
© 1996 A Barnes, L J Hazlewood Ada 3/1

Introduction to Systematic Programming
Unit 3 - Expressing Algorithms as Ada Programs

3 . 1 The nature of values - types

The general category 'number' may be subdivided into two important classes:

whole numbers which might be either positive or negative, such as –27, 0, 10037, –45, etc. and
which are known as integers

'decimal' numbers which may have a fractional part such as 11.25, 3765.0, 1.414, –1.3333, etc.
and which are known as real numbers.

Many real numbers such as π = 3.1415926..., √2 = 1.4142..., 4/3 = 1.3333..., etc. have non-
terminating decimal expansions. Clearly it is not possible to store these values exactly in a computer
and so in computer science, real values should normally be regarded as approximations only, rather
than exact values. In Sun Ada real numbers are usually stored to about 7 significant decimal digits
accuracy. As the total number of digits is fixed, the number of decimal places (ie. digits after the
decimal point) will vary depending on the size of the number, for example 1234.567, 1.234567,
0.01234567, 123456.7, etc, and it is for this reason that real values are often referred to as floating
point values.

Although most of the values involved in computing are numbers, other types of value are possible as
well, eg. truth values - we can speak of a condition such as Size>0 yielding the value True when
the value stored in the variable Size is positive or the value False otherwise. Equally it is possible
to have textual values, often referred to as strings, such as names: "Richard", and addresses:
"Aston University, Aston Triangle, Birmingham", etc.

In Ada terminology, what kind of value we are talking about - integer, real, etc. - is known as the type
of the value. We shall see that this concept is very important in writing Ada programs, since variables
can only hold values of a particular type. Thus, for example, a variable which can only hold integer
values is said to have type Integer. Similarly a variable which can only hold real floating point values
is said to have type Float.

3 . 2 Libraries for Input and Output

The steps necessary for performing input and output in Ada are not automatically available to a
program, but have to be made available from elsewhere. These input/output (I/O) procedures
(Get, Put, etc.) are contained within library packages which are stored in the computer system; in Ada
a package is a program unit whose purpose is simply to provide program elements (such as I/O
procedures) to be used in other programs.

Just as it is essential to have variables of different types to hold real and integer values so it is
necessary to have different procedures to input and output values of different types. In reality there
are several versions of the output procedure Put each imported from a different library package:

for outputting integer values Put from the library package CS_Int_IO is used,
for outputting floating point values Put from the library package CS_Flt_IO is used,
for outputting textual values Put from the library package Ada.Text_IO is used.

Similarly for input:

for inputting integer values Get from the library package CS_Int_IO is used,
for inputting floating point values Get from the library package CS_Flt_IO is used.

When it is necessary to distinguish explicitly between the different versions of an I/O procedure from
the various library packages, the procedure name can be fully qualified by preceding it with the
package name to which it belongs and a full-stop, for example CS_Int_IO.Put, CS_Flt_IO.Put
and Ada.Text_IO.Put. However in most cases the short form of the procedure name will suffice.

© 1996 A Barnes, L J Hazlewood Ada 3/2

3 . 3 Converting an algorithm into an Ada program

In principle, the Ada-style notation for algorithm steps which was introduced in Unit 2 can be used
directly in writing Ada programs; the forms available being IF... to express selection, WHILE... to
express repetition, ...:=... to express assignment, Get(...) to express input, and Put(...) to
express output, etc. However, programming languages always impose strict rules about exactly how
programs are presented. This is for a good reason - to avoid any risk of ambiguity and to simplify and
hence speed up the work of computer systems - but it does mean that to convert our algorithms into
correct Ada programs executable by a computer, we shall have to learn and rigorously apply a number
of rules.

