Introduction to Systematic Programming
Unit 2 - Algorithms and Problem-solving

2.1 The nature of algorithm steps

A simple algorithm might contain only unitary steps (or 'indivisible' steps), performed one after
another in the order stated, such as:

"input next data value",
"add 1 to this number",
"write out result",

etc.

but this isn't so in general. To see why, let's look at an example algorithm. It isn't for a 'computer-type'
problem, but it will serve to illustrate some important points. Suppose you wished to phone a
message to a Mr. X. Remembering that algorithms are supposed to guarantee achieving an objective,
and therefore allowing for the possibility that the telephone line is (repeatedly) engaged, a possible
algorithm could be:

IF X's phone number is not already known THEN
look it up
END IF

WHILE we haven't yet got through LOOP

pick up the receiver
dial X's number

IF we get a ringing tone THEN
wait until phone is answered
state the message
put down the receiver

ELSE
put down the receiver
wait a few minutes

END IF

END LOOP
We can see that some of the steps are of a simple unitary nature, for example:

pick up the receiver
dial X's number

but others are compound steps, in the sense that they contain other step(s) which are selected or
repeated. In the case of selection, step(s) are (or are not) to be performed according to some stated
condition or test, and in the case of repetition, step(s) are to be repeated according to some stated
condition or test.

2.1.1 Expressing selection in an algorithm

An operation frequently required when expressing algorithms is the ability to indicate whether a
particular series of actions are to be performed, or are not to be performed, according to whether
some condition is satisfied or not. Most programming languages contain such selection steps, and
in line with our aim (expressed in Unit 1) of making the transfer of an algorithm into an Ada program as
simple an operation as possible, we will use the same notation (or syntax) when expressing a
selection step in our algorithm as is used in the Ada programming language, namely:
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IF some condition {is true} THEN

{perform only these} step(s)
ELSE

{perform only these alternative} step(s)
END IF

The precise meaning (or semantics) of this selection step (which is often referred to as an
if..then..else.. step) is as follows:

Look at (or evaluate) the condition and if (and only if) that condition is satisfied (ie. is True), carry
out the first set of step(s) - but don't carry out the second set of step(s). Alternatively, if the
condition was not satisfied (ie. was False), carry out the second set of step(s) - but don't carry
out the first set of step(s). In either case, when the appropriate step(s) have been carried out,
continue by performing the next step which follows after the END IF.

(Note that the braces {...} are not part of the notation; they simply enclose explanation).

We can see an example of this if..then..else.. step in the previous algorithm, where, depending
upon whether or not we get aringing tone, we wish to perform either the actions necessary to state
the message, or the actions which involve waiting a few minutes (before trying again).

Sometimes we don't need any action at all when the condition turns out not to be satisfied (ie. to be
False), and in this is case we can use the shortened notation:

IF some condition {is true} THEN
{perform these} step(s)
END IF

The precise meaning of this shortened selection step (which is often referred to as an if..then..
step) is as follows:

Evaluate the condition and if (and only if) that condition is satisfied (ie. is True), carry out the
specified set of step(s). Alternatively, if the condition was not satisfied (ie. was False) don't carry
out the specified set of step(s). In either case, whether the appropriate step(s) have been carried
out or not, continue by performing the next step which follows the END IF.

We can also see an example of this if..then.. step in the previous algorithm, where, when we do not
already know Mr. X's telephone number, we perform the actions necessary to look up the telephone
number.

2.1.2 Expressing repetition in an algorithm

Another operation frequently required when expressing algorithms is the ability to indicate that a
particular series of actions are to be performed repeatedly, over and over again. Most programming
languages contain several means for expressing such repetition steps, so we will start by using
one of the most common forms. Again we will use the same notation for expressing a repetition step
in our algorithm as is used in the Ada programming language, namely:

WHILE some condition {is true} LOOP
{keep on doing these} step(s)
END LOOP

In precise terms, this repetition step (often referred to as a while..loop.. step) means:

Evaluate the condition, when the result is True, obey the controlled step(s) and then re-evaluate
the condition to see if the repetition is to proceed. When the re-evaluated condition result is still
True, obey the controlled step(s) again and then re-evaluate the condition again to see if the
repetition is to proceed further, and so on. When at any evaluation or re-evaluation the condition
result is False, stop the repetition (ie. terminate the entire while loop immediately), and continue
by performing the next step which follows after the END LOOP.
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We can see an example of this while..loop.. step in the previous algorithm, where we pick up the
telephone, dial the number, and attempt to deliver the message, and repeatedly keep on doing these
step so long as we have not succeeded in delivering the message.

