
© 1996 A Barnes, L J Hazlewood Ada 17/1

Introduction to Systematic Programming
Unit 17 - Writing Larger Programs; Packages

1 7 . 1 Introduction

In our earlier approach to program design (see Unit 7) we have advocated the use of top-down design
and stepwise refinement as a method which we can reliably use to produce programs of moderate
size, typically of up to a few hundred lines of program. This design method results in programs which
are largely self-contained, but which import small numbers of procedures, functions, etc, from other
packages. A illustration of this point is the use of packages to provide the procedures and functions
for performing input and output. Thus for example we have used:

package name facilities provided comment

Ada.Text_IO Get for character input
Put for character output
End_Of_Line for locating the end of a line
Get for string input
Put for string output
Get_Line for string input
Put_Line for string output
End_Of_File for locating the end of a file
New_Line
Skip_Line ... and so on.

We have also used many other I/O procedures from different packages. For convenience we will refer
to the procedures, functions, etc. which may be imported from a package as package
components.

It is useful to see how a package is written, so let us examine some of the contents of the package
Ada.Text_IO. It consists of two parts, a package declaration and a package body as follows:

PACKAGE Ada.Text_IO IS

-- Exported procedures, functions, etc.

PROCEDURE Get (Item : OUT Character);

PROCEDURE Put (Item : IN Character);

FUNCTION End_Of_Line RETURN Boolean;

.................

END Ada.Text_IO;

PACKAGE BODY Ada.Text_IO IS

-- Private definitions of procedures, functions, etc.

PROCEDURE Get (Item : OUT Character) IS
BEGIN -- Steps of the body of the procedure Get

.................
END Get;

PROCEDURE Put (Item : IN Character) IS
BEGIN -- Steps of the body of the procedure Put

.................
END Put;

FUNCTION End_Of_Line RETURN Boolean IS
BEGIN -- Steps of the body of the function End_Of_Line

.................
RETURN

END End_Of_Line;

.................

END Ada.Text_IO;

© 1996 A Barnes, L J Hazlewood Ada 17/2

In this case the package declaration consists of incomplete procedure and function definitions, ie. the
headings of the procedures and functions Get, Put, End_Of_Line, etc. The package body, on the
other hand, contains of the full definitions of these procedures and functions.

In our previous use of procedures and functions we have defined them by using the form shown in
the package body, however we see that this definition can be subdivided into two. Firstly, a
procedure or function declaration (the incomplete form shown in the package declaration), and
secondly a procedure or function body (the complete form shown in the package body). This
separation is useful here, because the package declaration includes the definition of those
components which are exported from the package, and the package body the definition of those parts
of the package which are necessary for its internal workings and functionality, but which are not
exported, ie. they are private to the package, and are not visible to a client program which imports
components from the package.

Thus: package declaration package body

is the 'public view' of the package, is the 'private view' of the package,
containing those parts of the package containing the detailed working of its
which are necessary for a client program contents, which the client program
to be able to use its contents, often has no need to see.
referred to as the package interface.

For example, a client program which imports and uses the procedure Get to input a data value has no
need to 'see' or understand how this procedure works internally. Indeed you have been using
versions of this procedure since it was introduced in Unit 1 without 'seeing' its complete definition. In
the case of procedures and functions exported by a package, all that a client program needs to know
is:

i) The name of the procedure or function.
ii) How it is called, ie. what are the names, modes and types of its formal parameters (and in the

case of a function, what type of value is returned).
iii) What computation or processing is performed by the procedure or function. Notice this is

what computation is to be performed, not how it is to be achieved.
We see that a package declaration, containing procedure declarations (ie. just the procedure
headings) contains the information needed for (i) and (ii) above. The documentation which
accompanies a package normally provides the information needed for (iii). This documentation is
sometimes included in the package declaration, which then contains comments describing the
purpose of each procedure.

This separation of a package into 'declaration' and 'body' parts has many advantages. For example the
detailed implementation of the package components (contained in the package body) may be 'hidden'
from the client program (which has no need to 'see' their workings) - thus ensuring that the package
components cannot be accidentally corrupted by an incorrect client program. Another example would
be that the detailed implementation of the package components may be changed by its programmer
(possibly to correct errors or to implement a more efficient algorithm) without affecting the way in which
client programs import and use its components. We see that there are advantages to be gained if the
package declaration and package body are stored in separate files, and compiled separately, and this
is the normal arrangement for defining a package.