To see what's involved let's look at a very simple problem - given two positive whole numbers,
determine the remainder when the first is divided by the second. We shall compare the algorithm to
solve this with its expression as an Ada program:

!!!Algorithm

One of the ways to solve this
problem is to use repeated
subtraction to find the remainder,
ie. keep subtracting the second
number from the first until no more
subtractions can take place
(note that this algorithm isn't the
'best' approach, but it will suffice
for the present), thus:

Get(Item => Number)
Get(Item => Divisor)

WHILE Number ≥ Divisor LOOP
 Number := Number - Divisor
END LOOP
{ When the loop terminates }
{ Number holds required remainder}

Put(Item => "Remainder is ")
Put(Item => Number)

 Ada Program

WITH Ada.Text_IO; USE Ada.Text_IO;
WITH CS_Int_IO; USE CS_Int_IO;

-- Program to find a remainder
-- by repeated subtraction.

PROCEDURE Remainder IS

 Number : Integer;
 Divisor : Integer;

BEGIN
 Put(Item => "Type 2 positive ");
 Put(Item => "whole numbers: ");
 Get(Item => Number);
 Get(Item => Divisor);

 WHILE Number >= Divisor LOOP
 Number := Number - Divisor;
 END LOOP;
 -- When the loop terminates
 -- Number holds the remainder.

 New_Line;
 Put(Item =>"Remainder is ");
 Put(Item => Number);
 New_Line;
END Remainder;

To get from the algorithm to a complete Ada program, we had to follow these rules:

i)
Make available all the procedures from the library Ada.Text_IO which are used for pe

rforming output of text:
WITH Ada.Text_IO; USE Ada.Text_IO;

ii)
Similarly, make available the procedures from the library CS_Int_IO which are used f

or performing input and output of integer (whole number) values.

iii) Next insert a program heading:
PROCEDURE Remainder IS

iv)
Declare the names and types of all the variables used in the program. In this case th

ere are just two integer variables:

© 1996 A Barnes, L J Hazlewood Ada 3/3

Number : Integer;
Divisor : Integer;

© 1996 A Barnes, L J Hazlewood Ada 3/4

v) Form the algorithm steps into a program body by :
preceding them with the keyword BEGIN to indicate the start of the program text proper;
marking the conclusion of the program text by adding the keyword END followed by the na
me of the program:

END Remainder;

Note that this name must be exactly the same as that which appears in the program heading.

vi)
Terminate each complete program step by a semi-colon (;). This also applies to the ad

ditional specification steps introduced for (i), (ii) and (iv).

vii) Rewrite mathematical symbols in a form which can be entered from a normal keyboard
(ie. >= for ≥). Note that these symbols should not include any spaces, ie. >= not > =.

viii)
Rewrite the comments which have been included in the algorithm to aid its understan

ding by preceding them with two hyphens -- rather than enclosing them in braces {....}.

ix)
Add various output commands to improve the appearance of the output and, when th

e program used interactively, to provide instructions to the user of the program.

Some of these are very simple, but others are more involved and will be considered in greater detail in
the following sections.

3 . 4 Using library packages for input and output

The I/O procedures used in the program Remainder above (ie. Put, Get and New_Line) are
contained in two separate packages whose names are Ada.Text_IO and CS_Int_IO. The context
clause:

WITH Ada.Text_IO;

informs the Ada compiler (and any human reader) that the program will be using procedures from the
package Ada.Text_IO to output textual values to the VDU screen. Similarly the context clause:

WITH CS_Int_IO;

enables the program Remainder to use procedures from the package CS_Int_IO which perform
input/output of integer values. Thus whenever the contents of a package are to be used, the
package must be made available by including a clause:

WITH Package_Name;

As we have seen in [3.2] there are different versions of the I/O procedures each belonging to its own
library package for use with different data types. In order to be able to refer to the procedures in the
package Ada.Text_IO simply by using their name rather than the fully-qualified form
Ada.Text_IO.Name it is necessary to insert another form of context clause:

 USE Ada.Text_IO;

after the corresponding WITH clause and similarly for CS_Int_IO. This is convenient as it cuts down
on typing and also allows the Ada compiler to automatically use the correct I/O procedure for each type
of data value. In one of the recommended text books, Feldman and Koffman have preferred to omit
USE Package_Name clauses from their programs and instead to use the fully-qualified names of I/O
procedures, while in the other recommended text book, Rudd includes the USE Package_Name
clauses. Both methods have advantages and disadvantages: Feldman and Koffman's approach
makes it clear exactly which I/O procedures are being used at every step but programmers must be
careful always to specify the appropriate I/O procedure for each type of data value whereas the
approach adopted in Rudd's text book and these units has the advantages of brevity and simplicity
but at the cost of some slight loss of clarity.

