
© A Barnes, LJ Hazlewood 1999 Ada 21/1

Introduction to Systematic Programming
Unit 21 - Blocks, Renaming, Scope, Visibility, Overloading

2 1 . 1 Blocks
In this course we have referred to the life-time variables and constants. Life-time is a dynamic
concept, that is a variable or constant is created at the point of execution of its declaration, and ceases
to exist at some later point in the execution of the program. So far we have seen variables declared as:

a) Main program variables, defined at the head of the main program, whose life-time is for the
duration of execution of the whole program.

b) Local variables, defined in subprograms (procedures or functions), whose life-time is for
the duration of execution of the subprogram.

c) Variables defined in packages (in either the specification or body), whose life-time is for
the duration of execution of the whole program.

There are sometimes circumstances where we need a temporary variable in a particular sequence of
program steps, but not elsewhere in the program. Ada provides a mechanism to achieve our intended
effect through the use of a block step, which has the basic structure:

DECLARE
 Declarations;
BEGIN
 Step(s)_to_be_performed;
END;

This means that any variables declared in the Declarations part will have a life-time which is only for
the duration of execution of the body of the block, i.e. the Step(s)_to_be_performed part. The
variables are created just before execution of the Step(s)_to_be_performed, and then after the
END, such variables cease to exist. There are no restrictions on what may be defined in the
Declaration part of a block step and we could include the definition of constants and (very rarely)
types and subtypes or even subprograms.

For example, if in a particular sequence of program steps it is necessary to interchange the values of
the two Integer variables First and Second, we may write:

IF First < Second THEN
 DECLARE
 Temp : Integer := First;
 BEGIN
 First := Second;
 Second := Temp;
 END;
END IF;

where the temporary variable Temp, is only defined to exist for the duration of execution of the block
within which it is declared, i.e. for the fragment of program where the values of First and Second are
interchanged. This also has the advantage that Temp is declared near to the place it is used rather
than at the head of the (sub)program.

The use of a block to localise the declaration of variables to the fragment of program where they are
used may not always improve the clarity of the resulting program; in fact, the excessive use of blocks is
likely to make a program more obscure as variable declarations are scattered throughout the code. If
you write programs with a high degree of procedurisation, so that variables can be declared local to the
subprograms where they are used, there will be relatively few circumstances where program clarity is
improved by use of a block rather than a subprogram. Just occasionally when a relatively short piece
of code is closely coupled to its surroundings, the use of a block may be preferable to a subprogram
as the latter would require a large number of parameters - something we have previously suggested is
poor programming style.

21.2 Renaming
It is possible to give a new name to certain Ada entities using a renaming declaration. The
following entities can be renamed:

variables array elements record fields array slices
constants packages procedures functions

A renaming declaration may placed in the declarative region of a main program, a package or
subprogram along with other declarations and definitions.

© A Barnes, LJ Hazlewood 1999 Ada 21/2

In Unit 16 we defined a rather complex record type for holding information about a new-born baby:
SUBTYPE NameString IS String(1 .. 15);

TYPE FullName IS RECORD
 Forename : NameString;
 SecondName : NameString;
 Surname : NameString;
 END RECORD;

TYPE BabyRecord IS RECORD
 Gender : GenderType;
 TimeOfBirth : ClockTime;
 DateOfBirth : DateType;
 BirthWeight : WeightType;
 MothersName : FullName;
 END RECORD;

Baby : BabyRecord;

Then to refer to the mother's surname and initial we could write
Baby.MothersName.Surname and Baby.MothersName.Forename(1)

However these names are rather long and this could be inconvenient if these quantities are going to
be used frequently in a particular section of program code. To overcome this problem we could write
(in an appropriate declaration section):

LastName : NameString RENAMES Baby.MothersName.Surname;
Initial : Character RENAMES Baby.MothersName.Forename(1);

Now we could use the new abbreviated names for the mother's surname and initial, for example:
Put(Initial); -- output Baby.MothersName.Forename(1)
Put(". ");
Put_Line(LastName); -- output Baby.MothersName.Surname

Note that in the renaming declaration we give the new name and its type (just as if we were declaring a
new variable) followed by the keyword RENAMES and then the entity being renamed. The type
specified in the renaming must, of course, be consistent with that of the entity being renamed.