It is important to note that these compound steps can be nested arbitrarily. For example in the
algorithm above one of the steps controlled by the WHILE..LOOP. . repetition is an IF..THEN..
step. Similarly, within such an IF..THEN. . we could in turn write any further unitary or compound
steps that our algorithm might need, and so on, without any specific limitation.

2.1.3 Layout to be used

There are no special rules regarding layout, except that whatever layout is chosen should attempt to
make the structure of the algorithm as clear as possible. However the course material will adopt the
convention that the keywords IF, ELSE and END IF of a selection, and WHILE and END LOOP of a
repetition are aligned underneath one another, and that actions within selections and repetitions are
indented from this alignment. The same layout arrangement should be used in the corresponding
Ada program, where an indentation of three or four spaces is recommended.

2.1.4 Algorithm structure - summary

We have seen three forms of construction which may be used in expressing algorithms:

sequencing - implied by the order in which steps are written

selection - using IF..THEN. . to choose between alternative actions, or
possibly between some action(s) and no action at all

repetition - expressed using WHILE. .LOOP..

These are extremely important because all algorithms can be expressed using suitable combinations
of them. Since these constructions are so important, it is naturally the case that they are provided
directly in most programming languages. Thus in Ada IF..THEN..ELSE..END IF or
IF..THEN..END IF are used for expressing selection, and WHILE..LOOP..END LOOP for
expressing repetition. These ideas also form the basis for our methodology for successfully
producing correct programs. This course adopts a methodology usually called structured
programming, and primarily uses a variation of the techniques referred to as step-wise
refinement and top-down design as a means for obtaining such structured programs.

2.2 Values and variables

Nearly all computation (and hence nearly all algorithm specification) involves calculation on values. For
example in averaging problems we add up a sequence of values to obtain another value, the total;
divide this by a further value, the count of the numbers totalled; and hence obtain yet another value,
the average. To be able to refer to values conveniently, we need to give them meaningful names - eg.
Total, Count and Average respectively. This technique is vital in both algorithm specification and
program writing, and a special term is used to describe such a named value - we call it a variable (just
as in ordinary school algebra).

Given a variable, we can, at different moments in the execution of an algorithm, associate different
values with that variable; but at any given instant, there can only be one particular value associated
with the variable. As an illustration, consider the variables Number and RunningTotal in the
following algorithm fragment:

1) set RunningTotal to zero

2) input a data value (call it Number)

3) WHILE Number is not equal to zero LOOP

4) add the value of Number to RunningTotal

5) input the next data value (call it Number)
6) END LOOP

7) output the value of RunningTotal
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Step (2) involves inputting the first data value and storing this value in the variable Number. The
WHILE..LOOP. . repetition then involves repeatedly testing the value stored in the variable Number
and (if the value of Number is not zero) performing two steps. The first step (4) involves adding the
value stored in Number to another variable RunningTotal (which has initially been set to zero at step
(1)) and the second step involves inputting another data value and storing this value in the variable
Number, overwriting the previous value with this new value. At some point a zero data value will be
input to Number at step (5), and the subsequent test at step (3) will stop the repetition. When the
repetition terminates, the value associated with RunningTotal will be the sum of the input data
values (excluding the zero terminator value), so that at step (7) the sum of the data values input can be
output.

