
© 1996 A Barnes, L J Hazlewood Ada 9/1

Introduction to Systematic Programming
Unit 9 - More on Procedures. Functions

9 . 1 Default parameters

It sometimes happens that one particular actual parameter value is used far more frequently than any
other value when calls are made to a procedure. In such cases it is possible in Ada to give a
default!value to the corresponding formal parameter in the parameter specification part of the
procedure heading. In Ada it is only possible to define such default values for parameters of mode IN.
Defining a default value for a formal parameter has the following effect: if an AP is supplied in a
procedure call, then (as usual) this value is copied to the FP; however if the AP is omitted from the
procedure call step then the default value is used instead. Therefore, in these circumstances it is not
necessary to supply all the parameters in a procedure call step; parameters with default values may be
omitted. In order to define a default value a slightly modified parameter specification of the form:

Formal_parameter : IN Type_name := Default_value

is used. Note that this form of parameter specification is similar in many respects to an initialised
variable declaration. The notation used is reasonable since we may think of a default value as
initialising the FP when no AP is supplied in the procedure call step.

Example

In [5.7] a procedure DrawLine with two parameters Margin and Length was defined. The most
frequently used value of the parameter Margin is likely to be zero (so that the line of stars is not
preceded by any blanks). Therefore it is sensible to specify a default value of zero for this parameter:

PROCEDURE DrawLine (Margin : IN Integer := 0;
 Length : IN Integer) IS
 -- To output Margin blanks, followed by a line of Length stars
 Count : Integer;
BEGIN
 New_Line;
 -- First output Margin blanks
 Count := 1;
 WHILE Count <= Margin LOOP
 Put(Item => " ");
 Count := Count + 1;
 END LOOP;
 -- Next output Length stars
 Count := 1;
 WHILE Count <= Length LOOP
 Put(Item => "*");
 Count := Count + 1;
 END LOOP;
 New_Line;
END DrawLine;

Now if an AP value corresponding to Margin is supplied in a procedure call that value is used and the
default value is ignored. Thus to produce a 10 character margin followed by 40 stars we would use the
call step:

DrawLine(Margin => 10, Length => 40);

However, if an AP corresponding to the FP Margin is not supplied, for example in the call:

DrawLine(Length => 40);

then Margin is set to its default value: namely zero. Thus this procedure call is equivalent to:

DrawLine(Margin => 0, Length => 40);

Note If a FP has no default value specified for it, then an AP must be supplied in any procedure call
step, otherwise a compilation error will occur.

© 1996 A Barnes, L J Hazlewood Ada 9/2

9 . 2 Default parameters in I/O procedures
A number of the procedures in the standard I/O libraries have default values defined for some of their
parameters. For example, the FP Width of the procedure Put from CS_Int_IO is given a default
value of 1 which means, in effect, 'output the integer in a field of minimum width' (as was described in
[4.5.3]). In fact the procedure Put has the heading:

PROCEDURE Put (Item : IN Integer;
 Width : IN Integer := 1;
 Base : IN Integer := 10);

and so takes a third parameter Base. So far this extra parameter has not been discussed; it specifies
the number base to be used when outputting the number and has the default value 10. Thus to
output a number in standard base 10 notation (ie. standard decimal form) in a field of width 6 (say) the
call step:

Put(Item => IntVar, Width => 6);

(where IntVar is an integer variable) could be used. However, if output in base 2 (ie. binary) notation
is required the call step:

Put(Item => IntVar, Width => 6, Base => 2);

would be used.