When renaming array elements it is often necessary to introduce a block. Consider the following
example in which an array of records (of the type BabyRecord discussed above) is searched for a
certain surname and then the contents of that record are output:

TYPE BabyList IS ARRAY(1 ..200) OF BabyRecord;
Deliveries : BabyList;
Index : Positive := 1;
Found : Boolean := False;
Name : NameString;
.......
WHILE Index <= BabyList'Last AND NOT Found LOOP
 DECLARE
 Baby : BabyRecord RENAMES Deliveries(Index);
 LastName : NameString RENAMES Baby.MothersName.Surname;
 BEGIN
 IF LastName = Name THEN
 Found := True;
 -- output details of this baby
 Put("Baby ");
 Put_Line(LastName);
 -- output weight
 Put(BirthWeight.Pounds);
 Put(BirthWeight.Ounces);
 -- output remaining details
 ELSE
 Index := Index + 1;
 END IF;

© A Barnes, LJ Hazlewood 1999 Ada 21/3

 END;
END LOOP;

Note that placing the renaming declarations at the end of the main declarative region would not work
as then Baby would always refer to the record Deliveries(1) (as Index has the value 1 at the time
the declaration is made). The renaming must be placed inside the loop so that the renaming refers to
a different record each time through the loop; hence a block is necessary.

Another fairly common use of renaming is to introduce shorter name for a quantity imported from a
package to use in place of its fully qualified name. If used judiciously this technique provides the
convenience of using short names for a few items exported by a package without the need to make all
the items exported by the package directly visible with a USE context clause.

PACKAGE ElemFns RENAMES Ada.Numerics.Elementary_Functions;

Now we could use short fully qualified names such as ElemFns.Sin for the facilities provided by the
package instead of monstrosities like Ada.Numerics.Elementary_Functions.Sin.

In subprogram renamings the number, order, mode and type of the parameters (and in the case
of a function the type of the value returned) in the renaming must agree with those of the renamed
subprogram. This is called mode conformance of the new and renamed subprograms. For
example if we wanted to make extensive use of the function Log (natural logarithm) from the package
Ada.Numerics.Elementary_Functions (but did not require any other features of the package)
we might write

FUNCTION Ln(X : Float) RETURN Float
 RENAMES Ada.Numerics.Elementary_Functions.Log;

Of course, if we used the above renamings then at the head of our program we would need the
context clause:

WITH Ada.Numerics.Elementary_Functions;

When renaming subprograms none of the following are features are normally taken into account1: the
names of the formal parameters, their subtypes and the default values (if any) of the parameters. Any
subtype restrictions on the parameters indicated in the renaming of the subprogram are ignored;
those on the original subprogram still apply. However as a matter of style and to avoid possible
confusion the subtypes of any parameters (and for a function that of the return value) in a subprogram
renaming should normally coincide with those of the original subprogram. The ability to be able to
change the names of the formal parameters and to add, modify or remove default values for IN
parameters in a subprogram renaming can sometimes be quite useful. For example in systems
programming applications we usually want to output integers in hexadecimal format and so we might
write

PROCEDURE Dump(Number : IN Integer;
 Width : IN Integer := 1;
 Base : IN Integer := 16) RENAMES CS_Int_IO.Put;

so that the default value of the Base parameter for Dump becomes 16 rather than 10 as it is for
CS_Int_IO.Put. The name of the first formal parameter has also been changed from Item to
Number (as it is perhaps more meaningful). Then we could write