For example, if we were to present the data values: 4 2 0

to the algorithm, the values of the variables at various stages in the algorithm would be as follows:

RunningTotal Number

After completion of steps (1) and (2) 0 4
The test at step (3) would be True

After completion of step (4) 4 4
After completion of step (5) 4 2
The test at step (3) would be True

After completion of step (4) 6 2
After completion of step (5) 6 0

The test at step (3) would be False, so the repetition stops
Step (7) would output the current value of RunningTotal, ie the value 6

2.3 Assignment and the "becomes" symbol (:=)
Notice that there is an alternative way of expressing step (4) above; we could have put:
set RunningTotal to RunningTotal + Number

This has exactly the same meaning, but it shows the use of arithmetic and the methods by which
values are associated with variables more explicitly - it shows that what we are saying, in detail, is:

take the values currently associated with RunningTotal and Number

add these value together, giving a new value

finally associate this new value with RunningTotal
(And the previous value of RunningTotal is "lost" (or "over-written") - eg. if the value of Number was
2 and the value of RunningTotal was 4 before, it is now 6 and all record of its previous value has
been lost).
A more compact way of expressing this type of instruction is to use a symbol instead of writing
'set...to...'. The notation used by Ada is to leave out the word 'set' and replace 'to' with the
symbol ':=". Thus in the present case we would put:

RunningTotal := RunningTotal + Number
The symbol := is best read as becomes; eg. here we would say "RunningTotal becomes
RunningTotal plus Number". This sort of algorithm step is known as an assignment step, which
assigns a new value to the variable RunningTotal.

Another example is: Count := Count + 1

Here the value obtained by adding 1 to the value associated with Count is assigned to the variable
Ccount. Or, loosely but more simply, "Count becomes Count plus 1".

2.4 Expressing input and output steps in Ada notation

The basic concept in performing input is obtaining the next available value from the data and
associating it with a variable; for example in step (5) of the algorithm above we have written:
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input the next data value (call it Number)
The Ada notation for this is would be: Get(Item => Number)

The basic concept for output is sending a value to some destination (such as a VDU, terminal or a disc
file). In step (7) of the above algorithm we have written:

output the value of RunningTotal
The Ada notation for this would be: Put(Item => RunningTotal)

However, for output we don't necessarily have to specify a variable - in fact anything that produces a
value that can sensibly be printed will do; eg:

a) Put(Item => First + Second) - outputs the value of First + Second
assuming First and Second are variables

b) Put(Item => Average - 2.5) - outputs the value of Average - 2.5,
assuming that Average is a variable

C) Put(Item => 2 * Length + 1) - outputs the value of 2 x Length + 1,

assuming that Length is a variable, and
that * stands for multiplication
d) Put(Item => "Total value was:")

(a) - (c) show the means of expressing numeric output, but (d) illustrates text or string output. Such a
step states that the literal text string enclosed between the quote marks is to be written to the output
device. This is very important in practice, for it will allow us (for example) to instruct the computer to
produce messages (such as: "Type two numbers") and to output text which explains the meaning of
numeric output (such as in (d) above and in what follows).

Note that we often need several successive output steps in an algorithm, eg:
Put(Item => "The sum of ")
Put(Item => First)
Put(Item => " and ")
Put (Item => Second)
Put(Item => " is ")
Put(Item => First + Second)
would be necessary to produce the output:
The sum of 345 and 123 is 468

(Assuming, for example, that the variables First and Second held the values 345 and 123
respectively).

2.5 Example
As an example of the construction of a computer algorithm, consider the following problem.
The Problem:
Given data comprising a list of pairs of values representing the number of items sold and the
corresponding unit price (or price per item) of a series of sales at a supermarket check-out, the list
being of unknown length but terminated by two zero values, calculate the total amount of the all sales
and the number of sales which exceeded £100.
The Solution:
i) Think through the logic of the problem
Need to input each pair of values in turn and for each pair calculate the sale value, add the sale
value to a running total, and add 1 to a count (of the number high valued sales) if the sales value

exceeds £100.

=> Need a repetition where each pair of values is input and processed on each action step
of the repetition
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i) Outline a scheme for solving the problem

Following the example in [2.2] we see that this problem will need the same form of repetition.
Thus:

set SalesTotal to zero
set HighSaleCount to zero
input two data values (call them NumberSold and UnitPrice)

WHILE NumberSold and UnitPrice are not both zero LOOP

set SaleValue to NumberSold x UnitPrice
add SaleValue to SalesTotal
IF SaleValue > £100 THEN
add 1 to HighSaleCount
END IF
input next two data values (call them NumberSold and UnitPrice)

END LOOP
output SalesTotal and HighSaleCount
Notice that this utilises an algorithm fragment of the form:

input first value

WHILE value does not signal termination LOOP
use that value in some calculation
input the next value

END LOOP

but where the 'value' referred to in the fragment has been replaced by references to
NumberSold and UnitPrice as the pair of data values being processed on each repetition.
Notice too that the example algorithm in [2.2] also utilises this algorithm fragment, but where
'value' was replaced by Number.

