
© 1996 A Barnes, L J Hazlewood Ada 4/1

Introduction to Systematic Programming
Unit 4 - Doing Arithmetic; Producing Better Output

4 . 1 Arithmetic expressions

When an algorithm involves some calculation, we show it by writing down an appropriate arithmetic
expression, eg. on the right hand side of the assignment step:

TaxablePay := 52 * WeeklyPay - 10 * TaxCode

So far we have tacitly assumed that provided such expressions are formed according to the normal
rules of arithmetic, they can be transferred directly into Ada programs (after writing * for multiplication
for example). This is indeed generally correct, but as with all facets of programming, it is important to
have an exact understanding, so let us now be more precise.

Expressions

Expressions are composed of operands (items from which we can obtain a value, such as variables,
literal constants, and other expressions enclosed in brackets) and operators (eg. +,-,*, which act
on values to yield new values).

Operators +,- represent addition and subtraction in the usual way.
 - is also used in representing negative quantities, eg. -35

* stands for multiplication, but note that (unlike in normal arithmetic), it
can never be omitted; ie. implied multiplication is not allowed, eg:

wrong: a(b+c)

right: a*(b+c)

** stands for exponentiation, ie. raising a number to a power, eg: a**3
represents a cubed (which could also be written as a*a*a)

Operators are applied in the usual order, ie. first **, next * , then + and -. The operator ** is said to
have a higher priority than *, and * a higher priority than + and -. Operators are thus applied in order
of descending priority. Within groups of operators of equal priority, evaluation proceeds from left to
right, eg:

3+4*2 gives 11 not 14 (* before +, descending priority)

10-7+2 gives 5 not 1 (left to right with equal priority)

Where normal priority does not give the desired order, (round) brackets can be used to group
operands and operators as required. As is usual, such (sub-)expressions enclosed in brackets are
worked out first. Brackets can be nested to any depth always provided that they are properly
matched, but care is required; incorrect bracketing is a frequent source of error. Square and curly
brackets should not be used to group terms in expressions.

Examples

(3+4)*2 gives 14

2+(3+1)**2 gives 18

10-(7+2) gives 1

8*[5+3] -- !? illegal in Ada

2-{8-3} -- !? illegal in Ada

-- Assuming that x, y and z are variables, is the
-- following a correct expression?
(((3*y+2)*y)+4*y+21+(x+1)*(x+2))*z -- Check it and see

© 1996 A Barnes, L J Hazlewood Ada 4/2

4 . 2 Working with integer and real values

We may use the arithmetic operators +, - and * with either integer or real values but we cannot mix
integer and real values in the same arithmetic expression. Also, the type of an expression is the same
as the type of the operands making up that expression. Thus:

for +, - or * if both operands are Integer, these give an Integer result

for +, - or * if both operands are Float, these give a Float result

for +, - or * one Float operand and one Integer operand is illegal in Ada

Thus: 3 * 4 gives 12 (of type Integer)

3.0 * 4.0 gives 12.0 (of type Float)

3.0 + 4 -- !? illegal in Ada

Exponentiation

An exception to the above properties is the exponentiation operation, where the power must always
be integer, no matter whether the number being raised to the power is integer or real. Thus:

for a**b if a is Integer and b is Integer, this gives an Integer result

for a**b if a is Float and b is Integer, this gives an Float result

Thus: 2 ** 3 gives 8 (of type Integer)

2.5 ** 2 gives 6.25 (of type Float)

2.0 ** -3 gives 0.125 (of type Float)

2.5 ** 0.5 -- !? illegal in Ada

2 ** -3 -- !? illegal in Ada (produces a non-integer value)

Real division

For real values division is straightforward: if x and y are values of type Float then x/y denotes the
division of x by y and produces a Float result. Thus:

11.0 / 5.0 gives 2.2 (of type Float)
10.0 / 5.0 gives 2.0 (of type Float) not 2 (of type Integer)

The operator / has the same priority as *. Thus:

11.0 + 4.0/2.0 gives 13.0 not 7.5 (/ before +, descending priority)

11.0/5.0/2.0 gives 1.1 not 4.4 (left to right with equal priority)

Note that as real arithmetic is only approximate, the value 11.0/5.0 might actually be 'stored' as
2.200001 or 2.199999 rather than the 'true' value 2.200000. The precise form will vary from
computer to computer according to the precision with which real values are stored internally within that
computer.