Dump(255); -- output 255 in hexadecimal
Dump(Number => 255, Base => 8); -- now output it in octal

It is not possible to rename types and subtypes in a renaming declaration. However the introduction
of a new SUBTYPE (without imposing any additional constraints) has virtually the same effect:

SUBTYPE FileHandle IS Ada.Text_IO.File_Type;
SUBTYPE Cardinal IS Natural;

1 except when a subprogram is declared in a package specification (declaration), and then a body for the
subprogram is supplied by a renaming in the package body ; in this case the subtypes of parameters and of the
return value (if any) must match exactly . This is known as subtype conformance.

© A Barnes, LJ Hazlewood 1999 Ada 21/4

21.3 The scope and visibility of identifiers
We have now seen several declarative regions in a program where identifiers representing
variables, constants, types and subtypes may be declared. To summarise, these are:

a) The main program, where identifiers for variables, constants, types and subtypes are
declared.

b) A subprogram, where local identifiers for variables, constants, types and subtypes are
declared, and identifiers for formal parameters are defined.

c) A block, where identifiers for variables, constants, types and subtypes which are local to
the block are declared.

d) A package specification, where identifiers for variables, constants, types and subtypes
are declared, which are exported from the package.

e) A package body, where identifiers for variables, constants, types and subtypes are
declared, which remain private to the package body.

It is important to distinguish the concept of the life-time of a variable and its scope. The concept of
scope applies to all identifiers, whether used to represent variables, constants, subprograms, types or
subtypes and refers to the section of program text where the entity may be used:

a) For a main program identifier, declared in the declaration section of the main program, its
scope is from the point where it is declared to the END of the main program.

b) For a local identifier, defined in a subprogram, its scope is from the point where it is
declared to the END of the body of the subprogram.

c) For an identifier representing a formal parameter, its scope is from the subprogram
heading to the END of the body of the subprogram.

d) For a local identifier defined in a block, its scope is from the point where it is declared to
the END of the block.

e) For an identifier defined in a package declaration (specification), its scope is from the point
where it is declared to the END of the package declaration. Its scope also extends to the
complete package body, and to any client program which imports it using WITH.

f) For an identifier defined in a package body, its scope is from the point where it is declared
to the END of the package body.

It is not permitted to declare two variables, constants, types or subtypes with the same identifier within
the same declarative region , since otherwise later uses of the identifier would be ambiguous. How
would the computer 'know' which of the two entities was being referenced?

A related concept to scope is visibility; this refers to the places in a program where the identifier may
be used to refer to the associated variable, constant, type or subtype. We may state the following
visibility rules for variables, constants, types or subtypes:

i) An entity is never visible outside its scope.
ii) If an identifier is declared in one declarative region, and the same identifier is declared in a

second declarative region nested inside the first, then within the inner region it is the
entity associated with the identifier declared in the inner region that is directly visible,
and the entity associated with the identifier declared in the outer region is not directly
visible within the inner region and is said to be hidden. Within the inner region any
hidden entities can be still be used but only by giving their fully qualified names . The fully
qualified name of an entity A declared in a main program Main (say) is Main.A whilst
Main.P.B is the fully qualified name of a local entity B declared in a subprogram P defined
in Main.

iii) If an identifier is declared in a package specification it is directly visible in the package
specification and in the package body (unless it is hidden as described in (ii) above). It is
also directly visible in any client program that imports the package using WITH and USE
context clauses. If the client imports the package using only WITH, then the identifier is
not directly visible, but the underlying entity can be accessed by using its fully qualified
name: Package_Name.Identifier.

iv) An identifier is never visible in its own declaration. Thus the following is illegal:
UserID : String(1 .. 8) := (UserID'Range =>' ');

Instead one would need to repeat the range 1 .. 8 explicitly or (better) write:
UserID : String := (1 .. 8 =>' ');

