
© 1996 A Barnes, L J Hazlewood Ada 18/1

Introduction to Systematic Programming
Unit 18 - Sorting

1 8 . 1 More on FOR loops
Occasionally it is convenient to use a 'count-down' FOR loop in which the control variable is decreased
by one at the end of each repetition. This kind of Ada FOR loop has the general form:

FOR Index IN REVERSE Start_expression .. Finish_expression LOOP
 Step(s)_to_be_repeated;
END LOOP;

Such a statement means:
i) Evaluate the Start_expression.
ii) Evaluate the Finish_expression.
iii) Assign the value of the Finish_expression to the Index variable.
iv) Compare the index variable's value with the starting value;

if the Index variable is less than the value of the Start_expression, the execution of the
FOR step is terminated; otherwise (ie. if the Index variable is greater than or equal to the
value of the Start_expression) the Step(s)_to_be_repeated part is obeyed, and
then 1 is subtracted from the Index variable1.

v) The repetition process is then continued (from (iv)).
Note that the above FOR repetition includes the keyword REVERSE before the index range. Of course,
rather than using an explicit index range as shown above, it is also possible to use a named discrete
type or subtype as the index range (as was illustrated in [14.5]).
For example, to input a line of text and print it in reverse order we might write:

Get_Line(Item => Line, Last => LineLen);
FOR Index IN REVERSE 1 .. LineLen LOOP

Put(Line(Index));
END LOOP;

where the following declarations are assumed:
MaxLineLen : CONSTANT Positive := 80; -- say.
Line : String(1 .. MaxLineLen);
LineLen : Natural;

1 8 . 2 The 'short-circuit' logical operators AND THEN and OR ELSE.
Consider the following fragment:

IF X >= 0.0 AND SQRT(X) < Y THEN
Do_something;

END IF;

where X and Y are variables of type Float. Presumably the intention of the first comparison is to avoid
the run-time error that would occur if there was an attempt to calculate the square root of a negative
number. However when X has a negative value we would still find that a run-time error would occur
because in Ada both operands of the logical operators AND (and OR) are always evaluated.
We could of course overcome this problem using nested IF's:

IF X >= 0.0 THEN
IF SQRT(X) < Y THEN

Do_something;
END IF;

END IF;

However this is rather clumsy. For these sort of circumstances Ada provides two 'short-circuit' logical
operators AND THEN and OR ELSE. The boolean expression C1 AND THEN C2 is evaluated as follows:

i) evaluate the condition C1
ii) if this value is False, then the whole expression is False (and note that C2 is not evaluated in

this case), otherwise the expression result is the same as the boolean value of condition C2

1 If the Index variable is of some non-integer discrete type, then the value of Index is

replaced by its predecessor value after each repetition.

© 1996 A Barnes, L J Hazlewood Ada 18/2

Thus to avoid a possible run-time error we should write the above selection as:
IF X >= 0.0 AND THEN SQRT(X) < Y THEN

Do_something;
END IF;

Thus, if X held the value 3.2 (say) then the first comparison X>=0.0 is True, and the value of the
whole condition controlling the IF step depends on the value of SQRT(X)<Y. However, if X held the
value -4.8 (say), then the first comparison X>=0.0 is False, and the value of the whole condition
controlling the IF step is established as False (without the need for the computer to evaluate the
second condition SQRT(X)<Y).
Similarly the boolean expression C1 OR ELSE C2 is evaluated as follows:

i) evaluate the condition C1
ii) if this value is True, then the whole expression is True (and note that C2 is not evaluated in

this case), otherwise the expression result is the same as the boolean value of condition C2
It is easy to check that when the values of both conditions C1 and C2 may be evaluated without error,
then the short-circuit operators AND THEN and OR ELSE produce the same results as the
corresponding standard logical operators AND and OR.
A typical case where short-circuit logical operators may be used to advantage is in comparisons
involving array elements where we also need to check that the array index lies in the permitted range:

SUBTYPE SomeRange IS Integer RANGE 1000 .. 9999; -- say.
TYPE SomeArrayType IS ARRAY(SomeRange) OF Float;
A, B : SomeArrayType;
...........
WHILE Index IN SomeRange AND THEN A(Index) < B(Index) LOOP
 Step(s)_to_be_repeated;
END LOOP;

Here use of plain AND would run the risk of a Constraint_Error if Index held a value outside the
range SomeRange.
A similar situation occurs when using one of the searching methods described in [11.7]. When
searching the elements numbered from 1 to NumStudents of an array User to find they contain a
particular value (held in the variable Wanted say) we wrote:

Position := 1;
Found := False;
WHILE NOT Found AND Position <= NumStudents LOOP

IF User(Position) = Wanted THEN
Found := True;

ELSE
Position := Position + 1;

END IF;
END LOOP;
-- After the search, if Found is True then Position holds the
-- subscript of the array element holding the value wanted.

ie. on each repetition we need to check to see if the search has not 'run-off' the end of the array
before checking whether the element contains the value we are searching for. However, using the
AND THEN operator we could write the above more compactly as:

Position := 1;
WHILE Position <= NumStudents AND THEN User(Position) /= Wanted LOOP

Position := Position + 1;
END LOOP;

1 8 . 3 An introduction to sorting algorithms
Until now we have been mainly concerned with details of the Ada language and with general
programming methodology, but the rest of this unit introduces a specific class of computer algorithms,
namely sorting algorithms, that is algorithms which put items into some defined order. Most
commercial applications of computers involve a significant amount of sorting. For example, we might
wish to sort an array of records of type OrderList storing information on the orders received by a firm
(as considered in Unit 16) into numerical order based upon the part number of the item ordered. The
need for sorting also commonly arises in other types of work, such as computer systems programming.
Thus a knowledge of sorting techniques is important to most programmers.

© 1996 A Barnes, L J Hazlewood Ada 18/3

Most sorting applications involve ordering collections of records, according to the value of one
particular field (as with the OrderList records mentioned above), rather than ordering collections of
individual values. However the principles involved are readily demonstrated by the latter, simpler
problem. The first example considered will involve sorting a collection of Integer values stored in an
array (such sorts are called internal sorts). In [18.6] we shall see how the algorithm developed for
this case may easily be adapted to sort arrays with elements of a different type.
Obviously sorting methods need to be correct, but the time taken by sorting schemes tends to rise
rapidly with the number of items to be sorted, so it is also important to use methods that are reasonably
efficient. In fact, the best sorting techniques known to Computer Science require some advanced
programming techniques, and are hence beyond the scope of this course; even so, it is still possible
to improve significantly on the most naive methods, that is on methods which might typically be
invented by someone who had not studied the area at all.

1 8 . 4 Straight Insertion Sort (SIS)
Suppose that the values we want to sort into ascending order are stored in the elements indexed from
1 to N of an array. The method is such that, at each stage in the algorithm, as a count K advances from
2 to N, the elements of the array indexed from 1 to K-1 have already been put in ascending order.
Each major step of the algorithm is then as follows:

a) Consider the Kth element of the array.
b) Determine where in the index range 1 to K it should 'fit' in the (already ordered part of the)

array, say at position Pos.
c) 'Slide' the elements subscripted from Pos to K-1 one place to the 'right', and insert the newly

considered value at the Pos element so that the elements in the range 1 to K are now in order.
d) The elements indexed from 1 to K are now in order, so K is now increased by 1 and the

process is repeated from (a) until all N elements have been brought into order.

Notice that this method performs a sort 'in place' without the need for any additional arrays. Also, we
have assumed ascending order is required, but note that only trivial changes are needed to produce
descending order.