Integer division

Sometimes we want a form of division that gives whole number, rather than fractional, results. For
example, if we share 14 apples amongst 5 people, asking how many they will get each, we want the
answer 2, not 2.8. This form of division, known as integer division, is expressed using the same
operator as for real division, but when applied to two integer operands it produces an integer result by
discarding any remainder, ie:

© 1996 A Barnes, L J Hazlewood Ada 4/3

14 / 5 gives 2

16 / 3 gives 5

18 / 6 gives 3

In this sort of calculation, we often want to know how much is "left over", ie. what the remainder is. This
is given by another operator, REM, which is represented by a keyword rather than an operator symbol.
Thus:

14 REM 5 gives 4

15 REM 5 gives 0

16 REM 5 gives 1

Notes: In the above examples, all operands are shown (for simplicity) as literal constants, but
they could (of course) be replaced by any other sort of operands producing the values
shown, eg. by variables or arithmetic expressions (in brackets).

The operator REM has the same priority as * (multiplication) and / (division).

In Ada we cannot use REM with Float operands or with operands of mixed type.

4 . 3 Relational operators

We have already used some of these in conditions to express comparison between numbers. The full
list of relational operators is:

> meaning greater than

< meaning less than

>= meaning greater than or equal to (≥)

<= meaning less than or equal to (≤)

= meaning equal to

/= meaning not equal to (≠)

When placed between numeric operands (both Integer or both Float, but not mixed), they yield
the truth value True or False according to whether the specified relation does, or does not, hold
(respectively); eg:

3 >= 2 gives True

3 >= (2 + 1) gives True

3.0 >= 3.5 gives False

7 = (14 / 2) gives True

7 /= 7 gives False

7 = 7.0 -- !? illegal in Ada

Relational operators have lower priority than arithmetic operators, so that comparands which involve
arithmetic operators need not be bracketed; eg: (x*3) = (y+k*2) can also validly be written as:
x*3 = y+k*2. Note that using brackets where they are not strictly necessary is not an error and,
indeed, can often help make the structure of a complicated expression easier to understand.

© 1996 A Barnes, L J Hazlewood Ada 4/4

4 . 4 Converting between integer and real values

We stated above that all the operands in a algebraic expression must be of the same type (with the
exception of the exponentiation operator). This also applies in an assignment step, where the
variable which appears on the left hand side of the := must be of the same type as the expression
which appears on the right hand side. However we often need to combine Integer and Float
values in an expression, or to assign the value held in an Integer variable to a variable of type Float,
or vice versa.

For example, we may wish to calculate the total cost of Quantity items each costing £3.43 where
Quantity is a Integer variable, and assign the result to the Float variable TotalCost. We could
not simply write:

TotalCost := Quantity * 3.43; -- !? mixed Integer and Float operands

as the left hand operand of the * operator, ie. Quantity, has an Integer value (20 say) and the right
hand operand 3.43 is a Float value. To overcome such problems Ada provides a special 'built-in'
function Float which converts an Integer value into its corresponding Float value. Thus we
should write:

TotalCost := Float(Quantity) * 3.43;

Hence if the value of Quantity is 20, Float(Quantity) produces the Float result 20.0 which
can then be multiplied by 3.43 to produce the required total as a Float value. This value can then be
assigned to the Float variable TotalCost.

Similarly, suppose we need to perform the calculation:

TaxDue := (52 * WeeklyPay - TaxThreshold) * TaxRate / 52;
 -- !? illegal in Ada

Assuming WeeklyPay and TaxThreshold are Integer variables and TaxDue and TaxRate are of
type Float, we must write:

 TaxDue := Float(52 * WeeklyPay - TaxThreshold) * TaxRate / Float(52);

or possibly:

TaxDue := Float(52 * WeeklyPay - TaxThreshold) * TaxRate / 52.0;

It is also possible to perform conversions the other way round, ie. to convert from a value of type
Float to a value of type Integer. In this case the 'built-in' function Integer can be used which
converts a real value into an integer by rounding the real value to the nearest whole number. Thus, for
example, to output the value held in the variable TotalCost to the nearest £ we could write:

Put(Item => "Total cost to the nearest pound is ");
Put(Item => Integer(TotalCost));

4.5 More on output

In previous units we have used the procedure Put to output results. We now consider the use of this
procedure in more detail for outputting integer and real values according to different layouts or
formats.

4.5.1 Formatted integer output

Assuming that Number and Size are integer values the step:

Put(Item => Number, Width => Size);

will cause Number to be printed using at least Size print positions. If Number has exactly Size digits,
then only these Size digits are printed (no blank spaces are left either before or after the value). If
Number has fewer than Size digits, enough blank spaces are 'printed' before the value of Number so

© 1996 A Barnes, L J Hazlewood Ada 4/5

that exactly Size print positions are used. If Number is negative, one of these print positions will be
occupied by a minus sign. We will see later what happens if Number has more than Size digits.

