
© A Barnes October 2001 1 CS111 Lab 1

CS111 Introduction to Systematic Programming

Second Practical Class
If you did not attend the first practical or if you did not complete the
worksheet, work through the hand-out for that practical BEFORE working on
this sheet.

Open the file prog1.adb that you created in the firsst practical class. Remember you
can do this in several ways:
1. Type in an xterm window

emacs prog1.adb &
2. Select Emacs from the Editors submenu of the CS Root menu and then open

the file by selecting Open File from the Emacs Files menu.
3. Start Emacs plus filename prompt from the Editors submenu of the CS Root

menu and then type the name of the file in the dialog box that appears.

Compiling an Ada Program
The computer cannot execute an Ada program such as prog1.adb directly; first it needs
to be converted into machine code that the compuete can execute by a process known as
compiling, binding and linking
1) To compile the Ada program prog1.adb (say) from within Emacs, from the

Emacs Ada menu select Build. This invokes the GNAT Ada compiler to
convert your Ada program, to binary machine code suitable for execution by the
computer. The Emacs window will split into two panes and the lower pane will
show the results of the compilation process.

If the program compiles sucessfully, this pane will show the progress of the
compilation process which will end with a message of the form1

Compilation finished at Wed Oct 9 12:47:03

If the compilation is successful an executable file called prog1 is created. You
can run this by selecting Run from the Emacs Ada menu. Type in two
numbers and the program will add them up and display the result. Select Run
again if you want to run the program again with different input.

Note the Ada menu belongs to the pane containing the Ada program and is not
accessible when the compilation pane has the focus. If the Ada menu is not
visible, click in the upper pane of the Emacs window so that the Ada program
pane has the focus.

If the compilation fails, the compiler outputs one or more error messages in the
compilation pane followed by a message of the form
Compilation exited abnormally with code 4 at Wed Oct 9 14:46:58

This means that the program contains one or more Ada errors (or bugs) and that
it needs debugging. In the Emacs window carefully correct any typos and
other errors; you will need to look at the hand-out for practical 1 for the correct
version of prog1.adb.

Use the compiler error messages to help locate and correct the errors. Error
mesages take the form:

prog1.adb:2:01: misplaced "with"
prog1.adb:8:10: "Frst" is undefined

1 The compiler will issue a warning message about the file and the unit names not
matching -- do not worry about this.

© A Barnes October 2001 2 CS111 Lab 1

indicating that there is an error in line 2 column 1 of the file prog1.adb and that
it has something to do with the WITH command and another error near column
10 of line 8 and that the variable Frst has not been defined. (In fact the
programmer mistakenly typed Frst instead of First).

When you have corrected all the errors, save the modified file (choose Save
Buffer from Emacs' Files menu) and try compiling it again as above.

If the program now compiles without error, run it as described above. If it still
contains errors, repeat the debugging process.

If at any stage you wish to get rid of the compilation pane, click in the upper pane and
then select One Window from the Emacs Files menu.

3) Before you can run your program you need to link the object (.o) file produced
by the compiler into a complete executable program using the Gnat binder and linker.
The binder and linker take the object file and link it with the required Ada library
packages and support files to form a complete executable program. The binding and
linking process is controlled by information in the Ada Library Info (.ali) file. To
bind and link 'in one go', type (in an xterm window)

gnatbl prog1.ali # note the extension is .ali not
.adb

The binding and linking process creates a binary executable program called prog1.

4) To run this program type
prog1

(followed as always by <Return>). Then type in two whole numbers (separated by at
least one space) and press <Return> and the program will compute and output their
sum.

Warning The files prog1.o, prog1.ali and the final executable program prog1 are
not intended to be read by humans and, in particular, you should not attempt to display
the binary files prog1.o and prog1 using utilities such as cat, less or more; the
output will be gobble-de-gook and may render your xterm window unusable.

Note that if, when you try to compile or link your programs, the system complains that it
can't find programs gcc or gnatbl, then this probably means you did not set up your
environment correctly in the first lab class. If so, ask the demonstrator for help.

Scrolling Text in Windows2

Sometimes a window is not big enough to display all the information output by the
computer and information disappears off the top of the window. In this case the scroll-
bar at the side of the window becomes highlighted indicating that the window may be
scrolled so this information becomes visible. The length of the scroll-bar indicates the
whole of the document; the top of the scroll-bar representing the start of the document.
The greyed-out portion of the scroll-bar (sometimes called the 'thumb') represents the
portion of the document that is currently visible.

2 The summary of scrolling in this section refers to basic X-windows scroll-bars such
as those used in xterm and emacs. Scrollbars in certain other applications (for example
various SunTools, Netscape and Xemacs) behave differently but perhaps more
intuitively.

© A Barnes October 2001 3 CS111 Lab 1

To scroll to a different section of the document we need to move the scroll-thumb -
imagine that the document is held fixed and that the scroll-thumb is a window which
moves to reveal a different portion of the document. Scrolling may be done in a number
of ways:

Scroll down one 'page' Move the mouse to near the bottom of the scroll-bar and
left-click.

Scroll up one 'page' Move the mouse to near the bottom of the scroll-bar and
right-click

Scroll down/up a fraction of a 'page'
Move the mouse the required fraction of the way down
the scroll-bar and then left-click (scroll down) or right
click (scroll up). For example to scroll half a page, click
half-way down the scroll-bar.

The following additional operations are available on three-button mice on Sparc Solaris
machines:
Continuous Scrolling Move the mouse to the thumb and middle-drag

the thumb until the required text is visible in the
window in the file.

Scroll to the start of the file Middle-click at the top of the scroll bar
Scroll to the end of the file Middle-click at the bottom of the scroll bar
Scroll to a specified part of the file Middle-click at the corresponding point in the

scroll-bar.
For example to scroll to about halfway through the file, middle-click halfway down the
scroll bar. To move to a third of the way through the document, middle-click a third of
the way down the scroll-bar and so on.

Note with a two-button mouse you middle-click by pressing both buttons
simultaneously -- this requires a little practice to master.

More Practice
If you want more practice at using the Ada compiler: copy the file factors04.adb
from the directory ~barnesa/ISP/unit-programs into own directory as follows:

cp ~barnesa/ISP/unit-programs/factors04.adb ~

Now compile, bind and link factors04.adb -- this time use the gnatmake short-cut:
gnatmake factors04.adb

and then run it.

Now compile, bind and link the program, but give the executable a more meaningful
name, by using the -o option followed by the required name. For example:

gnatmake -o FindFactors factors04.adb

This produces an executable file called FindFactors which may be run by typing
FindFactors

Note
The case of characters in Unix commands and filenames IS significant; thus
FindFactors and findfactors (etc.) are regarded as different filenames. Remember,
however, that the case of characters within Ada programs (except in quoted strings) is
not significant.

