
© 1996 A Barnes, L J Hazlewood Ada 13/1

Introduction to Systematic Programming
Unit 13 - Discrete Types; Selection Using CASE

1 3 . 1 Enumeration types
Sometimes the pre-defined types available in Ada (eg. Integer, Float, Boolean and Character)
are not convenient for expressing the actions we wish to perform. For example suppose we wanted to
process some data involving the days in a week. We could refer to each day name by an integer code
number, say, Monday = 1, Tuesday = 2, ..., Sunday = 7, and hence declare a variable to hold a
particular day (code number) using:

Day : Integer;

and then include in our program steps of the form:
Day := 5;

or
IF Day = 3 THEN

But such steps are obscure (we have to refer back to our numbering system to recall that Friday!=!5
and Wednesday = 3). It would be much more natural to be able to write Friday or Wednesday (or
perhaps suitable abbreviations) directly into our program. Ada allows us to define a group of
new!literal values, ie. new data values (like the number value 6, or the Boolean value True, or the
character value 'A'), by using an enumeration type. We can do this by writing in a type declaration
the list of values (enclosed in round brackets) that variables of this type are capable of holding, eg:

TYPE DayOfWeek IS (Mon, Tues, Wed, Thurs, Fri, Sat, Sun);

To avoid confusion it is normal to choose identifiers for the enumerated literal values appearing in this
definition to be different from the names of any variables, constants, procedures, types or other
enumerated literals appearing elsewhere in the program.

In the same way that the declaration:
Number : Integer;

means that the variable Number can hold one of the possible integer values, ..., -2, -1, 0, 1, 2, ..., the
following declaration of the variable Day means that it can hold one of the seven listed values of the
type DayOfWeek:

Day : DayOfWeek;

Following this form of declaration, we can perform assignment and comparison of such values, so that
we can re-write the earlier program steps as:

Day := Fri;
or

IF Day = Wed THEN

Notice how such user-specified types improve the clarity of a program by removing the problem of
artificially representing data values which are not amongst those of the pre-defined types.

As with declarations involving the pre-defined types, it is possible to define enumeration constants
and have initialised enumeration variable declarations. For example:

TYPE Season IS (Winter, Spring, Summer, Autumn);
HolidaySeason : CONSTANT Season := Summer;
PresentSeason : Season := Autumn;

defines the enumeration constant HolidaySeason to be the value Summer, and an enumeration
variable PresentSeason, capable of holding any one of the four enumeration values listed, but
initialised to the value Autumn. It is also possible to have procedures and functions which have
enumeration type parameters, and we will see examples of this later in the unit.

© 1996 A Barnes, L J Hazlewood Ada 13/2

1 3 . 2 Using enumeration variables
The operations which can be performed on enumeration values are quite restricted. The standard
arithmetic operators like +, -, *,... etc. are not defined for such values, eg:

Day := Mon + Tues; -- !? Illegal in Ada

does not have any sensible meaning if Day is to represent only one of the values Mon, Tues, Wed,
...,Sun. We may however compare two values of the same enumeration type by means of the
standard relational operators =, /=, <, etc. The ordering is determined by the order in which the
enumeration values are listed when the type is declared. Thus:

Mon < Tues yields the value True
Fri <= Tues yields the value False

Input and output of enumeration values is possible in Ada using versions of the procedures Get and
Put which have been 'informed' about the type of value they are expected to input or output. We can
create these versions of the Get and Put procedures by writing something like:

PACKAGE DayOfWeek_IO IS NEW Enumeration_IO (DayOfWeek);
USE DayOfWeek_IO;

which would be placed in the declaration part of an Ada program (after the declaration of the type
DayOfWeek). The first of these steps creates a new package (called DayOfWeek_IO) containing
versions of the Get and Put procedures specifically modified for the input and output of values of
type DayOfWeek. The second step then makes the contents of this package available for use in the
program without the need to precede each Get or Put with the package name. Note the absence of a
WITH step in the above, since the first step not only creates a new package, but also makes it available
to the program. Following this declaration we may then write input and output steps like:

Put("Type in a day of the week ");
Get(Day);
New_Line;
Put("You have just entered ");
Put(Day);

where the value input must be one of the listed values of the type DayOfWeek (expressed using a
mixture of either upper or lower case characters), and will appear all in capital letter characters when
output. Thus the above would produce the interactive conversation (where the user input is shown
underlined):

Type in a day of the week tues
You have just entered TUES

Notice that if the enumeration values listed in the type declaration are abbreviated, it is the abbreviated
values which have to be input to a Get step, and which are output by a Put step. If the 'capitalised' or
abbreviated forms of output shown above are inconvenient, we can use another way of outputting
enumeration values described later in this unit.