For example, assuming that the value of Number is 123 then the following output is produced (where
a ∆ denotes a blank space):

Put(Item => Number, Width => 3); outputs: 123
Put(Item => Number, Width => 6); outputs: ∆∆∆123
Put(Item => Number, Width => 8); outputs: ∆∆∆∆∆123

After a Put step the 'current print position' is left immediately after the last digit of the number just
printed. Thus:

Put(Item => Number, Width => 3);
Put(Item => Number, Width => 3);

produces the output : 123123 while:

Put(Item => Number, Width => 5);
Put(Item => Number, Width => 5);

produces the output : ∆∆123∆∆123

Since the output produced in the first case might be confused with the output of a single six digit
value 123123 it is usually better to avoid this confusion by specifying a value for Width greater than
the number of digits in the value expected to be output.

4.5.2 Formatted real output

In addition to the Float value to be 'printed' the procedure Put may have two additional arguments:
the second argument specifies the minimum number of print positions to be used before the decimal
place; the third argument specifies how many decimal places (ie. the number of digits appearing after
the decimal point) are to be printed. If the value to be output has fewer than the number of digits
specified to be printed before the decimal place, the leading print positions are padded-out with
spaces. If the value to be output is negative, one of these print positions will be occupied by a minus
sign. For example assuming that the Float variable RealNum has the value -123.456, then:

Put(Item => RealNum, Fore => 4, Aft => 3); outputs: –123.456
Put(Item => RealNum, Fore => 6, Aft => 1); outputs: ∆∆-123.5
Put(Item => RealNum, Fore => 8, Aft => 2); outputs: ∆∆∆∆-123.46

Note: The value printed is rounded so that it is correct to the specified number of decimal
places. If the number is positive, no plus sign is output.

4.5.3 Formats which don't 'fit' the value to be output

What happens if the number to be output is too large to fit into the specified format?

- In the case of integer output, if the number has more than Width digits (including a minus sign
if it is negative), the value is printed in full (ie. it is not truncated in any way) and so uses more
than the specified number of print positions.

- A similar situation occurs when outputting real values, where if the value to be printed has more
digits before the decimal point (including a minus sign if it is negative) than the value of Fore,
Put uses the minimum number of print positions needed to output the number to the required
precision, and so again uses more than the specified number of print positions.

Thus for the example values of the Integer variable Number, and the Float variable RealNum given
above, we would have:

Put(Item => Number, Width => 1); outputs: 123
Put(Item => Number, Width => 2); outputs: 123
Put(Item => RealNum, Fore => 1, Aft => 2); outputs: –123.46
Put(Item => RealNum, Fore => 2, Aft => 3); outputs: -123.456

© 1996 A Barnes, L J Hazlewood Ada 4/6

4 . 5 . 4 Default format settings

In fact the above explains approximately what happens if the extra arguments in a Put step are missed
out altogether. More precisely, the default values of Width = 1 (when outputting integer values),
and Fore = 1 and Aft = 2 (when outputting real values) are assumed if their specification is omitted in
a Put step. This choice for the values of Width and Fore means that Put uses the minimum number
of print positions needed to output the number. Thus, for example, if IntNum is an Integer variable
whose value is 8, and FltNum is a Float variable whose value is 6.35, then:

Put(Item => "The cost of ");
Put(Item => IntNum);
Put(Item => " items, at £");
Put(Item => FltNum);
Put(Item => " each, is the total cost £");
Put(Item => Float(IntNum) * FltNum);

produces the output:

The cost of 8 items, at £6.35 each, is the total cost £50.80

Notice the extra space at the end of the string "The cost of ", and the extra space at the start of
the string " items, at £". These are present so that the value of IntNum, which is output as the
single digit 8, is surrounded by a single space on either side. Also, the value of FltNum (output using
only the four print positions required by 6.35) is preceded directly by a £, so the previously output
string " items, at £" does not have a space at the end, but rather finishes with a £. Note that on
some printers a £ will be displayed as a # character.

We see that using the defaulted form is better when outputting mixed text and numeric values,
whereas we shall see in the following example that using Put with specified formatting is better for
outputting tables of results.

4 . 6 Example

Problem:

The program is to ask the user to input an integer data value and if this is 2 or more, list out all possible
factorisations of that value into two integers, except for the number itself times 1, which is to be
disregarded. The program is then to output a message stating how many factorisations are found,
unless none are found, in which case a more suitable message is to be produced. The program then
asks the user to input another integer value and repeats the calculation. If the user types a 0 or a 1 the
program terminates.