1 8 . 4 . 1 Analysis of the SIS
Let us analyse this algorithm to get some idea of the likely 'cost' of executing it. In order to find the
correct position of the Kth element, on average about (K-1)/2 comparisons are required. Hence
the total number of comparisons for all the stages is approximately:

 (1 + 2 + ... + (N-1))/2 = N(N - 1)/4 ≈ N2/4

Similarly in order to place the Kth element in the correct position, on average about K/2 assignments
are required (as the elements are 'slid' one place to the 'right'). Hence the total number of
assignments is approximately:

 (1 + 2 + ... + N)/2 = N(N + 1)/4 ≈ N2/4
Counting both assignments and comparisons, for large values of N the Straight Insertion Sort requires
roughly N2/2 operations. Some of you may know about another sorting method called the Straight
Exchange Sort or 'Bubble Sort'. This has little to recommend it compared with the SIS, since the
average numbers of comparisons and assignments required to sort N values using the 'Bubble Sort'
are approximately N2/2 and 3N2/2 respectively, ie. in total, approximately four times the cost of
applying the SIS.

1 8 . 4 . 2 An illustration of the SIS
We assume that the array to be sorted has five elements indexed from 1 to 5, that is we assume that
declarations of the following form have been made:

N : CONSTANT Positive := 5;
TYPE SmallArray IS ARRAY (1 .. N) OF Integer;
ToSort : SmallArray;

© 1996 A Barnes, L J Hazlewood Ada 18/4

Suppose also that the array ToSort has had values assigned to its elements as follows:

ToSort 27 30 9 3 10

 1 2 3 4 5

Elements 1..2 already in order => no change

1 2 3 4 5

K=2 27 3030 9 3 10

1 2 3 4 5

K=3 27 30 99 3 10 Element 3 should move to position 1 =>

Slide the elements 1..2 one place to the
right,and assign the value 9 to element 1

1 2 3 4 5

K=4 9 27 30 33 10 Element 4 should move to position 1 =>

Slide the elements 1..3 one place to the
right,and assign the value 3 to element 1

1 2 3 4 5

K=5 3 9 27 30 1010 Element 5 should move to position 3 =>

Slide the elements 3..4 one place to the
right,and assign the value 10 to element 3

1 2 3 4 5

3 9 10 27 30 Sort complete.

1 8 . 5 An Ada procedure for SIS
We assume, as above, that we are sorting an array with Integer elements. In order to make our sort
procedure reasonably flexible we will define an unconstrained array type IntArray (say):

TYPE IntArray IS ARRAY (Positive RANGE <>) OF Integer;

and design our procedure to sort an array of any size of this type into ascending order. Thus our
procedure will have the heading:

PROCEDURE SISort (ToSort : IN OUT IntArray);

In developing the algorithm we will suppose that the upper and lower index bounds of the array are
High and Low respectively (which are assumed to be Positive values) instead of the values 1 and N
in the discussion and illustration above.

1 8 . 5 . 1 Outline algorithm
FOR K IN Low+1 .. High LOOP

Find correct position Pos (amongst the ordered elements
 indexed from Low to K-1) at which the NextValue
 (stored at index K) should be placed A

Slide elements with indices Pos to K-1 one place to the right ... B

IF Pos /= K THEN
 Insert the NextValue at position Pos C
END IF

END LOOP

© 1996 A Barnes, L J Hazlewood Ada 18/5

1 8 . 5 . 2 Refinements
A Search down through the array from position K-1 to find the first position Pos where

ToSort(Pos) <= NextValue. However, take care not to run off the lower end of the array.
NextValue := ToSort(K); -- Initialise for 'scan down' through array.
Pos := K;
WHILE Pos > Low AND THEN ToSort(Pos-1) > NextValue LOOP
 Pos := Pos - 1;
END LOOP;

Another (slightly less elegant) way to program the 'scan-down' loop is as a LOOP with an EXIT
involving an OR ELSE condition:
LOOP
 -- Quit when the scan down has reached the end of the array
 -- or when the correct position is found.
 EXIT WHEN Pos = Low OR ELSE ToSort(Pos-1) <= NextValue;
 Pos := Pos - 1;
END LOOP;

B One way we can refine this is as a 'count-down' FOR loop as discussed in [18.1] above:
FOR I IN REVERSE Pos .. K-1 LOOP