Observe that the above gives some indication of the composition of large-scale Ada software, which is
not usually composed of a single large program, but rather from a number of smaller units whose
components are made available to each other (by suitable WITH and USE clauses). Thus in the above

© 1996 A Barnes, L J Hazlewood Ada 3/5

we would refer to Ada.Text_IO and CS_Int_IO as being packages, and Remainder as being a
(main) program. We also see the importance of a sensible and systematic approach to the naming of
programs and packages.

© 1996 A Barnes, L J Hazlewood Ada 3/6

3 . 5 Comments

In Ada as in all programming languages it is good practice to include comments, that is explanatory
text which is not part of the program proper but which is included to improve program clarity. In Ada
comments begin with two hyphens -- and continue until the end of the line is reached. The
comment text is ignored by the Ada compiler and is there solely for the benefit of (human) readers.
The example program in [3.3] contains four comment lines: two to describe briefly the purpose of the
program and two to explain a particular point of the algorithm. Comments may also be used (for
example) to give instructions on how the program is to be compiled and run, on the form of the input
data required, to give information about the origin of the program: its author, date, etc, and to indicate
when and what part of a program was modified at a later date.

3 . 6 The variable declaration section

When an algorithm is obeyed, particular values have to be assigned to the variables it uses. If the
algorithm is realised as a program executed by a computer, then the computer must physically place
these values somewhere. A computer uses locations ("pigeon holes") in its "scratch-pad" store (or
memory) for this purpose. So that the computer system can appropriately associate the available
locations with the variables to be used, a program must explicitly state (or declare) its variable
requirements. This is done in a variable declaration section which lies between the keyword IS
in the program heading and the keyword BEGIN which marks the start of the executable steps of the
program. In this section we must name each variable used by the program and also state the type of
value each variable is to store. This is necessary since different types of values, eg. integers and
reals, are stored differently inside computers. This also allows the Ada system to do some checking of
our program and hence prevent us from making certain types of error.

The full form (or syntax) of variable declarations is a little complicated, so let us begin by looking at the
declaration used in the example above [3.3]:

Number : Integer;
Divisor : Integer;

Its effect is to reserve two locations suitable for storing integers and to associate the specified names
with those locations.

Number Divisor
scratchpad store
(computer memory)

As we have seen before, Number and Divisor are then said to be variables capable of storing
integer values, or more simply said to be integer variables. As an alternative we could have
achieved the same effect using the slightly more concise declaration:

Number, Divisor : Integer;

The general form of the declaration used here is:

List_of_variables_separated_by_commas : Type_for_those_variables;

There can be any number of these parts; for example suppose that we have a modified version of the
algorithm in [2.2] which reads in a number of real floating point data values until a terminating zero
value is encountered. It is required to count the number of data values read and also to compute their
total. Two variables of type Float will be needed Number (to hold the current data value) and
RunningTotal as well as a variable Count (say) of type Integer, thus we might see:

Number, RunningTotal : Float;
Count : Integer;

These parts can be in any order, and must be terminated by semi-colons.

© 1996 A Barnes, L J Hazlewood Ada 3/7

3 . 7 Restrictions on the use of variables

When any variable is declared, a type is associated with it. Only values of the specified type can then
be stored in (ie. assigned to or read into) that particular variable. For example, assuming the
declarations:

a : Integer;
x : Float;

then consider : a := x; -- ?! illegal in Ada

and: x := 3; -- ?! illegal in Ada

Both are invalid (attempting to store a real floating point value in a integer variable and vice-versa).
Similarly, if Get(Item => a) were obeyed and the next data available was the text value THREE, a
run-time error would occur. Since the variable a is of type Integer, the Get procedure expects to
only encounter a data value of type Integer. Such a data value can only be expressed using digits
and thus THREE is a text value, not an integer value. A similar run-time error would occur if the data
value 3.0 were encountered as this is a real value.