This algorithm fragment or subalgorithm is important because many parts of computer
algorithms have this structure. Be sure you understand and remember it; and also
appreciate when it's relevant to use it, ie. whenever inputting and processing a list of data values
which is terminated by some special marker or sentinel value. Part of the technique of learning to
program is that of remembering such subalgorithms, and being able to identify situations where
they may be reused in an identical or very similar form. You will see many such subalgorithms
during the lectures, tutorials and case studies of this course.

i) Complete the algorithm using Ada-like steps for input, output and
assignment

SalesTotal := 0
HighSaleCount := 0

Get(Item => NumberSold)
Get(Item => UnitPrice)

WHILE NumberSold and UnitPrice are not both zero LOOP

Salevalue := NumberSold * UnitPrice
SalesTotal := SalesTotal + SaleValue
IF SalevValue > £100 THEN
HighSaleCount := HighSaleCount + 1

END IF
Get(Item => NumberSold)
Get(Item => UnitPrice)

END LOOP

Put(Item => "Total sales was ")

Put(Item => SalesTotal)

Put(Item => "Number of sales exceeding £100 was ")
Put(Item => HighSaleCount)
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In the example program in [1.6] we observed that an essential component of an Ada program is to
specify what variables are needed in the program, so that when writing an algorithm it is always helpful
to note what variables have been used. In the above algorithm we have used the variables:

NumberSold - to hold the number of items sold (in each sale in turn)
UnitPrice - to hold the unit price of the item sold (in each sale in turn)
SalevValue - to hold the value of a sale (for each sale in turn)
SalesTotal - to hold the running total of all the sales values
HighSaleCount - to keep a count of the number of sales exceeding £100

Notice that part of this algorithm has been expressed in normal text and part in italics. In future when
designing algorithms we will use normal text to denote those parts which are already expressed in
Ada-like notation, and italics for those parts which require further alteration before they can be used
directly in an Ada program. From this example we see that effectively all but a part of two lines of the
algorithm is already written in the Ada language - perhaps programming isn't so difficult after all!

2.6 General advice on how to set about writing an algorithm
Try to follow this pattern:

i) Quickly think through the whole problem, trying to get a general overall picture of what kinds of
action are required to solve the problem. It is often helpful to think about what input data is
available, about what output results are required and about their form (what order do data items
come in/what order must results be output in?)

i) Write down the main actions involved (using terse English descriptions); so far as possible in the
correct order. In particular try to identify any repetitions that are involved in the overall structure of
the problem.

i) Now write out a (computer) algorithm, using our Ada-style notation. Remember to deal with input
and output, which must be fully specified in computer algorithms, and must be done in a way that
is compatible with the physical structure of input/output devices (ie. working left-to-right and
downwards, so that, in particular, any given data item can be read in only once). For now, leave
anything that is not expressible in our formal style in terse English or some other suitable (eg.
mathematical) notation (whichever seems more appropriate). However, always try to use one of
the formalisms IF..THEN..END IF or IF..THEN..ELSE..END IF for expressing any
selections, and the formalism WHILE. . LOOP. . END LOOP for expressing any repetitions.

These are general hints, not precise rules, and at this stage you cannot expect to be more than
moderately adept at applying them, but programming is a practical discipline, and with practical
experience, you will steadily increase your skill.

Occasionally you may not be able to make any progress with step (i). If this happens, or if you get
stuck at a later point, don't give up, but ask these questions:

- If I had to do the work that this problem requires by hand, how would / do it?

- What arithmetic is needed (what numbers would be used, what totals, what intermediate
results, etc.)?

- Is there anything which | would have to repeat a number of times (and if so, how would |
know when to stop)?

You should find that if you can see, and can state in reasonably precise detail, how one could solve a

problem with pencil and paper, then this is a large step towards expressing the solution as a computer
algorithm.
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