© A Barnes, LJ Hazlewood 1999 Ada 21/5

v) A variable, constant, type or subtype is hidden by the declaration of a new entity with the
same identifier from the start of that declaration. Thus the following declaration (which
intends to use the value of a variable B declared in a main program Main as the initial value
of the local variable B of procedure P) is illegal:

B : Float := B; -- !!?? illegal in Ada

Instead the fully qualified name must be used for the initial value:
B : Float := Main.B; -- OK

As an extreme example to illustrate scope and visibility rules, consider the following program outline in
which a vertical line denotes the region where the variable is in scope; where the line is solid the
variable is directly visible and where the line is dashed, the variable is hidden by a variable of the same
name in an inner scope.

PROCEDURE Main IS
 A, B : Float;
 C : Integer;
 D : Float := 3.14;

 PROCEDURE P(A : IN Integer) IS
 B : Float; -- A from Main hidden by FP A but accessible as Main.A
 -- B from Main hidden by local B but accessible as Main.B
 -- but C and D from Main directly visible here
 BEGIN

 DECLARE
 C : String(1 .. A); -- FP A and local var. B visible here
 E : Float := D; -- and D from Main still visible
 -- but C from Main now hidden by local C
 -- and so only accessible as Main.C
 -- E is local to the block
 -- (E from Main not yet in scope)
 BEGIN

 END;
 -- C from Main now directly visible again
 -- but E from block is out of scope
 -- and E from Main not yet in scope
 END P;

 E : Float := D; -- D (from Main) visible here as are A, B and C
 -- E not in scope and so not visible above
BEGIN -- A, B, C, D, E (from Main) plus subprogram P visible
 -- nothing else in scope.

 P(A => C); -- FP A of P the gets value of C from Main

END Main;

In the above program outline several main program variables were referenced directly by the
subprogram P -- very poor programming style. This was done to illustrate the scope and visibility rules
rather than to illustrate good programming style! Main program variables declared before subprograms
(procedures and functions) are directly visible in those subprograms. In this course we have
recommended that main program variables are placed after all subprogram definitions so that their
scope does not include the subprograms. The aim of this recommendation was to enforce good
programming style. It is considered extremely poor programming practice to reference main program
variables directly in subprograms as those subprograms are no longer self-contained. Instead, all
values that need to be passed to and from subprograms should be passed via parameters.
Experience has shown that large programs which violate these guidelines are difficult to understand,
debug and maintain.

However it is regarded as acceptable programming style to declare types, subtypes and constants
before subprograms so that they may be used in those subprograms. Indeed it is essential to

© A Barnes, LJ Hazlewood 1999 Ada 21/6

declare types and subtypes before subprograms if those subprograms are going to use parameters of
those types and subtypes.

Even though the visibility rules describe how the Ada system resolves the situation where there are
two (or more) objects referred to by the same identifier, that does not mean that we should make
extensive use of them by deliberately defining the same identifier in overlapping declarative regions in
our programs. Such practices can be very confusing and so are generally considered to be poor
programming practice. However, it is perfectly acceptable style to use the same identifier in non-
overlapping declarative regions, for example for parameters and local variables in separate
subprogram definitions (provided, of course, the identifiers refer to items with similar meanings). The
scope and visibility rules do, however, deal effectively with the situation in a large program (perhaps
written by several programmers) where the same identifier is unwittingly used to refer to different
entities. This is most common where a client program uses the same identifiers as those imported
from a package.

Throughout this section we have referred to identifiers used to represent variables, constants, types
and subtypes. It should be noted that identifiers are also used to name subprograms (procedures and
functions), and similar scope rules to those given above also apply to subprogram identifiers. For
example it is possible to nest one subprogram definition inside another (or even inside a block) and so
define a local subprogram. However we have not adopted this approach in these units as such
nesting of subprogram definitions is rarely necessary or justified in practice2.