ToSort(I+1) := ToSort(I);
END LOOP;

Thus in this example the index variable I takes in turn (ie. on each repetition) the values of:
K-1, K-2, K-3, ..., Pos+2, Pos+1, Pos

Hence the element in position K-1 is copied to position K, the element in position K-2 is copied
to position K-1 and so on until finally the element in position Pos is copied to position Pos+1.
However, an alternative (more succinct) way of refining this step would be to use array slices as
follows (this works correctly even though the slices overlap!):

ToSort(Pos+1 .. K) := ToSort(Pos .. K-1);

Of course, we can't use the following 'normal' FOR loop to do the 'sliding' (why?).
FOR I IN Pos .. K-1 LOOP

ToSort(I+1) := ToSort(I);
END LOOP;

C ToSort(Pos) := NextValue;

1 8 . 5 . 3 Full procedure

PROCEDURE SISort (ToSort : IN OUT IntArray) IS
 Low : CONSTANT Positive := ToSort'First;
 High : CONSTANT Positive := ToSort'Last;
 NextValue : Integer;
 Pos : Positive;
BEGIN
 FOR K IN Low+1 .. High LOOP
 -- First initialise for 'scan down' through array
 NextValue := ToSort(K);
 Pos := K;
 -- Scan down through array to find the insertion position
 WHILE Pos > Low AND THEN ToSort(Pos-1) > NextValue LOOP
 Pos := Pos - 1;
 END LOOP;
 IF Pos /= K THEN
 -- NextValue is not already in correct place, so 'slide' the
 -- elements one place to the 'right' and insert NextValue.
 ToSort(Pos+1 .. K) := ToSort(Pos .. K-1);
 ToSort(Pos) := NextValue;
 END IF;
 END LOOP;
END SISort;

© 1996 A Barnes, L J Hazlewood Ada 18/6

The procedure SISort may be used to sort arrays of any (constrained) subtype of the unconstrained
type IntArray no matter what the size. Note that if we want the procedure to sort a portion of an array
(rather than the whole of that array), no modification to SISort is necessary, we may simply supply the
appropriate slice of the array as the AP when we call SISort.
As it is could be useful in many programs, it would be sensible to put the procedure SISort in a
package, SIS_Pack (say). In outline this would have the form:

PACKAGE SIS_Pack IS
 TYPE IntArray IS ARRAY (Positive RANGE <>) OF Integer;
 PROCEDURE SISort (ToSort : IN OUT IntArray);
END SIS_Pack;

PACKAGE BODY SIS_Pack IS

 PROCEDURE SISort (ToSort : IN OUT IntArray) IS
 -- As in [18.5.3] above

 END SISort;

END SIS_Pack;

1 8 . 6 Sorting arrays of other types
Suppose that we wished to sort an array of string values into lexicographic (dictionary) order, it is easy
to modify our procedure SISort to handle this situation. For definiteness suppose we wanted to
sort, into alphabetical order, an array containing all the user ID's of computer users in a computer
science department.
Given the following declarations:

SUBTYPE UnixUserID IS String(1 .. 8);
TYPE IDArray IS ARRAY (Positive RANGE <>) OF UnixUserID;

the only changes needed would be to the first two lines of our procedure SISort:

PROCEDURE SISort (ToSort : IN OUT IDArray) IS
 NextValue : UnixUserID ;

Note that no changes are necessary to the executable steps of the procedure since string values may
be compared using the comparison operator > and the assignment steps are valid for string values of
the same type and length.
Suppose instead that we wished to sort an array of records into ascending order of some field (Key,
say) of the records, it is also easy to modify our procedure SISort to handle this situation. Assuming
the following declarations:

TYPE RecType IS RECORD
 Key : Integer;

 END RECORD;
TYPE RecArray IS ARRAY (Positive RANGE <>) OF RecType;

only the highlighted modifications in the procedure that follows would be needed (it is not, in fact,
necessary that the Key field is of type Integer; in fact it could be of any type for which the
comparison operator > is meaningful):