1 3 . 3 Discrete types
Collectively the pre-defined types Integer, Character and Boolean, and user-defined
enumeration types are known as the discrete types (also sometimes referred to as ordinal
types). They are referred to in this way because the values which can be represented in these types
form an ordered discrete list of values. We have seen how this ordering is defined for enumeration
values, but how is it defined for the type Character? Each value of type Character is represented
internally in the computer by a numerical code. Usually the Latin-1 (ISO Standard 8859-1) is used
where each character is represented by an 8-bit numerical code (ie. by an integer value in the range 0
to 255)1 . Character values are ordered by the ordering of their Latin-1 codes. The full ordering can
be obtained by inspecting a table of these codes and their corresponding characters - most
programming textbooks contain such a table. However, it is unusual to use this ordering for anything
other than the upper and lower case letter characters and the digit characters, where the ordering is:

a) Upper case letters 'A' < 'B' < 'C' < 'D' < ... < 'Z'
b) Lower case letters 'a' < 'b' < 'c' < 'd' < ... < 'z'
c) Digit characters '0' < '1' < '2' < '3' < ... < '9'

1 Latin-1 character codes in the range 0 to 127 coincide with the codes in the well-known
ASCII system (American Standard Code for Information Interchange). However the
latter should be regarded as obsolescent.

© 1996 A Barnes, L J Hazlewood Ada 13/3

Thus when character values are compared using the relational operators <, >, >= etc; the ordering of
characters is determined by the numerical order of the codes used to represent them.

Discrete types are quite important in programming in Ada because:
i) Consecutive values from the ordered list of values comprising each of these types can be

used as array subscripts.
ii) Consecutive values from the ordered list of values comprising each of these types can be

used to 'count' in a FOR repetition.
 We have seen examples of these features in earlier units for Integer values, so we now give
examples for the Character and enumeration discrete types.

Character types
i) To declare a 26 element array, subscripted using character values in the range 'A' to 'Z', we

would write:

TYPE LetterArray IS ARRAY ('A'..'Z') OF Integer;
Frequency : LetterArray;

which declares an array variable Frequency, whose elements can hold Integer values, and
which are indexed (or subscripted) using values in the range 'A' to 'Z', eg. an array of the
form:

Frequency

'A' 'Z''D''C''B' 'Y'

For example to read a sentence of text (comprising blanks and capital letter characters)
terminated by a full-stop character, and to count the frequency of each capital letter, using the
elements of this array to hold these counts, we would write:

Get(NextChar);
WHILE NextChar /= '.' LOOP

IF NextChar /= ' ' THEN
Frequency(NextChar) := Frequency(NextChar) + 1;

END IF;
Get(NextChar);

END LOOP;

which uses a Character variable NextChar.

ii) Then to output a table of these frequencies, we would write:

Put("Letter Frequency");
FOR ThisChar IN 'A'..'Z' LOOP

New_Line;
Put(ThisChar);
Put(Item => Frequency(ThisChar), Width => 12);

END LOOP;

where we see that on each repetition of the FOR loop, the index variable ThisChar takes in
turn the values 'A', 'B', 'C', ..., 'Z'. Thus the first time around the repetition the Put steps
output the character 'A' and the array element Frequency('A'), the second time around
the repetition they output 'B' and Frequency('B'), and so on.

