Introduction to Systematic Programming
Unit 6 - More on Procedures

6.1 Introduction

In Unit 5 we discussed how a name could be given to a fragment of program by means of a procedure
definition placed in the declaration section of the main program. Then every time it is required to
execute that program fragment we could simply place a procedure call step in our program at the
required spot (instead of writing out the whole fragment again). Next procedures with one or more IN
(or 'copy-in') parameters were discussed. Such procedures could be made to perform a varying task
by passing values into the procedure. For example one might define (in the declaration section of the
main program) a procedure PrintMax to determine and output the larger of two Integer values as
follows:

PROCEDURE PrintMax (First, Second : IN Integer) IS
Max : Integer;

BEGIN
IF First > Second THEN
Max := First;
ELSE
Max := Second;
END IF;

Put(Item => Max);
END PrintMax;

Then in the main program one could print the larger of the two values of two Integer variables A and
B (say) simply by inserting the procedure call step:

PrintMax(First => A, Second => B);

Recall that the values of the actual parameters supplied in the call step are copied into the
corresponding formal parameters as the procedure is entered (ie. the value of A is copied into First
and the value of B into Second) and then the procedure body is executed to determine and output
the value of Max.

6.2 Getting values back from a procedure

The procedure PrintMax is fine but suppose that, instead of printing the value of Max, we wanted to
use its value back in the main program in subsequent program steps. How can this be achieved? The
procedure parameters described so far serve only one purpose - they allow values to be passed into
procedures, which can then utilise those values as required. Clearly what is needed is a mechanism
for passing values back from the procedure to the calling program. In Ada this is provided by defining
a procedure to have one or more formal oUT (or 'copy-out') parameters. OUT parameters are
defined in the procedure heading in the same way as IN parameters except that the keyword IN is
replaced by the keyword oUT in the parameter specification. For example we might define a
procedure FindMax with two IN parameters and one OUT parameter (all of type Integer) as follows:

PROCEDURE FindMax (First, Second : IN Integer;
Max : OUT Integer) IS

BEGIN
IF First > Second THEN
Max := First;
ELSE
Max := Second;
END IF;

END FindMax;

Note that the local variable Max (in the earlier version) has been replaced by a formal OUT parameter.

© 1996 A Barnes, L J Hazlewood Ada 6/1

Then in a program we could determine the larger value of two Integer variables A and B (which for
example contain the values 10 and 14 respectively) and assign it to another Integer variable Larger
simply by using the procedure call step:

FindMax(First => A, Second => B, Max => Larger);

On entry to the procedure storage locations are allocated for the three formal parameters First,
Second and Max. The values of the actual IN parameters A and B supplied in the call step are copied
into the corresponding formal parameters First and Second in the normal way. Next the body of
FindMax is executed and so assigns the required value to Max and the procedure then returns to the
calling program. As the procedure returns, the value of the formal OUT parameter Max is copied to the
corresponding actual parameter, namely Larger. The value of Larger can then be used by the
calling program in the normal way.

on entry, actual on entry, actual on return, actual
parameter value parameter value parameter Larger
is 10 is 14 issetto 14 ’ FindMax
/
10 | First 14 | Second 14 | Max
Notes:

i) No copying of the value of the actual parameter Larger into the formal OUT parameter Max
takes place on entry to the procedure. Thus like any newly established storage location, Max
initially contains an undefined or 'junk' value. However, once a value has been assigned to
Max it can then be used within the procedure just as if it were a normal (but local) variable of
the procedure.

i) When a procedure is called the value of the actual parameter corresponding to a formal oUT
parameter is irrelevant, and it is perfectly permissible for an actual parameter (such as Larger
above) to be an uninitialised variable containing a 'junk' value.

i) Of course, the values of the formal IN parameters are not copied out to the corresponding
actual parameters as the procedure returns (this only happens for oUT parameters).

iv) As the procedure returns the storage locations allocated for the three formal parameters
First, Second and Max are all freed and so they cease to exist after the procedure returns.