The procedure Put from CS_Flt_IO has four FP's in total, three of which have default values. In fact
this procedure has the heading:

PROCEDURE Put (Item : IN Float;
 Fore : IN Integer := 1;
 Aft : IN Integer := 2;
 Exp : IN Integer := 0);

The parameters Fore and Aft are given default values of 1 and 2 which means, in effect, 'output the
real number to 2 decimal places of accuracy in a field of minimum width' (see [4.5.3] for more details of
this). So far the fourth parameter Exp has not been discussed; if a non-zero value is specified for Exp
the real value is printed in scientific notation whereas if Exp has its default value of zero, the
number is output in the usual floating point format. Here are a few examples of scientific notation:

Floating Point Form Normal Scientific Form Computer Scientific Form

256.1 2.561!¥!102 2.561E2
-1.98 -1.98!¥!100 -1.98E0
0.0023 2.3 ¥!10-3 2.3E-3

The values of Fore and Aft control the number of print positions used before and after the decimal
point and the value of Exp (if greater than zero) specifies the number of print positions used to output
the exponent (ie. the part after the E). If the value specified for Exp is positive but smaller than the
number of print positions required to output the exponent, the exponent is output in full using the
minimum number of print positions (ie. the exponent is never truncated in any way).

The procedure New_Line from Ada.Text_IO also has a formal parameter Spacing with a default
value of 1. The parameter Spacing specifies the number of new lines which are to be output. So far
we have only used New_Line as if it were a procedure with no parameters, but now we can see that
the procedure call:

New_Line; is equivalent to the call: New_Line(Spacing => 1);

Furthermore a procedure call step such as:

New_Line(Spacing => 3);

is equivalent in its effect to the three separate calls:

New_Line;
New_Line;
New_Line;

© 1996 A Barnes, L J Hazlewood Ada 9/3

9 . 3 Parameter association by position

So far in procedure call steps we have associated formal and actual parameters in procedure calls
using expressions of the form:

Formal_parameter => Actual_parameter or FP => AP

This method is known as parameter association by name. In Ada a second method is also
allowed: namely parameter association by position1. Using this method only the actual
parameters appear in the procedure call step and the association with formal parameters is by position:
the first AP is associated with the first FP in the parameter specification in the procedure heading, the
second AP with the second FP and so on. A few examples using the procedure Put from
CS_Int_IO should clarify this:

a) Put(Number, 8, 10);

is equivalent to:
Put(Item => Number, Width => 8, Base => 10);

b) Put(Number, 7);

is equivalent to:
Put(Item => Number, Width => 7);

Here Number is associated with the first FP (namely Item) and 7 with the second FP (namely
Width) and, since the third AP is missing, the default value 10 of the third FP Base is used.

c) Put(Number);

is equivalent to:
Put(Item => Number);

Here Number is associated with the first FP (namely Item) and, since the second and third
AP's are missing, their default values (namely 1 and 10) are used.

d) Note that to express the equivalent of the procedure call:
Put(Item => Number, Base => 2);

when using parameter association by position, requires that the default value 1 for the second
FP Width be supplied explicitly:

Put(Number, 1, 2);

If we were to write:
Put(Number, 2);

the AP value 2 would be associated with Width and the default value 10 of Base would be
used.

The major advantage of using parameter association by position is obviously brevity. Secondly one
need not know the precise FP names to use association by position. However there are some serious
disadvantages:

 i) Particularly when there are three or more parameters there is a risk of putting the AP's in the
wrong order and so producing an erroneous program. The chances of making a mistake when
using parameter association by name is much reduced as the order is not critical.

ii) Reduced program clarity with positional parameters as the association of AP's and FP's is not
explicitly stated in the procedure call.

iii) Parameter association by position when some parameters are omitted is less flexible than
named association and is more error prone (see example (d) above).

1 In fact, many programming languages (eg. C, Basic, Pascal, Lisp) only allow

parameter association by position.

© 1996 A Barnes, L J Hazlewood Ada 9/4

As a general rule of thumb parameter association by name is the preferred method particularly if a
procedure has several parameters. However association by position is acceptable in cases where a
procedure has only one parameter (where there is no problem with order) or if a procedure has two (or
more) parameters whose order is unimportant (as, for example, with the procedure PrintMax
considered in [6.1]), and we will adopt this practice in the course units.