Solution:

i) First thoughts:

What output is to be produced? Perhaps something like this:

Type in a number greater than 1 (0 or 1 to quit): 30

Factorisations of 30 are:
∆∆∆∆∆∆∆2∆∆∆∆∆∆∆∆15
 3 10
 5 6
 6 5
 10 3
 15 2
There were 6 divisors found.

Type another number greater than 1 (0 or 1 to quit): 997

Factorisations of 997 are:
No divisors found - 997 is prime.

Type another number greater than 1 (0 or 1 to quit): 0

© 1996 A Barnes, L J Hazlewood Ada 4/7

Notice that we have chosen a particular layout for the table of factors, where the first divisor occupies
the first 8 print positions, and the second divisor the next 10 print positions.

ii) Outline a scheme:

How to get this output? In briefest outline:
Ask for user's number. While this number is bigger than 1, deal with this number (ie. find and output
the factorisations and number of divisors), then ask for the next user's number. Thus in outline we
have:

Get(Item => Number)
WHILE Number > 1 LOOP

Deal with this number
{ie. find and output the factors of this number}

Get(Item => Number)
END LOOP

Notice how we have re-used the subalgorithm introduced in [2.5]. For the main processing step, we
can choose a possible divisor and see if it "goes" exactly into Number (ie. leaves remainder zero - can
use the operator REM to check this), and if it does, then output the factorisation found and increment a
count of the number of divisors found. Must do this for each integer from 2 up to the largest possible
exact divisor (ie. the value of Number divided by 2) => a further repetition involved.

iii) Algorithm (some detail omitted)

 Get(Item => Number)

WHILE Number > 1 LOOP

 -- Deal with this number, ie. determine and output the factors

NumOfDivisors := 0
TrialDivisor := 2
Output a heading for the table

WHILE TrialDivisor <= Number / 2 LOOP
IF Number REM TrialDivisor = 0 THEN

-- ie. if an exact divisor is found
Put(Item => TrialDivisor)
Put(Item => Number / TrialDivisor)
NumOfDivisors := NumOfDivisors + 1

END IF
TrialDivisor := TrialDivisor + 1

END LOOP

IF NumOfDivisors > 0 THEN
Put(Item => NumOfDivisors)

ELSE
Put(Item => "No divisors found")

END IF

Get(Item => Number)

END LOOP

Note: We can now see that an algorithm is, in effect, an informal, incomplete program - it's a step
in the process of producing a complete correct program.

iv) Program:

After filling in obligatory items such as declarations, semi-colons and field width specifiers in Put
steps, and after adding further suitable output statements to obtain the required format, eg.
explanatory text and new lines, we obtain the complete Ada program:

© 1996 A Barnes, L J Hazlewood Ada 4/8

WITH CS_Int_IO; USE CS_Int_IO; -- For Get and Put for Integer I/O
WITH Ada.Text_IO; USE Ada.Text_IO; -- For Put for text, and New_Line

PROCEDURE Factors IS

Number : Integer; -- To hold each number specified by the user
TrialDivisor : Integer; -- To hold each possible (ie. trial) divisor
NumOfDivisors : Integer; -- To count the number of divisors

BEGIN

 Put(Item => "Type in a number greater than 1 (0 or 1 to quit): ");
 Get(Item => Number);

WHILE Number > 1 LOOP

 -- Deal with this number, ie. determine and output the factors

NumOfDivisors := 0;
TrialDivisor := 2;

New_Line;
Put(Item => "Factorisations of ");
Put(Item => Number);
Put(Item => " are:");
New_Line;
-- Note the use of blanks in the strings "Factorisations of "
-- and " are:" and the unformatted output of the value of

 -- Number to ensure that only one space appears on either
 -- side of the value of Number

WHILE TrialDivisor <= Number / 2 LOOP
IF Number REM TrialDivisor = 0 THEN

-- ie. if an exact divisor is found
Put(Item => TrialDivisor, Width => 8);
Put(Item => Number / TrialDivisor, Width => 10);
New_Line;
-- Note how formatted output steps are used here to
-- ensure that the two columns in the table of results
-- line-up, right justified, at the 8th and 18th
-- (ie. 8 + 10) print positions on the page
NumOfDivisors := NumOfDivisors + 1;

END IF;
TrialDivisor := TrialDivisor + 1;

END LOOP;

IF NumOfDivisors > 0 THEN
Put(Item => "There were ");
Put(Item => NumOfDivisors);
Put(Item => " divisors found.");

ELSE
Put(Item => "No divisors found - ");
Put(Item => Number);
Put(Item => " is prime.");

END IF;

New_Line;
New_Line;
Put(Item =>
 "Type another number greater than 1 (0 or 1 to quit): ");

 Get(Item => Number);

END LOOP;

END Factors;

© 1996 A Barnes, L J Hazlewood Ada 4/9