As a second example consider the following procedure which converts a time all in seconds to one in
hours, minutes and seconds. As this needs to pass three values back to the calling program three
OUT parameters are needed:

PROCEDURE Convert (Time : IN Integer;
Hrs, Mins, Secs : OUT Integer) IS
FullMins : Integer;

BEGIN
-- Note that Integer division is being used here so that
-- the 'fractional' part of any quotient is discarded
FullMins := Time/60; —-— Total number of full minutes in Time,
Secs := Time REM 60; —- and the number of seconds which remain.
Hrs := FullMins/60; —— The number of full hours in Time
Mins := FullMins REM 60; -- and the number of minutes.

END Convert;

© 1996 A Barnes, L J Hazlewood Ada 6/2

6.3 INOUT parameters

Sometimes it is necessary to have a procedure change a value supplied to it as an actual parameter
and to pass back the modified value to the calling procedure. To achieve this in Ada, it is necessary to
use another sort of formal parameter which combines the features of IN and oUT parameters. Such
parameters are called IN OUT parameters (or 'copy-in'/'copy-out' parameters) and they are
defined by a formal parameter specification of the form:

Formal parameter name : IN OUT Type name

As a very simple example consider the following procedure:

PROCEDURE Inc (X : IN OUT Integer) IS
BEGIN

X :=X + 1;
END Inc;

Once this procedure has been defined it can be used to increment the value of a variable by one. For
example the call step:

Inc(X => NumOfDivisors);

would cause the value of the Integer variable NumOfDivisors to be increased by one. As the
procedure is called a storage location is allocated for the formal parameter X and the value of the actual
parameter NumOfDivisors is copied into X (just as if X were an IN parameter), then the body of the
procedure is executed which causes X to be incremented by 1. The procedure then returns and as it
does so, the updated value of X is copied back into the actual parameter NumOfDivisors (just as if X
were an OUT parameter) and the storage location allocated to hold the formal parameter X is then
freed.

Notice that although formal IN OUT parameters of a procedure behave like IN parameters on entry to
the procedure, they do not have the same restrictions as those imposed on 'copy-in' parameters. In
fact they may both have their contents retrieved and have their value assigned to, and thus may be
used in expressions and as the target of assignments. For example in procedure Inc, X is used in the
expression X+1 (where its value is retrieved) and also on the left-hand side of the assignment (causing
a new value to be assigned into X). Such formal parameters therefore behave like normal (but local)
variables inside the procedure.

As a second slightly less trivial example consider the following:

PROCEDURE Order (Big, Little : IN OUT Float) IS
-- Orders a pair of Float values so that, on exit,
-— the larger is in Big and the smaller in Little

Temp : Float; -- Temporary variable for the swap
BEGIN
IF Big < Little THEN
-- Swap the values
Temp := Big;
Big := Little;
Little := Temp;
END IF;
END Order;

Once this procedure has been defined it might be used as follows. Assume variables MyBalance and
YourBalance of type Float have been declared and that certain values 32.20 and 8507.23 (say)
have been stored in these variables. Now consider the procedure call:

Order (Big => MyBalance, Little => YourBalance);

The sequence of events during execution of this call are:

© 1996 A Barnes, L J Hazlewood Ada 6/3

i) Procedure entered The value of MyBalance (32.20) is stored in Big and
the value of YourBalance (8507.23) is stored in Little
since Big => MyBalance, Little => YourBalance

i) Temp := Big; 32.20 is stored in Temp

i) Big := Little; The value in Big is overwritten with 8507.23

iv) Little := Temp; The old value in Little is overwritten with 32.20

v) Procedure returns Current value of Big (8507.23) is stored in MyBalance and
current value of Little (32.20) is stored in YourBalance
since Big => MyBalance, Little => YourBalance

Thank you for your donation!

on entry, actual on return, on entry, actual on return,
parameter value MyBalance is parameter value MyBalance is
Order is32.20 / ‘setto 8507.23 is 8507.23 / ‘ sett0 32.20

32770| Big 8567773 Little
8507.23 32.20

32.20 Temp

Note that the swap cannot be written as:
Big := Little; Little := Big; -- illogical in Ada

The use of a temporary variable is essential in the swap. Think about it!