1 7 . 2 What components can be exported from a package?

The most common components exported from a package are:
i) Constants.

So far we have seen no examples of this.
ii) Types and subtypes.

We have seen one illustration of this in the example program at the end of Unit 16, where the
package Enumeration_IO (and hence the package SeatType_IO) has provided an
enumeration type with the two literal values Upper_Case and Lower_Case.

iii) Procedures and functions.
We have seen many examples where procedures and functions have been imported from
Ada.Text_IO, CS_Int_IO, CS_Flt_IO and CS_File_IO for performing input and output
of values of different types.

© 1996 A Barnes, L J Hazlewood Ada 17/3

1 7 . 3 Using the components of a package in a client program

We are already familiar with the two ways in which the components of a package can be referred to in a
program. In the first approach, the client program includes the context clauses:

WITH Package_name;
USE Package_name;

and then an imported component can be used in the client program simply by stating its name.
Throughout these units we have consistently adopted this approach when importing from
Ada.Text_IO, CS_Int_IO, CS_Flt_IO and CS_File_IO components (ie. procedures and
functions) for performing I/O, and when importing from Ada.Numerics.Elementary_Functions
the mathematical functions described in Unit 9. This approach has been adopted since most Ada
programs will make extensive use of procedures and functions from these packages, and it is
therefore more convenient to allow for their use in the most straightforward manner possible, ie. by
just stating the name of the component.

However as the number of packages used in a client program increases, a number of problems arise
with this approach, namely:

a) The program becomes difficult to read and understand since it is not immediately obvious
whether any given identifier referred to in a client program is defined in that program or is
imported from a package (or indeed if it is imported from a package, it is not obvious from which
package it may have been imported).

b) We need to take care to avoid the possibility that we may define identifiers in the client
program which are the same identifiers as those of components imported from packages.

b) The possibility that different packages will contain components with the same identifiers
increases. This clearly causes some difficulties.

The answer to these problems is to use the second approach which requires that the client program
includes the single context clause (for each package used):

WITH Package_name;

Then to use an imported component in the client program we state both the package and component
names using:

Package_name.Component_name

This form clarifies any ambiguity there may previously have been in (a) about the origin of an identifier.
For the reasons outlined above we will continue to use the first approach for components imported
from Ada.Text_IO, CS_Int_IO, CS_Flt_IO and CS_File_IO for performing I/O, and for functions
imported from the Ada.Numerics.Elementary_Functions package, and the second approach
for all other imported package components.

1 7 . 4 Why should we want to write our own packages?

There are a number of reasons why we might wish to write our own packages. These are:
a) As a repository for commonly used components which have been developed in the solution

of one problem and are of sufficiently general applicability to be likely to be re-used in the
solution of other problems.

b) As a means for decomposing very large programs into smaller, more manageable program
units.

c) As a convenient mechanism for implementing data structures.
We will now examine the rationale, and look at some examples of (a) and (b). The rationale for using
packages for (c) is beyond the scope of this course - but it will be covered in later courses.

We will see that the process of division of a large program into packages (sometimes referred to as
modules), which is known as modularisation, is a very important one in large-scale program design.
We only have time to examine a few of the issues relating to using packages to achieve program
modularisation in this unit, and the full impact of modularisation on the complete program design,
development and maintenance processes is beyond the scope of this course. However, it will be
dealt with more fully in later courses.

© 1996 A Barnes, L J Hazlewood Ada 17/4

1 7 . 4 . 1 Reusing commonly used components
In Unit 13 we introduced the enumeration type DayOfWeek to represent the days of the week. In Unit
15 we introduced the enumeration type MonthOfYear to represent the months of a year. We also
introduced in Unit 16 a record type ClockTime to represent a time of the day. Together these
provide mechanisms for representing a precise instant in time, ie. year, month, day and time of day,
which we might find useful in several different programs. Thus having written these type definitions
(and (say) some procedures and functions for processing such values), possibly as part of the
development of a program for a particular application, how might we use them in other programs? We
could place their text into files and edit them into our new programs as required, but:

a) This is a time-consuming and tedious process.
b) It creates duplicate copies within each program that they are used.
c) It requires that they be recompiled within each program that they are used.