Enumeration types

i) To declare a five element array, subscripted using enumeration values in the range Mon to
Fri, we would write:

TYPE WorkingHours IS ARRAY (Mon..Fri) OF Float;
HoursWorked : WorkingHours;

© 1996 A Barnes, L J Hazlewood Ada 13/4

which declares an array variable HoursWorked, whose elements can hold Float values, and
which are indexed (or subscripted) using the values Mon to Fri from the enumeration type
DayOfWeek defined earlier, eg. an array of the form:

HoursWorked

Mon Tues Wed Thurs Fri

8.5 7.5 8.0 8.25 7.5

ii) To prompt the user to input five values for the elements of this array we would write:

FOR ThisDay IN Mon..Fri LOOP
Put("Input the number of hours worked on ");
Put(ThisDay);
Get(HoursWorked(ThisDay));
New_Line;

END LOOP;

which would produce an interactive conversation something like:
Input the number of hours worked on MON 8.5
Input the number of hours worked on TUES 7.5
Input the number of hours worked on WED 8.0
Input the number of hours worked on THURS 8.25
Input the number of hours worked on FRI 7.5

and would result in storing the values shown in the array diagram above.

1 3 . 4 Operations on discrete types

Since the values of all the discrete types are ordered, the notion of an immediate successor and
predecessor of a value clearly make sense. For example, for the enumeration type DayOfWeek
defined above, the predecessor and successor of the value Tues are Mon and Wed respectively. As
another example, the character 'b' has 'a' as its predecessor and 'c' as its successor. We see
that in general each value (except the first) has an immediate predecessor and each value (except the
last) has an immediate successor, determined by the order in which the values are listed when the
enumeration type was defined.

A number of useful built-in operations are provided for manipulating and converting values belonging
to these discrete types. Many of these operations (including the ones below) are defined as function
attributes of a type. So that they are invoked by stating both the type name, and the particular
attribute required using:

Type_name ' Function_name (Expression)
or

Type_name ' Function_name

Predecessor and successor functions

The function Succ delivers the successor of the value specified in the expression. For example, for
the enumeration type DayOfWeek defined above, assuming the declaration:

Day : DayOfWeek := Thurs;
the step:

Day := DayOfWeek'Succ(Day);

will set the value of Day to Fri. If the value of Day is the maximum for that particular type, (ie. if Day
holds the value Sun) then executing Succ(Day)will result in a run-time error.

The companion function Pred delivers the predecessor of the value specified in the expression. For
example, if Day held the value Thurs then the step:

Day := DayOfWeek'Pred(Day);

will set the value of Day to Wed. If the value of Day is the minimum for that particular type, (ie. if Day
holds the value Mon) then executing Pred(Day)will result in a run-time error.

© 1996 A Barnes, L J Hazlewood Ada 13/5

Position and value functions

The function Pos delivers the position of the value as specified in the ordered discrete list of values.
For example:

Character'Pos('A') yields the value 65 (the Latin-1 code for 'A')
DayOfWeek'Pos(Tues) yields the value 1 (enumeration values are numbered from 0)

The companion function Val delivers the value of the discrete type which appears in the specified
position. For example:

Character'Val(49) yields the value '1' (as the Latin-1 code for '1' is 49)
Character'Val(32) yields the value '∆' (as the Latin-1 code of blank is 32)
DayOfWeek'Val(3) yields the value Thurs (enumeration value numbered 3)

To illustrate the use of the Pos and Val functions, consider the following function to convert letter
characters from lower to upper case2:

FUNCTION UpperCase (Ch : Character) RETURN Character IS
-- To convert lower case letters to upper case. All
-- non-letter characters are left unaltered
Shift : CONSTANT Integer := Character'Pos('A')

 - Character'Pos('a');
BEGIN

IF Ch >= 'a' AND Ch <= 'z' THEN
RETURN Character'Val(Shift + Character'Pos(Ch));

ELSE
RETURN Ch;

END IF;
END UpperCase;

First and last functions
The parameterless functions First and Last deliver the first and last values respectively in the
ordered discrete list of values for that type. For example:

DayOfWeek'First yields the value Mon
DayOfWeek'Last yields the value Sun
Character'First yields the "null" character (with Latin-1 code of 0)
Character'Last yields the character ÿ (with Latin-1 code of 255)

Notice that although all of these functions apply to the discrete type Integer, some are not very
useful. For example, assuming the Integer variable Count, then the steps:

Count := Integer'Succ(Count); Count := Count + 1;

are equivalent, though we wouldn't choose to use the first on the grounds of program clarity!

