
© 1996 A Barnes, L J Hazlewood Ada 10/1

Introduction to Systematic Programming
Unit 10 - FOR Loops and arrays

1 0 . 1 Pre-determinable repetitions
We have seen throughout the earlier units that the WHILE construction allows us to program any sort
of repetition. However, it is often the case in programming that the number of repetitions required is
known before the repetition process starts. When this is the case, it is usually neater to use a different
Ada repetition construction, namely the FOR step (or FOR loop), instead of a WHILE. Here is a simple
example. Suppose we want to produce five lines of stars in our output. Following the approach of
Unit 5 we would write:

LineNo := 1;
WHILE LineNo <= 5 LOOP

Put("**************************************");
New_Line;
LineNo := LineNo + 1;

END LOOP;

Using a FOR loop instead, we could write:

FOR LineNo IN 1..5 LOOP
Put("**************************************");
New_Line;

END LOOP;

The effect of this is to repeat the Put and New_Line steps, with LineNo set successively (on each
repetition) to the values 1, 2, 3, 4, and 5; ie. to obey the Put and New_Line steps 5 times. The
variable used to do the 'counting' here LineNo, is often known as the loop control (or index)
variable.

1 0 . 1 . 1 FOR loops - basic form
The simplest kind of Ada FOR statement has the form:

FOR Index_variable IN Start_expression .. Finish_expression LOOP
Step(s)_to_be_repeated;

END LOOP;

Such a statement means:
i) Evaluate the Start_expression.
ii) Evaluate the Finish_expression.
iii) Assign the value of the Start_expression to the Index_variable.
iv) Compare the index variable's value with the finishing value;

if the Index_variable is greater than the value of the Finish_expression, the
execution of the FOR step is terminated; otherwise (ie. if the Index_variable is less than or
equal to the value of the Finish_expression) the Step(s)_to_be_repeated part is
obeyed, and then 1 is added to the Index_variable.

v) The repetition process is then continued (from (iv)).
We see from the above that the start expression and the finish expression do not have to be literal
constants (as they were in our first example above), but rather they can be expressions. Thus for
example, if the Integer variables Margin and Length hold the values 8 and 10 respectively, then
the program fragment (taken from the DrawLine procedure in [5.7]):

-- Output a blank left margin
FOR Index IN 1..Margin LOOP

Put(" ");
END LOOP;
-- Output a line of stars
FOR Index IN Margin + 1 .. Margin + Length LOOP

Put("*");
END LOOP;
New_Line;

© 1996 A Barnes, L J Hazlewood Ada 10/2

will, in the first repetition output 8 (ie. the value of Margin) spaces, and then in the second repetition
output 10 stars. Notice that the second repetition starts off with Index initially set to 9 (ie. the value of
Margin+1), and has Index incremented by one on each repetition until it reaches 18 (ie. the value of
Margin+Length), giving 18 - 9 + 1 = 10 repetitions.

It is important to note from the above description that if the value of the finishing expression is less
than that of the starting expression, then the step(s) to be repeated part will not be repeated at all, not
even once. Hence in the fragment:

FOR Index IN Margin + 1 .. Margin + Length LOOP
Put("*");

END LOOP;

if the variables Margin and Length hold the values 25 and 0 respectively, then the value of the
starting expression will be 26, the value of the finishing expression will be 25, and hence the Put step
will not be performed at all.

It may also be noted that the above description states that the finish expression is evaluated before
the repetitions start (not each time through the loop). For example, assuming the variable Margin has
the value 10, the loop below is executed 10 times (not 6 times).

FOR Index IN 1..Margin LOOP
Put(Item => " ");
Margin := Margin - 1; -- ?? Very poor style in Ada

END LOOP;

Although the description of a general FOR loop above makes the meaning of this example clear, the
careless reader may incorrectly infer that the step which reduced Margin by 1 is affecting the number
of repetitions of the FOR loop. For this reason, the above example is considered to be very poor Ada
program style.

1 0 . 1 . 2 Using the index variable

In the above examples, the steps being repeated do not make any reference to the index variable,
however this doesn't have to be the case. For example we could use the fragment:

FOR Line IN 1..60 LOOP
Put(Item => Line, Width => 2);
New_Line;

END LOOP;

to output the numbers 1, 2, 3, 4, ..., 60 at the start of each line on a page of output, ie. to number the
first 60 lines on a page.