A better approach would be to form a new package which contains the type definitions, procedures
and functions, and allow them to be used by importing them into the programs where they are
required. Hence in this example we might produce the package:

PACKAGE Date_Pack IS
TYPE DayOfWeek IS (Mon, Tues, Wed, Thurs, Fri, Sat, Sun);
TYPE MonthOfYear IS (Jan, Feb, Mar, Apr, May, Jun,
 Jul, Aug, Sep, Oct, Nov, Dec);
SUBTYPE DayOfMonth IS Positive RANGE 1..31;
TYPE DateType IS RECORD
 Day : DayOfWeek;
 DayNumber : DayOfMonth;
 Month : MonthOfYear;
 Year : Positive;
 END RECORD;
SUBTYPE HourRange IS Natural RANGE 0..23;
SUBTYPE MinRange IS Natural RANGE 0..59;
TYPE ClockTime IS RECORD
 Hours : HourRange;
 Minutes : MinRange;
 END RECORD;

FUNCTION IsLeap (Year : Positive) RETURN Boolean;
-- To deliver True if Year is a leap year, and False otherwise

FUNCTION MonthLength (Month : MonthOfYear;
 Year : Positive) RETURN DayOfMonth;

-- To deliver the number of days in the Month of this Year
END Date_Pack;

PACKAGE BODY Date_Pack IS
FUNCTION IsLeap (Year : Positive) RETURN Boolean IS
BEGIN

RETURN (Year REM 4 = 0 AND Year REM 100 /= 0)
 OR Year REM 400 = 0;

END IsLeap;

FUNCTION MonthLength (Month : MonthOfYear;
 Year : Positive) RETURN DayOfMonth IS

BEGIN
CASE Month IS

WHEN Jan|Mar|May|Jul|Aug|Oct|Dec => RETURN 31;
WHEN Apr|Jun|Sep|Nov => RETURN 30;
WHEN Feb => IF IsLeap(Year) THEN
 RETURN 29;
 ELSE
 RETURN 28;
 END IF;

END CASE;
END MonthLength;

END Date_Pack;

© 1996 A Barnes, L J Hazlewood Ada 17/5

Notice that constants, types, subtypes, etc. included in a package declaration are available for use
within the package body (just as if they had been declared within the package body).
In our approach to procedurisation, we have advocated the use of parameters and local variables in
order to write procedures and functions which are self-contained; hence allowing them to be used to
perform similar computations in several programs, and thus making them more readily available for
re-use. An example of this principle would be the function Sum from Unit 15:

FUNCTION Sum(A : IN Vector) RETURN Float IS
-- To deliver the total of all the elements in the array A
TotalSoFar : Float := 0.0;

BEGIN
FOR I IN A'Range LOOP

TotalSoFar := TotalSoFar + A(I);
END LOOP;
RETURN TotalSoFar;

END Sum;

which could be used to form the total of the values stored in an array of any constrained subtype of the
unconstrained type:

TYPE Vector IS ARRAY (Integer RANGE <>) OF Float;

In the case of a package containing the Sum function above, the question arises as to where the type
Vector should be declared. Since the definition of the Sum function makes reference to Vector, the
type should also be defined in the package. It would also be logical to collect together any other
procedures and functions we had written for processing arrays of type Vector into the package. We
would thus obtain the package Vector_Pack (say), defined by:

PACKAGE Vector_Pack IS
TYPE Vector IS ARRAY (Integer RANGE <>) OF Float;
FUNCTION Sum(A : IN Vector) RETURN Float;
-- Plus other procedure and function declarations
-- for manipulating arrays of type Vector
.................

END Vector_Pack;
and:

PACKAGE BODY Vector_Pack IS
FUNCTION Sum(A : IN Vector) RETURN Float IS

TotalSoFar : Float := 0.0;
BEGIN

FOR I IN A'Range LOOP
TotalSoFar := TotalSoFar + A(I);

END LOOP;
RETURN TotalSoFar;

END Sum;
-- Plus other procedure and function bodies
-- for manipulating arrays of type Vector
..................