1 3 . 5 Multiple selection using CASE
We have seen that Ada provides one-way selections by the use of IF...THEN...END IF, two-way
selections by the use of IF...THEN...ELSE...END IF and more complicated selections by the use
of an IF...THEN...ELSIF....ELSE...END IF step, or by using several consecutive IF's. For
example, suppose we wanted to output a description of whether or not shops are open on a particular
day using one of the above we could write this as:

IF Day = Sun THEN
 Put("Shops are closed all day");

ELSIF Day = Fri OR Day = Sat THEN
 Put("Shops are open all day");

ELSIF Day = Thurs THEN
-- Early closing day is on Thursday
 Put("Shops are open half a day");

ELSE
Put("Shops are open all day");

END IF;

2 This function does not convert accented lower-case characters (such as é) to their

upper-case equivalents.

© 1996 A Barnes, L J Hazlewood Ada 13/6

Generally, the greater the number of ELSIF parts there are, the more obscure the selection process
becomes, and hence the more error-prone.

Ada provides a much more convenient way of expressing multiple selections known as a CASE step.
The CASE form equivalent to the above example would be:

CASE Day IS
WHEN Sun => Put("Shops are closed all day");
WHEN Mon..Wed|Fri|Sat => Put("Shops are open all day");
WHEN Thurs => Put("Shops open for half a day");

END CASE;

1 3 . 6 General form of a CASE step

The general structure of a CASE step is typified by:

CASE Selecting_expression IS
WHEN Case_list1 => Step(s)1
WHEN Case_list2 => Step(s)2
..........................
WHEN Case_listn => Step(s)n

END CASE;

where each Case_list stands for a list of values separated by vertical bar characters. A Case_list
may also include a range of consecutive values using the conventional notation, namely
First..Last which denotes all the range of values from First to Last inclusive. One of the
Case_List's may consist of the keyword OTHERS.

The Selecting_expression must be a variable (or expression) of one of the discrete types, and
each Case_list is a list of some of the values that the Selecting_expression can yield when
evaluated. The meaning of such a CASE step is:

i) Evaluate the Selecting_expression
ii) If the value of the Selecting_expression matches one of the values in Case_listi,

perform the corresponding Step(s)i
iii) Otherwise perform the steps in the OTHERS part.

The OTHERS part is optional but if it is omitted all possible values of the Selecting_expression
must occur in one or other of the Case_list's, otherwise a compilation error will occur. The Ada
compiler also checks that each possible value of the Selecting_expression occurs once and
once only amongst all values given in the Case_list's.

The example shown earlier uses an enumeration type value. As another example we could use
Character values to determine the score appropriate to any letter in the game of Scrabble™ by:

CASE Letter IS
WHEN 'D'|'G' => Score := 2;
WHEN 'B'|'C'|'M'|'P' => Score := 3;
WHEN 'F'|'H'|'V'|'W'|'Y' => Score := 4;
WHEN 'K' => Score := 5;
WHEN 'J'|'X' => Score := 8;
WHEN 'Q'|'Z' => Score := 10;
WHEN OTHERS => Score := 1;

END CASE;

assuming declarations of the variables Score and Letter of type Integer and Character
respectively, and Letter holds one of the values 'A' to 'Z'. We see that in such multiple selections
the CASE step provides a much neater way of expressing the actions to be performed. Imagine writing
this using the logical operators A N D and O R in compound conditions in an
IF...THEN...ELSIF...ELSE...END IF step!

We can also use a CASE step to produce a more convenient form of output of the values of an
enumeration type. If we don't want to have the capitalised form shown at the end of [13.2], or if we
don't want to output the abbreviated form of the enumeration literals, we can use instead:

© 1996 A Barnes, L J Hazlewood Ada 13/7

PROCEDURE PutDayOfWeek (ThisDay : IN DayOfWeek) IS
-- To output a suitable text value for the day ThisDay.