The procedure Order could also be used to define a procedure to sort three values into descending
order as follows:

PROCEDURE Sort (First, Second, Third : IN OUT Float) IS
-— Sorts three Float values so that, on exit, they are
-- ordered as: First >= Second >= Third
BEGIN
Order(Big => First, Little => Second); -- order lst & 2nd
Order(Big => First, Little => Third); -— order 1lst & 3rd
Order (Big => Second, Little => Third); -- order 2nd and 3rd
END Sort;

It is a good exercise to hand trace this procedure for a variety of parameter values.

Note that the procedure Sort calls the procedure Order defined above. In order for this to work the
procedures Order and Sort should both be defined in the declaration section of the main program
with the definition of order appearing before the definition of Sort. This is necessary since the Ada
compiler needs to 'know' about the procedure order (for example that it requires two IN[JoUT
parameters of type Float) before it can compile the procedure Sort since (among other things) the
Ada compiler checks that Order is being called with the correct number parameters, each of the
correct type.

6.4 Formal parameter specification rules
The kind of a procedure parameter (IN, OUT or IN OUT) is referred to as the mode of the parameter.

The formal parameter specifications for a procedure specify the name, mode and type of each
parameter. Each such specification part is of the form:

© 1996 A Barnes, L J Hazlewood Ada 6/4

List of identifiers separated by commas : Mode Type name
where the Mode is IN, OUT or IN OUT. Here are some examples of FP specifications:
a) Margin, Length : IN Integer
b) Item : IN Float; Fore, Aft : IN Integer

C) Total : IN Integer; Count : IN Integer; Average : OUT Float

d) Time : IN Float;
Hrs, Mins : OUT Integer;
Sec : OUT Float

Note that it is perfectly permissible to carry on a specification over more than one line if this improves
the readability of the procedure heading (as was the case in the last of the examples above).

In theory there is no limit to the number of parameters of a procedure nor to the mix of modes and
types of these parameters. However, in practice procedures rarely have more than about six or so
parameters (and usually somewhat fewer than that). The use of procedures with large numbers of
parameters is usually a sign that the program design has not be properly thought out, or that the
procedurisation of the algorithm (ie. its subdivision into procedures) has been poorly done.

6.5 A restriction on the use of oUT and IN OUT parameters

In [5.5] we saw that for parameters of mode IN the actual parameter could be a literal constant, a
variable or an expression. The only restriction was that the AP yielded a value whose type matched
the type of the corresponding FP as specified in the parameter specification. This allows the values of
the APs to be assigned to the corresponding FPs when the procedure is entered. However, for
parameters of mode OUT or IN[JOUT, the actual parameter must refer to a storage location in the calling
program. For the time being this means that the actual parameter must be a variable - it is not allowed
to be a literal constant nor an expression. To see why this restriction is necessary we must consider
what happens when the procedure returns. Recall that the value of a FP of mode OUT or IN[JOUT is
copied to the corresponding AP as the procedure returns, therefore there must be a storage location
associated with the AP to hold this value. It is clearly nonsense to attempt to copy a value to a literal
constant (such as 2) or to an expression (such as X+Y); what could these possibly mean?

Also it is still necessary for the types of the AP and its corresponding FP to match so that it is
permissible to copy-out the value of the FP to the corresponding AP as the procedure returns (and in
the case of IN oUT parameters to copy from AP to FP as the procedure is entered).

6.6 The main program and I/O procedures

In Unit 3 we saw that the heading of a main program takes the form:
PROCEDURE Program name IS

which is exactly the same form as the heading of a procedure with no parameters. In fact the main
program can be regarded as a procedure which is called by the operating system of the computer.
When the main program terminates it 'returns' to the operating system just as a normal procedure
returns to the main program which called it.

In Units 3 and 5 the I/O procedures Get and Put in the library packages Ada.Text IO, CS _Int IO
and CS_F1lt IO were discussed. You may have noticed that input and output steps take the same
form as procedure calls. This is not surprising since Get and Put are, in fact, ordinary Ada procedures
- but they are defined in their respective library packages and imported into the main program with the
context clauses:

WITH Package name; USE Package name;

instead of being defined in the declaration section of the main program. It is instructive to consider
what the parameters of these 1/0 procedures might be.