© 1996 A Barnes, L J Hazlewood Ada 18/7

PROCEDURE SISort(ToSort : IN OUT RecArray) IS
NextValue : RecType ;
Pos : Positive;
Low : CONSTANT Positive := ToSort'First;
High : CONSTANT Positive := ToSort'Last;

BEGIN
FOR K IN Low+1 .. High LOOP

NextValue := ToSort(K);
Pos := K;
WHILE Pos > Low
 AND THEN ToSort(Pos-1).Key > NextValue.Key LOOP

Pos := Pos - 1;
END LOOP;

 IF Pos /= K THEN
 ToSort(Pos+1 .. K) := ToSort(Pos .. K-1);
 ToSort(Pos) := NextValue;

 END IF;
END LOOP;

END SISort;

1 8 . 7 Programming example
Each day a small library issues at most 1000 books. The serial number of each book issued is
recorded in a file; each serial number on a separate line. It is desired to print out a list of the serial
numbers (five to a line) of one day's book issues in ascending order.

WITH Ada.Text_IO; USE Ada.Text_IO;
WITH CS_Int_IO; USE CS_Int_IO;
WITH CS_File_IO; USE CS_File_IO;
WITH SIS_Pack; -- 'Import' Straight Insertion Sort package

PROCEDURE Library IS
 -- Program for Unit 18 of ISP Ada Course.
 -- Written by A Barnes, November 1993.
 -- Updated for Ada95 by A Barnes, November 1996.

 MaxBooks : CONSTANT Integer := 1000;
 SUBTYPE BookList IS SIS_Pack.IntArray(1 .. MaxBooks);

 Issues : BookList;
 NumBooks : Natural := 0;

BEGIN -- Main program of Library
 OpenInput(FileName => "issues.dat");
 OpenOutput(FileName => "sorted.txt");
 -- Input the serial numbers from the file.
 WHILE NOT End_Of_File LOOP
 NumBooks := NumBooks + 1;
 Get(Issues(NumBooks));
 END LOOP;

 -- Sort the serial numbers into ascending order.
 SIS_Pack.SISort(ToSort => Issues(1 .. NumBooks));

 -- Output the ordered serial numbers.
 Put_Line("Issued book numbers in ascending order:");
 FOR IssueNo IN 1 .. NumBooks LOOP
 Put(Item => Issues(IssueNo), Width => 10);
 IF IssueNo REM 5 = 0 THEN
 New_Line;
 END IF;
 END LOOP;
 New_Line;
 CloseInput;
 CloseOutput;
END Library;

© 1996 A Barnes, L J Hazlewood Ada 18/8

1 8 . 8 Another programming example
In the library example above, suppose that it is possible for a reader to return a book so that it may be
re-issued during the same day. Again the serial number of each book issued is recorded in a file, but
in this case it is possible for the same serial number to appear more than once in the file. If it is desired
to print out a list of the unique serial numbers of one day's book issues in ascending order, we must
not only find a way of sorting the list of serial numbers into order, but also find some method of
removing any duplicates. There are many possible approaches to the solution of this problem, but
one way we might consider is to build up the ordered list in the array in a 'piece-wise' manner, ie:

a) Assume that the list stored in the array is initially empty.
b) Take the next serial number from the file.
c) Search the list of serial numbers stored in the array.
d) If the searched for serial number is not present, then insert it into its 'correct' position in the list

stored in the array (ie. so that the list stored in the array is maintained in order).
e) Alternatively, if the searched for serial number is already present, then no actions are

necessary since the list stored in the array already contains an entry for that serial number.
f) Continue the above from (b) until there are no more serial numbers in the file.

The list of values stored in the array does then not need to be sorted into order. Rather, it has been
'built-up' (serial number by serial number), maintaining the list in order throughout.