This illustrates that the current value of the index variable can be used (eg. written out, or employed in
some calculation) in the Step(s)_to_be_repeated part. However, no attempt may be made to change
it explicitly (whether by an assignment or a Get statement). Only the "behind the scenes" 'counting'
mechanism of the FOR loop (which automatically arranges for it to take each value in turn on each
repetition) is allowed to change the index variable. Thus for example:

FOR Line IN 1..60 LOOP
Put(Item => Line, Width => 2);
Line := Line + 1; -- !? Illegal in Ada

END LOOP;

would result in a compilation error. In fact the term index variable is somewhat misleading, it isn't a
variable at all, but rather its behaviour inside the loop is that of a local constant (ie. local to the
Step(s)_to_be_repeated part of the loop), whose value is re-defined on each repetition to be one
more than its previous value. Hence the index variable must not be used as an OUT or IN OUT actual
parameter in a procedure call (since otherwise the procedure would be able to change the value of the
index variable).

We see that the index variable is established and manipulated in a special way in the Ada language, a
way quite unlike any other declared constant or variable. It also has two other unusual features:

© 1996 A Barnes, L J Hazlewood Ada 10/3

i) The index variable is not declared in the usual way, its existence within the FOR loop is
deduced by the computer purely by stating its name between the keywords FOR and IN in the
leading part of the FOR step. A consequence of this implied declaration is that the index
variable only exists while the loop is being executed, and hence cannot be referred to outside
the FOR loop.

ii) The start expression and the finish expression should yield values of the same type, and the
type of the index variable will be inferred from this type. Thus in the example:

FOR Year IN StartYear..FinishYear LOOP
Put(Year);
New_Line;

END LOOP;

if the variables StartYear and FinishYear are Integer variables (holding the values 1988
and 1993 respectively), then Year will be inferred to also be of type Integer, and the loop
will write out the integer values 1988, 1989, 1990, 1991, 1992 and 1993, each at the start of
a new line.

We will see later in the course what other types of values may be used as the 'counting' mechanism of
a FOR loop, but for the present we will only consider examples where the index variable is of type
Integer. However we should note at this point that it is not permitted for the index variable to be a
real value, ie. it is not permitted to be of type Float.

Example to illustrate the above

A particular illustration of (i) above occurs when a FOR loop is used within a procedure. In this case the
index variable must not be declared as a local variable of that procedure (as might normally be
expected for other variables which are used locally within the body of the procedure). Thus to define a
procedure corresponding to the first example of [10.2] we would write:

PROCEDURE DrawStarLine (Margin : IN Integer := 0;
 Length : IN Integer := 20) IS

-- To output a margin and a line of stars
BEGIN

-- Output a blank left margin
FOR Index IN 1..Margin LOOP

Put(" ");
END LOOP;
-- Output a line of stars
FOR Index IN Margin + 1 .. Margin + Length LOOP

Put("*");
END LOOP;
New_Line;

END DrawStarLine;

and it is not necessary to declare the index variable Index locally within the procedure (or anywhere
else for that matter). We could then define the procedure:

PROCEDURE DrawTriangle (Base : IN Integer);
-- To output a triangle of stars, Base lines deep
-- with a margin of 10 blank spaces

BEGIN
FOR LineNo IN 1..Base LOOP

DrawStarLine(Margin => 10, Length => LineNo);
END LOOP;

END DrawTriangle;

This example again illustrates that it is not necessary to declare the index variable LineNo locally within
the procedure. Also observe that this procedure uses the index variable as an actual parameter in a
call to the procedure DrawStarLine. This is consistent with the fact that we may only use the value
of the index variable, ie. as an actual parameter to a formal IN parameter. If we were to call the
DrawTriangle procedure to output a triangle of stars using:

© 1996 A Barnes, L J Hazlewood Ada 10/4

Get(Size);
DrawTriangle(Size);

(assuming the existence of an Integer variable Size) then notice that although we don't know the
number of repetitions when the program is written, the number of repetitions is known during program
execution before the loop starts - it is simply whatever value is read and stored in the variable Size
and then passed to Base on entry to the procedure DrawTriangle. (Of course, if this value is zero,
the Step(s)_to_be_repeated part of the loop (ie. the DrawStarLine step) is not executed at all - and
hence no triangle of stars will be output).