© 1996 A Barnes, L J Hazlewood Ada 6/5

The procedure Get (from the package CS_Int I0) is defined to have a formal parameter Item of
mode OUT and type Integer. Assuming the example call step:

Get(Item => IntVar);

execution of the procedure body 'gets' an integer value from an input device (such as the keyboard)
and stores it temporarily in the FP I1tem. As the procedure returns, it passes this value back to the
calling program by copying the value of Item to the AP Intvar (assumed to be an Integer variable
of the calling program). On the other hand, the procedure Put (from the package CS_Int IO0)is
defined to have a formal parameter Item of mode IN and type Integer. Assuming the call step:

Put(Item => IntVal);

the integer value specified as the AP (ie. the value of the Integer variable Intval) is copied into the
FP I1tem as the procedure is entered. Execution of the procedure body then outputs the value of the
FP to an output device (such as a VDU screen) and returns to the calling program.

Similarly, cS_F1t T0.Get is defined (in the package CS_F1t I0) to have aformal parameter Item
of mode OUT and type Float whereas the corresponding procedure Put has a formal parameter
Item of mode IN and type Float.

6.7 Clarifying program structure

The problem of [5.10] provides an illustration of the use of procedures to clarify program structure. A
slightly extended outline of an algorithm of the problem would be:

Output prompt for user to input a number
Get(Item => UsersNumber)
WHILE UsersNumber > 1 LOOP
Produce Factors of UsersNumber
Output prompt for user to input a number
Get (Item => UsersNumber)
END LOOP

Since the prompt and read step are duplicated we might choose to write these as the procedure:

PROCEDURE GetNextInput (Number: OUT Integer) IS

BEGIN
DrawLine; -— output a line of stars
New Line; -- blank-line for spacing

Put?Item => "Type a number greater than 1 (0 or 1 to quit) :");
Get(Item => Number);
END GetNextInput;

Note that the FP in this case (Number) must have mode OUT, since the actions of the procedure are to
input an Integer value (using a call to Get), and pass it back to the main program (where the
procedure was called) so that the value may be used in further calculations. Note also that the
procedure GetNextInput in turn calls other procedures both user-defined (DrawLine) and library
I/O procedures (Get, Put and New_Line).

As a consequence of this procedurisation, the body of the main program would then read:

GetNextInput (Number => UsersNumber);
WHILE UsersNumber > 1 LOOP
ProduceFactors (Number => UsersNumber);
GetNextInput (Number => UsersNumber);
END LOOP;

Note how the introduction of the two procedures (with meaningful names) clarifies the structure of the
main program. The program appears in full on page 8.

© 1996 A Barnes, L J Hazlewood Ada 6/6

6.8 Summary

At this point it is useful to review some of the material covered in Units 5 and 6 as the concepts
introduced are some of the most important in the whole course. Essentially writing a procedure
involves giving a name to a program fragment and so that, subsequently the program fragment can be
executed simply by using the procedure name (plus parameters if appropriate) as a program step.
Variables used within the procedure should be declared within the procedure as local variables. This
makes the procedure self-contained and so it can be understood without reference to the rest of the
program.

The advantages of using procedures and local variables are:

i) They avoid duplication of program steps by enabling the fragment of program to be called
from many different places.

i) They promote re-use of program fragments in other programs, either by building up library
packages of useful procedures or even by simply 'cutting' and 'pasting' a procedure from one
program to another using an editor.

i) They can be used to clarify the structure of a program. Not only can this simplify the writing the
program but it also makes it easier for other programmers to understand (and perhaps to
correct or extend) the program.

iv) Alarge program may contain hundreds of variables and procedures. If most of the variables
are declared as local variables (of the procedure in which they are used) rather than as global
variables then the overall memory requirements of the program are reduced. Storage is
allocated for local variables only for the duration of a procedure's execution and so once these
storage locations have been released the locations can be used for the local variables of other
procedures. Storage for global variables, on the other hand, is allocated for the duration of
the whole program.

The use of procedures with parameters has the additional advantages that:

v) Procedures are more versatile and may be made to perform different tasks depending on the
actual parameter values supplied in the procedure call.

vi) The parameters form a carefully controlled interface between the procedure and the calling
program. By the use of OUT or IN OUT parameters a procedure may alter the values of
variables in the calling program - but only in a clearly specified manner. By inspecting only the
FP specification and the procedure call step it is clear exactly what information is being passed
into the procedure, what information is being passed back out to the calling program and
which variables in the calling program have been affected by the procedure call. Detailed
inspection of the steps in the procedure body is not necessary.