Note To avoid confusion, the symbol ?! will be used to point out example Ada constructions
which are in any way incorrect.

3 . 8 Identifiers

Variable names and the program name are examples of identifiers. There are a number of simple
rules governing the form and use of identifiers:

a) An identifier consists of a sequence of letters, digits and the underscore character beginning
with a letter. No other characters are permitted. In particular, spaces are not allowed in
identifiers. Thus we cannot use Running Total as an identifier but must instead use
RunningTotal (or possibly Running_Total).

b) Keywords (such as BEGIN, END, WITH etc.) cannot be used as identifiers.

c) The case of letters is not significant in Ada (except within strings). Thus TOTAL, total and
Total all denote the same identifier and will be regarded as identical by the Ada compiler.
Although case is not significant a sensible use of capital letters can greatly improve the
readability of programs. In these units the conventions adopted are that keywords are written
completely in capitals and when an identifier consists of two or more English words the first
letter of each component word is capitalised. The identifier TotalSoFar is somewhat easier
to read than totalsofar.

d) For clarity, and to avoid confusion, meaningful identifiers should always be chosen. Thus
identifiers such as TimeOfDay and RunningTotal are preferable to identifiers such as T or
TOD and R or RT.

e) Generally, identifiers may be of any length, and all characters are significant, just as in English
words. Thus AnExtremelyLongIdentifier is a valid identifier in Ada. However one
should avoid using identifiers which are overlong as these make programs difficult to read
(and type!). A maximum of 16 characters is a useful rule of thumb.

f) All of the identifiers used in the variable declaration section of a program must be different.
These identifiers should also be different from the names of any input/output procedures
which are imported into a program.

3 . 9 Adding explanatory output and improving output layout

When the example program in [3.3] is executed not only does it send output to the user's VDU screen
but it also 'expects' input from the keyboard. Thus the program interacts directly with the user and is
said to be an interactive program. When such a program needs input (ie. when a Get step is
obeyed) the program will wait until the user types the required data value (and presses the return key).
In order that a user will know what is required (and not sit there indefinitely waiting for the program to
do something!) the program should output (using Put steps) a suitable message prompting the user
to type in the required data before each input step.

© 1996 A Barnes, L J Hazlewood Ada 3/8

Similarly as we have seen in Unit 2 a program should output (using Put steps) suitable explanatory
text to make clear the meaning of the numerical results produced. Often it will also improve the
appearance of program output if blank lines are used in order (for example) to clearly separate input
and output on the VDU screen. This is achieved by including calls to the output procedure New_Line
which causes the next output step to begin its output at the start of a new line. The procedure
New_Line is part of the library package Ada.Text_IO. Liberal use of New_Line, for example to
produce double-line-spacing, can often vastly improve the look of program output. These points are
illustrated in the example program in [3.3] which will produce the following output on the VDU
(assuming the user types in the values 19 and 4):

Type 2 positive whole numbers: 19 4

Remainder is 3

Note that as the user types in data at the keyboard it is 'echoed' on the VDU screen. For clarity user
input is indicated by underlining in the diagram above (of course this underlining does not appear in
the actual VDU output). In the above diagram it has been assumed that the user pressed the return
key after entering the number 4. Alternatively the user could press the return key twice, once after
typing in the value 19 (instead of typing a blank) and again after entering the value 4. In this case the
following VDU output would be produced:

Type 2 positive whole numbers: 19
 4

Remainder is 3

3.10 Use of semi-colons

Program steps (including specification steps such as variable declarations) must be terminated by
semi-colons, but it is only complete steps that must be terminated, not parts of steps. A complete
IF... or WHILE... construction constitutes a program step, but some of their individual
components do not. Thus a semi-colon is required on the last line of the example below to terminate
the whole (5 line) IF... step and also on lines (2) and (4) to terminate the steps making up the THEN
and ELSE parts. However no semi-colons should be used on lines (1) and (3) as the IF... step is not
yet complete.