9 . 4 Functions
In Ada functions are similar to procedures. A procedure is designed to perform some particular
computation, and (by means of a procedure declaration) is given a name. Then, by quoting the name
of the procedure, and supplying whatever parameter information is expected, the defined
computation can be executed whenever required. A function is also called by quoting its name and
specifying appropriate parameters, but in addition to performing some defined computation, a
function delivers (or returns) a value which is immediately available for use, eg. as an operand in an
arithmetic expression. In fact a function may only be called in a place in a program where its returned
value can used. In Ada functions and procedures together are often referred to as subprograms.

9 . 4 . 1 Defining a function
Functions may have most of the features of procedures, such as a heading, parameters, local
variables and a body, but in addition the type of the value returned must also be specified in the
heading. In fact the form for function definition is:

FUNCTION Identifier(Parameter_specification) RETURN Result_type IS
 Local_variable_declarations
BEGIN
 Step(s)
END Identifier;

The differences from a procedure definition are:

a) The keyword FUNCTION is used instead of PROCEDURE.

b) The result type must be specified after the parameter specification part by writing the keyword
RETURN followed by the type of the value to be delivered.

c) The parameter specification is more restricted than for procedures: all the parameters of a
function must be of mode IN (OUT or IN OUT modes are not permitted and any attempt to use
them will result in a compilation error). We see therefore that a function can only deliver a
single result for use in the calling program. As all the parameters must be of mode IN, this
keyword may be (and usually is) omitted from the parameter specification which thus consists
of one or more parts of the form:
List_of_parameters_separated_by_commas : Type_name := Default_value

These parts are separated by semi-colons (just as in procedure parameter specifications).
The ':= Default-value ' part is optional.

d) The function body must include one or more steps which specify the value to be returned.
This is done by writing the keyword RETURN followed an expression which, when evaluated,
causes the function to complete its execution and produces the required value to be
returned, ie:

RETURN Expression;

The type of the value returned should be the same as the type specified in the function
heading.

Notes i) Although there is no theoretical limit on the number of RETURN steps that can appear in a
function body, it is generally thought to be bad programming style to write functions
containing many RETURN steps as this makes the program difficult to follow.

ii) It is also possible to use the program step:
RETURN;

in the steps of a procedure. When this step is executed, the procedure 'returns'
immediately to the calling program, but, of course, since a procedure doesn't deliver a
value no expression is required after the keyword RETURN.

© 1996 A Barnes, L J Hazlewood Ada 9/5

9 . 4 . 2 Calling a function
A function call resembles a procedure call in several respects: a function is called by quoting its name
and supplying the required parameters in brackets. Each actual parameter is associated with the
corresponding formal parameter in the normal manner (ie. using association by name of the form
FP!=> AP or using association by position). However function and procedure calls differ in one
important respect: a procedure call forms a complete program step whereas a function call does not. A
function call directly returns a value which the calling program must use in some manner. Thus a
function call may be used anywhere in an expression where a variable (of the same type) would be
valid. The following examples illustrate these points.

9 . 4 . 3 Examples
A function to calculate the larger of two real values could be defined as:

FUNCTION Max (First, Second : Float) RETURN Float IS
BEGIN
 IF First > Second THEN
 RETURN First;
 ELSE
 RETURN Second;
 END IF;
END Max;

Once it has been defined (and assuming the declaration of appropriate Float variables) the function
Max might be called in any of the following ways:

Larger := Max(First => A, Second => B);

Put(Max(First => MyBalance, Second => YourBalance));

HalfMax := Max(First => A, Second => B) / 2.0;

IF Max(First => A, Second => B) < 0.0 THEN Do_something END IF;

In Unit 6 a procedure FindMax was defined which also computed the larger of its two IN mode
parameters. However FindMax passed this value back to the calling program by means of an OUT
mode parameter. The question naturally arises: which approach is better? To answer this question,
compare the use of the procedure FindMax and the function Max. Firstly suppose we wish to assign
the greater of two Float values A and B to the variable Larger. Using the procedure FindMax we
would write:

FindMax(First => A, Second => B, Max =>Larger);

whereas using the function Max we would write:
Larger := Max(First => A, Second => B);

Here there is not much to choose between the two methods in terms of convenience. However
suppose we wished to output a suitable message depending on the value of the larger of the two
values A and B. Using procedure FindMax we would write:

FindMax(First => A, Second => B, Max => Temp);
IF Temp < Limit THEN
 Put(Item => "Limit not exceeded");
END IF;

whereas with function Max we have:

IF Max(First => A, Second => B) < Limit THEN
 Put(Item => "Limit not exceeded");
END IF;

Here the program fragment using the function Max is clearly the neater of the two; everything can be
coded in a single selection and the extra variable Temp is not needed. Furthermore, since the value
returned by function Max does not depend on whether the AP A is associated with the FP First and

© 1996 A Barnes, L J Hazlewood Ada 9/6

B with Second or vice-versa, we may use, with equal clarity, parameter association by position to
obtain:

IF Max(A, B) < Limit THEN
 Put("Limit not exceeded");
END IF;

As a general rule if a program fragment is to calculate a single value then it should be written in Ada as
a function rather than a procedure with an OUT parameter. As a function's value is immediately
available for use in expressions, a program using a function call is usually more compact and clearer
than a comparable program using a procedure call. However if two or more values are to be computed
and passed back to the calling program, a procedure with the appropriate number of OUT parameters
must be used since a function can only return a single value.
As a second example consider the factorial function. The factorial of a positive integer N (written N!) is
equal to N*(N-1)*(N-2)*...3*2*1, ie. N! is the product of all the positive integers which are less
than or equal to N.

FUNCTION Factorial (N : Integer) RETURN Integer IS
 ProductSoFar : Integer := 1;
 Count : Integer := 1;
BEGIN
 WHILE Count <= N LOOP
 ProductSoFar := ProductSoFar * Count;
 Count := Count + 1;
 END LOOP;
 RETURN ProductSoFar;
END Factorial;

which might be called using: Put("Factorial of 8 is ");
Put(Factorial(8));

9 . 4 . 4 Predicate functions
Functions returning a boolean result are often useful; they are referred to as predicates. For
example, suppose we want to be able to check whether a particular year is a leap year or not. We could
write:

FUNCTION IsLeap(Year : Integer) RETURN Boolean IS
BEGIN
 RETURN (Year REM 4 = 0 AND Year REM 100 /= 0) OR
 Year REM 400 = 0;
END IsLeap;

Note that on the Gregorian Calendar (which is in almost universal use today) a year is a leap year if the
year number is exactly divisible by 4 but not by 100, or if the year number is exactly divisible by 400.2
Thus the year 1900 was not a leap year but the year 2000 will be. A typical use of this function might
be:

IF IsLeap(ThisYear) THEN
 DaysInFeb := 29;
ELSE
 DaysInFeb := 28;
END IF;

2 Historical note: The Gregorian Calendar is named after Pope Gregory. In Britain it

replaced the older Julian Calendar (named after Julius Caesar) in the middle of the
18th Century. The Julian Calendar used a simpler leap year algorithm: a year is a
leap year if the year number is exactly divisible by 4. The average length of year on
the Gregorian Calendar is 365.2425 days which coincides almost exactly with the
time it takes Earth to complete one orbit of Sun. By contrast the Julian leap year

© 1996 A Barnes, L J Hazlewood Ada 9/7

9 . 5 A library package of mathematical functions
Functions are applicable to all types of programming, but are very commonly used in mathematical
work. In Ada 95 the standard mathematical functions are defined in a library package called
Ada.Numerics.Elementary_Functions. If we wish to use these mathematical functions we may
import them from this package into our programs in the standard way:

WITH Ada.Numerics.Elementary_Functions;
USE Ada.Numerics.Elementary_Functions;

Here is a list of some of the most commonly used functions provided in the package
Ada.Numerics.Elementary_Functions:

Exp exponential function ex
Log natural logarithm loge x
Sqrt square root function ÷x
Sin sine function sin x
Cos cosine function cos x
Tan tangent function tan x
Arcsin arc-sine (inverse sine) function sin-1 x
Arctan arc-tangent (inverse tangent) function tan-1 x

All the above functions have a single formal parameter X of type Float and return a Float result.
When calling these functions it is customary to use parameter association by position. This usage
corresponds more closely with standard mathematical notation.