1 0 . 2 Arrays

So far, we have dealt with individual data values which could be stored in individual variables; one data
value per variable. However, in reality it is very common that data consists not of individual values, but
of collections of similar or related values. We may have a collection of observations, eg. the 365
values comprising the rainfall on each day of the year, or a collection of selling prices (of perhaps a 100
different lines sold in a supermarket). It is neither convenient nor sensible to declare a large number of
individual variables to hold such related values; rather it is preferable to set up one variable, with a
single overall name, which can store many similar values; this will allow us to handle our related values
in a simple, systematic manner. Such a variable is called an array variable (or simply an array).

Thus for the example of the selling prices of a 100 different lines sold in a supermarket, we might have
an array variable called Price (say), within which 100 values could be stored, each of these 100
values being of type Float (say). This could be visualised as:

Price

1 2 3 4 99 10098

The individual storage locations of an array variable are known as (array) elements. Each element
can be used exactly like an ordinary individual variable containing a single value; thus elements can be
given values (eg. by using assignment or Get steps) and values of elements can be used (eg. in some
calculation, or output by using a Put step). In order that the individual elements can be referred to
conveniently, they are numbered; in this example we might number them from 1 to 100. To access
any particular element, its reference number is written in round brackets after the array name, eg:

Price(4)

refers to the element labelled with the number 4 in the above structure. Hence the assignment step:

Price(4) := 9.99;

can be used to assign a value to Price(4) (ie. to store the value 9.99 in the element labelled with 4),
and thus produce the storage arrangement:

Price

1 2 3 4 99 10098

9.99

Subsequently the assignment step:

Charge := Price(4) * (1.0 + VATRate / 100.0);

shows how the value of Price(4) (ie. the value 9.99) can be used in a calculation (this assumes that
Charge and VATRate are of course Float variables).

The reference number of an array element is known as its subscript (or sometimes its index), and
the process of referring to a particular element of an array is known as subscripting (or indexing).

A subscript does not need to be a constant (such as 4 above); it can also be a variable or indeed any
expression provided that it yields a value for the subscript which lies in the correct range; in our
example above, in the range 1 to 100. So we might refer to:

© 1996 A Barnes, L J Hazlewood Ada 10/5

Price(Line) - assuming that Line is an Integer variable.
and:

Price(2*Count+1) - assuming that Count is an Integer variable.

A subscript expression is worked out afresh each time that the program step in which it appears is
executed. Thus for example:

Price(Line) := 0.0;

means (on whatever occasion that it is executed):

i) Get the current value of the variable Line.
ii) See which element of Price has that value as its subscript.
iii) Store the value 0.0 in that element.

It is obvious that this only makes sense if the value of Line is between 1 and 100 (inclusive), as only
elements numbered in this range exist. Attempting to access a non-existent array element causes a
run-time error. This is frequent programming error; so be careful!

1 0 . 2 . 1 Processing all the elements of an array using a FOR loop

Since the logic of using arrays is that they are used to store related values, it is very common to want to
apply the same operation to all of the elements of an array, ie. to each of the related values. This is
very easily accomplished using a 'counting' (ie. FOR) repetition. For example to set all the elements of
the array Price to zero we would write:

FOR Line IN 1..100 LOOP
Price(Line) := 0.0;

END LOOP;

which would produce the storage arrangement:

Price

1 2 3 4 99 10098

0.0 0.0 0.0 0.0 0.0 0.0 0.0

To see how this is achieved, observe that the first time around the FOR loop the index variable Line
holds the value 1, and hence the assignment step causes 0.0 to be stored in element 1 of the Price
array. The second time around the FOR loop the index variable Line holds the value 2, and hence the
assignment step causes 0.0 to be stored in element 2 of the Price array. The third time around the
FOR loop the index variable Line holds the value 3, and hence the assignment step causes 0.0 to be
stored in element 3 of the Price array. And so on. The last time around the FOR loop the index
variable Line holds the value 100, and hence the assignment step causes 0.0 to be stored in
element 100 of the Price array. Thus producing in the array Price the values as shown above.