2 1 . 4 Overloading of subprograms
As we saw above if a constant, variable, type or subtype is declared with the same name as an existing
one, then the original declaration is hidden by the new one so that the original constant, type or
variable is no longer directly visible. The visibility rules for subprograms with the same name are
different; we now consider what happens if a subprogram (procedure or function) is defined with the
same name as an existing one. The new definition of the subprogram does not necessarily hide the
original definition, both may be directly visible at the same time provided that their definitions are
sufficiently different from each other. The name of the subprogram is then said to be overloaded as
it has more than one definition.

We need to be more precise about the circumstances in which overloading can take place. A new
subprogram definition hides an existing definition only if the number, order and base types of its
formal parameters and (for a function the base type of its return value) are the same as those of the
existing subprogram; subprograms which match in these respects are said to be type conformant.
Otherwise, the new definition is associated with the name in addition to the existing one, and both
definitions are directly visible at the same time. It is possible and quite common in practice to define
two (or more) subprograms with the same name in the same declarative region provided they are not
type conformant . Note, however, that none of the following features of formal parameters are taken
into account when determining type conformance: name, mode, subtype and default value (if any).

When the Ada compiler encounters a program step in which an overloaded subprogram is called, it
examines the call step to determine the base types of all the APs supplied and (for functions) the base
type of the return value. It then chooses the matching definition from amongst all the definitions of
the overloaded subprogram and calls that version of the subprogram. As one might expect, if no
matching definition is found or if two or more matching definitions are found, a compilation error
occurs.

For example in Unit 18 on sorting we defined two versions of the procedure SISort; one for sorting
arrays of type IntArray (an unconstrained array type with Integer elements) and one for sorting
arrays of type IDArray (an unconstrained array type with elements of the subtype String(1..8)).
Both these procedures could be exported by a package SIS_Pack (say):

PACKAGE SIS_Pack IS
 TYPE IntArray IS ARRAY(Positive RANGE <>) OF Integer;
 SUBTYPE UnixUserID IS String(1 .. 8);
 TYPE IDArray IS ARRAY(Positive RANGE <>) OF UnixUserID;
 PROCEDURE SISort(ToSort : IN OUT IntArray);
 PROCEDURE SISort(ToSort : IN OUT IDArray);
END SIS_Pack;

and they could be used as follows:

2 except, of course, the nesting of subprograms inside the main program procedure.

© A Barnes, LJ Hazlewood 1999 Ada 21/7

WITH SIS_Pack;
.....
Class : SIS_Pack.IDArray(1..120);
ExamMarks : SIS_Pack.IntArray(1..120);
.....
SIS_Pack.SISort(Class);
SIS_Pack.SISort(ExamMarks);

in the first call step to SISort the compiler 'knows' that the AP Class is a subtype of the IDArray
and so calls the version of the procedure with the matching heading, namely

PROCEDURE SISort(ToSort : IN OUT IDArray);

whereas in the second call step the AP ExamMarks is known to be a subtype of IntArray and so
this time the procedure with the heading:

PROCEDURE SISort(ToSort : IN OUT IntArray);

is called. Other versions of SISort could be added to the package SIS_Pack, for example to sort an
array of Float values and this would further overload the procedure name SISort.

Note it is not an error to import two type conformant subprograms with the same name SomeProc (say)
from different packages Pack1 and Pack2 (say) by means of the context clauses:

WITH Pack1; USE Pack1;
WITH Pack2; USE Pack2;

However, neither version will be directly visible and so it is an error to attempt to call SomeProc using
its unqualified name (as the compiler cannot determine which of the two subprograms should be
invoked). The solution to this dilemma, of course is to use fully qualified names Pack1.SomeProc
and Pack2.SomeProc to resolve the overloading. Alternatively if simple names were required they
could be introduced by the renamings:

PROCEDURE SomeProc1(Item : IN Integer) RENAMES Pack1.SomeProc;
PROCEDURE SomeProc2(Item : IN Integer) RENAMES Pack2.SomeProc;

where we have assumed the original procedures had a single IN mode parameter of type Integer.