For example, suppose we represent the list using Issues and NumBooks as in the previous solution,
and suppose that part way through processing the data file we have input the serial numbers 306,
155, 742, 680 and 305, and hence 'built-up' the list of values (so far) as:

Issues

1 2 3 4 6 10005

305

NumBooks

742680306

5

155

7

? ? ?

Suppose that the next serial number in the file was the value 306. In this case, in step (c), a search
through the Issues elements indexed from 1 to NumBooks would reveal that the serial number 306
was already present, and hence could be ignored.

Alternatively, if the next serial number in the file was the value 295, a search through the Issues
elements indexed from 1 to NumBooks would reveal that the serial number 295 was not already
present, and should be positioned in the element indexed 2. We could then 'slide' the elements
indexed from 2 to NumBooks one place to the right to create a free element where 295 could be
inserted. The value of NumBooks should then be incremented by 1 (to indicate that the size of the list
stored in the array has increased by one value). Thus producing the updated ordered list of values:

Issues

1 2 3 4 6 10005

305

NumBooks

742680306

6

155

7

295 ? ?

This process is then continued for each serial number input from the data file.

Note the similarity between the above description with that for the Straight Insertion Sort. In fact the
only difference between the processes is that in the example in [18.7] the serial numbers are inserted
into their correct order by taking them one-by-one from where they have been stored in the
unordered part of the array, whereas in this approach the serial numbers are taken directly from the
input data file.

A solution to this problem might thus be as follows:

© 1996 A Barnes, L J Hazlewood Ada 18/9

WITH Ada.Text_IO; USE Ada.Text_IO;
WITH CS_Int_IO; USE CS_Int_IO;
WITH CS_File_IO; USE CS_File_IO;

PROCEDURE NewLibrary IS
 -- Second program for Unit 18 of ISP Ada Course.
 -- Written by L Hazlewood, November 1994.
 -- Updated for Ada95 by L J Hazlewood, November 1996.

 MaxBooks : CONSTANT Integer := 1000;
 TYPE BookList IS ARRAY (1..MaxBooks) OF Integer;

 PROCEDURE UpdateList (NewEntry : IN Integer;
 List : IN OUT BookList;
 ListSize : IN OUT Natural) IS
 Pos : Natural;
 BEGIN
 -- Find in Pos the position where the NewEntry value is
 -- already stored in the List array, or the position
 -- where the NewEntry value should be inserted in order
 -- for the list to be in order.
 Pos := ListSize + 1;
 WHILE Pos > 1 AND THEN List(Pos-1) > NewEntry LOOP
 Pos := Pos - 1;
 END LOOP;

 IF Pos = 1 OR ELSE List(Pos-1) /= NewEntry THEN
 -- NewEntry should be inserted at position Pos.
 -- So "shuffle-up" list values to create a place for
 -- NewEntry to be inserted in the list. Note that when
 -- Pos = ListSize+1 (ie. when NewEntry is to be added at
 -- the end of the list) the following slices are "empty",
 -- and no movement of the list values takes place.
 List(Pos+1 .. ListSize+1) := List(Pos .. ListSize);
 List(Pos) := NewEntry;
 ListSize := ListSize + 1;
 -- ELSE NewEntry is already present in the list,
 -- and so can be ignored.
 END IF;
 END UpdateList;

 -- Main program variables.
 Issues : BookList;
 NumBooks : Natural := 0;
 NextBook : Integer;

BEGIN -- Main program of Library
 OpenInput(FileName => "issues.dat");
 OpenOutput(FileName => "sorted.txt");

 WHILE NOT End_Of_File LOOP
 Get(NextBook);
 UpdateList(NewEntry => NextBook,
 List => Issues, ListSize => NumBooks);
 END LOOP;

 Put_Line("Issued book numbers in ascending order:");
 FOR IssueNo IN 1 .. NumBooks LOOP
 Put(Item => Issues(IssueNo), Width => 10);
 IF IssueNo REM 5 = 0 THEN
 New_Line;
 END IF;
 END LOOP;
 New_Line;

 CloseInput;
 CloseOutput;
END NewLibrary;