1) IF x > y THEN
2) Max := x;
3) ELSE
4) Max := y;
5) END IF;

Similarly a semi-colon is required on line (4) of the example below to terminate the WHILE... step and
also on lines (2) and (3) to terminate each step making up the body of the loop, but not on line (1).

1) WHILE Number >= Divisor LOOP
2) Quotient := Quotient + 1;
3) Number := Number - Divisor;
4) END LOOP;

Note that comments do not form programs steps (they are ignored by the computer - being there only
for the benefit of the human reader of a program) and so need not be terminated by semi-colons.

3.11 Layout of programs

Spaces and new lines are used in Ada to separate individual program items such as identifiers,
keywords, arithmetic symbols and numbers. However only the first space or new line is significant and
the rest are ignored by the Ada compiler. Thus programs may be laid out exactly as desired, and it is
important to take advantage of this freedom to introduce blank spaces and blank lines wherever this
helps to illuminate the structure of a program. Blank lines should be used to split programs into
'paragraphs' of logically related steps. Spaces should be used to indent programs to emphasize their
logical structure. Thus the keywords IF, THEN, ELSE and END IF in selections and WHILE and
END$LOOP in repetitions should be indented by the same amount and the bodies of the selections
and repetitions should be indented by a further fixed amount (say three or four spaces) relative to

© 1996 A Barnes, L J Hazlewood Ada 3/9

these keywords. Similarly, the variable declaration section and the steps in the program body should
be indented relative to the keywords PROCEDURE, BEGIN and END ProgramName in the main
program.

In Ada it is possible to type two or more program steps on the same line provided each is terminated by
a semi-colon. Normally each line of the program should contain only one program step, otherwise the
program may appear cramped and so be difficult for humans to read. However occasionally it is clearer
to place two or more program steps on a single line when the steps are short and are closely related
logically, as, for example, is the case with the context clauses in the example program in [3.3].

3.12 Tracing the execution of the example program

Suppose that the example program [3.3] is obeyed, and that data values of 19 and 4 are supplied as
input. To help us understand the execution of the program we can trace the contents of the
variables Number and Divisor as the execution proceeds. It is also necessary to keep track of the
data input (ie. the effect of using Get) and of output produced (by using Put).

Number Divisor Input/Output

19 4? ?

19

15

11

 7

 3

4

Remainder is 3

Type 2 positive whole numbers:

The columns of figures under the variable names show the sequence of values successively stored in
those variables as the program is executed. As each value is replaced by a new value, the previous
value is (of course) over-written, and this is shown by lightly crossing-out the previous value. Notice
that immediately after the variables have been declared (so that locations "exist") but before the Get
has been obeyed, the variables contain undefined or 'junk' values (shown as ?). The output
produced on the VDU screen is also shown. Also, as each data value is read in, it is irrevocably
'consumed'; this too is shown by appropriate crossing-out.

Hand tracing of a program (or algorithm) can often be very helpful in practice as it aids understanding of
the program (or algorithm). It is also particularly useful in checking programs (or algorithms) and in
finding errors. Hence you should certainly practice and master this technique. For example, it is a
good exercise to trace the example program above for various input values including cases where the
user types in unexpected values, eg. negative or zero values.

Later in the course and in the laboratory sessions you will learn about programming tools such as run-
time debuggers which help in tracing and debugging programs. With the use of a debugger, a
program can be executed one step at a time and the values of program variables can thus be
inspected as the program runs. This, of course, provides much the same information as hand tracing.
Nevertheless hand tracing is still important since it can also be used on an algorithm before it is
converted into an Ada program. Such hand tracing can be used to detect logical errors in the
algorithm at an early stage in the design process and these errors may therefore be corrected before
program coding in Ada commences.