2 1 . 4 . 1 Overloading of standard I/O procedures
In fact we have been using overloaded procedure and functions (without, perhaps, realising it) for
input and output ever since Unit 3. The package Ada.Text_IO provides several versions of Get with
the following abbreviated headings:

Get(Item : OUT Character) for character input from the
default input source

Get(Item : OUT String) for string input from the
default input source

Get(File : IN File_Type; Item :OUT Character) for character input from a
specified file (see Unit 20)

Get(File : IN File_Type; Item : OUT String) for string input from a
specified file

Thus even the fully qualified name Ada.Text_IO.Get is overloaded, having four different definitions
associated with it. In addition CS_Int_IO and CS_Flt_IO each provide two more versions of Get:

Get(Item : OUT Integer) for integer input from the
default input source

Get(File : IN File_Type; Item : OUT Integer) for integer input from a
specified file

Get(Item : OUT Float) for floating point input from
the default input source

Get(File : IN File_Type; Item : OUT Float) for floating point input from a
specified file

Thus the fully qualified names CS_Int_IO.Get and CS_Flt_IO.Get are each overloaded, both
having two definitions associated with them. If, as is customary, we make the unqualified name Get
available by writing the following context clauses at the head of our program:

USE Ada.Text_IO; USE CS_Int_IO; USE CS_Flt_IO;

© A Barnes, LJ Hazlewood 1999 Ada 21/8

then the name Get becomes even more heavily overloaded, having no less than 8 different
interpretations. Furthermore, if we create a new package for I/O of an enumeration type (as we did in
Unit 13 with the package DayOfWeek_IO for the type DayOfWeek), this associates two extra
definitions with Get and so overloads it even more heavily (and so on for each new package created
for enumeration I/O):

Get(Item : OUT DayOfWeek) for DayOfWeek input from
the default input source

Get(File : IN File_Type; Item: OUT DayOfWeek) for DayOfWeek input from a
specified file

Nevertheless, the compiler has no difficulty in determining which of the versions of Get is required by
examining the number and base types of the APs supplied in any call of Get.

2 1 . 4 . 2 Overloading and programming style
As we have seen it is possible to define many different versions of a subprogram with the same name.
However, there are dangers inherent in overloading particularly if a name is heavily overloaded. Firstly
it could be extremely confusing to a human reader of a program if two or more subprograms with the
same name performed tasks which had little or nothing in common. For this reason overloading
should only used when the different versions of the subprogram perform logically the same or, at
least, very similar operations. The instances of overloading discussed above fulfil this criterion, for
example all the versions of Get perform basically the same action: namely the input of a single data
value, only the type or the source of the data varies. Similarly the various versions of SISort all
perform a straight insertion sort and differ only in the type of the array upon which they act.

A second danger of overloading is that it reduces the ability of the Ada compiler to detect
programming errors as the following simple example shows. Suppose that, in a program, we have two
variables (both with meaningful names):

Day : DayOfWeek; -- an enumeration type (Mon, Tues, ..., Sun)
DayNum : DayInMonth -- an integer subrange type (range 1 .. 31)

We intend to input an Integer value and store it in the variable DayNum, but we accidentally type
Get(Day); instead of Get(DayNum);

The compiler will use the version of Get from DayOfWeek_IO (which, we suppose, has previously
made available for use elsewhere in the program) instead of the version from CS_Int_IO that we
intended to call. The program will compile without error, but a Data_Error exception will be
generated at run-time when the Get step is executed and it encounters numeric data instead of the
enumeration literal that it 'expects'. Such an error may prove difficult to track down in a large program,
particularly if a good debugger is not available. The dangers of this sort of error can be reduced by
using fully qualified names which reduce the degree of overloading. If we had written

CS_Int_IO.Get(Day); instead of CS_Int_IO.Get(DayNum);

then our error would have been detected by the compiler. It is for this reason (among others) that
some books, including the recommended text for this course (Feldman and Koffman), advocate the
use of fully qualified names. The counter-argument is that overly long fully qualified names make
programs difficult to read.