The execution life-time of local variables and formal parameters of a procedure is for the duration of
execution of the body of that procedure. Outside this period, ie. before the procedure is called, or
after the procedure has returned, the local variables and formal parameters do not exist.

IN parameters are used to pass values into a procedure from the calling program. The value of the
actual parameter is copied into the corresponding formal parameter as the procedure is called, thereby
initialising the FP. The value of a formal IN parameter is constant (or 'retrieve-access-only'); its value
cannot be changed by the procedure. The actual parameter may be a constant value, a variable or an
expression; the only restriction is that it produces a value of the same type as the corresponding
formal parameter.

OUT parameters are used to pass values back from a procedure to the calling program. The value of
the formal parameter is copied into the corresponding actual parameter as the procedure returns,
thereby making the value available for use in the calling program. A formal OUT parameter may be used
like a local variable within the procedure, and have its value retrieved or be assigned a value. The
actual parameter must be a variable of the same type as the formal parameter.

IN OUT parameters are used when it is required to pass a value into a procedure from the calling
program, modify it in some way and to pass the new value back to the calling program. The value of
the actual parameter is copied into the corresponding formal parameter as the procedure is called,
thereby initialising the FP. When the procedure returns the value of the FP is copied into the
corresponding AP and so is available for use by the calling program. A formal IN OUT parameter may
be used like a local variable within the procedure, and have its value retrieved or be assigned a value.
The actual parameter must be a variable of the same type as the formal parameter.

© 1996 A Barnes, L J Hazlewood Ada 6/7

WITH CS_Int_IO; USE CS_Int_I0; -- For Get and Put for Integer I/O
WITH Ada.Text_IO; USE Ada.Text IO; -- For Put for text, and New_Line

PROCEDURE Factors IS

PROCEDURE DrawLine IS -—- To output a line of stars
BEGIN
New Line;
Put(Item => "dhhkkkkhkhhhhhhhkhkhkhkhhhhhkrhkrkhkhkhkhhkhkhkhkrxx");
New Line;
END DrawLine;

PROCEDURE GetNextInput (Number : OUT Integer) IS

BEGIN
DrawLine; —- Output a line of stars
New Line; -- Blank line for spacing
Put(Item => "Type in a number greater than 1 (0 or 1 to quit): ")

Get(Item => Number);
END GetNextInput;

PROCEDURE ProduceFactors (Number : IN Integer) IS
—-- Produce and output the factors
TrialDivisor : Integer; -- To hold each possible trial divisor
NumOfDivisors : Integer; -- To count the number of divisors
-—- Note that the two variables TrialDivisor and NumOfDivisors
-- are only used in the ProduceFactors procedure, and hence
-- are declared as local variables of the procedure

BEGIN
NumOfDivisors := 0; TrialDivisor := 2;
New Line;
Put(Item => "Factorisations of ");
Put (Item => Number);
Put(Item => " are:"); New_Line;

WHILE TrialDivisor <= Number / 2 LOOP
IF Number REM TrialDivisor = 0 THEN
—- ie. if an exact divisor is found
Put(Item => TrialDivisor, Width => 8);
Put(Item => Number / TrialDivisor, Width => 10);

New_Line;
NumOfDivisors := NumOfDivisors + 1;
END IF;
TrialDivisor := TrialDivisor + 1;
END LOOP;

IF NumOfDivisors > 0 THEN
Put(Item => "There were ");
Put (Item => NumOfDivisors);
Put(Item => " divisors found.");

ELSE
Put(Item => "No divisors found - ");
Put(Item => Number);
Put(Item => " is prime.");

END IF;

New_Line;

END ProduceFactors;

UsersNumber : Integer; -- To hold each number specified by the user

BEGIN -- Main Program
GetNextInput (Number => UsersNumber);
WHILE UsersNumber > 1 LOOP
ProduceFactors (Number => UsersNumber);
GetNextInput (Number => UsersNumber);
END LOOP;
END Factors;

© 1996 A Barnes, L J Hazlewood Ada 6/8