BEGIN
CASE ThisDay IS

WHEN Mon => Put("Monday");
WHEN Tues => Put("Tuesday");
WHEN Wed => Put("Wednesday");
WHEN Thurs => Put("Thursday");
WHEN Fri => Put("Friday");
WHEN Sat => Put("Saturday");
WHEN Sun => Put("Sunday");

END CASE;
END PutDayOfWeek;

1 3 . 7 Programming example - age distribution survey

The ages (in years) of a sample of the children in the population have been prepared in a file as input
data, terminated by the value -1. It is required to determine and output the number of children in each
of the age categories.

a) Pre-school age (0-2 years) d) Secondary school age (12-16 years)
b) Play group age (3-4 years) e) Sixth form age (17-18 years)
c) Primary school age (5-11 years)

First thoughts:
Read in the data values one-by-one, adding 1 to the appropriate count (one for each age category).
Loop terminated by reading the value -1.

Data structures:
We could use five separate variables for the counts, or an array:

TYPE GroupTotals IS ARRAY (1..5) OF Integer;
Total : GroupTotals;

but it would not be clear in our program which element of the Total array was used as the count for a
particular age category. A better approach would be to define an enumeration type, capable of
holding a value denoting each of the five age categories:

TYPE AgeGroup IS (PreSchool,PlayGroup,Primary,Secondary,SixthForm);

and an array of counts, subscripted by these enumerated values defined as follows:

TYPE GroupTotals IS ARRAY (PreSchool..SixthForm) OF Integer;
Total : GroupTotals;

ie. an array of the form:

Total

PreSchool PlayGroup Primary Secondary SixthForm

where elements of the array are used to hold counts of the number of children in each age category.

Example output:
A typical layout of output values should be something like:

 Age Range No. of Children
 0 - 2 years 15
 3 - 4 years 33
 5 - 11 years 104
 12 - 16 years 146
 17 - 18 years 13

© 1996 A Barnes, L J Hazlewood Ada 13/8

WITH Ada.Text_IO; USE Ada.Text_IO;
WITH CS_Int_IO; USE CS_Int_IO;
WITH CS_File_IO; USE CS_File_IO;

PROCEDURE AgeSurvey IS
-- Program for Unit 13 of ISP Ada course.
-- Written by L J Hazlewood, October 1993.
-- Modified for Ada 95 by A Barnes, August 1996.

TYPE AgeGroup IS (PreSchool,PlayGroup,Primary,Secondary,SixthForm);
TYPE GroupTotals IS ARRAY (PreSchool..SixthForm) OF Integer;
Terminator : CONSTANT Integer := -1;

FUNCTION AgeRange (ThisAge : Integer) RETURN AgeGroup IS
-- To determine the age category for ThisAge.

BEGIN
CASE ThisAge IS

WHEN 0..2 => RETURN PreSchool;
WHEN 3|4 => RETURN PlayGroup;
WHEN 5..11 => RETURN Primary;
WHEN 12..16 => RETURN Secondary;
WHEN 17|18 => RETURN SixthForm;
WHEN OTHERS => Put("Error in data, invalid age"); New_Line;
 -- This last Put step should never be executed. If it is,
 -- a run-time error occurs as AgeRange returns no value.

END CASE;
END AgeRange;

PROCEDURE OutputAgeRange (ThisGroup : IN AgeGroup) IS
-- To output the range of ages for ThisGroup age category.

BEGIN
CASE ThisGroup IS

WHEN PreSchool => Put(" 0 - 2 years");
WHEN PlayGroup => Put(" 3 - 4 years");
WHEN Primary => Put(" 5 - 11 years");
WHEN Secondary => Put("12 - 16 years");
WHEN SixthForm => Put("17 - 18 years");

END CASE;
END OutputAgeRange;

PROCEDURE OutputTable (Count : IN GroupTotals) IS
-- Output a table showing the age ranges for each age category
-- and the corresponding number of children in the sample.

BEGIN
New_Line(4);
Put(" Age Range No. of Children"); New_Line;
FOR Group IN PreSchool..SixthForm LOOP

OutputAgeRange(Group);
Put(Item => Count(Group), Width => 16); New_Line;

END LOOP;
END OutputTable;

Total : GroupTotals := (PreSchool..SixthForm => 0);
Age : Integer;
Category : AgeGroup;

BEGIN -- Main program.
Put("Please type in the name of the data file"); New_Line;
OpenInput;
Get(Age);
WHILE Age /= Terminator LOOP

Category := AgeRange(Age);
Total(Category) := Total(Category) + 1;
Get(Age);

END LOOP;
 CloseInput;

OutputTable(Total);
END AgeSurvey;