2 1 . 4 . 3 Overloading enumeration literals
It is also possible to overload enumeration literals3. For example the literal Orange in

TYPE Colour IS (Red, Orange, Yellow, Green, Blue, Indigo, Violet);
TYPE Fruit IS (Apple, Lemon, Lime, Orange, Pear, Plum);

Usually the compiler will be able to deduce from the context which of the two possibilities is meant,
A : Colour; I : Natural;
A := Orange; -- Orange of type Colour used as A is of this type
I := Fruit'Pos(Orange); -- Orange of type Fruit used as Fruit'Pos
 -- expects an parameter of type Fruit

but if necessary literals can be distinguished by qualifying them with the type to which they belong:
Colour'(Orange) and Fruit'(Orange)

3 Technically an enumeration literal is a function with no parameters returning a value of the required type.

© A Barnes, LJ Hazlewood 1999 Ada 21/9

21.5 Programming example
It is required to develop simple I/O packages for the types Integer and Float for use in an Ada 95
programming course taken by people with no previous programming experience. In the practical
examples for the course, the emphasis is on simple data processing rather than computing in a
scientific or engineering context. The packages are to be called CS_Int_IO and CS_Flt_IO
respectively.
The 'traditional' way of doing numerical I/O in Ada programs is to instantiate suitable packages in the
declaration section of the main program using the facilities provided in the package Ada.Text_IO:

PACKAGE My_Int_IO IS NEW Integer_IO(Integer);
PACKAGE My_Float_IO IS NEW Float_IO(Float);
USE My_Int_IO; USE My_Float_IO;

These two packages provide much the same facilities as CS_Int_IO and CS_Flt_IO respectively.
However this method is rather complicated for novice programmers4. In Ada 95 things are a little
easier as two pre - ins tan t i a ted packages are provided for numerical I/O namely
Ada.Integer_Text_IO and Ada.Float_Text_IO. Thus we can simply import these packages as
and when required with the context clauses (instead of the corresponding clauses for CS_Int_IO
and CS_Flt_IO):

WITH Ada.Integer_Text_IO; USE Ada.Integer_Text_IO;
WITH Ada.Float_Text_IO; USE Ada.Float_Text_IO;

However the Put procedures in the packages My_Float_IO and Ada.Float_Text_IO all have the
disadvantage that the default values of the Aft parameter and Exp parameters are 6 and 3
respectively so that for example 0.25 is output as 2.500000E!-1. Also the default value of the
Width parameter of the Put procedures in the the packages Ada.Integer_Text_IO and
My_Int_IO is 11 which means that, by default, small integers are output with a number of leading
blanks which often results in ugly looking output.

The solution to this problem is actually very easy: we introduce a package which uses the procedures
for numerical I/O provided by the standard pre-instantiated packages and use renaming to alter the
default values of the Width, Fore, Aft and Exp parameters of the exported versions of Put.
Complete CS_Flt_IO package

WITH Ada.Text_IO; WITH Ada.Float_Text_IO;

PACKAGE CS_Flt_IO IS

 PROCEDURE Get(Item : OUT Float;
 Width : IN Ada.Text_IO.Field := 0)
 RENAMES Ada.Float_Text_IO.Get;

 PROCEDURE Get(File : IN Ada.Text_IO.File_Type;
 Item : OUT Float;
 Width : IN Ada.Text_IO.Field := 0)
 RENAMES Ada.Float_Text_IO.Get;

 PROCEDURE Put(Item : IN Float;
 Fore : IN Ada.Text_IO.Field := 1;
 Aft : IN Ada.Text_IO.Field := 2;
 Exp : IN Ada.Text_IO.Field := 0)
 RENAMES Ada.Float_Text_IO.Put;