If logarithms to other bases are required, the base must be supplied as a second parameter of type
Float. For example (assuming a suitable declaration of Float variable ComLog3), the program step:

ComLog3 := Log(X => 3.0, Base => 10.0);

would set ComLog3 to the common logarithm (base 10) of 3, i.e. log10 3.

The package Ada.Numerics.Elementary_Functions also provides another form of the
exponentiation operator **. This form takes two operands of type Float and produces a result of
type Float. For example the program step:

FourthRoot := X ** 0.25;

would set FourthRoot to the 4th root of the value of variable X (assuming suitable declarations of
Float variables FourthRoot and X).

9 . 6 Functions with no parameters
Very occasionally we may wish to define a function with no parameters (or a parameterless
function). In this case the parameter specification part and the pair of parentheses (), are omitted
from the function definition. Such parameterless functions will almost always involve an input step
unless the function simply returns the same value each time it is called. For example, we could define
a function NextInput which, like the procedure Get in CS_Int_IO, 'reads' values from an input
device, but which also makes this value immediately available for use in expressions:

FUNCTION NextInput RETURN Integer IS
 Number : Integer;
BEGIN
 Get(Number);
 RETURN Number;
END NextInput;

This appears to have some advantages: for example to read in a data value and add it to a variable
Total we could simply write:

Total := Total + NextInput;

rather than: Get(Number);

algorithm gave rise to an average year length of 365.25 days which is too long b y
about 11 minutes.

© 1996 A Barnes, L J Hazlewood Ada 9/8

Total := Total + Number;

 However there are a number of disadvantages:

© 1996 A Barnes, L J Hazlewood Ada 9/9

i) The function call looks like a reference to a variable and so reduces program clarity.
ii) More insidiously, because of the input step involved, undefined program behaviour may

occur if two calls are made to NextInput in the same expression. For example, suppose the
input stream contains two integers 5 and 3 (say) and that the program step:

Result := NextInput * (10 - NextInput);

is executed. You might expect that the expression would be evaluated from left to right so
that the variable Result would be set to 5 ¥ (10 – 3) = 35, but can you be sure? Perhaps the
computer evaluates the term in brackets first and so Result is set to 3!¥!(10 – 5) = 15. One
computer might evaluate the expression in one way and another in the opposite way. Thus a
program could produce different results when run on different machines. In any case the
expressions:

NextInput * (10 - NextInput)
and:

(10 - NextInput) * NextInput

would produce different results. This sort of behaviour is very obviously highly undesirable.
9 . 7 Functions with side-effects
A procedure or function which modifies the 'environment' of the program by consuming input data or
producing output is said to have side-effects. A procedure may also affect the 'environment' by
altering the values of variables in the calling program since it can pass values back to the calling
program via OUT or IN OUT mode parameters.
With procedures such side-effects are acceptable; how else may a program handle I/O or a procedure
pass back computed values to the calling program? However, as we have seen above in [9.6(ii)],
functions with side-effects can make a program difficult to understand (and debug) and, in certain
circumstances, may lead to undefined program behaviour. Such undefined behaviour is not possible
with procedures since a procedure call is a complete program step and so the order in which
procedure calls occur is completely determined by program sequencing.
A function is normally called solely for its value and it is generally regarded as poor programming style
to define functions which produce side-effects. Instead one should define a procedure and use an
OUT (or IN OUT) parameter to pass back the 'return' value to the calling program. Unfortunately some
library packages do provide parameterless functions with side-effects and so if one needs to use
these packages one should be aware of the pitfalls – in particular never use such a function more than
once in any expression.
You can now perhaps also appreciate why it is illegal in Ada to define functions with OUT or IN OUT
parameters; such functions could have the side-effect of altering the values of variables in the calling
program and this would increase the scope for producing undefined program behaviour.
9 . 8 Example
An interactive program is to be written to ask the user to input a positive integer N (≥2). The program is
to output all the primes ≤N. The primes are to be output 6 to a line. After the table of primes a
summary giving the number of primes ≤N is to be output followed by the estimated number of such
primes according to the Prime Number Theorem: namely N/loge(N) (rounded to the nearest
integer).
First thoughts
We need to test all odd numbers ≤ N for primality (all even numbers are divisible by 2 and so except for
2 itself even numbers cannot be prime) and keep a count (NumPrimes say) of the number of primes
found. Thus we will need a repetition. In order to test whether an odd number is prime or not, we
need to check to see if it is exactly divisible by all odd numbers less than or equal to its square root.
Thus we need a repetition which should terminate as soon as an exact divisor is found or when all trial
divisors up to and including its square root have been tried.
The library package Ada.Numerics.Elementary_Functions will be needed for the square root
and logarithm functions. We will need to be careful as these functions expect parameters of type
Float and so we will need to use the conversion function Float to convert whole number values
before calling these two functions.
In order to output 6 primes to a line we will need a selection step of the form:

IF NumPrimes REM 6 = 0 THEN New_Line; END IF;

but we introduce a named constant NumberPerLine (:= 6) for clarity.

© 1996 A Barnes, L J Hazlewood Ada 9/10

Final Program

 WITH Ada.Text_IO;
USE Ada.Text_IO; -- Import Put (for strings) and New_Line
 WITH CS_Int_IO; USE CS_Int_IO; -- Import Put and Get for integers
 WITH Ada.Numerics.Elementary_Functions;
 USE Ada.Numerics.Elementary_Functions; -- Import Sqrt and Log

 PROCEDURE Primes IS
 -- Program for Unit 9 of the ISP Ada course.
 -- Prints all the primes less than or equal to a number N (user input)
 -- Also outputs the number of such primes and the estimate N/log(N)
 -- obtained from the Prime Number Theorem.
 -- Written by Alan Barnes, September 1993.

 NumberPerLine : CONSTANT Integer := 6; -- Number of primes output/line

 FUNCTION ISqrt (Number : Integer) RETURN Integer IS
 -- Returns square root of Number rounded to the nearest integer
 BEGIN
 RETURN Integer(Sqrt(Float(Number)));
 END ISqrt;

 FUNCTION IsPrime (Number : Integer) RETURN Boolean IS
 -- Returns True if number is prime and False if it is composite
 TrialDivisor : Integer := 3;
 MaxTrial : Integer;
 Composite : Boolean := (Number REM 2 = 0); -- True if 2 is a divisor
 BEGIN
 MaxTrial := ISqrt(Number);
 WHILE NOT Composite AND TrialDivisor <= MaxTrial LOOP
 IF Number REM TrialDivisor = 0 THEN
 Composite := True;
 END IF;
 TrialDivisor := TrialDivisor + 2; -- Try next odd integer
 END LOOP;
 RETURN NOT Composite;
 END IsPrime;

 N : Integer; -- Upper limit of search (user input)
 Candidate : Integer := 3; -- Candidate primes (we know 2 is prime)
 NumPrimes : Integer := 1; -- Count of primes found so far, ie
 -- counting the prime 2

 BEGIN -- Main Program
 Put("Please input a positive integer >= 2 ");
 Get(N);
 New_Line(2);

 Put(Item => 2, Width => 10); -- We know 2 is prime
 WHILE Candidate <= N LOOP
 IF IsPrime(Candidate) THEN
 Put(Item => Candidate, Width => 10);
 NumPrimes := NumPrimes + 1;
 -- If the output line is full, start a new one.
 IF NumPrimes REM NumberPerLine = 0 THEN New_Line; END IF;
 END IF;
 Candidate := Candidate + 2; -- Next odd integer
 END LOOP;

 New_Line(2);
 Put("The number of primes <= "); Put(N);
 Put(" is "); Put(NumPrimes); New_Line(2);

 Put("The number predicted by the Prime Number Theorem is ");
 Put(Integer(Float(N)/Log(Float(N)))); New_Line;
 END Primes;