This example illustrates some of the simplification achieved by using an array. If the Price array were
not used, instead we would first of all have to declare 100 separate variables (say Price1, Price2,
Price3, Price4, ... etc.) and then write 100 separate assignment steps (ie. Price1:=0.0;
Price2:=0.0; Price3:=0.0; ... etc.). Very tedious!

We can use a similar repetition to input 100 data values (corresponding to the prices of the 100
different lines sold in a supermarket) and store them in elements of the Price array as follows:

FOR Line IN 1..100 LOOP
Put("Type the price of a line : ");
Get(Price(Line));

END LOOP;

which assumes the program is interactive, and hence includes prompts to the user.

As a further example, suppose we wished to determine the number of prices which were more than
£100. Assuming the Integer variable NumExpensive (to hold this number) we could write:

© 1996 A Barnes, L J Hazlewood Ada 10/6

NumExpensive := 0;
FOR Line IN 1..100 LOOP

IF Price(Line) > 100.0 THEN
NumExpensive := NumExpensive + 1;

END IF;
END LOOP;

1 0 . 2 . 2 Declaring array variables, and type declarations

Array variables are declared in a similar manner to ordinary variables, and we know that the declaration
of a variable must include its type. How are we to do this? We will adopt the approach in this course of
defining a new type name when we want to declare an array variable. Thus for the Price example we
would write:

 TYPE SalesList IS ARRAY (1..100) OF Float;
 Price : SalesList;

The first of these steps is a type declaration which defines the identifier SalesList as a new type,
while the second step declares Price as a variable of the type SalesList. These declarations are
analogous to the declaration of an Integer variable Number using:

Number : Integer;

except that in the latter case we are using the fact that the type Integer is pre-defined in Ada,
whereas in the former case we have first defined a new type called SalesList. Once SalesList
has been defined in this way, we may use the type name SalesList in our program in just the same
way we would use any of the pre-defined type names like Integer, Float or Boolean.

So what does the above type declaration tell the computer about the array variable Price? The
declaration of SalesList states that it is an array type, it states the type of the values to be stored in
the array elements, and what range of subscript values are used to index the array elements (and
hence how many values are to be stored). These are all needed so that when the variable Price is
declared the computer can allocate an appropriate amount of memory. Thus in the above example the
computer would set up an array variable called Price, for which 100 storage locations would be
reserved, each one capable of storing a Float value. The 100 storage locations being indexed with
the values 1, 2, 3, ..., 100.

Note that the declaration of the type SalesList does not reserve any storage for the array, it is not
like a variable declaration. Rather it just provides a mechanism for defining the structure of a new (array
in this case) type. It is the declaration of the variable Price which requires storage to be allocated by
the computer.

1 0 . 2 . 3 Array declaration in general (for now, more to come later)

Arrays can have any number of elements, numbered consecutively from some (Integer) starting
value. The starting value need not be 1, it could be any value. However the most commonly used
starting values in practice are 0 and 1.

Even though the subscript of an array is an Integer value, the values stored in the array elements
can be of any type. Thus in the example of the Price array, Integer values (in the range 1 to 100)
are used when subscripting the array, but the elements are defined to hold Float values. Thus in
general we will see array type definitions of the form:

TYPE Type_name IS ARRAY (First..Last) OF Element_type;

where Element_type (eg. Integer, Float or Boolean, etc.) specifies the type of the values to be
stored in the elements. First and Last are normally Integer constants (ie. literal values or
identifiers defined as constants). Notice that for a sensible array we must have First ≤ Last, and
hence an array has (Last-First+1) elements. Although in general the array elements can be of any
type, in any one array all the array elements must be of the same type. Thus it is not possible (for
example) to have an array whose first element holds an Integer value, and whose second element
holds a Float value, and whose third element holds a Boolean value, and so on.