 PROCEDURE Put(File : IN Ada.Text_IO.File_Type;
 Item : IN Float;
 Fore : IN Ada.Text_IO.Field := 1;
 Aft : IN Ada.Text_IO.Field := 2;
 Exp : IN Ada.Text_IO.Field := 0)
 RENAMES Ada.Float_Text_IO.Put;

END CS_Flt_IO;

4 This mechanism is similar to the way of instantiating packages for the I/O of enumeration types which was
discussed in Unit 13. It works in both Ada 83 and Ada 95.

© A Barnes, LJ Hazlewood 1999 Ada 21/10

Notes
i) The package CS_Int_IO is implemented in a similar way and can be found on Aston UNIX

systems in the file ~barnesa/CSLib/cs_int_io.ads
ii) The two packages CS_Int_IO and CS_Flt_IO are unusual in that they do not need package

bodies (as the bodies of the procedures that they provide are actually those of the
corresponding procedures in Ada.Integer_Text_IO and Ada.Float_Text_IO).

iii) The formatting parameters Width, Fore, Aft and Exp are declared as type Field. This type
is 'exported' by Ada.Text_IO and in fact, it is a subrange of the standard subrange Natural.

iv) The Get procedures in CS_Int_IO and CS_Flt_IO have an extra formal parameter Width
with a default value of 0 which has not been discussed so far in these Units. If a positive value
N is supplied for Width, then input continues until either the end of the number is reached5

or until N non-blank characters have been input whichever is the sooner . Using the default
value of zero for Width means "continue input until the end of the number is reached".
For example if we have a number of 4-digit 24-hour clock times of the form 2115 (representing
the time 9.15 p.m.), we may read the hours and minutes separately as follows:

Get(Item => Hrs, Width =>2);
Get(Item => Mins, Width =>2);

whereas the call
Get(Item => Time);

would input all four digits of the time in one 'go' and so require the hours and minute values to
be separated by using division and remaindering by 100.

v) An alternative approach (necessary in Ada 83) would have been to instantiate a new package
Standard_Float_IO (say) inside CS_Flt_IO and then replace every occurrence of
Ada.Float_Text_IO with Standard_Float_IO. Thus the package would become

WITH Ada.Text_IO;

PACKAGE CS_Flt_IO IS

 PACKAGE Standard_Float_IO IS NEW Ada.Text_IO.Float_IO(Float);

 PROCEDURE Get(Item : OUT Float; Width : IN Ada.Text_IO.Field := 0)
 RENAMES Standard_Float_IO.Get;
 -- and so on for the other procedures
END CS_Flt_IO;

vi) Using renaming is neater and more efficient than the following approach which declares the
exported procedures in the package specification in the normal way (that is without any
renaming) and then defines the Get and Put procedures in the package body as follows:

WITH Ada.Float_Text_IO;

PACKAGE BODY CS_Flt_IO IS

 PROCEDURE Put(Item : IN Float;
 Fore : IN Ada.Text_IO.Field := 1;
 Aft : IN Ada.Text_IO.Field := 2;
 Exp : IN Ada.Text_IO.Field := 0) IS
 BEGIN
 Ada.Float_Text_IO.Put(Item, Fore, Aft, Exp);
 END Put;
 -- and so on for the other procedures
END CS_Flt_IO;

as the latter approach requires both a package specification and a package body .
Furthermore, at run-time a call to each I/O procedure will involve two procedure calls: one to
the procedure in CS_Flt_IO and then one to the corresponding procedure in
Ada.Float_Text_IO to do the real work. With renaming, the renamed procedure in
Ada.Float_Text_IO is called directly at run-time (after inserting any modified default
parameter values as necessary).

5 that is a blank (or other non-numeric) character is encountered or end-of-line is reached.

