in the Expressions Window will be blank.

We can also navigate up and down the call-stack using the Up, Down and Bottom buttons in
the Source Window.

Display the values of the formal parameters of procedure GetPlanInfo by double-clicking
on each of these variables in the Source window, note that these variables also have 'junk'
contents as they have not been initialised. Then single-step through the code of
GetPlanInfo using the Step button and enter values in the terminal window when prompted.
Note that as the procedure GetPlanInfo returns the values of the formal parameters are
copied out to the corresponding actual parameters and that the boxes corresponding the
formal parameters become blank to indicate that these parameters no longer exist once the
procedure has 'returned'. Note it takes two clicks of the Step button to return from the
procedure: one click for the return and one click for the copy out of parameters.

Continue stepping through the program and display the local variables and parameters of
each procedure in turn. Note also how the call stack changes as procedures are called and
return.

Continue single-stepping until the program terminates normally or alternatively use continue
to complete execution of the program at full-speed. Then quit the debugger.

At any time you can quit by selecting Exit from the File menu of any GDBTK window. If a
program is currently being run under the control of the debugger the program will ask for
confirmation before quitting.

8 The call stack is displayed with the bottom of the stack at the top!!

© A Barnes, 2003 5CS1110/Lab 4.2

