
© 1996 A Barnes, L J Hazlewood Ada 16/1

Introduction to Systematic Programming
Unit 16 - Records.

1 6 . 1 Introduction

We have already looked at one means of collecting related items together, namely the use of arrays.
Since array elements are always all of the same type, and can be accessed numerically, arrays are
convenient whenever we have a (potentially large) number of related values of the same type to deal
with. However, it often happens (particularly in data processing applications) that a fairly small number
of values, often of different types, form a logically connected unit. For clarity and convenience, such a
group of values should be given an overall name. This can be done by storing the values in an
appropriately defined record variable. The following example shows the form of a record designed to
hold the information that a company might keep for each order that it has:

Customer PartNo NoRequired ItemPrice InStock (1)

 "Rover∆∆∆∆∆" 311260" 1000" 11.25" True

NameString" RefNum Positive" Float" Boolean " (2)

Each component of a record is known as a field; each field must be given a different (preferably
meaningful) name; some suitable field identifiers are shown in line (1). The type associated with each
field must also be specified; appropriate types for this example are shown in line (2), where the
following declarations are assumed:

MaxNameLen : CONSTANT Positive := 10;
SUBTYPE NameString IS String(1 .. MaxNameLen);
SUBTYPE RefNum IS Positive RANGE 100000 .. 999999;

1 6 . 2 Record types

In Ada in order to declare a record variable we must first give a name to a type describing the complete
form of the record we wish to use. For the above example, we might use the record type definition:

TYPE OrderType IS RECORD
 Customer : NameString;
 PartNo : RefNum;
 NoRequired : Positive;
 ItemPrice : Float;
 InStock : Boolean;
 END RECORD;

Such a type definition encloses, between the keywords RECORD and END!RECORD, a sequence of
pairs of the form:

Field_name : Type_name;

Several successive field specifications involving the same type can be abbreviated in the usual way,
for example (in a modified version of the above record type declaration) we might have:

ItemPrice, DiscountRate : Float;

We can now declare record variables, with the structure shown above, simply by specifying the type
OrderType in a declaration. For example:

NewOrder : OrderType;

declares a variable NewOrder which has five fields named Customer, PartNo, NoRequired,
ItemPrice and InStock, which are of types NameString, RefNum, Positive, Float, and
Boolean respectively.

It is possible to have procedures and functions which have (one or more) record parameters (of a
specified type) and, in the case of functions, it is also possible to specify that the function will return a
record as its value. The parameters and return type are specified in the procedure or function heading
in the standard way.

© 1996 A Barnes, L J Hazlewood Ada 16/2

1 6 . 3 Accessing the fields of a record

The individual elements of an array behave just like ordinary variables, and in an analogous manner,
the individual fields of a record variable also behave like ordinary variables. However the notation for
accessing a particular field of a record is rather different; the general form is:

Record_variable_name . Field_name

Thus NewOrder.PartNo refers to the particular field designated by PartNo, which, in this example,
is a storage location capable of holding a Positive integer value. Some possible references to the
fields of a variable NewOrder of type OrderType are:

NewOrder.ItemPrice := NewOrder.ItemPrice * 1.175; -- Add VAT
or

IF NewOrder.NoRequired > 500 THEN
NewOrder.ItemPrice := NewOrder.ItemPrice * 0.90; -- 10% discount

END IF;
or

IF NewOrder.InStock THEN
 Print delivery instructions
ELSE
 Reorder NewOrder.PartNo from manufacturer
END IF;

or
Put(NewOrder.Customer); -- Output produced is: Rover∆∆∆∆∆

Note that NewOrder itself refers to the whole of this five-field object:

Customer PartNo NoRequired ItemPrice InStock

1 6 . 4 Whole record assignment and comparison

We saw in Units 11 and 15 how it is possible to assign the entire contents of one array variable to
another provided that the types of the arrays are identical. It is possible to perform an analogous
operation with record variables again provided that the variables are of the same record type. For
example, assuming the declarations:

OldOrder, NewOrder : OrderType;

and assuming that the variable NewOrder has already had values assigned to its fields, we may write:

OldOrder := NewOrder;

to copy the contents of each field of the NewOrder record into the corresponding fields of OldOrder.
This is clearly far more convenient than the equivalent steps:

OldOrder.Customer := NewOrder.Customer;
OldOrder.PartNo := NewOrder.PartNo;
OldOrder.NoRequired := NewOrder.NoRequired;
OldOrder.ItemPrice := NewOrder.ItemPrice;
OldOrder.InStock := NewOrder.InStock;

It is also possible to test two records of the same type for equality and inequality using the operators =
and /=. As might be expected two records are equal if (and only if) all their corresponding fields have
the same values. For example we might write:

IF OldOrder /= NewOrder THEN
 Put_Line("Order changed");
END IF;

© 1996 A Barnes, L J Hazlewood Ada 16/3

1 6 . 5 Record aggregates

In Units 11 and 15 we discussed array aggregates and their use in assigning values to array variables
and constants. In Ada it is also possible to have record aggregates. The notation for these is very
similar to that for arrays: a record aggregate consists of an association of fields and values written in
parentheses. Aggregates may be used to assign values to record variables (or constants) by whole
record assignment. For example, the assignment:

NewOrder := (Customer => "Vauxhall ", PartNo => 234091,
 NoRequired => 200, ItemPrice => 9.99, InStock => True);

is equivalent to the five assignments:
NewOrder.Customer := "Vauxhall ";
NewOrder.PartNo := 234091;
NewOrder.NoRequired := 2000;
NewOrder.ItemPrice := 9.99;
NewOrder.InStock := True;

but the former is obviously far more convenient.
Note that all the fields of the record must be given values in an aggregate, otherwise an error will occur
when the whole record assignment is attempted. The most frequent uses of record aggregates is in
initialised record variable declarations and constant declarations, for example (including the
declarations of types DayOfWeek and MonthOfYear as in Unit 15):

TYPE DayOfWeek IS (Mon, Tues, Wed, Thurs, Fri, Sat, Sun);
TYPE MonthOfYear IS (Jan, Feb, Mar, Apr, May, Jun,
 Jul, Aug, Sep, Oct, Nov, Dec);
SUBTYPE DayOfMonth IS Positive RANGE 1 .. 31;

TYPE DateType IS RECORD
 Day : DayOfWeek;
 DayNumber : DayOfMonth;
 Month : MonthOfYear;
 Year : Positive;
 END RECORD;

D_Day : CONSTANT DateType := (Day => Tues, DayNumber => 6,
 Month => Jun, Year => 1944);

EasterDay : DateType := (Day => Sun, DayNumber => 3,
 Month => Apr, Year => 1994);

As named association is being used in these aggregates, the values for the fields may be specified in
any order. Thus, for example, we could also write (as an American programmer almost certainly would!):

D_Day : CONSTANT DateType := (Day => Tues, Month => Jun,
 DayNumber => 6, Year => 1944);

1 6 . 6 Default values for record fields

It is possible to specify default values for one or more record fields in a record type declaration and
then, whenever a record variable of this type is established, the field is initialised with this default value
unless an explicit initial value for the field is specified by means of a record aggregate. The way that a
default field value is specified is very similar to the way a default value is given to a procedure formal
parameter:

Field_name : Type_name := Default_value;

For example, we could define the following record type for holding a time in hours and minutes and
assign the default value of zero to both fields so that any record variable of this type (such as
ElapsedTime in the declarations which follow) would automatically be initialised to zero as it was
declared:

© 1996 A Barnes, L J Hazlewood Ada 16/4

SUBTYPE HourRange IS Natural RANGE 0 .. 23;
SUBTYPE MinRange IS Natural RANGE 0 .. 59;
TYPE ClockTime IS RECORD
 Hours : HourRange := 0;
 Minutes : MinRange := 0;
 END RECORD;
ElapsedTime : ClockTime;

1 6 . 7 More complex records

The examples of records that we have seen so far have been relatively straightforward having fields of
the simple types Integer, Float, String etc. However it is possible for the fields of a record to be
any type, including user-defined structured types such as arrays and other records. For example we
might have a record type NewBornType declared as follows:

SUBTYPE OunceRange IS Natural RANGE 0 .. 15;
TYPE WeightType IS RECORD
 Pounds : Natural;
 Ounces : OunceRange;
 END RECORD;
TYPE GenderType IS (Male, Female);
TYPE FullName IS RECORD
 Forename : NameString;
 SecondName : NameString;
 Surname : NameString;
 END RECORD;

TYPE NewBornType IS RECORD
 Gender : GenderType;
 TimeOfBirth : ClockTime;
 DateOfBirth : DateType;
 BirthWeight : WeightType;
 MothersName : FullName;
 END RECORD;

This record type has five fields, of which one is a user-defined enumeration type and the other four are
themselves records. Note also that the field MothersName is a record which has three fields all of
which are arrays. In theory, arrays and records may be nested to any depth to build up data structures
of virtually unlimited complexity. Given the variable declaration:

Baby : NewBornType;

 all the following are valid references to parts of the record variable Baby:
Baby.DateOfBirth.Month gives the month of birth
Baby.TimeOfBirth.Hours gives the hour of birth
Baby.MothersName.Surname gives the mothers surname
Baby.MothersName.Forename(1) gives the mothers first initial

1 6 . 8 Arrays of records

In realistic programs it is often necessary to store collections of records; a logical way to do this is to use
an array of records. For example to handle 200 orders, we might have the declarations:

NumOrders : CONSTANT Positive := 200;
TYPE OrderList IS ARRAY (1.. NumOrders) OF OrderType;
Orders, OldOrders : OrderList;

that is an array type in which each element is capable of storing a complete OrderType record, with
each such record comprising the five fields specified in the declaration given in [16.2]. This is a much
better storage arrangement than attempting to represent the data structure using five parallel arrays,
each array having 200 elements of type NameString, RefNum, Positive, Float and Boolean
respectively. The two variables Orders and OldOrders should thus be visualised as:

© 1996 A Barnes, L J Hazlewood Ada 16/5

 Customer PartNo NoRequired ItemPrice InStock

1

2

3

4

199

200

Orders

Orders(2)

Orders(4).PartNo

Thus Orders(2) refers to a complete record, and Orders(4).PartNo refers to a particular field in a
particular record element of the array.

Fields in arrays of records can, once accessed, be utilised in the same way as fields of any other
record, for example to add 17.5% VAT to each order in hand:

FOR OrderNo IN 1 .. NumOrders LOOP
 Orders(OrderNo).ItemPrice := Orders(OrderNo).ItemPrice * 1.175;
END LOOP;

Note that the array index is attached to Orders (rather than ItemPrice) to select a particular record
from the array of records and then the field ItemPrice is selected from that record. Compare this with
the example in [16.7] where in Baby.MothersName.Forename(1) the array index is attached to the
field name since it is the field Forename which is the array, and we want to select the first element of
this array to get the mother's initial.

Also, since Orders and OldOrders are arrays (even though their elements are records consisting of
more than single values), whole array assignment such as:

OldOrders := Orders;

can be used to copy the entire contents of the array of records Orders into OldOrders. In general in
Ada we can use such assignment steps to copy the contents of one variable into another provided
that the types of the variables are identical.

Programming example

An airline company wishes to computerise the allocation of seats on its thirty daily outward flights from
a particular airport. Each flight has a reference number in the range 1001 to 1030, and the aircraft
involved can all carry up to 100 passengers: 20 in first class and 80 in economy class. An Ada program
is required to process a list of flight requests of the form:

Booking_reference_no. Flight_no. No_of_seats_required Class

where the Class is either the string "first class" or "economy class" . The program should
process each flight request by either:

i) rejecting the request if the desired flight is already fully booked for the requested class, or
ii) confirming the request, and allocating the required number of seats for the requested flight

and class.

© 1996 A Barnes, L J Hazlewood Ada 16/6

Data structures

We see that three pieces of information are associated with each flight; its flight reference number,
and the number of seats still available in first and economy class. This suggests that we should define
a record type PlaneSeats (say) to hold information about seats still available for a particular flight. If we
give the maximum number of seats available in each class as the default values for the fields of this
record, we can arrange that the number of seats available in each class is always correctly initialised
when a record of this type is set up. Now to note the seats still available for each flight, use an array of
PlaneSeats records (one record for each flight) indexed by the flight reference number:

SUBTYPE FirstClRange IS Natural RANGE 0 .. 20;
SUBTYPE EconomyClRange IS Natural RANGE 0 .. 80;
TYPE PlaneSeats IS
 RECORD
 FirstClass : FirstClRange := 20;
 EconomyClass : EconomyClRange := 80;
 END RECORD;
SUBTYPE FlightNumRange IS Positive RANGE 1001 .. 1030;
TYPE FlightList IS ARRAY (FlightNumRange) OF PlaneSeats;
OutwardFlights : FlightList;

This array might therefore contain (at some instant part way through processing the flight requests) the
following values:

16

0

0

20

2

0

48

80

80

0

1001

1002

1003

1029

1030

FirstClass EconomyClass
field fieldOutwardFlights

flight 1001 already fully booked

flight 1002 has first class and
economy class seats available
flight 1003 has no first class
seats available, but all economy
seats available

flight 1029 all seats available

flight 1030 has no economy
class seats available, and only
two first class seats available

Thus, for example, the number of first and economy class seats available on flight number 1028 would
be given by:

OutwardFlights(1028).FirstClass
and:

OutwardFlights(1028).EconomyClass

Each booking request involves four pieces of information: a booking reference number, a flight
number, the number and class of seats required. Thus it is also convenient to declare a second record
type to store the information about booking requests:

TYPE SeatType IS (First, Economy);
TYPE BookingRequest IS
 RECORD
 RefNo : Positive;
 FlightNum : FlightNumRange;
 Seats : Positive;
 Class : SeatType;
 END RECORD;

The final program is shown on the following pages.