END Vector_Pack;

Then we could write a program which needed to declare and process variables of the type Vector, by
including steps of the form:

WITH Vector_Pack;
...............
PROCEDURE ExampleProg IS

SUBTYPE BigVector IS Vector_Pack.Vector(1..100);
X, Y : BigVector;
Total : Float;

BEGIN
...............
Total := Vector_Pack.Sum(X) + Vector_Pack.Sum(Y);
...............

END ExampleProg;

to form in Total the sum of the contents of two 100 element arrays X and Y.

© 1996 A Barnes, L J Hazlewood Ada 17/6

1 7 . 4 . 2 Decomposing large programs into packages

In the design of very large programs, consisting of many hundreds or thousands of lines of program
code, we will often find that the program will be composed of several quite distinct subsections, each
subsection interacting with the others. For example, suppose we were to design a software system
for recording and managing mother and baby patient records in a maternity hospital. The program may
have several 'primary' subsystems, represented diagramatically by:

Patient record system
main program.

Birth subsystem Post-natal clinic
subsystem

Pre-natal clinic
subsystem

Baby care
subsystem

Where the user will typically be using the program to enter and manipulate records when (potential)
mothers attend pre-natal clinics, or when the baby is born, or when the mother and baby attend post-
natal clinics, or when clinics are held to monitor the development of the baby into childhood. Thus
over a period of time more and more information will be gathered about the progress of mothers and
their babies. However at any particular instant in time the user of the system will be largely concerned
with interacting with one of the subsystems, rather than with the system as a whole. Hence the main
program might consist simply of some initialisation of the system together with the presentation of a
menu, so that the user can select an appropriate subsystem. It might thus consist of the outline steps:

Input patient data from file A
LOOP
 Display menu for user B
 Get UserChoice .. C
 CASE UserChoice IS
 WHEN PreNatal => Enter the pre-natal subsystem D
 WHEN Birth => Enter the birth subsystem E
 WHEN PostNatal => Enter the post-natal subsystem F
 WHEN BabyCare => Enter the baby care subsystem G
 WHEN Quit => EXIT
 END CASE
END LOOP
Save patient data to file H

where we have made explicit reference to the enumeration variable:
TYPE MenuOption IS (PreNatal, Birth, PostNatal, BabyCare, Quit);
UserChoice : MenuOption;

and implicit reference to a data structure to hold the list of patient records.

The 'primary' subsystems represented in the diagram above may also make reference to other 'utility'
subsystems. For example we may have a subsystem to define constants, types and subtypes used
throughout the rest of the system, another to access and manipulate the list of patient records and
another to arrange the user input and output.

Normally the subsystem to define common constants, types and subtypes would be written as a
package, for example:

WITH Date_Pack;
PACKAGE Common_Pack IS

TYPE MenuOption IS (PreNatal, Birth, PostNatal, BabyCare, Quit);
TYPE GenderType IS (Male, Female);
MaxNameLen : CONSTANT Positive := 10;
SUBTYPE NameString IS String(1..MaxNameLen);
TYPE FullName IS RECORD
 ForeName : NameString;
 SecondName : NameString;
 Surname : NameString;
 END RECORD;
TYPE Status IS (BeforeBirth, AfterBirth);

© 1996 A Barnes, L J Hazlewood Ada 17/7

TYPE PatientType IS RECORD
 ProgressState : Status;
 MothersName : FullName;
 BabysName : FullName;
 BabysGender : GenderType;
 TimeOfBirth : Date_Pack.ClockTime;
 DateOfBirth : Date_Pack.DateType;
 END RECORD;

END Common_Pack;

Notice that since Common_Pack only contains definitions of constants, types and subtypes, and does
not contain any procedures or functions (whose complete definitions need to be provided in a
package body), there is no need for a Common_Pack package body.
Typically each of the remaining subsystems will be quite a large programming task, and of such a
complexity that they would normally be given to separate programmers or programmer teams for
independent development. The final system being reconstructed from these 'building blocks' when
they are complete and have been independently tested. This development process can of course be
performed using many target programming languages. However, Ada is designed to allow such
program decomposition to be undertaken easily and systematically, by implementing the subsystems
as packages. Once the Common_Pack package, and the package declarations for the other
subsystems have been written, the separate programmers or programmer teams can develop and test
their corresponding subsystem package bodies largely independently. The diagram below illustrates
the interdependence of all the subsystems, ie. which packages import components from other
packages.