© 1996 A Barnes, L J Hazlewood Ada 10/7

Several array variables can be declared together if they are of the same array type. The following
illustrates the declaration of the array variables Balances, OldWeights, NewWeights, BitPattern
and NumberOfWetDays:

FirstAccountNo : CONSTANT Integer := 21000;
LastAccountNo : CONSTANT Integer := 23000;
TYPE AccountList IS ARRAY (FirstAccountNo..LastAccountNo) OF Float;
Balances : AccountList;

NumObservations : CONSTANT Integer := 96;
TYPE Readings IS ARRAY (1..NumObservations) OF Float;
OldWeights, NewWeights : Readings;

TYPE Byte IS ARRAY (0..7) OF Boolean;
BitPattern : Byte;

TYPE BadWeather IS ARRAY (1980..1990) OF Integer;
NumberOfWetDays : BadWeather;

Array declarations and type declarations can be mixed up with other variable declarations as desired;
the only restriction is that a type must be declared before it is used to declare variables. Arrays can
also be declared as local variables within subprograms (i.e. procedures or functions) if this is required.

1 0 . 3 Programming example - an opinion poll

Problem:

The attitudes of 100 respondents when presented with some proposition are represented by
integers in the range 1 (strongly disagree) to 7 (strongly agree). A set of 100 coded responses have
been placed in a data file, and it is required to process this data to find the number of responses, and
the percentage of the total they form, in each of the 7 categories.

First thoughts:

Open the input file in which the responses are stored and then read in and process the data values
one-by-one. This needs a repetition which must repeat 100 times, so should use a FOR loop. On
each repetition need to add 1 to the appropriate one of seven counts (one for each category). When
the repetition is complete can then output final counts and percentages.

Using the methods of previous units, we would need seven separate variables for the counts (say
Count1, Count2,..., Count7), and then to update the appropriate count we would have to write
something like:

IF Response = 1 THEN
Count1 := Count1 + 1;

ELSIF Response = 2 THEN
Count2 := Count2 + 1;

............
ELSIF Response = 6 THEN

Count6 := Count6 + 1;
ELSE

Count7 := Count7 + 1;
END IF;

This is very repetitious and tedious, and as we are dealing with a group of items which all need to be
treated in the same way, it is much better to use an array with 7 elements, accumulating each count in
one element of it. Bearing this in mind, we could arrive at:

Data structure(s)

MinCode : CONSTANT Integer := 1;
MaxCode : CONSTANT Integer := 7;
TYPE Frequency IS ARRAY (MinCode..MaxCode) OF Integer;
Attitude : Frequency;

The array Attitude contains 7 elements, each element being a count for the number of responses
in each of the 7 categories.

© 1996 A Barnes, L J Hazlewood Ada 10/8

Attitude

1 2 3 4 765

In the top-down design of a program, it is always helpful to include specification of arrays which are
important to the whole program together with the top level design (call this a new section 'Data
structure(s)' for example). Notice that the limits of the array have been represented using appropriate
constants. It is both more obvious what is going on and easier to introduce modifications (say change
to a code range 1 to 9) if a program is developed using this technique.

Final program:

WITH Ada.Text_IO; USE Ada.Text_IO;
WITH CS_Int_IO; USE CS_Int_IO;
WITH CS_Flt_IO; USE CS_Flt_IO;
WITH CS_File_IO; USE CS_File_IO;

PROCEDURE Opinion IS
-- Program for Unit 10 of the ISP Ada course
-- Written by L J Hazlewood, October 1993
-- Modified by A Barnes, September 1994
-- Modified by L J Hazlewood, October 1994

NumResponses : CONSTANT Integer := 100;

MinCode : CONSTANT Integer := 1;
MaxCode : CONSTANT Integer := 7;

TYPE Frequency IS ARRAY (MinCode..MaxCode) OF Integer;

Attitude : Frequency;
Response : Integer;

BEGIN

OpenInput;

-- Initialise all the counts to zero
FOR Code IN MinCode .. MaxCode LOOP

Attitude(Code) := 0;
END LOOP;

-- Input and process and the responses
FOR Count IN 1 .. NumResponses LOOP

Get(Response);
Attitude(Response) := Attitude(Response) + 1;

END LOOP;

-- Output the percentages
Put("Category No. in category Percent of total");
New_Line;
Put("======== =============== ================");
New_Line(2);

FOR Code IN MinCode .. MaxCode LOOP
Put(Item => Code, Width => 5);
Put(Item => Attitude(Code), Width => 14);
Put(Item => Float(Attitude(Code)*100)/Float(NumResponses),
 Fore => 14, Aft => 2);
Put(Item => "%");
New_Line;

END LOOP;

CloseInput;

END Opinion;