© 1996 A Barnes, L J Hazlewood Ada 16/7

WITH Ada.Text_IO; USE Ada.Text_IO;
WITH CS_Int_IO; USE CS_Int_IO;
WITH CS_File_IO; USE CS_File_IO;

PROCEDURE Bookings IS
 -- Program for Unit 16 of the ISP Ada course.
 -- Written by A Barnes, November 1993, updated for Ada95, August 1996.

 MinFlightNum : CONSTANT Positive := 1001;
 MaxFlightNum : CONSTANT Positive := 1030;
 NumFirstSeats : CONSTANT Natural := 20;
 NumEconomySeats : CONSTANT Natural := 80;

 SUBTYPE FirstClRange IS Natural RANGE 0 .. NumFirstSeats;
 SUBTYPE EconomyClRange IS Natural RANGE 0 .. NumEconomySeats;
 TYPE PlaneSeats IS
 RECORD
 FirstClass : FirstClRange := NumFirstSeats;
 EconomyClass : EconomyClRange := NumEconomySeats;
 END RECORD;

 SUBTYPE FlightNumRange IS Positive RANGE MinFlightNum .. MaxFlightNum;
 TYPE FlightList IS ARRAY (FlightNumRange) OF PlaneSeats;
 TYPE SeatType IS (First, Economy);
 TYPE BookingRequest IS
 RECORD
 RefNo : Positive;
 FlightNum : FlightNumRange;
 Seats : Positive;
 Class : SeatType;
 END RECORD;

 PACKAGE SeatType_IO IS NEW Enumeration_IO(SeatType);
 USE SeatType_IO;

 PROCEDURE InputBooking (Booking : OUT BookingRequest) IS
 BEGIN
 Get(Booking.RefNo);
 Get(Booking.FlightNum);
 Get(Booking.Seats);
 Get(Booking.Class);
 Skip_Line; -- Skip over the word "class" to start of next line.
 END InputBooking;

 PROCEDURE ProcessBooking (Booking : IN BookingRequest;
 Flight : IN OUT PlaneSeats) IS
 Reject : Boolean;
 BEGIN
 CASE Booking.Class IS
 WHEN First =>
 Reject := Flight.FirstClass < Booking.Seats;
 WHEN Economy =>
 Reject := Flight.EconomyClass < Booking.Seats;
 END CASE;
 IF Reject THEN
 Put_Line("Booking rejected");
 ELSE
 Put_Line("Booking confirmed");
 CASE Booking.Class IS
 WHEN First =>
 Flight.FirstClass := Flight.FirstClass - Booking.Seats;
 WHEN Economy =>
 Flight.EconomyClass := Flight.EconomyClass
 - Booking.Seats;
 END CASE;
 END IF;
 END ProcessBooking;

© 1996 A Barnes, L J Hazlewood Ada 16/8

 PROCEDURE OutputDetails (Booking : IN BookingRequest) IS
 Blank : CONSTANT Character := ' ';
 BEGIN
 Put("Booking Reference Number ");
 Put(Booking.RefNo);
 Put_Line(": ");
 Put(Booking.Seats);
 Put(Blank);
 Put(Item => Booking.Class, Width => 1, Set => Lower_Case);
 Put(" class seats requested on flight number ");
 Put(Booking.FlightNum);
 New_Line;
 END OutputDetails;

 -- Main program variables
 OutwardFlights : FlightList;
 Request : BookingRequest;

BEGIN -- Main program of Bookings

 Put_Line("Please enter the name of the input file");
 OpenInput;

 Put_Line("Please enter a different name for the output file");
 OpenOutput;

 WHILE NOT End_Of_File LOOP
 InputBooking(Request);
 OutputDetails(Request);
 ProcessBooking(Booking => Request,
 Flight => OutwardFlights(Request.FlightNum));
 END LOOP;

 CloseInput;
 CloseOutput;

END Bookings;

Notes

a) In the procedure OutputDetails the step:
Put(Item => Booking.Class, Width => 1, Set => Lower_Case);

was used to output values of the enumeration type SeatType. The parameter Width controls
the number of print positions used to output the enumeration literals (using the value 1
means, in effect, print them in the minimum amount of space required), and the parameter Set
controls whether they are printed using the upper or lower case character set. If we had
wanted the enumeration value printed using upper case letters we could have used the call:

Put(Item => Booking.Class, Width => 1, Set => Upper_Case);

where the actual parameters Lower_Case and Upper_Case, are enumeration literals
provided by the Enumeration_IO package (and hence by the SeatType_IO package since
it is derived from the Enumeration_IO package).

b) Notice how the use of records to group related data values together into a single variable has
not only improved the general clarity of our program, but also has simplified how our
procedures may be called. For example, the InputBooking procedure is called with one
parameter (of the record type BookingRequest), rather than with four parameters
corresponding to the four values which comprise a booking request.