Patient record system
main program.

Birth subsystem Post-natal clinic
subsystem

Pre-natal clinic
subsystem

Baby care
subsystem

Common
definitions

I/O interface
subsystem

List of patients
subsystem

We have some idea how the 'primary' subsystems may be written as packages. For example the post-
natal clinic subsystem will comprise a package declaration containing a single procedure (which is
imported into and called from the main program), ie. a package declaration of the form:

PACKAGE Post_Natal_Pack IS
PROCEDURE Process_Clinic (.....);

END Post_Natal_Pack;

and the step F of the main program will then consist of the procedure call:
Post_Natal_Pack.Process_Clinic (.....);

The corresponding package body will consist of the full definition of the exported procedure, together
with any additional constants, types, subtypes, variables, procedures and functions necessary to
complete this exported procedure, ie. a package body of the form:

WITH Date_Pack;
WITH Common_Pack;
PACKAGE BODY Post_Natal_Pack IS

...................
PROCEDURE Process_Clinic (.....) IS
BEGIN

...............
END Process_Clinic;
...................

END Post_Natal_Pack;

© 1996 A Barnes, L J Hazlewood Ada 17/8

We can see an obvious reason for the existence of the procedures corresponding to each of the
'primary' subsystems. They are just the procedures we might have identified by applying our top-
down design method to the problem, except they are going to be defined in separate packages rather
than in the main program so that their independent development is easier to achieve. It is less obvious
why we might wish to choose (and implement as packages) the two remaining 'utility' subsystems
mentioned above. We can get some idea of the reason for the list of patient records subsystem since
the list of patient records will need to be accessed by all of the 'primary' subsystems and by steps A
and H of the main program. But as was stated earlier its complete rationale and method of
implementation is beyond the scope of the course and will therefore not be considered further.
However, we will consider the I/O interface subsystem. Suppose we were to define this package
using a package declaration something like:

WITH Common_Pack;
PACKAGE IO_Pack IS

PROCEDURE Clear_Screen;
PROCEDURE Display_Menu;
PROCEDURE Get_Menu_Choice (Item : OUT Common_Pack.MenuOption);
...........

END IO_Pack;

where it is our intention that the package should contain all the procedures and functions needed by
the rest of the entire system for performing its interactive inputs and outputs, ie. no interactive input or
output should be performed by our system by any means other than through the facilities provided by
this package. Thus the precise mechanism of interactive communication between the system and the
user is localised to the package body of IO_Pack. The completed procedures in the package body
then have to be written to take account of:

a) The intended hardware, eg. VDU and normal keyboard, or touch sensitive VDU screen, or
VDU and specially tailored keyboard, etc.

b) The precise wording and layout of the menu to be output.
c) The precise form of permitted input, eg. whether the user is required to type the number of

the item in the menu, or some abbreviated name, or the first letter of the menu description, or
is allowed to enter all of these as valid inputs.

Once appropriate decisions had been made concerning the intended interactive user interface, the
completed package body could be produced as something like:

WITH Common_Pack;
PACKAGE BODY IO_Pack IS

PROCEDURE Clear_Screen IS
BEGIN

...........
END Clear_Screen;

PROCEDURE Display_Menu IS
BEGIN

...........
END Display_Menu;

PROCEDURE Get_Menu_Choice (Item : OUT Common_Pack.MenuOption) IS
BEGIN

...........
END Get_Menu_Choice;
...........

END IO_Pack;

Notice that the above details, which implement the entire interactive user interface, are independent
of the rest of the software system. Thus it would be possible for example to redesign the user
interface from English to French (say) so that the system could be used in a French maternity hospital,
or to redesign the user interface from a command based form (say) to a WIMP based form (say), or to
redesign the hardware from a normal VDU and keyboard (say), to a touch sensitive screen (say), by
rewriting only the contents of the IO_Pack package body. No other part of the software system would
need to be changed.
Thus we see from the above use of packages that we have a system which is considerably easier to
maintain, eg. to alter to take account of changes in the hardware or changes in the requirements of the
users, than a system where the definitions of all the I/O activities were distributed throughout the
entire software system .

